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Abstract
The star-wheel reducer has been regarded as a promising alternative solution for industrial power transmission where large
transmission ratio and high power density are required. As one of the most overwhelming concerns in the early design
stage of such kind of transmission device, its dynamic performance must be evaluated in advance to provide guidelines
for vibration suppression and tolerance control. For this purpose, this paper proposes a methodology of dynamic modeling
for the star-wheel reducer and analyzes the dynamic behaviors of the transmission system. By using the technique of
substructure synthesis, an analytical elasto-dynamic model is established in which the effects of component compliances
and manufacturing/assembling errors are included. The differential motion equations of each subsystem are derived with
the 2nd Newtonian law. These differential motion equations are further assembled by the compatibility conditions among
the subsystems to formulate a governing equation of the overall transmission system. Based on the established dynamic
model, a modal analysis and a dynamic analysis are carried out to reveal the modal characteristics and the steady-state
responses of the star-wheel reducer. The results show that the first 6 orders natural frequencies are ranging from 66.2 to
197Hz and are much higher than the reducer’s input frequency of 16.7Hz under input speed of 1000 r/min. In addition, the
meshing forces of the two phases of star-wheel are similar only with a phase difference of 180°. Finally, a test-rig is set up
to perform an experimental modal test and a vibration test. The satisfactory agreement between the experimental data and
the theoretical simulation results proves the correctness and accuracy of the proposed dynamic model. The present study
is expected to provide a fundamental framework for error controlling and performance enhancement of the star-wheel
reducer.
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DynamischeModellierung und Analyse eines Sternradgetriebes

Zusammenfassung
Das Sternradgetriebe gilt als vielversprechende Alternative für die industrielle Kraftübertragung, bei der große Überset-
zungsverhältnisse und eine hohe Leistungsdichte gefordert sind. Als eines der überwältigendsten Anliegen in der frühen
Entwurfsphase eines solchen Getriebegeräts muss dessen dynamisches Verhalten im Voraus bewertet werden, um Richtli-
nien für die Unterdrückung von Vibrationen und die Toleranzkontrolle bereitzustellen. Zu diesem Zweck wird in diesem
Artikel eine Methodik zur dynamischen Modellierung des Sternradgetriebes vorgeschlagen und das dynamische Verhalten
des Getriebesystems analysiert. Unter Verwendung der Technik der Substruktursynthese wird ein analytisches elastody-
namisches Modell erstellt, in das die Auswirkungen von Bauteilübereinstimmungen und Fertigungs- / Montagefehlern
einbezogen werden. Die Differentialbewegungsgleichungen jedes Subsystems werden mit dem 2. Newtonschen Gesetz
abgeleitet. Diese Differentialbewegungsgleichungen werden ferner durch die Kompatibilitätsbedingungen zwischen den
Teilsystemen zusammengesetzt, um eine maßgebliche Gleichung des gesamten Übertragungssystems zu formulieren. Ba-
sierend auf dem etablierten dynamischen Modell werden eine Modalanalyse und eine dynamische Analyse durchgeführt,
um die Modaleigenschaften und die stationären Reaktionen des Untersetzungsgetriebes aufzudecken. Die Ergebnisse zei-
gen, dass die Eigenfrequenzen der ersten 6 Ordnungen im Bereich von 66.2 bis 197Hz liegen und viel höher sind als
die Eingangsfrequenz des Reduzierers von 16.7Hz bei einer Eingangsgeschwindigkeit von 1000r/min. Außerdem sind die
Eingriffskräfte der beiden Phasen des Sternrades nur mit einer Phasendifferenz von 180° ähnlich. Schließlich wird ein
Prüfstand eingerichtet, um einen experimentellen Modaltest und einen Vibrationstest durchzuführen. Die zufriedenstel-
lende Übereinstimmung zwischen den experimentellen Daten und den theoretischen Simulationsergebnissen beweist die
Richtigkeit und Genauigkeit des vorgeschlagenen dynamischen Modells. Die vorliegende Studie soll einen grundlegenden
Rahmen für die Fehlerkontrolle und Leistungssteigerung des Sternradgetriebes bieten.

1 Introduction

Planetary gear trains have been widely used in various
power transmission systems due to their distinct merits of
compact structure, high efficiency and excellent load ca-
pacity. In the past decades, abundant investigations have
been conducted on the planetary gear trains, ranging from
kinematic formulation to dynamic prediction [1–5]. How-
ever, studies on the planetary gear train with small tooth
number difference are quite rare. As a typical planetary
gear transmission device, the reducer with small tooth num-
ber difference claims some unique properties such as large
transmission ratio, high power density. From the perspective
of mechanics, the reducer with small tooth number differ-
ence belongs to the over-constrained mechanical system, in
which there exists statical indetermination caused by virtual
constraints. Because of its unique structural and mechanic
properties, the dynamic behavior of a reducer with small
tooth number difference is very different from that of an
ordinary planetary gear train.

According to the author’s literature survey, only a few
papers studied structural design, dynamic modeling, modal
characteristic, dynamic responses and other issues of the
reducer with small tooth number difference. For example,
Tsai et al. [6] proposed a conceptual design of a cycloid
planetary gear reducer with two teeth number difference
and then derived the equations of cycloid profile, tooth con-
tact and specific sliding. Aimed at the problems of bearing
premature fatigue and high level noise in the three-ring gear
reducer, Yang and Zhang [7] developed an elasto-dynamic

model considering the compliances of bearings, shafts and
meshing gear teeth. Huang et al. [8] analyzed the natural
frequencies and modal shapes of planetary gear apparatus
based on the finite element method. Li et al. [9] established
a nonlinear dynamic model and investigated the effects of
modification coefficient, backlash and transmission error
on the dynamic responses of the planetary drive with small
teeth number difference. In addition, Shu [10]; Li; [11] and
Dai [12] investigated the load sharing, the tooth contact and
the lubrication performance of planetary drives with small
tooth number difference, respectively.

Compared to the aforementioned several types of re-
ducer with small tooth number difference, the star-wheel
reducer has more evenly distributed star-wheel shafts to
bear the planetary gear load, which can avoid premature
failure of the planetary bearings. However, the introducing
of more star-wheel shafts brings more virtual constrains
into the transmission system. This makes the load shar-
ing among different load-branches very complicated and
the system’s dynamic responses very sensitive to manufac-
turing/assembling errors. To the author’s best knowledge,
the dynamic performance of the star-wheel reducer has not
been studied yet. Note that an in-depth understanding of
the dynamics is very important for the design as well as the
manufacturing of the star-wheel reducer. In view of this, an
elasto-dynamic model for the star-wheel reducer is estab-
lished in the present study. Based on the established model,
a modal analysis and a dynamic analysis will be carried
out to reveal the modal characteristics and the steady-state
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responses of the star-wheel reducer. Finally, the dynamic
analysis results will be verified through experimental tests.

2 Elasto-dynamic modeling structural
descriptions

A star-wheel reducer is composed of an input shaft, an out-
put shaft, a set of star-wheel shaft, two star-wheels, a ring
gear, a set of bearings, eccentric sleeves and some other
components. Its structural schematic diagram and a 3-D vir-
tual prototype are shown in Fig. 1 (a) and (b), respectively.
For the sake of clarity, Fig. 1 (c) presents the exploded
diagram of the virtual prototype.

1-Output shaft; 2-Rear bearing of output shaft; 3-Front
bearing of output shaft; 4-Flange; 5-Rear end cap; 6-Box;
7-Ring gear; 8-Front bearing of star-wheel shaft; 9-Left
support; 10-Bearing of star-wheel shaft; 11-2nd phase star-
wheel; 12-Star-wheel shaft; 13-Bearing of star-wheel; 14-
1st phase star-wheel; 15-Support shaft; 16-Right support;
17-Rear bearing of input shaft; 18-Eccentric sleeve; 19-
Front bearing of input shaft; 20-Input shaft; 21-Front end
cap; 22-Small end cap.

The transmission path of the star-wheel reducer is de-
scribed as the following: 1) The power is fed into the sys-
tem through the input shaft, and then drives the star-wheel
translation through the eccentric sleeve connected with the
input shaft; 2) The translational star-wheel will engage with
the ring gear, thus driving the ring gear to rotate; 3) Since
the ring gear is connected with the output shaft, the power
is output by the output shaft. It should be noted that there

Fig. 1 Structure of a star-wheel
reducer: (a) Schematic diagram
of mechanism, (b) Three-dimen-
sional assembly, (c) Exploded
structure

are two star-wheels in the reducer to avoid the dead angle
problem of crank slider mechanism.

According to the above analysis, the technique of sub-
structure synthesis is adopted to establish a dynamic model
for the star-wheel reducer. To be specific, the star-wheel
reducer is divided into four substructures, i.e., the output
shaft subsystem, the input shaft subsystem, the star-wheel
shaft subsystem and the star-wheel subsystem, respectively.

2.1 Motion equation of subsystems

2.1.1 Motion equation of the input shaft subsystem

The input shaft subsystem is composed of an input shaft
and two eccentric sleeves. The eccentric sleeves are fixed
to the input shaft through two keys with a 180° symmetrical
layout. The force diagram of the input shaft subsystem is
shown in Fig. 2.

As shown in Fig. 2, a coordinate system OI-xyz is set at
the mass center of the input shaft. Herein, the parameters
a1 and a2 correspond to the distances of the front and the
rear bearings on the input shaft from the coordinate origin
to the bearing centers, respectively; a3 and a4 denote the
distances from OI to the 1st and the 2nd eccentric sleeves,
respectively; gI is the weight of the input shaft; fsx1, fsy1, fsx2,
fsy2, fIx1, fIy1 fIx2 and fIy2 are the reaction forces of bearings
respectively; fe1 and fe2 are the centrifugal forces of the input
shaft at the position of the ith translation star-wheel.
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Fig. 2 Force diagram of the input shaft subsystem

Fig. 3 Force diagram of the jth star-wheel shaft subsystem

The motion equation of the input shaft subsystem can be
formulated as

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

mI RxI = .fsx1 − fIx1 + fex1/ + .fsx2 − fIx2 + fex2/
mI RyI = .fsy1 − fIy1 + fey1/ + .fsy2 − fIy2 + fey2/ − gI
jIx Ř

Ix = .−fsy1a1 − fIy1a3 + fey1a3/
+.fsy2a2 − fIy2a4 − fey2a4/
jIy Ř

Iy = .fsx1a1 + fIx1a3 − fex1a3/
+.fsx2a2 + fIx2a4 + fex2a4/

(1)

where mI is the mass of the input shaft; jIx and jIy are the
moment of inertia of the input shaft; fexi and feyi are the
centrifugal force components along x and y axes of the input
shaft at the position of the ith phase translational planet gear;
xI and yI are the displacements of the input shaft; βIx and
βIy are the angular displacements of the input shaft around
x and y axes.

2.1.2 Motion equation of the star-wheel shaft subsystem

Taking the jth star-wheel shaft as an example, its force dia-
gram is shown in Fig. 3.

Herein, a coordinate system Os-xyz is set at the mass
center of the star-wheel shaft; the parameters b1 and b2 cor-
respond to the distances of the front and the rear bearings
on the star-wheel shaft from the coordinate origin to the
bearing centers, respectively; the parameters b3 and b4 cor-
respond to the distances from the coordinate origin to the
gear centers of the 1st phase and the 2nd phase star-wheels
respectively; φ1j and φ2j are the angles at which the crank
rotates relative to x-axis; gsj is the weight of the jth star-
wheel shaft; fhxij, fhyij, fsxij and fsyij are the reaction forces of
the bearings in x, y directions respectively; fgxij and fgyij are
the component centrifugal force fgij of the ith star-wheel on
the jth star-wheel shaft along x and y directions.

The motion equation of the star-wheel shaft subsystem
can be formulated as
8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

msj Rxsj = .fhx1j − fsx1j + fgx1j /
+.fhx2j − fsx2j + fgx2j /
msj Rysj = .fhy1j − fsy1j + fgy1j /
+.fhy2j − fsy2j + fgy2j / − gs
jsxj Ř

sxj = −.fhy1j b1 − fsy1j b3 + fgy1j b3/
+.fhy2j b2 − fsy2j b4 + fgy2j b4/
jsyj Ř

syj = −.−fhx1j b1 + fsx1j b3 − fgx1j b3/
+.−fhx2j b2 + fsx2j b4 − fgx2j b4/
jszj Řszj = e.fsx1j sin'1j − fsy1j cos'1j /
+e.fsx2j sin'2j − fsy2j cos'2j /

(2)

where msj is the mass of the jth star-wheel shaft; jsxj, jsyj and
jszj are the moments of inertia of the star-wheel shaft; xsj and
ysj are the translational displacements of star-wheel shaft;
βsxj, βsyj and βszj are the angular displacements of star-wheel
shaft around x, y and z axes; e denotes eccentric distance of
eccentric sleeve.

2.1.3 Motion equation of the star-wheel subsystem

The force diagram of the ith phase star-wheel subsystem is
shown in Fig. 4.

As shown in Fig. 4, Oi is the theoretical center of the
ith phase star-wheel; Pi is the pitch point; L is the distance
from Oi to the star-wheel shaft hole; �j is the phase angle
of the jth star-wheel shaft; φi is the ith phase crank angle;
ψi=π/2– α0+φi, α0 is the meshing angle, gpi is the weight
of the ith phase star-wheel; fpi is the centrifugal force of the
ith phase star-wheel.
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Fig. 4 Force diagram of the ith phase star-wheel subsystem

The motion equation of the star-wheel subsystem can be
formulated as
8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

mpi Rxpi = fIxi +
mP

j=1
fsxij − fxi + fpxi

mpi Rypi = fIyi +
mP

j=1
fsyij − fyi + fpyi − gpi

jpzi R�pi =
mP

j=1

�
fsyijLcos�j − fsxijLsin�j

�
− fi rbp

(3)

where xpi, ypi and θpi are translational and angular displace-
ments of the ith phase star-wheel; mpi and jpzi denote the
mass and the moment of inertia of the ith phase star-wheel;
rbp is the radius of the base circle.

2.1.4 Motion equation of the output shaft subsystem

The output shaft subsystem is composed of the ring gear,
the flange, and the output shaft. The ring gear is connected
with the flange by bolts, while the flange is connected with
the output shaft through a spline. Its corresponding force
diagram is shown in Fig. 5.

For convenience, an output shaft coordinate system Oo-xyz

is set at the mass center of the output shaft Oo. Herein, the
parameters c1 and c2 correspond to the distances of the front
and the rear bearings on the output shaft from the origin of
coordinates to the bearing centers, respectively; c3 is the
distance from Oo to the rear bearing of the input shaft; the
parameters c4 and c5 correspond to the distances from the
coordinate origin to the gear centers of the 1st phase and the
2nd phase star-wheels respectively; go is the weight of the

Fig. 5 Force diagram of the output shaft subsystem

output shaft; fox1, foy1, fox2, foy2, f 0
sx2 and f

0
sy2 are the reaction

forces of bearings in x and y directions, respectively; f 0
1

and f 0
2 are the meshing forces between the ring gear and

the star-wheel of the 1st phase and the 2nd phase.
The motion equation of the output shaft subsystem can

be formulated as

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

mo Rxo = .fox1 + f 0

x1/ + .fox2 + f
0

x2/ − f
0
sx2

mo Ryo = .foy1 + f 0

y1/ + .foy2 + f
0

y2/ − f
0
sy2 − go

jox Ř
ox = .−foy1c1 − f

0

y1c4/ + .foy2c2 − f
0

y2c5/ + f
0
sy2c3

joy Ř
oy = .fox1c1 + f

0

x1c4/ + .−fox2c2 + f
0

x2c5/� − f
0
sx2c3

joz Ř
oz = f

0

1 rb + f
0

2 rb − To
(4)

wheremo is the mass of the output shaft; jox, joy and joz are the
moments of inertia of the output shaft around x, y and z axes,
respectively; f 0

xi and f 0
yi are the components of meshing

force f 0
i along x and y directions (i= 1, 2); rb is the base

radius of the ring gear; xo and yo are the displacements of the
output shaft; βox, βoy and βoz are the angular displacements
of the output shaft subsystem.

2.2 Compatible conditions among elastic
deformations

Fig. 6 demonstrates the elastic deformation of the ith phase
star-wheel, in which the dotted line represents the actual
position of the mechanism while the solid line is the theo-
retical position without elastic deformations and errors.

As shown in Fig. 6, OIA and O0
IA2 are the theoretical

position and the actual position of the eccentric sleeve on
the input shaft; OIO0

I is the displacement of the input shaft
at the ith phase star-wheel; O0

IA1 and A1A2 are the radial and
the tangential errors of the eccentric sleeve; A2A3 and B2B3
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Fig. 6 The elastic deformation of the ith phase star-wheel

Fig. 7 Deformations between the star-wheel and the ring gear

are the displacements of the star-wheel; OsB and O0
sB2 are

the theoretical and actual positions of the eccentric sleeve
at the star-wheel shaft; O0

sB1 and B1B2 are the radial and
the tangential errors of the eccentric sleeve; OsO0

s is the
displacement of the star-wheel shaft at the ith phase position.

According to Fig. 6, the compatible conditions between
the input shaft and the ith phase star-wheel can be formulated
as

uai =

�
1 0 0 −ai+2
0 1 ai+2 0

�

xI −

�
1 0 0
0 1 0

�

xpi +Gi +Hi

(5)

where uai is the elastic deformation between the bear-
ing hole of the ith phase star-wheel and the input shaft;
xI and xpi are the displacement vectors of the input
shaft and the ith phase star-wheel; xI = (xI, yI, βIx, βIy)T,
xpi= (xpi, ypi, θpi)T; Gi = .�eIicos'i ; �eIi sin'i /

T and
Hi = .−e��Ii sin'i ; e��Iicos'i /

T are the radial and the
tangential errors of the eccentric sleeve on the input shaft
respectively, where �eIi and �θIi are the radial and the
tangential eccentricity errors of the eccentric sleeve.

Similarly, the compatible conditions between the star-
wheel shaft and the ith phase star-wheel can be formulated
as

ubij =

�
1 0 0 .−1/i+1bi+2 −esin'i
0 1 −.−1/i+1bi+2 0 ecos'i

�

xsj

−

�
1 0 −Lsin�j
0 1 Lcos�j

�

xpi + Uij + Vij

(6)

where ubij is the elastic deformation of the bearing on
the star-wheel shaft; xsj= (xsj, ysj, βsxj, βsyj, βszj)T is the
displacement vector of the jth star-wheel shaft; Uij =
�
�esij cos'i ; �esij sin'i

�T
and Vij = .−e��sij sin'i ,

e��sij cos'i /T are the radial and the tangential errors of
the bearing hole on the jth star-wheel shaft, where �esij and
�θsij are radial and tangential error at the bore of the star-
wheel bearing.

The following will derive the compatible conditions be-
tween the internal gear pairs. Taking the gear meshing of
the ith phase star-wheel and the ring gear as an example,
Fig. 7 shows the deformation relationship between the two
gears.

According to the geometric relationships, the compati-
bile condition can be formulated as

ıi = .sin i ; cos i ; rbp/xpi

− .sin i ; cos i ;−ci+3cos i ; ci+3sin i ; rb/xo
(7)

where δi is the relative displacement along the line of action
between the star-wheel and the ring gear; xo= (xo, yo, βox,
βoy, βoz)T is the displacement vector of the output shaft.
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2.3 Governing equations

Substituting Eq. 5~ Eq. 7 into Eq. 1~ Eq. 4, the elasto-
dynamic equation of the transmission system is given as

M RX + KX = F (8)

where X is the displacement vector; M and K denote the
mass and the stiffness matrices; and F is the load vector.
The details of each matrix can be referred to the appendix.

3 Dynamic analysis

3.1 Example system

Based on the above elasto-dynamic model, an HJW-18B
reducer with four star-wheel shafts is taken as an example to
illustrate the investigation on the dynamic behaviors of star-
wheel reducer. The basic design parameters of the example
system are listed in Table 1.

3.2 Modal analysis

The free vibration of the star-wheel reducer can be obtained
by ignoring the external load in Eq. 8, which can be written
as

M RX + KX = 0 (9)

The general solution to Eq. 9 can be assumed to be,

X = �sin.!t + '/ (10)

Table 1 Basic parameters of HJW-18B star-wheel reducer

Parameters Value Parameters Value

Tooth number of star-wheel z1 192 Modification coefficient of star-wheel x1 0.01

Tooth number of ring gear z2 196 Modification coefficient of ring gear x2 0.1

Modulus m/mm 1.5 Distribution radius of star-wheel shaft L/mm 90

Eccentricity e/mm 3.12 Stiffness of star-wheel shaft bearing ks/(N · m–1) 3× 107

Transmission ratio 50 Stiffness of star-wheel bearing kp/(N · m–1) 3× 107

Rated speed n/(r · min–1) 1000 Stiffness of input shaft front bearing kI1/(N · m–1) 1× 107

Input power P/kW 10 Stiffness of input shaft rear bearing kI2/(N · m–1) 2× 107

Angle of engagement α/(°) 25 Stiffness of output shaft front bearing ko1/(N · m–1) 3× 107

Average mesh stiffness km/(N · m–1) 3× 108 Stiffness of output shaft rear bearing ko2/(N · m–1) 4× 107

Mass of output shaft subsystem mo/kg 38.5 Mass of star-wheel shaft subsystem ms/kg 0.515

Moment of inertia Jox/(kg · m2) 0.518 Moment of inertia Jsx/(kg · m2) 6.5× 10–4

Moment of inertia Joy/(kg · m2) 0.518 Moment of inertia Jsy/(kg · m2) 6.5× 10–4

Moment of inertia Joz/(kg · m2) 0.36 Moment of inertia Jsz/(kg · m2) 5.9× 10–4

Mass of input shaft subsystem mI/kg 5 Mass of star-wheel subsystem mp/kg 7

Moment of inertia JIx/(kg · m2) 1.7× 10–2 Moment of inertia Jpz/(kg · m2) 7.1× 10–2

Moment of inertia JIy/(kg · m2) 1.7× 10–2

where ϕ denotes the amplitude of a generalized coordinate;
ω denotes the modal frequency of the system; φ denotes the
phase of a generalized coordinate. Substitute Eq. 10 into
Eq. 9 to obtain the solution expression of system eigenval-
ues,

.K − !2M /� = 0 (11)

The modal characteristic of the system can be obtained
by solving Eq. 11. Herein, the parameters listed in Table 1
are taken as an example to investigate the modal charac-
teristic of the star-wheel reducer. The first 6 orders modal
frequencies and the modal coordinates of the star-wheel are
shown in Table 2.

As illustrated in Table 2, the first 6 orders modal fre-
quencies are in the range of 66.2 to 197Hz. The first order
modal frequency is 66.2Hz, which is much higher than the
input frequency of the star-wheel reducer (16.7Hz under in-
put speed 1000 r/min). Hence, there would be no resonance
occurs during work. To further intuitively understand the
vibration of each subsystem of the star-wheel, the modal
energy distribution of the low-frequency modes are calcu-
lated and shown in Fig. 8. Here, ‘O’ is used to represent the
subsystem of the output shaft; ‘I’ denotes the subsystem of
the input shaft; ‘S1’, ‘S2’, ‘S3’ and ‘S4’ are subsystems of
the 1st, the 2nd, the 3rd and the 4th star-wheel shafts; ‘P1’
and ‘P2’ denote the subsystems of the two star-wheels.

By observing the modal coordinates listed in Table 2 and
the modal energy distribution in Fig. 8, one may find that
the modal shapes corresponding to the modal frequency can
be described as:

1. f1= 66.2Hz. As can be seen from Table 2, the subsystem
of the output shaft is in a torsion state; input shaft is in
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Table 2 The first 6 orders modal coordinates

Coordinates f1= 66.2Hz f2= 102.5Hz f3= 113.5Hz f4= 145.6Hz f5= 145.6Hz f6= 197Hz

Xo Xo –0.0013 0.0011 0.0379 0.0000 0.0000 0.0058

Yo 0.0011 –0.0134 0.0033 0.0000 0.0000 –0.0675

βox –0.0053 0.4248 –0.1171 0.0000 0.0000 –1.0532

βoy –0.0239 0.0364 1.3405 0.0000 0.0000 –0.0910

βoz –0.3439 –0.0520 –0.0079 0.0000 0.0000 0.5970
xI xI 0.0021 0.0003 0.0134 0.0000 0.0000 –0.0018

yI –0.0039 –0.0037 0.0011 0.0000 0.0000 0.0229

βIx 0.0746 –0.1202 0.0340 0.0000 0.0000 –0.0103

βIy 0.0486 –0.0100 –0.3715 0.0000 0.0000 0.0029
xs1 xs1 –0.0002 0.0001 0.0068 0.0000 0.0000 –0.0014

ys1 –0.0007 –0.0020 0.00053 0.0000 0.0000 0.0354

βsx1 –0.1192 –0.2286 –0.00067 –0.0014 –0.7450 –0.4992

βsy1 –0.0663 –0.3996 –0.0141 –0.0008 –0.4301 –0.1187

βsz1 –19.4075 –23.5328 –0.3684 –0.0479 –25.1098 –7.7836
xs2 xs2 0.0008 0.0005 0.0069 0.0000 0.0000 –0.0209

ys2 0.0003 –0.0016 0.0006 0.0000 0.0000 0.0158

βsx2 –0.1136 –0.4016 –0.0007 0.2589 0.9263 –0.2213

βsy2 –0.0780 0.2340 –0.0140 0.1495 0.5348 –0.2757

βsz2 –19.4075 –13.6551 –0.3660 8.7248 31.2205 –5.2168
xs3 xs3 0.0002 0.0001 0.0068 0.0000 0.0000 –0.0014

ys3 0.0013 –0.0013 0.0007 0.0000 0.0000 –0.0037

βsx3 –0.1182 0.2231 –0.0005 0.7019 –0.2497 0.2659

βsy3 –0.0767 0.3981 –0.0139 0.4053 –0.1442 0.0906

βsz3 –20.0147 23.2088 –0.3569 23.6578 –8.4151 4.3625
xs4 xs4 –0.0012 –0.0002 0.0067 0.0000 0.0000 0.0182

ys4 0.0003 –0.0016 0.0006 0.0000 0.0000 0.0158

βsx4 –0.1239 0.3961 –0.0005 –0.9594 0.0684 –0.012

βsy4 –0.0650 –0.2355 –0.0141 –0.5539 0.0395 0.2476

βsz4 –19.8864 13.3311 –0.3594 –32.3346 2.3044 1.7957
xp1 xp1 0.0237 0.0005 0.0129 0.0000 0.0000 –0.0014

yp1 –0.0417 –0.0035 0.0003 0.0000 0.0000 0.0373

θp1 –0.0125 –0.4806 –0.0017 0.0000 0.0000 0.6340
xp2 xp2 –0.0247 0.0001 0.0143 0.0000 0.0000 –0.0042

yp2 0.0431 –0.0031 0.0021 0.0000 0.0000 0.0255

θp2 –0.0318 0.4639 –0.0015 0.0000 0.0000 0.2292

an oscillation state; star-wheel shaft is in a torsion state
and star-wheel is in an inactive state. It can be seen from
Fig. 8 that the oscillation of the input shaft dominates the
modal energy.

2. f2= 102.5Hz. Both the subsystems of the output shaft and
the input shaft are in the state of oscillation; and the sub-
systems of the star-wheel shaft and the star-wheel are in
the state of torsion. It can be seen that the oscillation of
the output shaft dominates the modal energy.

3. f3= 113.5Hz. Both the subsystems of the output shaft and
the input shaft are in the state of oscillation; the star-
wheel shaft is in a torsion state and the star-wheel is in
an inactive state. It can be seen that the oscillation of the
subsystem of output shaft dominates the modal energy.

4. f4= f5= 145.6Hz. Different from the first 3 orders natural
frequencies, the 4th and the 5th natural frequencies are
the same. The subsystems of the input shaft, the output
shaft and the star-wheel are all inactivity. Only the star-
wheel shaft has torsion and oscillation motions.

5. f6= 197Hz. The subsystems of the output shaft and the
star-wheel shaft are in the coupling state of oscillation
and torsion; the input shaft is in an inactive state and the
star-wheel is in a torsion state. The coupling motion state
of the output shaft subsystem is the most overwhelming
modal shape.
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Fig. 8 The modal energy distribution of the first 6 orders

3.3 Dynamic responses

In addition to the modal characteristics, the force of each
component is also concerned. For simplicity, the following
settings are assumed: 1) all the manufacturing errors in the
dynamic model are set to be zero; 2) the meshing stiffness
of internal gear pairs is set as the average value of meshing
stiffness.

Based on the above assumptions, the dynamic meshing
forces, the dynamic forces of the star-wheel bearings and
the dynamic forces of the star-wheel shaft bearings are cal-
culated and depicted in Fig. 9.

As shown in Fig. 9(a), the dynamic meshing forces of
the two meshing pairs are symmetric with small fluctu-
ation. The dynamic meshing force of the 1st phase star-
wheel decrease firstly and then increase gradually while
the dynamic meshing force of the 2nd phase is opposite
due to the load balance. For instance, the maximum dy-
namic meshing forces of the 1st phase and the 2nd phase
star-wheel pair are 3790 and 3526N while the minimum
values are 3716 and 3451N. The fluctuation amplitudes of
the dynamic meshing forces are only 74 and 75N respec-
tively. Further analysis shows that the sum of the two phase
dynamic meshing forces is 7241N approximately at any
time. All the above data shows the stability of the star-
wheel reducer.

Fig. 9(b) shows the variation of the dynamic forces of the
star-wheel bearings. It can be seen that the dynamic force

of the 1st phase star-wheel bearing increases first and then
decreases, while the trend of the dynamic force on the 2nd
phase is opposite. To be more specific, the mean value of the
dynamic force of the 1st phase star-wheel bearing is larger
than that of the 2nd phase, which is potentially related to the
dynamic meshing force of different star-wheels. However,
the amplitude fluctuation of the dynamic forces of different
star-wheel bearings is the same, which is only 63N.

Fig. 9(c) and Fig. 9(d) show the dynamic forces of star-
wheel shaft bearings on the 1st phase and the 2nd phase
star-wheel. Herein, the 1st phase star-wheel is taken as an
example to illustrate the dynamic force of the bearings on
four star-wheel shafts. It can be found that the dynamic
forces of four star-wheel shaft bearings are different in value
and phase. But the fluctuation trend of the dynamic bearing
forces on four star-wheel shafts are similar but with a phase
difference of 90°. The mean dynamic force of the first, the
second, the third and the fourth star-wheel shaft bearing are
1445N, 1416N, 1385N and 1415N, respectively. From this
data, it can be seen that the difference of the dynamic force
of four star-wheel bearings is small. What’s more, the sum
of the bearing dynamic forces of the 1st and the 3rd star-
wheel shaft is equal to that of the 2nd and the 4th star-wheel
shaft. This data shows that the star-wheel bearing can bear
the load evenly and can avoid the premature failure.

K



500 Forsch Ingenieurwes

Fig. 9 Dynamic forces of the
star-wheel reducer components:
(a) gears (b) the star-wheel bear-
ings (c) bearings on the 1st phase
star-wheel shafts (d) bearings on
the 2nd phase star-wheel shafts

4 Experimental validations

In order to verify the modeling and dynamic analysis,
a modal test and a vibration test are carried out in this
section.

4.1 Modal test

The modal test is used to verify the correctness of the mod-
eling and modal solution. The impact method is adopted in
the test. The schematic diagram and experimental scene are
shown in Fig. 10.

The frequency response functions are shown in the
Fig. 11. Herein, blue and red lines are the frequency re-
sponse function of the input and the output signals in x axis
direction, respectively. The comparison of the modal ex-
periment and the theoretical calculation are shown in the
Table 3.

As can be seen in Table 3, the lower orders modal
frequencies obtained from the theoretical elasto-dynamic
model and the experimental test are relatively close despite
the calculation error of the third order modal frequency be-
tween the theoretical and experimental results is 17%. In
general, the results of the theoretical calculation agree well
with the measured results from modal experiment, indicat-
ing the correctness of the theoretical analysis. Therefore, the
presented elasto-dynamic model can be applied for further

Table 3 Comparison between the theoretical results and the tested
results

Modes Theoretical calcula-
tion/Hz

Experimental
modal/Hz

Error/%

1 66.2 62.1 6.19

2 102.5 96.6 5.76

3 113.5 132.8 17.00

4 145.6 156.3 7.35

5 197 192.2 2.44

6 214 231.3 8.08

studies, such as dynamic analysis and parameter optimiza-
tion.

4.2 Vibration test

A back-to-back star-wheel reducer test rig is set up to in-
vestigate the vibration characteristics of the system. The
layout of test rig and the acceleration sensors are shown in
Fig. 12.

Based on the arrangement, the vibration acceleration of
the input shaft and the output shaft of the star-wheel reducer
are collected. The vibration signals in both time domain and
frequency domain are demonstrated as follows.

As can be seen in Fig. 13 and 14, the frequencies corre-
sponding to the spectrum peak are 332Hz, 490Hz, 580Hz,
654Hz, 736Hz, 818Hz, 896Hz, 978Hz, respectively. The
input rotational frequency, meshing frequency are 16.7 and
3200Hz can be obtained from the prototype parameters
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Fig. 10 Schematic diagram and
experimental scene

Fig. 11 The frequency response
function of star-wheel reducer

Fig. 12 Test rig and accelera-
tion sensors
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Fig. 13 Time domain waveform and frequency spectrum of the input shaft

Fig. 14 Time domain waveform and frequency spectrum of the output shaft

(n= 1000 r/min). It can be seen that the vibration of the
system is not caused by the excitation of the input shaft,
because the frequency of rotation is far less than the reso-
nance frequency.

The frequencies corresponding to the first three large
amplitudes are 332Hz, 654Hz and 978Hz, which are ap-
proximate to 5, 10 and 15 times of the modal frequency
(f1= 66.2Hz); 490Hz and 736Hz are approximate to 1/3
and 1/2 of the 4th modal frequency of the star-wheel re-
ducer box (fb4= 1452Hz); 580Hz is 4 times of the 4th modal
frequency (f4= 145.6Hz) and 818Hz is 3 times of the 8th
modal frequency (f8= 272.5Hz); The 896Hz is not close to
the multiple frequencies of the first 8 orders modal frequen-
cies, and it may be caused by the superposition of several
modal frequencies.

5 Conclusions

1. An elasto-dynamic model of the star-wheel reducer is es-
tablished by substructure synthesis method, whose cor-
rectness and accuracy is verified by a modal test and a vi-
bration test.

2. There is no structural resonance in the star-wheel reducer
because the low-order modal frequency of the system is
much higher than the input rotational frequency. How-
ever, the low-order mode of the system is complex, which
is generally manifested as the coupling of torsion and
swing of several components.

3. The dynamic meshing forces of the star-wheel gear pairs
are not evenly distributed, but the fluctuation amplitude
of the two-phase star-wheels are very small and their
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fluctuation trends are similar with only a phase difference
of 180°.

4. The fluctuation trends of the dynamic forces of star-
wheel bearings are similar with a phase difference of
90°. The variation trends of the dynamic forces of bear-
ings on different star-wheels are opposite to each other.

6 Comment on the future work

In the present study, an elasto-dynamic model of star-wheel
reducer is established, based on which the modal charac-
teristics as well steady dynamic responses are theoretically
investigated and experimentally validated. Based on the dy-
namic model and analysis, the effects of manufacturing er-
rors and shafts misalignments on the dynamic responses
will be studied in our future work.

Acknowledgements This work was sponsored by National Natural
Science Foundation of China (Grant No. 51875105).

Appendix

The elements of the mass, stiffness, load and displacement
matrix in Eq. 8 are as follows,

M =

2

6
6
4

mo

mI

msj

sym mpi

3

7
7
5 ;

K =

2

6
6
4

ko ko;I ko;pi
kI kI;pi

ksj ks;pi
sym kpi

3

7
7
5 ;F =

2

6
6
4

fo
fI
fsj
fpi

3

7
7
5 ;X =

2

6
6
4

xo
xI
xsj
xpi

3

7
7
5

Further, M, K, F and X matrix are composed of the pa-
rameters of each subsystem, as shown below:
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Output shaft subsystem

mo =

2

6
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6
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4
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3
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5
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2
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2
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7
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2
o + k

3
o ,
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i=1

2

6
6
6
6
4

koi 0 0 .−1/i+1koi ci 0
koi −.−1/i+1koici 0 0
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2
i 0 0
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2
i 0
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3

7
7
7
7
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,

k2o = kI2
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6
6
6
6
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3
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7
7
7
7
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Input shaft subsystem
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Star-wheel shaft subsystem
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The ith phase star-wheel subsystem
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