ORIGINALARBEITEN/ORIGINALS

Bestimmung des Verlustverhaltens und der Wärmebilanz von Wälzlagern

Thomas Jurkschat¹ · Michael Otto¹ · Thomas Lohner¹ · Karsten Stahl¹

Eingegangen: 17. Juli 2017 / Online publiziert: 2. Februar 2018 © Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Zusammenfassung

Bei der Auslegung von Getrieben spielen Wälzlager eine zentrale Rolle. Aus diesem Grund ist es wichtig, die richtige Auswahl und Dimensionierung bereits in einer frühen Entwicklungsphase zu treffen. Neben der Lebensdauer ist das Verlustund Temperaturverhalten für die Betriebssicherheit und Wirtschaftlichkeit entscheidend. Eine Abschätzung des Lagerverlustmoments mit praxisüblichen Berechnungsansätzen nach dem Stand der Technik zeigt zum Teil hohe Unterschiede im Vergleich untereinander und kann von gemessenen Lagerverlusten abweichen. In einem FVA-Eigenmittelvorhaben wurden experimentelle Untersuchungen zum Verlust- und Temperaturverhalten durchgeführt. Im Rahmen dieser Veröffentlichung wird zunächst der dafür verwendete FZG-Lagerverlustleistungsprüfstand vorgestellt. Ausgewählte Ergebnisse der experimentellen Untersuchungen zum Verlustverhalten und zur Wärmebilanz von Wälzlagern werden gezeigt und in den Stand der Technik eingeordnet. Darauf aufbauend werden Maßnahmen für eine verbesserte rechnerische Abschätzung der Lagerverlustmomente abgeleitet.

Determination of the loss behavior and thermal balance of rolling bearings

Abstract

Rolling bearings play an important role in the design of gear transmissions. For a successful process, the best type and size of the rolling bearings has to be defined in an early stage of development. However, high operational reliability and economic viability depends on durability, as well as on the frictional and temperature behavior of the rolling bearings. Practical methods to calculate the loss torque of rolling bearings according to the state of the art partly show significant differences among each other. In addition, the calculated loss torques frequently show high deviations compared to measured values in practice. Thus, comprehensive experimental investigations at the FZG bearing power loss test rig have been carried out in a collective FVA research project investigating the losses and temperatures of rolling bearings. In this paper, the principle of the FZG bearing power loss test rig is shown and selected results of the experimental investigations are compared to the calculation methods according to state of the art. Finally, measures for an improved estimation of the loss torque of rolling bearings are given.

Thomas Jurkschat jurkschat@fzg.mw.tum.de

> Michael Otto otto@fzg.mw.tum.de

Thomas Lohner lohner@fzg.mw.tum.de

Karsten Stahl stahl@fzg.mw.tum.de

¹ Forschungsstelle f
ür Zahnr
äder u. Getriebebau, TU M
ünchen, Boltzmannstr. 15, 85748 Garching, Deutschland

1 Einleitung

Im Antriebsstrang trägt das Getriebe mit den durch in Verzahnungen, Wälzlagern, Dichtungen und weiteren Maschinenelementen entstehenden Verlusten zu den Gesamtverlusten bei. Je nach Betriebsbedingung entsteht ein relevanter Anteil der Gesamtverluste in Wälzlagern. Die durch Reibung erzeugte Wärme muss durch geeignete Kühlsysteme reguliert und abgeführt werden, um die Tragfähigkeit der Getriebekomponenten zu gewährleisten. Eine Reduzierung der Reibung von Wälzlagern wird daher angestrebt. Durch die gleichzeitige Absenkung des Wärmeeintrags in das System ist weniger Kühlleistung erforderlich und die Gesamteffizienz kann weiter gesteigert werden.

Ein Vergleich der heute zugänglichen Berechnungsmodelle zur Abschätzung der Wälzlagerverluste zeigt teilweise hohe Abweichungen der Rechenergebnisse untereinander. Des Weiteren treten häufig hohe Unterschiede zwischen berechneten und gemessenen Verlusten auf. Aus diesem Grund ist es notwendig, die Verluste zuverlässig aus dem Versuch zu ermitteln, um so die rechnerische Abschätzung zu verbessern.

Mit diesem Ziel wurde der FZG-Lagerverlustleistungsprüfstand entwickelt und aufgebaut, mit dem es möglich ist, unterschiedlichste Lagertypen für ein weites Feld an Betriebszuständen und unter Tauch- und Einspritzschmierung experimentell zu untersuchen. Der Fokus liegt dabei auf der Verlustleistung und den Lagertemperaturen. Die Verlustleistung wird aus den gemessenen Verlustmomenten und Drehzahlen bestimmt. Die Lagertemperaturen werden sowohl am Innen- als auch am Außenring gemessen und dokumentiert.

Inhalt dieses Beitrags ist der systematische Vergleich ausgewählter gemessener Wälzlagerverluste mit existierenden Berechnungsergebnissen. Auf Basis der gefundenen Zusammenhänge zu Lagertemperaturen und Verlustleistungen werden zudem verbesserte Ansätze zur Abschätzung der Lagerverluste aufgezeigt. Die Ergebnisse wurden auf der VDI-Fachtagung Gleit- und Wälzlagerungen [1] vorgestellt und basieren auf den Erkenntnissen, die im Rahmen eines Forschungsprojekts [2] der FVA e. V. erarbeitet wurden.

2 Berechnungsverfahren zur Bestimmung des Lagerverlustmoments

Die Wälzlagerreibung setzt sich nach Palmgren [3] aus der Rollreibung, Gleitreibung und Schmierstoffreibung zusammen. Die Rollreibung resultiert dabei zum einen aus den Gleitbewegungen der unter Last verformten Kontaktkörper und zum anderen aus der Hysterese des Werkstoffs, durch die bei der Rollbewegung nach dem Überrollen die eingebrachte Verformungsenergie nicht vollständig in Bewegungsenergie rückgewandelt wird. Die im Lager erzeugte Gleitreibung entsteht durch Gleitbewegungen an den Führungsflächen zwischen Wälzkörper und Lagerkäfig, bzw. bei bordgeführten Lagern durch die Gleitbewegung zwischen Rollkörper und Bord. Der zur Schmierung bzw. Kühlung eingebrachte Schmierstoff erzeugt durch die innere Reibung beim Verdrängen Verluste, die bei überschüssiger Schmierstoffmenge und vor allem bei hohen Drehzahlen stark ansteigen. Das auftretende Lageverlustmoment hängt von der Drehzahl, der Schmierstoffviskosität und der Lagerbelastung ab. Dabei können die Verluste nach Palmgren [3] in lastunabhängige (M_0) und lastabhängige (M_1) Reibungsanteile eingeteilt werden und berechnen sich nach Gl. 1.

$$M_{\text{Lager}} = M_0 + M_1 \tag{1}$$

M_{Lager} Lagerverlustmoment (Nmm)

M₀ Lastunabhängiges Reibmoment (Nmm)

M₁ Lastabhängiges Reibmoment (Nmm)

Der Ansatz nach Gl. 1 ist unter anderem in dem Berechnungsmodell nach FAG [4] ("FAG") umgesetzt. Der lastunabhängige Reibungsmomentanteil M_0 ist dabei von der Betriebsviskosität v des Schmierstoffs, der Drehzahl *n* und dem mittleren Lagerdurchmesser d_M abhängig und lässt sich mit Gl. 2 bzw. Gl. 3 berechnen. Der Lagerbeiwert f₀ wird in Abhängigkeit der Lagergröße und -bauart gewählt und ist in [4] angegeben.

$$\nu \cdot n \ge 2000 \to M_0 = f_0 \cdot (\nu \cdot n)^{\frac{2}{3}} \cdot d_M^{-7}$$
 (2)

$$v \cdot n < 2000 \to M_0 = f_0 \cdot 160 \cdot d_M^3 \cdot 10^{-7}$$
 (3)

 v Kinematische Viskosität bei Betriebstemperatur (mm²s⁻¹)

 f_0 Lagerbeiwert nach FAG [4] (–)

n Drehzahl (min⁻¹)

d_M Mittlerer Lagerdurchmesser (mm)

Der lastabhängige Reibungsanteil M_1 umfasst die Anteile der Rollreibung und der Gleitreibung an den Borden. Unter der Annahme eines trennenden Schmierfilms, dem Lagerbeiwert f_1 und der Radiallast F_r , lässt sich M_1 nach Gl. 4 berechnen.

$$M_1 = f_1 \cdot F_r \cdot d_M \tag{4}$$

 f_1 Lagerbeiwert nach FAG [4] (–)

F_r Radiallast (N)

Das neue Berechnungsverfahren nach SKF [5, 6] ermittelt das Lagerverlustmoment M_{Lager} ursachenabhängig:

$$M_{\text{Lager}} = \varphi_{\text{ish}}\varphi_{\text{rs}}M_{\text{rr}} + M_{\text{sl}} + M_{\text{seal}} + M_{\text{drag}}$$
(5)

- $\begin{array}{ll} \phi_{ish} & Schmierfilmdickenfaktor (-) \\ \phi_{rs} & Schmierstoffverdrängungsfaktor (-) \\ M_{rr} & Rollreibungsmoment (Nmm) \\ M_{sl} & Gleitreibungsmoment (Nmm) \\ M_{seal} & Reibungsmoment von Dichtungen (Nmm) \\ \end{array}$
- M_{drag} Reibungsmoment durch Strömungs-, Plansch- oder Spritzverluste (Nmm)

Es werden dabei die Anteile zum Rollreibungsmoment M_{rr} unter Berücksichtigung des Schmierfilmdickenfaktor ϕ_{ish} und des Schmierstoffverdrängungsfaktor ϕ_{rs} , zusammen mit dem Gleitreibungsmoment M_{sl} , dem Reibungsmoment von Dichtungen M_{seal} und dem Reibungsmoment M_{drag} durch Strömungs-, Plansch- oder Spritzverluste, interne Fettreibung usw. berechnet. Das Gleitreibungsmoment M_{sl} berücksichtigt dabei das Gleiten zwischen Wälzkörper und Laufbahn, Wälzkörper und Käfig sowie Wälzkörper und Borden in Abhängigkeit des Schmierungszustandes.

Das Berechnungsmodell wurde in einem ersten Stand nach SKF [5] ("SKF₀₄") angegeben. In einer Weiterentwicklung nach SKF [6] ("SKF₁₄") wurde die Berechnung der Strömungsverluste M_{drag} durch empirische Ansätze erweitert, um den Einfluss der Schmierstoffviskosität berücksichtigen zu können.

Neben den Katalogmethoden wurden nach Schleich [9] und im Rahmen des Teilclusters 2 "Wirkungsgrad-optimiertes Getriebe" des FVA/FVV-Vorhabens Low Friction Powertrain ("LFP") [10] verschiedene Berechnungsmodelle entwickelt, um die Lagerverlustmomente auf Basis der lokalen Kontaktbeanspruchungen zu berechnen. Diese Berechnungsmodelle bauen auf den Arbeiten von Zhou und Hoeprich [7] auf und verwenden ein höherwertiges Schmierstoffmodell z. B. nach Johnson und Tevaarwerk [8]. Im Rahmen des FVA-Vorhabens FVA 701 I [11] wurde der Berechnungsansatz "LFP" [10] in das FVA-Programm LAGER2 [2] integriert, wodurch diese komplexere Berechnung durchgeführt werden kann.

3 Prüftechnik zur experimentellen Untersuchung

Zur Validierung der Berechnungsansätze werden experimentelle Untersuchungen am FZG-Lagerverlustleistungsprüfstand durchgeführt. Dieser besteht aus einem drehzahlgeregelten Elektromotor, einer Einheit zum Messen des Verlustmoments, einer Radialkrafteinheit, einer Axialkrafteinheit und einem Prüfgehäuse, in das vier Prüflager und die Schmierversorgung integriert sind. Regelgrößen sind die Axial- und Radialkräfte auf die Prüflager, die Drehzahl an der Antriebswelle und die Ölsumpf- bzw. Öleinspritztemperatur. Als Messgrößen werden Gehäuse-, Ölsumpf- bzw. Öleinspritz- und Lagertemperaturen sowie das Verlustmoment erfasst. Abb. 1 zeigt den schematischen Aufbau des FZG-Lagerverlustleistungsprüfstands. Der Einbau von Zylinderrollenlagern in nicht angestellter und Kegelrollenlagern in angestellter Anordnung ist exemplarisch in Abb. 2 dargestellt. Die beiden äußeren Lager stützen sich dabei im Gehäuse ab. Die beiden inneren Lager sind in einem Joch verbaut, welches von außen belastet werden kann. Des Weiteren ist es für eine angestellte Lagerung möglich, über drei auf den Umfang verteilte Stempel eine axiale Belastung einseitig aufzubringen. Infolge des symmetrischen Aufbaus werden die beiden angestellten Lagerpaare identisch belastet. Die Lagerkraft wird mittels Spindelhubgetrieben in radialer und axialer Wirkrichtung gezielt aufgebracht.

Um die Kraftaufbringung automatisiert ansteuern zu können und eine hohe Einstellgenauigkeit zu erreichen, erfolgt der Antrieb der Spindel über einen Stirnradgetriebemotor. Über ein angepasstes Federpaket können die Kräfte des gesamten Belastungsspektrums ohne den Austausch von Komponenten eingestellt werden. Die Kraftaufbringung in radialer Richtung erfolgt in Zugrichtung. Die Regelung der vorgegebenen Kraft wird durch die Koppelung des Hubspindelantriebs mit der Kraftmessvorrichtung vorgenommen. Es können Kräfte bis ca. 250kN (radial) und ca. 80kN (axial) ermöglicht werden.

Die verwendete Messtechnik wird je nach Prüflager und Betriebsbedingungen gewählt, so dass die Messgenauigkeit möglichst optimal eingestellt werden kann. Es können dabei baugleiche Drehmomentmesswellen mit unterschiedlichen Nennmomenten bei einer Genauigkeit von 0,1 % des Nennmoments verwendet werden. Die radiale und axiale Lagerkraft wird über Kraftmessdosen gemessen und dokumentiert. Dabei werden je nach Belastungsbereich Kraftmessdosen mit entsprechender Nennkraft zur Versuchsaufzeichnung der Lagerkräfte verwendet. Die Genauigkeit beträgt ebenfalls 0,1 % der Nennkraft und es ergeben sich die jeweiligen Messgenauigkeiten aus Tab. 1.

Um die Verlustleistung aus den Messversuchen ermitteln zu können, wird nach [2] die Drehzahl n und das Verlustmoment der einzelnen Prüflager herangezogen. Über die Drehmomentmesswelle wird das Verlustmoment M_{Verlust} der vier Prüflager gemessen. Aufgrund des symmetrischen Aufbaus der Konstruktion wird das gemessene Verlustmoment für alle Prüflager zu gleichen Anteilen angenommen. Die Verlustleistung P_{Lager} pro Prüflager wird unter Verwendung der gemessenen Antriebsdrehzahl n nach Gl. 6 berechnet.

$$P_{\text{Lager}} = \frac{1}{4} \cdot M_{\text{Verlust}} \cdot \frac{2\pi}{60 \cdot 1000} \cdot n = M_{\text{Lager}} \cdot \frac{2\pi}{60 \cdot 1000} \cdot n \quad (6)$$

PLagerLagerverlustleistung (W)MVerlustGesamtverlustmoment Messung (Nmm)

Neben der Messung des Verlustmoments $M_{Verlust}$ und der Drehzahl *n* der Prüfwelle werden wie bereits beschrieben die Temperaturen sowohl am Innen-, als auch am Außenring eines im Gehäuse sitzenden Prüflagers gemessen. Zur Temperaturmessung werden Pt100 Messsensoren nach DIN EN 60751 verwendet. Die Messgenauigkeit der Pt100 Sensoren beträgt \pm 2K. Die Sensoren werden in die

Abb. 3 Messung der Lagerringtemperaturen

Stirnflächen der Lagerringe integriert, so dass die Temperaturen der Lagerringe mit einem Abstand von 2 mm von der Lagerlauffläche und auf einer Länge von 11 mm gemessen werden. Das Signal der Innenringtemperatur wird über eine Telemetrie an die Messkarte übertragen. Die Außenringtemperatur wird entsprechend Abb. 3 an drei am Umfang verteilten Messstellen aufgezeichnet. Damit kann der Einfluss der Punktlast am Außenring sowie der Einfluss von unterschiedlichen Schmierbedingungen entlang des Umfangs mit untersucht werden.

Abb. 2 Einbau der Lager im Gehäuse des FZG-Lagerverlustleistungsprüfstandes (links: nicht angestellte, rechts: angestellte Lagerung) aus Jurkschat et al. [2]

Tab. 1 Messbereich und -genauigkeit

	Nennmoment bzw. Nennkraft	Messgenauigkeit
Drehmomentmesswelle	50 Nm	±0,05 Nm
Kraftmessdose	50 kN	± 50 N

4 Ergebnisse der experimentellen Untersuchungen

Die experimentellen Untersuchungen dienen einerseits als experimenteller Abgleich der Verlustleistungsberechnung nach FAG [4] bzw. SKF [5, 6]. Andererseits werden auch die Lagertemperaturen eines Wälzlagers erfasst, um daraus eine detaillierte Berechnung der Lagerverlustmomente ableiten zu können. Die Daten zur Innengeometrie und den Tragzahlen des betrachteten Lagers sowie des verwendeten Schmierstoffes sind in Tab. 2 aufgeführt. Diese sind exemplarisch aus dem Versuchsprogramm aus Jurkschat et al. [2] entnommen, das eine umfangreiche Variation von Lagertypen-, baugrößen und Schmierstoffen beinhaltet. Die Zylinderrollenlager werden rein radial belastet. Die Prüfkraft wird entsprechend der dynamischen Tragzahl C festgelegt, so dass ein auf die dynamisch äquivalente Lagerlast P bezogenes Belastungsverhältnis von C/P = 10 vorliegt. Die im Versuch verwendeten Lager werden vor der Versuchsreihe einem Einlaufprogramm unterzogen und weisen somit für alle Betriebszustände vergleichbare Laufflächen auf.

Wie bereits beschrieben ermittelt das Berechnungsverfahren nach SKF [5, 6] das Lagerverlustmoment M_{Lager} ursachenabhängig (Gl. 5). Dabei berücksichtigt das Gleitreibungsmoment M_{sl} das Gleiten zwischen Wälzkörper und Laufbahn, Wälzkörper und Käfig sowie Wälzkörper und Bord in Abhängigkeit des Schmierungszustandes und berechnet sich nach Gl. 7. Der Einfluss des Lagertyps und der Belastung des Lagers wird anhand des Gleitreibungsgrundwerts G_{sl} erfasst. Die Gleitreibungszahl μ_{sl} nach Gl. 8 wird nach dem Prinzip der Lastaufteilung bestimmt. Dabei gewichtet der Grenzschmierungs-Gewichtungsfaktor ϕ_{bl} den Festkörpertraganteil, während der Beiwert µbl ein Maß für die Festkörperreibung ist. Letztere wird durch Zusätze im Schmierstoff deutlich beeinflusst. Der Beiwert μ_{bl} wird nach SKF [5, 6] unabhängig vom vorliegenden Betriebszustand und Lagertyp mit $\mu_{bl} = 0,15$ angegeben und beschreibt somit eine sehr konservative Abschätzung des Reibungsverhaltens. Die Reibungszahl μ_{EHL} bei ausreichend tragfähigen Schmierfilm ist für Zylinderrollenlager mit $\mu_{EHL} = 0,02$ gegeben.

$$M_{sl} = G_{sl} \cdot \mu_{sl} \tag{7}$$

	Tab. 2	Lager- und Schmierstoffdaten	(Auszug aus	[2]	D
--	--------	------------------------------	-------------	-----	---

0 23
65 mm
140 mm
33 mm
0°
13
191 kN
214 kN
Mineralöl
32,0 mm ² /s
5,5 mm ² /s
870 kg/m ³
Ölbadschmierung
Mitte unterster Wälzkörper

$$\mu_{sl} = \phi_{bl} \cdot \mu_{bl} + (1 - \phi_{bl}) \cdot \mu_{\text{EHL}} \tag{8}$$

- G_{sl} Gleitreibungsgrundwert (Nmm)
- μ_{sl} Gleitreibungszahl (–)
- ϕ_{bl} Grenzschmierungs-Gewichtungsfaktor (-)

 μ_{EHL} Reibungszahl bei ausreichend tragfähigen Schmierfilm (–)

Da die in den experimentellen Untersuchungen dieses Beitrags verwendeten Lager vor der Versuchsreihe einem Einlaufprogramm unterzogen werden, sind unter Grenzschmierungsbedingungen niedrigere Gleitreibungsmomente zu erwarten. Um dies zu untersuchen, wird das Gleitreibungsmoment M_{sl} auf Basis des gemessenen Lagerverlustmoments $M_{Verlust}$ und dem berechneten Rollreibmoment M_{rr} sowie Planschmoment M_{drag} nach Gl. 5 bestimmt und anschließend der Beiwert μ_{bl} nach Gl. 8 ermittelt. Für die untersuchten Betriebszustände ergibt sich damit ein deutlich niedrigerer Beiwert von μ_{bl} =0,05, dessen Verwendung im Folgenden mit "SKF_{mod}" kenntlich gemacht wird. Untersuchungen von Fernandes et al. [12] zur Gleitreibungszahl μ_{sl} zeigen vergleichbare Werte für μ_{bl} .

Da das Lagerverlustmoment von der Schmierstoffviskosität abhängt, ist der Einfluss der Schmierstoff- und Lagertemperatur entscheidend. Um diesen näher zu untersuchen sind in Abb. 4 die Temperaturen des Prüflagers für das betrachtete Versuchslager NU313 dargestellt. Die Ölsumpftemperatur wurde mit ϑ_{01} = 60 °C festgelegt und die Drehzahl von 500–3000 1/min bei konstanter Lagerbelastung (C/P=10) gesteigert. Mit Zunahme der Drehzahl ist ein Anstieg der Temperaturen im Lagerinnenring ϑ_{IR} und Lageraußenring ϑ_1 , ϑ_2 und ϑ_3 zu erkennen, der auf die gesteigerte Verlustleistung zurückzuführen ist. Anhand der

Abb. 4 Experimentell ermittelte Temperaturen der Lagerringe des Prüflagers NU313 nach [2]

Lagertemperaturen lassen sich zwei Zustände definieren, welche eine Aussage über die Wärmeströme zwischen Lager und Schmierstoff zulassen. Bei niedrigen Drehzahlen sind die Lagertemperaturen unterhalb der Ölsumpftemperatur, wodurch das Lager über den Schmierstoff geheizt wird.

Liegen im Vergleich zur Ölsumpftemperatur höhere Lagertemperaturen vor, übernimmt das Öl neben der Schmierung die Funktion der Kühlung des Wälzlagers. Gerade bei hohen Drehzahlen erreichen die Lagerkomponenten aufgrund der erzeugten Verlustleistung höhere Betriebstemperaturen im Vergleich zur Ölsumpftemperatur. Durch einen reibungsinduzierten Temperaturanstieg im Wälzkontakt können zusätzliche Abweichungen der gemessenen im Vergleich zu den berechneten Lagerverlustmomenten auftreten. Anhand der Temperaturen des Wälzlagers kann mit Gl. 9 eine maßgebende Lagertemperatur ϑ_{Lager} definiert werden.

$$\vartheta_{\text{Lager}} = \frac{\vartheta_{IR} + \frac{\vartheta_1 + \vartheta_2 + \vartheta_3}{3}}{2} \tag{9}$$

Da die Schmierstofftemperatur einen großen Einfluss auf die auftretenden Lagerverlustmomente hat, soll diese so exakt wie möglich vorgegeben werden. In Abb. 5 sind die für das betrachtete Prüflager NU313 und den Schmierstoff FVA2A experimentell ermittelten Lagerverlustmomente den berechneten Werten gegenübergestellt. Jeder Betriebspunkt wurde doppelt abgesichert und der Mittelwert der Messergebnisse angegeben. Es zeigt sich eine sehr gute Wiederholbarkeit der Messergebnisse am FZG-Lagerverlustleistungsprüfstand.

Die Berechnung wurde für die vorgestellten Berechnungsmodelle jeweils für die vorgegebene Ölsumpftemperatur ϑ_{01} und unter Vorgabe der experimentell ermittelten Lagertemperatur ϑ_{Lager} durchgeführt. Es lässt sich unter Vorgabe von ϑ_{Lager} eine Annäherung der berechneten Verluste nach den Katalogmethoden an die Messergebnisse feststellen. Diese Annäherung ist vor allem bei hohen Drehzahlen stark ausgeprägt, da hier eine Abweichung $\Delta \vartheta_{\ddot{O}I}$ der Lagertemperatur zur Ölsumpftemperatur von über 20K vorliegt.

Der Vergleich der Messergebnisse zu dem Berechnungsansatz FAG zeigt, dass für niedrige und mittlere Drehzahlen die Lagerverlustmomente zu hoch berechnet werden und die Abschätzung eher konservativ ist. Bei hohen Drehzahlen liegen unter Berücksichtigung der Lagertemperatur vergleichbare Werte vor. Der Vergleich der experimentellen Lagerverlustmomente mit den Ansätzen nach SKF kann in zwei Einflüsse aufgeteilt werden. Im Bereich niedriger Drehzahlen liegen entsprechend dem Viskositätsverhältnisses κ Grenzschmierungsbedingungen vor und der Einfluss des niedrigeren Beiwerts µbl in den modifizierten Ansätzen SKF_{04lmod} bzw. SKF_{14lmod} ist deutlich zu erkennen. Da die Berechnung von Msl in diesen beiden Ansätze identisch

und Berechnung des Lagerverlustmoments - NU313 nach [2]

sind, wird auf einen gesonderten Vergleich zu SKF14 verzichtet. Es zeigt sich, dass der gewählte Beiwert $\mu_{bl} = 0.05$ die im Versuch auftretenden Verluste besser abbildet. Bei höheren Drehzahlen ist der Einfluss vernachlässigbar und die berechneten Werte nach SKF₀₄ sind zu hoch. Durch Vorgabe der Lagertemperatur ϑ_{Lager} erfolgt eine deutliche Annäherung der berechneten im Vergleich zu den experimentellen Werten. Die Lagerverlustmomente nach SKF14lmod unterscheiden sich zu SKF_{04lmod} ausschließlich in der Berechnung der Strömungsverluste Mdrag. Die Ergebnisse nach $SKF_{14lmod}(\vartheta_{Ol})$ unter Vorgabe der Ölsumpftemperatur zeigen vergleichbare Werte zu SKF_{04lmod} (ϑ _{Lager}). Die Ergebnisse des lokalen Ansatzes LFP zeigen für dieses Prüflager und Betriebszustand niedrigere Lagerverlustmomente im Vergleich zu den gemessenen Werten. Hierbei unterscheiden sich neben den lokal aufgelösten Verlustanteilen vor allem die Planschverluste, die im Vergleich zu den Katalogmethoden deutlich niedriger sind.

5 Zusammenfassung

Die Ergebnisse zeigen, dass sich die am FZG-Lagerverlustleistungsprüfstand gemessenen Verlustmomente insgesamt gut in die berechneten Verlustmomente einordnen lassen, wobei für die vorgestellten Berechnungsansätze aus dem Stand der Technik zum Teil hohe Abweichungen auftreten können. Für die hier untersuchten Betriebszustände des Lagers NU313 ergibt sich nach der Methode SKF_{14lmod} die beste Übereinstimmung zu den gemessenen Verlusten mit Abweichungen von maximal 20%. Diese Aussage ist jedoch nicht pauschal für alle Lager und Betriebszustände gültig und muss an weiteren Lagern validiert werden. Des Weiteren konnte die Berechnung der Lagerverluste durch die gezielte Anpassung eines Beiwerts in der Gleitreibungsmomentberechnung und durch Vorgabe der gemessenen Lagertemperatur deutlich verbessert werden. Es bestätigt sich, dass der Schmierstoffeinfluss und die Wärmebilanz des Lagers bei der Berechnung des Lagerreibmoments möglichst gut abgebildet und berücksichtigt werden müssen.

Danksagung Die Autoren danken den Fördermittelgebern und dem FVA-Arbeitskreis "Berechnung und Simulation" sowie der FVA-Arbeitsgruppe "Lebensdauer-Industriegetriebe-Wälzlager" für die Finanzierung und Unterstützung des Vorhabens.

Die dieser Veröffentlichung zugrundeliegenden Erkenntnisse basieren auf dem Forschungsvorhaben FVA-Nr. 364/IV der Forschungsvereinigung Antriebstechnik e. V. mit dem Titel "Lebensdauer-Industriegetriebe-Wälzlager IV (Erweiterung LAGER2)".

Literatur

- Jurkschat T, Otto M, Lohner T, Stahl K (2017) Bestimmung des Verlustverhaltens und der Wärmebilanz von Wälzlagern. VDI-Bericht zur Fachtagung Gleit- und Wälzlagerungen, Schweinfurt
- Jurkschat T, Otto M, Stahl K (2015) Forschungsvorhaben 364/IV, Erweiterung von LAGER2 zur Dimensionierung von Wälzlagern in Industriegetrieben: Verlustleistung und Betriebstemperatur, Abschlussbericht. FVA-Heft Nr. 1145
- Palmgren A (1957) Neue Untersuchungen über Energieverluste in Wälzlagern. VDI-Berichte, Bd. 20
- 4. Schaeffler Gruppe (2006) INA/FAG Wälzlagerkatalog
- 5. SKF Hauptkatalog: 6000 DE, Januar 2007.
- 6. SKF Hauptkatalog: 10000/2 DE, Januar 2014.
- Zhou R-S, Hoeprich M-R (1991) Torque of tapered roller bearings. ASME J Tribol 113(3):590–597
- Johnson KL, Tevaarwerk JL (1979) The influence of fluid film rheology on the performance of traction drives. Trans ASME 101:266–274
- 9. Schleich T (2013) Zum Temperaturverhalten von Wälzlagern in Getrieben, Dissertation TU München
- Wang D (2013) Wirkungsgradoptimiertes Getriebe, Forschungsvereinigung Verbrennungskraftmaschinen e. V., Abschlussbericht. Forschungsvorhaben Nr. 609812
- Wang D, Jurkschat T, Otto M, Stahl K, Poll G (2015) Forschungsvorhaben 701 I, Low Friction, LAGER2. Erweiterung der Berechnung der Wälzlagerreibung in FVA-Software, Abschlussbericht. FVA-Heft Nr. Heft 1157
- Fernandes C, Marques P, Martins R, Seabra J (2015) Gearbox power loss. part i: losses in rolling bearings. Tribol Int 88:298–308