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Abstract
In this research a new method of improved singular value decomposition (ISVD) is proposed for the vibration signal
de-noising of gear pitting fault identification. In this method, the delay time τ and embedding dimension m of the Hankel
matrix for SVD are optimized by autocorrelation function and Cao’s algorithm respectively. Simulation and experiments
are conducted to demonstrate the method. In the simulation, the ISVD method is employed to de-noise the artificial
vibration signal in a mathematical model of gear pitting fault, the result demonstrates the signal-noise ratio (SNR) value
is SNR= 31.3dB, and the root-mean-square error (RMSE) value is RMSE= 0.34. In the experiment, the ISVD method is
adopted to de-noising the vibration signal of gear pitting fault identification, the results demonstrate SNR is SNR >45dB,
and the RMSE value is RMSE <0.4 of the fault characteristic signals at each measuring point position. The results of
simulation and experiment show, the ISVD method is efficient to de-noise the vibration signal of gear pitting fault.

Signalentrauschen in Zahnrad-Lochfehler-Identifikation durch eine verbesserte
Singular-Value-Zersetzungsmethode

Zusammenfassung
In dieser Forschung wird eine neue Methode zur verbesserten Singularwertzersetzung (ISVD) für die Schwingungssignal-
entnosierung von Zahnrad-Lochfehler-Identifikation vorgeschlagen. Bei dieser Methode werden die Verzögerungszeit und
die Einbettungsdimensionm der Hankel-Matrix für SVD durch die Autokorrelationsfunktion bzw. den Cao-Algorithmus op-
timiert. Simulationen und Experimente werden durchgeführt, um die Methode zu demonstrieren. In der Simulation wird die
ISVD-Methode verwendet, um das künstliche Schwingungssignal in einem mathematischen Modell von Zahnrad-Pitting-
Fehlern zu entrauschen; das Ergebnis zeigt den Signal-Rausch-Verhältnis-Wert (SNR) sNR = 31,3 dB und der RMSE-Wert
(Root-Mean-Square Error) ist RMSE= 0,34. Im Experiment wird die ISVD-Methode zum Entrauschen des Schwingungs-
signals der Schaltfehleridentifikation von Zahnrädern angewandt, die Ergebnisse zeigen, dass SNR SNR > 45 dB ist, und
der RMSE-Wert ist RMSE –0,4 der Fehlerkennzeichensignale an jeder Messpunktposition. Die Ergebnisse der Simulation
und des Experiments zeigen, dass die ISVD-Methode effizient ist, um das Schwingungssignal von Zahnrad-Pitting-Fehlern
zu entlärmen.
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1 Introduction

Gears are critical transmission components in rotating ma-
chinery with extensive application field especially in mod-
ern industrial areas. The whole machinery’s performance
and production efficiency are directly affected by the work-
ing state of gears [1]. The stable operation is directly af-
fected by the state of gear motion whether the gear run
normally or not [2, 3]. Therefore, it is very crucial to iden-
tify the early faults before the gears develop into serious
state. However, in practical applications, it is difficult to
predict the formation and development of gear fault in ad-
vance because while the vibration around the gearbox is
perceived, the gear fault has been a severe condition. Up
to now, the research of the gear failure mechanism in early
and middle condition is not mature. For the practical ap-
plications, it is important to develop the research of gear
failure on vibration characteristics of gear box.

Recently, many theoretical types of research are devel-
oped on the vibration of gearbox by gear failure, few type
are based on practical application. And there is a certain
gap between theory and practical application. Generally,
fault detection of gear teeth is the collection of fault signal
samples site, and the identification of the gear fault type
according to the information by the signal collection [4].
Since the measured signal is interfered with strong noise
background, de-noising for the extraction of useful char-
acteristics from the original signal is the first important
stage. At present, the common methods of signal de-noising
are various, such as Empirical mode decomposition method
(EMD) [5, 6], Local mean decomposition method (LMD)
[7, 8], Singular value decomposition method (SVD) [9–11]
wavelet analysis method [12–14]. In practical, the methods
are limited by some problems. EMD is affected by mode
aliasing which is occurred frequently in the decomposition
process, and the quality of signal decomposition is reduced
in the condition [15, 16]. LMD also generates mode aliasing
which makes the decomposition and extraction of fault fea-
tures incomplete, and lead to decomposition failure on the
whole time scale [17–19]. The effect of Wavelet de-nois-
ing method is depended on the calculation and selection of
reasonable parameters [20, 21].

Beside the de-noising methods above, the singular value
decomposition (SVD) is a better method to deal with prob-
lems of mode aliasing and endpoint effect. The singular
value of effective feature is distinguished from original sig-
nal by SVD which is based on the singular value matrix
of the characteristic signal. In the method, characteristic
information of the noise signal is eliminated, the useful
characteristic signal is reconstructed. As it is invariant, sta-
ble and effective for the de-noising, SVD is applied to the
filtering of nonlinear signals, such as practical application
of de-noising in fault identification of gear fault [22].

However, the accuracy of de-noising in fault identifi-
cation by SVD is depended on the calculations of τ and
m, which is highly subjective and unreliable in theory at
present. Although suitable parameters of τ and m are cal-
culated by a new method which is called k-SVD, the deter-
mination of k is restricted by other conditions, and affects
the de-noising effect of SVD [23, 24].

It is urgency to reasonably determinate the values of τ
and m in SVD respectively. For the value of τ, although
is appropriate to any value in theory, the determination in
practical applications is directly affected by the vibration
signal. In the case that τ is too small, the correlation is con-
centrated to between different elements of the delay vector,
and the reconstructed phase space is meaningless. Contrary,
while τ is too large, it leads to loss of noise delay coordi-
nates of mutual information elements, and the reconstructed
phase space is unable to reflect the initial dynamic behav-
ior. The parameter m controls the phase space, determines
the accuracy of de-noising and identification. While m is
large, the phase space is too large, and makes the calcula-
tion tedious and complex. Contrary, while m is small, the
reconstructed information is unrealizable for the extraction
from mutation signals [25, 26].

In order to improve the SVD for de-noising, an improved
singular value decomposition (ISVD) is developed based
on autocorrelation function with Cao’s algorithm for the
parameter of τ and m. For the determination of τ, the au-
tocorrelation function is closely related to the shape of the
attractor in the reconstructed phase space and approximated
the principal element direction of the signal system. Em-
pirically, while the decay of autocorrelation function is ap-
proximated to 1/e, the optimal delay time is obtained [35].
For the determination of m, Cao’s algorithm which is based
on the False Nearest Neighbor (FNN) method, makes the
calculation of m only related to τ, and overcomes the influ-
ence of various thresholds on m [27, 28].

In this paper, ISVD is proposed for the vibration signal
de-noising of gear pitting fault identification. Firstly, the
parameter of τ and m of the Hankel matrix for SVD are
optimized by autocorrelation function and Cao’s algorithm
respectively. Secondly, simulation of ISVD by autocorrela-
tion function and Cao’s algorithm is conducted to verify the
proposed method. Thirdly, the experiment of tooth surface
pitting failure is conducted by ISVD method to verify the
effectiveness of the proposed method.

2 Theory of the SVDmethod

Fig. 1 shows the flowchart of ISVD for de-noising. In the
flow, the optimal τ is calculated by the autocorrelation func-
tion method of fault signal sequence; m is calculated by the
Cao’s algorithm of fault signal phase space, based on them,
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Fig. 1 Flowchart of the ISVD
method for de-noising
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the phase space of the effective characteristic signals and
noise signals are obtained respectively; then the optimal
de-nosing order is calculated by the singular value differ-
ence spectrum (DSSV) method of the characteristic signal;
finally, the inverse operation of Hankel matrix is used to
reconstruct the characteristic signal after de-noising. It re-
tains the effective signal value and rid the noise signal value,
then reconstructs the effective signal in a suitable order. Es-
sentially, SVD is a method of matrix orthogonalization in
the mathematical view, which decomposes the given matrix
into two matrixes Um×m and Vn×n, as shown: [29–32].

H = USV T (1)

where S is the singular value matrix of the real matrix H,
in S, σi is the singular value of the real matrix H, and
�1 � �2 � � � � � �i � �r � 0, where r is the rank of the
matrix H.

For the signals x = .x1,x2, � � � ,xm/, the de-noising is
described as follows:
(i) Establishment of a Hankel matrix H based on X, H is

expressed by Eq. 2.

H =

2
6664

x1 x2 � � � xn

x1��+1 x1��+2 � � � x1��+n

:::
:::

: : :
:::

x.m−1/��+1 x.m−1/��+2 � � � x.m−1/��+n

3
7775 (2)

where m is the embedded dimension, τ is delay time, N is
the length of the signal, and n=N– (m– 1)× τ.

(ii) Calculation of the orthogonal matrix S= diag(σ1, σ2, ...,
σr) on H by SVD.

(iii) Ordination of the elements such as σ1, σ2, ..., σr,
in S, to satisfy the condition of σ1≥ σ2≥ ... σk �
σk+1≥ σk+2≥ ...≥ σr> 0.

(iv) Finding out the mutation point k in Step. (iii), retain-
ing the elements from σ1 to σk, and defining the other
elements equal to 0 as (σk+1, σk+2, ..., σr)= (0, 0, ..., 0).

(v) Reconstruction of the singular value matrix according
to the order k in Step.(iv), to achieve the characteristic
signal of de-noising.

k is investigated by Singular values difference spectrum
(DSSV) D and the elements in D is d= σi– σi+1, where
i= r– 1. The DSSV sequence Di is constructed shown in
Eq. 3.

Di = fdi ji = 1,2, � � � ,r–1g (3)

While the difference spectrum of singular value is posi-
tioned on the mutation point, the spectrum value di is the
maximum in the whole sequence Di. It is expressed by:

dmax = maxDi = maxfdi ji = 1,2, � � � ,r–1g (4)

Based on of Eq. 4, the sequence number corresponding
to the maximum SVDS dmax=Max (Di) is calculated of the
signal. According to the above principle, the new singular
value matrix SNew is obtained from the effective character-
istic signal, as shown in Eq. 5:

SNew = diag.�H
1 ,�H

2 ,�H
3 , � � � ,�H

i ,0, � � � ,0/ (5)

where, σH is the singular value left over.
(vi) Reconstruction of characteristic signals XH

i , show as
follow:

XH
i = uH

1 �H
1 vH

1
+ uH

2 �H
2 vH

2
+ � � � + uH

h �H
i vH

h (6)

where, uH
i is element of the matrix U, vH

i is element of
the matrix V.

3 Characteristic parameters of ISVDmethod

In this section, the two parameters of τ and m are optimized
by the combination of autocorrelation and the advantages
of Cao’s algorithm.

3.1 The parameter of delay time τ

A measured time series is x(t), and the autocorrelation func-
tion of the sequence after normalization processing is shown
in Eq. 7 [33, 34]:

C.�/ =

NX
i=1

Œx.i + �/– Nx�Œx.i/– Nx�

NX
i=1

Œx.i/– Nx�2

(7)

where, N is sample size, τ is delay time, Nx is average value
of the samples,

Nx =
1

N

NX
i=1

x .i/ .

The research shows, the corresponding time is selected
while the value of the autocorrelation function exactly de-
cayed to 1/e by the autocorrelation function method, as the
optimal value of the τ of the effective phase space feature
vector [35].
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Fig. 2 Flowchart of the signal de-noising

3.2 The parameter of embedded dimensionm

The principle of Cao’s algorithm is expressed as the list
[36]:

(i) On the definition, an m-dimension “embedding

space”, the time series vector EXm.i/ at the ith
phase point is defined as

EXm.i/ =

Œx.i/,x.i + �/,x.i + 2�/, � � � ,x.i + .m–1/�/�T
(8)

where, x(i) is the signal corresponding to the time se-
ries; i is the time-series sequence number, i= 1, 2, ...,
N– (m– 1)τ.
Then the Euclidean distance Rm(i) from EXm.i/ to the

nearest neighbor EXNN
m .i/ is calculated as:

Rm.i/ =
��� EXm.i/– EXNN

m .i/
��� (9)

where, k�k is the 1-norm, and all the normalizations
followed are 1-norm.

(ii) While the m-dimensional phase space is extended to

m+ 1, similarly, the ith phase point is EXm+1.i/, and
the Euclidean distance Rm+1.i/ of EXm+1.i/ to the
nearest neighbor point EXNN

m+1 .i/ is calculated:

Rm+1.i/ =
��� EXm+1.i/– EXNN

m+1 .i/
��� (10)

(iii) The relationship between E(m) and m is shown:

E.m/ =
1

N –m�

N –m�X
i=1

��� EXm+1.i/– EXNN
m+1 .i/

���
��� EXm.i/– EXNN

m .i/
���

(11)

E1.m/ =
E .m + 1/

E .m/
(12)

(iv) Continue increasing the dimension of the phase space
m1, and make it larger than m, then repeat the cal-
culation of the first three steps. Based on the results
of each calculation, the relationship between E1(mi)
and mi is charted. While E1(mi) in the graph reaches
a plateau within a certain threshold, the corresponding
mi is the optimal m of the EXm.i/.

(v) In practical applications, a criterion is defined to judge
the smoothness of the finite sequence change of E1(mi)
and mi, it is shown as:

E�.m/ =
1

N –m�

N –m�X
i=1

��� EXm+1.i/– EXNN
m+1 .i/

��� (13)
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Fig. 3 Time domain diagram of coupled signals

E2.m/ =
E� .m + 1/

E� .m/
(14)

From the equations, in a range of mi, if E2(m)= 1 the
signal is random; if E2(m) within a certain threshold are not
all equal to 1, the signal is the deterministic signal.

3.3 Evaluation of de-noising effect

The definition of SNR is expressed, shown as in follow:

SNR = 10lg

2
666664

NX
i=1

x2 .i/

NX
i=1

Œx.i/–z.i/�2

3
777775

(15)

where, z(i) is the de-noising signal.
The definition of RMSE for root-mean-square error eval-

uation is expressed, shown as in follow:

RMSE =

vuuuut
NX
i=1

Œx.i/–z.i/�2

N
(16)

where, N is the length of x(i).

Table 1 Input parameters of the simulation signal

Signal name Parameters

Pure signal fth(t) fth.t/ = sin.28!t/cos.5:6!t/

Random noise
ξG-noise(t)

The mean is 0 and the variance is 1

Pulse signal ξG-pulse(t) Frequency is 0.1Hz

4 Numerical simulation

Fig. 2 is flowchart of the simulation for the signal de-nois-
ing. Firstly, the model of signal is based on the noise-free
signal fth(t), the coupling signal f0(t) is formed by the combi-
nation of a random noise signal ξG-noise(t) and impulse signal
ξG-pulse(t). Fig. 3 is the obtained time-domain diagram of the
coupling signal after fitting simulations. And the expression
of the simulation signal is shown as

f0.t/ = fth.t/ + �G–noise.t/ + �G–pulse.t/ (17)

The other parameters are shown in Table 1.
Base on the signal, the operation of de-nosing by the

simulation is listed as:

(i) Determine τ
Fig. 4 is the result of autocorrelation value by τ. It is
calculated based on f0(t) by the autocorrelation func-
tion. While C(τ)= 1/e, the corresponding time value
is the optimal τ of f0(t). From Fig. 4, the optimal τ= 8.

(ii) Determine m
Fig. 5 is the results of m– E1(m) and m– E2(m),
which calculated by Eqs. 13 and 14. The blue line

Fig. 4 The autocorrelation function
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Fig. 5 The relationship between E1(m), E2(m) and m of simulation
signals

Fig. 7 Relationship between valid singular values and characteristic signals

Fig. 8 Time domain diagram of the coupled signal after de-noising

shows that while m varies from 1 to 4, the value of
E1(m) is rapidly approaching to 1. While m= 5, the
value of E1(m)= 1 for the first time, and While m> 5,
E1(m)= 1. The red line shows that E2(m)= 1 in the
range 1<m< 19 except the point of m= 1, 2, 3, 5, 15,
17, and 19. The analysis above shows that the certain
motion characteristics and the optimal value of the
embedding dimension is m= 5.

(iii) SVD of simulation signals
Fig. 6 is the difference spectrum and singular value by
m, the first four singular values σ1= 51.64, σ2= 41.26,
σ3= 27.52 and σ4= 27.64. The value of σ3 is the singu-

Fig. 6 Singular value and differential spectrum of signal

lar values mutates which separates the phase space of
the effective signal and the noise signal. Meanwhile,
in the singular value difference spectrum sequence,
the first three large difference spectra are d1= 10.39,
d2= 13.74, and d3= 0.12 respectively, the maximum
difference spectrum is d2.

(iv) Determine de-noising order
Fig. 7 is the simulation results of the relationship be-
tween σ and DSSV. In the case that σ1 and σ2 are
selected for the reconstructed signal, many informa-
tion is lost; in the case of selecting σ1, σ2 and σ3,
it contains a little noise information; in the case of
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Table 2 Evaluation of de-nois-
ing effect of simulation signal

SNR (dB) RMSE

31.31 0.34

Table 3 The delay time at each measurement point

Measurement point I II III IV

Delay time τ 8 8 8 8

selecting σ1, σ2, σ3, and σ4, the reconstructed signal
is distorted; In the case of selecting from σ1 to σ5,
a large amount of noise information is mixed in the
reconstructed signals. As a result, the selection of σ1
σ2 and σ3 is suitable because the effective information
of the obtained characteristic signal remains relatively
completely and has a good effect of de-noising.

The signals are decomposed of f0(t) by the principle of
the SVD method, and the σ1 to σ4 are obtained. Combined
with Cao’s algorithm, the optimum parameters are m= 5
and τ= 8. Finally, as shown in Fig. 8, the inverse solution
of singular value is used to reconstruct the effective char-
acteristic signal after de-noising. From the figure the re-
constructed effective signal is proximity to the pure signal,
which indicates that ISVD has the potential for de-noising.

As shown in Table 2, after the de-noising by ISVD. And
the SNR= 31.31dB, RMSE= 0.34 are acquired by Eqs. 15
and 16. It reminds ISVD has a good de-noising potential.

5 Experimental verification

Fig. 9a is shown the experiment layout. Fig. 9b is the pho-
tograph of experiment. On the outer side of the gearbox,
four measurement points are set as Points I, II, III and IV
with four uniaxial acceleration sensors for the collection of
vibration signal.

Fig. 9 Structural layout of the test bed. a Experimental schematic diagram. b Field diagram. 1. Input the motor and shaft; 2. Measured gear box;
3. Torque transducer; 4. Magnetic powder loader

The speed of input is 1500 r/min; the input current of
the magnetic powder is P= 38W; the modulus of gear is
mo= 2mm. The gear material is 18CrNiMo7 steel.

5.1 Experimental data

Fig. 10 is shown the waveforms of vibration signal which
were collected at four measurement points. The signals are
affected by a large numbers of interference signals.

5.2 Determination of τ

Table 3 is the calculation results. The minimum value of
τ is τ= 8, which is calculated by the autocorrelation func-
tion method as while τ= 8at each measurement point, the
autocorrelation function C(τ)� 1/e.

5.3 Determination ofm

Fig. 11 is the results of the computation of m by the Cao’s
method in each measurement point. From Fig. 11a–d, in
the range of 1�m� 3, while m is increased, E1(m) is de-
creased as the domination of noise in the phase space. in the
case of m= 3, the minimum value of E1(m) is occurred as
E1(m)= 0.5 in Points I, II and IV, and in Point III, the mini-
mum is E1(m)= 0.45. The results indicate that noise content
at measurement point III is the highest. While 3�m� 6,
E1(m) is increases sharply with the increase of m. in the
case of m= 6, E1(m)≥ 0.8, which indicates that the content
of pseudo-nearest neighbor points of fault characteristics is
decreased. While m> 6, the value of E1(m) is slowly ap-
proached to 1 as m is increased.

The value of E2(m) is used to determine the type of fault
characteristic signals. In Fig. 11, while 1�m< 6, E2(m) is
approached to 1 fluctuant, while 6�m� 19, the value of
E2(m) is approximated to 1, In addition, while m= 6, the
E2(m) value approaches constant value 1 for the first time.
Indicating that there are certain vibration characteristics at
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Fig. 10 Time domain diagram
of vibration acceleration at
points before de-noise

Fig. 11 Relationship between E(m) and m of experimental signals. a Measurement point I; b Measurement point II; c Measurement point III;
d Measurement point IV

the four measuring points. It indicates that the fault char-
acteristics are affected by random signals. At this point, m
is weak to the fault characteristics, which also makes the
calculation of dimension meaningless. Finally, the optimal
value of m is m= 6.

5.4 The ISVD of experimental data

Based on the calculation above, the parameters are set as:
τ= 8 and m= 6. Fig. 12 is the singular value of the ex-
perimental data which is decomposed at the measurement
Points I, II, III, and IV by ISVD method. Fig. 12a is the

singular value distribution graph. While m< 2, the singular
values of the four measurement points are σ> 800, while
m> 2, the singular value in each point is smooth stability
to a certain value as σI = 900, σII= 900, σIII= 700, σIV= 900
the mutated point is m= 2 or m= 3. Fig. 12b is the Singular
value difference spectrum to supplement the determination
of reconstruction order. In the figure, while m= 3, 5 and
6, the difference spectrum values are approximately close
to 50. With the combination of results by Fig. 12a,b, the
optimum reconstruction order is DSSV= 3.
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Table 4 Evaluation of de-noising effect of experimental data

Measurement point SNR (dB) RMSE

I 46.29 0.31

II 46.47 0.12

III 45.41 0.33

IV 45.61 0.25

Fig. 12 The ISVD diagram of experimental data at each measurement
point. a Singular value distribution graph; b Singular value difference
spectrum

5.5 Determine the de-noising order

Fig. 13 is the reconstructed signal with fault characteristics
of four measuring points in time-domain by Eq. 6. In the
figures, the green wave is original signal, the brown wave
is the de-noising signal. From the figures, the impact vibra-
tion generated by backlash and transmission error is domi-
nant and effectively reduced after reconstruction. From the
figures, the acceleration value of de-noising signal is much
smaller than original one in each time. In addition, the trend
of de-noising signal and original signal are same.

The effect of signal de-noising is evaluated by SNR
method and RMSE, the results are showed in Table 4. From
the results, SNR ≥45dB, and RMSE <0.4 in all measure-
ment points. It reveals a better effect of de-noising by ISVD.
In addition, it reveals that the de-noising effect of signals
at Points I and II is better than Points III and IV.

5.6 Experimental results and analysis

Fig. 14 is the frequency response diagram of de-noising
signals and original signals in each measurement point
from Fig. 13 by Fourier transform. In Fig. 14, Fig. 14a,c
and d are similar, because Point 1 Point III and Point IV
are meshed. In the figures, the effective signals are re-
tained in the frequency range of 300Hz< f< 800Hz and
1.2kHz< f< 1.7kHz as the different rotation speeds of each
axis, signals of other frequencies are noise which is de-
noised by ISVD. Fig. 14b are the signals in Point II which
near the input source and affected by more vibrations. In
the figure, the signal of noise is de-noised in ineffective
range of frequency, and the effective signal is retained.

6 Conclusions

In this research, a new method of ISVD is proposed for the
vibration signal de-noising of gear pitting fault identifica-
tion. Simulation and experiments have been conducted to
prove the efficiency of ISVD. The conclusions are listed as
follows:

(i) The theory of ISVD is expressed, the method for the
determination of parameters τ and m for SVD are
optimized by autocorrelation function and Cao’s al-
gorithm respectively. The signal after de-noising is
reconstructed by the inverse of the Hankel matrix.

(ii) In the simulation, the ISVD method is employed to
de-noise the artificial vibration signal in a mathe-
matical model of gear pitting fault, the results are
SNR= 31.3dB and RMSE= 0.34. The simulation re-
sults reveal that ISVD has a good effect on de-noising
of the fault vibration signal.

(iii) In the experiment, the ISVD method is adopted to
de-noising the vibration signal of gear pitting fault
identification, the results demonstrate SNR >45dB,
and RMSE <0.4. The experiment results reveal that
ISVD has a good effect on de-noising of the fault
vibration signal.
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Fig. 13 Time domain diagram of vibration acceleration at measurement points after de-noising. a Measurement point I; b Measurement point II;
c Measurement point III; d Measurement point IV

Fig. 14 Frequency response characteristics at each measurement point. aMeasurement point I; bMeasurement point II; cMeasurement point III;
d Measurement point IV
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