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Abstract The cycloid planetary gear reducers are widely
applied in automation machinery. Even having the advan-
tages of high gear ratio, multiple contact tooth pairs and
shock absorbing ability, how to enlarge the power density
of the drives is still the essential development work today.
To this end, the concept of tooth number difference of two
is proposed. The aim of the paper is to analyze systemati-
cally the loaded contact characteristic of such the cycloid
planetary gear drives so as to evaluate the feasibility. A set
of essential equations for the cycloid profile, the tooth con-
tact and the specific sliding of the cycloid stage are at first
derived in the paper. A loaded tooth contact analysis ap-
proach is extended from a developed model based on the
influence coefficient method. The influences of the design
parameters on the contact characteristics are systematically
analyzed with an example. These results are also compared
with the conventional drive having tooth number difference
of one. The analysis results show that the proposed con-
cept with a larger eccentricity and a smaller pin radius can
not only effectively enlarge the contact ratio, but also re-
duce the specific sliding, the shared loads and the contact
stress. Although the radial portion of the bearing load can
be also reduced accordingly, the total periodical time-vari-
ant bearing load can not be reduced effectively by using the
concept of tooth number difference of two.
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1 Introduction

The cycloid planetary gear reducers are important dri-
ves for power and/or precision motion transmission. The
gear mechanism designed in the type of two-stage eccentric
differential, i. e. the so-called “RV-drive”, is today widely
applied in automation machinery. As the structural dia-
grams in Fig. 1 show, this gear drive type consists of an
involute planetary stage and a cycloid planetary stage with
two disks. Each involute planet is mounted on a crank shaft
to generate the revolution motion of the cycloid disk. Such
the design configuration has not only the advantages of
high gear ratio, but also good performances in load sharing
and shock absorbing ability because of multiple tooth pairs
in contact. Nevertheless, the trend in designing the gear
reducers today is to enlarge the power density, besides the
requirements on precise motion. To this purpose, the loads
acting on the contact tooth pairs and the cranks must be
reduced.

Among various measures, the design concept by using
a larger tooth number difference (abbr. TND) can give
a possibility to improve the loaded contact characteristics.

Fig. 1 Structure of cycloid planetary gear drive [1]
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In other words, the TND of the cycloid gear pair can be
selected as two, not as one that is often used in the conven-
tional application. The gear drives with TND of two (�z =
2) are often applied in the transmission of small reduction
ratios in the practice, but they are rarely used in the cases
with a higher ratio. Therefore it is interesting to evaluate
the feasibility of such the alternative drive concept. The
influences of the design parameters on the loaded contact
characteristics and the comparison with the conventional
drives should be explored.

The essential work for the load analysis is to derive the
geometrical and kinematic relations. The study on the ma-
thematic model of the cycloid profile can be found in many
literatures. The gear mesh can be also analyzed based on
the theory of gearing or the kinematic methods, e. g. the in-
stant center method [2, 3]. Another evaluation criterion of
the drives is the sliding characteristics between the engaged
teeth. The damages on the tooth flanks, e. g., pitting, wear
or scoring, can be predicted by the ratio of specific sliding.
However, the related research is often found in some artic-
les on trochoidal gear pumps [4], and is less mentioned in
the field of the cycloid gear reducer.

Additionally, the load analysis is also an important is-
sue for evaluating the feasibility of the gear drives with
�z = 2. The often applied method for analysis of the con-
tact stress of the cycloid gear drives is FEM, e. g. [5–9].
Another approach for load analysis is developed based on
analytical methods. For example, Dong et al. [10] proposed
a calculation approach for the acting forces on the rolling
bearings for supporting the cycloid disks. Blanche and Yang
[11, 12] focused on the influences of the manufacturing er-
rors on the transmitted load and transmission errors. Hidaka
et al. [13] analyzed the influences of manufacturing errors
on the dynamic load behaviors based on the assumption
of contact mesh stiffness of tooth action. Gorla et al. [14]
conducted an experiment to analyze the contact stress so
as to validate the theoretical analysis results from the ana-
lytical approach. The authors have developed an numerical
loaded tooth contact analysis (LTCA) approach based on
the influence coefficient method [15]. This approach is also
successfully applied for analysis of the cycloid tooth pairs
[2, 3] and also the complete tooth contact considering the
bearing stiffness and the friction [16].

The aim of the paper is therefore to study systematically
the influences of the design parameters on the contact and
loading characteristics of such the alternative drive concept.
A set of essential equations for the cycloid profile, tooth
contact and the specific sliding of the cycloid stage with
�z = 2 are at first derived in the paper. A new load analy-
sis approach is extended from the developed LTCA model
[12]. The influences of the design parameters on the contact
characteristics are further systematically analyzed. Namely,
the contact ratio, the specific sliding, the load sharing, the

contact stress and the periodical time-variant bearing loads
are discussed in the paper. These results are also compared
with the conventional drive having �z = 1.

2 Fundamentals of the analysis methods for
cycloid planetary gear drives

2.1 Construction of the cycloid disk for tooth number
difference (TND) of two

(1) Definition of the base tooth profiles. The tooth profile
of the planetary cycloid stage with �z = 2 can be regarded
as combination of two disks with the same base cycloid
profile rotated against each other with an angle τC, which
is equal to τC0/2 of the base cycloid profile., see Fig. 2. The
essential design parameters for the cycloid profile are as
follows,

● the pitch circle radius RC of the pin-wheel,
● the radius rP of the pins,
● the eccentricity e of the crank,
● the gear ratio u of the drive, here equal to zP/�z.

The base cycloid profile is in accordance with the cycloid
profile with the same design parameters but with �z = 1,
i. e., owns the coordinates [2], see Fig. 3:

xC = RC � cos� − e � cos .u � �/ − rP � cos .� −  / (1)

yC = RC � sin� − e � sin .u � �/ − rP � sin .� −  / (2)

with the pressure angle

 = arctan
�

u � e � sin Œ.u − 1/ � ��
RC − u � e � cos Œ.u − 1/ � ��

�
(3)

or with the factor k = u e/RC

Fig. 2 Construction of the cycloid disc with �z = 2
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Fig. 3 Definition of the base cycloid profile

 = arctan
�

k � sin Œ.u − 1/ � ��
1 − k � cos Œ.u − 1/ � ��

�
(4)

The profile variable θ for the cycloid curve is defined
from the rotation of the generating circle, as the relation
shown in Fig. 3. The gear ratio u of the base profile is
equal to zP0. In the case of �z = 2, the gear ratio u is equal
to zP/2, also equal to zP0. The curvature radius ρ of the tooth
profile can be obtained [2] as

� =
RC � �

1 + k2 − 2 � k � cos ..u − 1/ � �/�3=2

1 + u � k2 − .1 + iC/ � k � cos Œ.u − 1/ � �� − rP (5)

The inflection point on the cycloid profile owns the pro-
perty of the infinite curvature radius, i. e., the corresponding
variable θinf must be equal to

�inf =
1

u − 1
arccos

�
1 + u � k2
.1 + u/ � k

�
(6)

(2) Intersecting point of the two base cycloid profiles. In
general, the pointing tip of the tooth profile in the case�z >
1 is usually rounded with a circular arc. In order to simplify
the analysis, the case of rounding is not considered in the
study. Based on the symmetrical relation, the separation
angle of the intersection point Ypt of the two base cycloid
profiles to the x-axis is equal to a half-pitch angle τC/2,
as the relation shown in Fig. 2. The corresponding profile
variable θpt of the point Ypt can be determined with the
equation,

arctan

"
yC

�
�pt

�
xC

�
�pt

�
#
=
�C

2
=
�

zC
(7)

2.2 Gear meshing analysis

The cycloid gear mesh can be analyzed considering the disk
as stationary, while the center of the pin wheel OP moves
around the center of the disk OC relatively with the crank-
shaft angle φC, and the pin wheel itself rotates also with
an angle φP (=φC/u). The relative motion can be illustrated
with the geometric relation shown in Fig. 4. Some related
issues are discussed as follows.

(1) Determination of contact points. The contact points
of the cycloid-pin tooth pairs Pi can be determined with aid
of the instant center of velocity. In general the analysis can
be based on each of the two cycloid profiles respectively, he-
re the terms “odd-numbered” and “even-numbered flanks”
are used for distinction. As the relation in Fig. 4 shows, the
equations of the profile variables θ for the contact points
on both the cycloid flanks are listed in Table 1.

(2) Theoretic contact ratio. Because the variable θ of the
cycloid profile is linearly associated with the rotation angle
φC of the crank, the meshing period is thus equal to θpt for
the case with �z > 1. The theoretic contact ratio ε, which is
defined as the average number of contact tooth pairs during
gear meshing, can be expressed as

" =
�pt

��
(8)

where the pitch angle �τ is equal to the relation

�� =
4 � �
zP � zC (9)

Fig. 4 Basic geometric relation for tooth contact of the cycloid disc
with �z = 2
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Table 1 Essential equations for determination of tooth contact

Relation Tooth
pair

Equation

Odd-numbered flanks
Variable for contact
point

1st �1−I = 'P = 'C=u

ith �i−I = �1−I + .i − 1/ � �P0

Contact condition ith .j�i−Ijmod�C0/ � �pt

Even-numbered flanks
Variable for contact
point

1st �1−II = �1−I + �P = �1−I + �P0=2

ith �i−II = �1−II + .i − 1/ � �P0

Contact condition ith .j�i−IIjmod�C0/ � �pt

(3) Transmission angle. The conversion of the loaded dis-
placements from the angular displacement of the cranks as
well as the decomposition of the acting forces are based on
the transmission angle γi between the normal of the con-
tact tooth pair and the line OPOC. As the relation in Fig. 4
shows, the transmission angle γi for odd-numbered flanks
can be determined as

	i−I = .�i−I −  i−I/ − 'C − � (10)

while for even-numbered flanks is

	i−II = .�i−II −  i−II/ − .'C − �C/ − � (11)

(4) Equivalent displacement. is defined as the compliance
of a contact tooth pair along its contact normal due to the
translational displacement e � δφ of the cycloid disc under
loading. This displacement e � δφ is caused by the motion of
the cranks with an angular displacement δφ at each instant.
The equivalent displacement δeqi-I(II) of odd-/even-numbered
tooth pair i can be determined with the transmission angle
γi (see Eqs. 10 or 11) from Fig. 4, i. e.,

ıeqi−I.II/ = −e � ı' � sin	i−I.II/ (12)

(5) Determination of active contact tooth pairs. In order
to calculate the acting force, it is essential to determine
which tooth pairs are in contact. The following relations
can be applied:

● if the cranks rotate in the counter-clockwise direction, the
tooth pairs with positive δeqi are in contact, see Eq. 12;
otherwise,

● if the cranks rotate in the clockwise direction, the tooth
pairs with negative δeqi are in contact.

(6) Sliding velocity. on the contact point plays an import-
ant role for evaluation of tooth scuffing. The sliding velocity
of the ith contact tooth pair can be determined based on the

Fig. 5 Velocity relation for the cycloid disc

instant center IC. According to the geometric relation in
Fig. 5, the sliding velocity at the instant contact point Mi is
equal to the multiple of the rotation speed of the pin-wheel
with the distance ICMi,

vPiC = !P �
h
RC �

p
1 + k2 − 2 � k � cos .�i − 'C/ − rP

i
(13)

The specific sliding ζCi of the driving cycloid disc is
calculated by the expression:


Ci =
vPiC

vCcos	i

=

p
1 + k2 − 2kcos .�i − 'C/ − rP=RC

kcos	i

(14)

while the specific sliding ζPi of the driven pin is equal to


Pi =

Ci


Ci − 1
(15)

The specific sliding ζCi will become infinitely great, and
ζPi = 1, if the transmission angle γi is equal to π/2.

2.3 Typical tooth profile for TND of two

Because the base cycloid profile consists of both concave
and convex profile, two profile types, i. e., either concave or
concave-convex profile, can be found in the case of �z > 1.
These two type of the cycloid profile are divided according
to the relation between the location of the inflection point
and tip pointing, i. e.,

● concave profile, θinf ≥ θpt;
● concave-convex profile, θinf < θpt.

In general, the concave profile is good for tooth contact,
but the contact ratio is reduced accordingly.
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2.4 Loaded tooth contact analysis

(1) Basic LTCAmodel for cycloid stage. The contact pro-
blem of multiple tooth pairs under loading is statically in-
determinate. The shared loads on the tooth pairs can be
solved by using two types of equations, namely the equati-
ons of load equilibrium as well as the equations of loaded
deformation and displacement [15]. To this end, a numerical
approach for loaded tooth contact analysis of cycloid plane-
tary gear drives is developed by the authors. This approach
is based on the influence coefficient method to express the
relation of the deformation of any specific point i on the
engaged flanks due to the influence of all the distributed
pressures pj, i. e.,

wi =
nX

j=1

�
fi−j � pj

�
(16)

where fi–j is the influence coefficient for the condition, that
the deformation on point i is caused by a load acting on the
point j.

The relations of displacement-deformation is thus valid
for the specific point Yi

wi + hi = ıeqi (17)

where hi is the separation distance between the engaged
flanks at the discrete point, more detail see [2].

Another relation for the loaded tooth contact is the load
equilibrium equation, i. e., the sum of all the acting forces
in the tangential direction (see Fig. 6) must be equal to the
equivalent force T/(u � e), i. e.,

Fig. 6 Relation of acting forces on the cycloid disk

nX
i=1

0
@s � qi �

mX
j=1

pi−j

1
A =

T

u � e (18)

where the factor qi is equal to qi = sin	i .
The set of the deformation-displacement equations and

the load equilibrium equation can be summarized in a form
of matrix equation [2], as the expression:

2
666664

A1 0 � � � 0 −q1I
0 A2 � � � 0 −q2I
:::

:::
: : :

:::
:::

0 0 � � � An −qnI
q1s1I q2s2I � � � qnsnI 0

3
777775

2
666664

P1

P2
:::

Pn

eı'

3
777775

=

2
666664

−H 1

−H 2
:::

−H n

T= .u � e/

3
777775

(19)

�
A Q
S 0

� �
P
eı'

�
=

�
−H

T= .u � e/
�

(20)

The sub-matrices in Eqs. 19 and 20 are defined as fol-
lows:

● Ai contains all the influence coefficients fPi for the tooth
pair i; all these sub-matrices are summarized in the ma-
trix A in Eq. 20.

● I is either the column or the row unit vector.
● Pi as a column vector contains all the contact stresses on

the discrete units of the tooth pair i; all these sub-vectors
are summarized in a column vector P in Eq. 20.

● Hi as a column vector contains all the separation distan-
ces between the engaged tooth flanks of the tooth pair i
according to the discrete points; all these sub-vectors are
summarized in a column vector H in Eq. 20.

● S in Eq. 20 combines all the row vectors with a value of
qisi.

Because the contact region of two engaged flanks are
divided into small discretized areas for load analysis, the
actual contact pattern and distributed contact stresses can
be simulated. More details can be found in [2, 3, 15, 16].

(2) Conversion of the basic LTCA model for the case with
�z = 2. Considering two disks with a separation angle of
τC, the LTCA model for analysis of the case of �z = 2 can
be expanded by the expression:

2
4AI 0 QI

0 AII QII

S I SII 0

3
5

2
4PI

PII

eı

3
5 = −

2
4−HI

−HII

T=e

3
5 (21)
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The contact areas with distributed stresses of the contact
tooth pairs based on Eqs. 19 or 21 are solved iteratively until
the convergent condition is fulfilled, i. e., all the contact
stresses are positive.

(3) Load sharing of the drive is distinguished between
the load sharing among the tooth pairs at a specific angular
position as well as the shared loads distributed on an indi-
vidual tooth flank within a meshing cycle. The normal load
FNi–I,II acting on the ith odd/even-numbered contact tooth
pair is determined as the sum of all the distributed contact
stresses which are solved from the LTCA approach based
on Eq. 21, namely,

FNi−I;II =
mnX
j=1

sipi−j (22)

(4) Bearing loads on the cranks can be divided into three
types of forces based on the load equilibrium conditions,
see Fig. 6 and [2, 10]:

● Force equilibrium,

Fr =
mX
i

Œqri � FNi � =3 (23)

Ft = −
mX
i

Œqti � FNi � =3 (24)

● Moment equilibrium, the circumferential force:

Fc = −
mX
i

Œqti � FNi � � .u − 1/ � e= .3 � rR/ (25)

where the factors qri and qti in the above equation are deter-
mined as follows,

qri = sin	i (26)

qti = cos	i (27)

The result radial forces FCRr and tangential forces FCRt

acting on the crank j are equal to the following relations
respectively, see Fig. 7,

FCRr−j = Fr + Fc � sin Œ'C + 2� .j − 1/ =3� (28)

FCRt−j = Ft − Fc � cos Œ'C + 2� .j − 1/ =3� (29)

Because the tangential Ft and circumferential force Fc

are directly associated with the output torque Tout, i. e.,

Fig. 7 Relation of acting forces
on the crank

Ft =
Tout

3 � u � e (30)

Fc =
Tout � .u − 1/

3 � u � rR (31)

only the radial force Fr can be changed by using suitable
design parameters so as to reduce the bearing loads.

3 Overview of the numerical example

In order to analyzed the influences of the design parameter,
the essential gear data are listed in Table 2. The design
parameters considered in the paper are the pin radius rP
and the eccentricity e, the corresponding values used for
the analysis are listed Table 3. A larger pin radius is not
considered here, because the available space for installation
of the pins in the pin wheel is limited.

4 Influence analysis of the design parameters

4.1 Tooth profile and contact ratio

The influences of the design parameters e and rP on the
location of tip pointing and the contact ratio are represented
in Fig. 8. Because the contact ratio is linearly associated
with the profile variable θpt for tooth pointing, the curves in
the diagram illustrate both the two factors at the same time.

Table 2 Essential gearing data for numerical analysis

Items/symbols Value Remarks

Pitch circle radius of pin wheel RC 162.5mm –

Tooth number of the cycloid disk zC 78 –

Tooth number of the pin wheel zP 80 –

Reduction ratio u (Carrier fixed) 40 zP/�z

Thickness of the cycloid disk t 31.5mm –

Radius of the bearing hole center rR 90mm –

Output torque T 4000 Nm –

Table 3 Design parameters for influence analysis

Items/symbols Value [mm]

Radius of the pin rP 3, 4, 5, (6)

Eccentricity e 2.5, 3, 3.5
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Fig. 8 Influence of e and rP on the location of tip pointing and the
contact ratio ε

Fig. 9 Influence of e and rP on the profile

In general, the cycloid drive with �z = 2 having smaller
pins and a larger eccentricity owns a larger contact ratio. In
such the case, the cycloid profile has a convex and concave
portion. On the other hand, a larger pin radius, e.g, rP = 7,
lowers the contact ratio with an increased eccentricity.

How these parameters affect the profile can be further
identified from Fig. 9. A larger pin radius rP under the same
eccentricity e causes a smaller tooth thickness tC of cycloid
flank and a closer location of the inflection point Yinf and
the pointing tip Ypt. On the other hand, the eccentricity e
affects the shape of the tooth profile strongly. The tooth
depth hC is enlarged with an increased eccentricity e.

Fig. 10 Influences of the pin radius rP on the specific sliding

Fig. 11 Influences of the eccentricity e on the specific sliding

4.2 Specific sliding

The influences of the pin radius rP and the eccentricity e
on the specific sliding are illustrated in Figs. 10 and 11,
respectively. The specific sliding of the cycloid disk ζC is
much larger than that of the pin ζP. The specific sliding ζP
increases monotonously from the begin A to the end E of
contact. The specific sliding ζC, by contrast, decreases at
first monotonously, and then asymptotically to –1 nearby
the singular point, where the transmission angle γi is equal
to π/2. As the tooth pair engages further, ζC decreases with
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Fig. 12 Influences of the pin radius rP on the load sharing among the
contact tooth pairs

Fig. 13 Influences of the eccentricity e on the load sharing among the
contact tooth pairs

change of the sign from +1 to the a local extremum on the
tip E [4].

The pin radius has almost no influences as the curves
in Fig. 10 show. The eccentricity e, by contrast, affects the
specific sliding strongly (Fig. 11). Namely, as the eccen-
tricity e decreases, the point with infinitely great specific
sliding ζC will shift in the direction to the tip E, and the
values of ζC in other segments are enlarged, ζP are reduced
accordingly.

4.3 Shared loads among the contact tooth pairs

Because the transmission angles γ of the active contact tooth
pairs are different, the normal loads are also shared uneven-
ly among the contact tooth pairs, as the analysis results in
Figs. 12 and 13 show. The pin radius has less effect on
the load sharing. A smaller eccentricity, by contrast, causes
unevenly shared loads.

Fig. 14 Influences of the pin radius rP on the shared load on an indi-
vidual flank

Fig. 15 Influences of the eccentricity e on the shared load on an indi-
vidual flank

4.4 Shared load on an individual cycloid flank

The distribution of the normal forces acting on an individual
cycloid flank is illustrated in Figs. 14 and 15. Some findings
from these diagrams are listed as follows:

● There is no load at the begin of contact A, but a larger
load remains at the end of contact E.

● The shared load varies with several periodical jumps due
to the change of the numbers of contact tooth pairs, and
the presence of a phase angle for tooth profile.

● The eccentricity e affects the variation of the load sharing
stronger than the pin radius, not only because of the tooth
profile, but also because of the transmission angle γ.

● A small eccentricity e causes a reduced contact ratio and
enlarged shared loads, while a small pin radius causes an
enlarged contact ratio and reduced shared loads.
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Fig. 16 Influences of the pin radius rP on the distributed contact stress
on flanks

Fig. 17 Influences of the eccentricity e on the distributed contact
stress on flanks

4.5 Contact stress on an individual cycloid flank

The variation of the contact stress on the flank is similar to
that of the shared load, but the stress increases more slowly
on the segment after begin of contact A due to the concave
profile. The jumping phenomenon is also found in the va-
riation of contact stresses, because of the suddenly changed
load. The pin radius rP changes only the value of the contact
stress, but not the variation shape, see Fig. 16. By contrast,
the eccentricity e affects not only the shape, but also the
value of stress variation, Fig. 17. A larger eccentricity has
a positive effect on the distribution of the contact stress.

The proposed approach can also simulate the concentra-
ted contact stress on the flank due to the edge effect. Fig. 18
shows the contact pattern with distributed contact stresses
of two tooth pairs, respectively. A saddle-shaped distributi-
on of contact stress can be identified in the contact of the
11th tooth pair (Fig. 18a), while a strong stress concentra-

Fig. 18 Distribution of the contact stress on the flank of the different
tooth pair: a normal contact; b edge contact with stress concentration

tion due to edge contact occurs on the flanks of the 24th
tooth pair (Fig. 18b).

4.6 Bearing loads on the cranks

Among the three types of bearing loads acting on the cranks
for supporting the cycloid disks, Eqs. 23, 24 and 25, only
the radial forces can be affected by both the eccentricity e
and the center radius of the bearings rR. Because the influ-
ence of the pin radius on the shared load is not significant,
only the eccentricity is considered here for analysis. Fig. 19
shows the variation of the radial forces with three different
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Fig. 19 Influences of the eccentricity e on the result radial force due
to the sum of normal forces

values of eccentricity. It is obvious to recognize that a lar-
ger eccentricity than a certain value causes a larger radial
bearing force. Although a certain value of eccentricity will
reduce the radial bearing force Fr to zero, a larger tangential
force Ft and less contact points are present due to a smaller
eccentricity.

5 Comparison with the TND of one

In order to compare the transmission characteristics, the
eccentricity e of the drive with �z = 1 and 2 is selected
as the same value, while the pin radii rP are different, see
Table 4.

5.1 Load sharing

(1) The shared loads among the contact tooth pairs for
the case of �z = 1 and 2 are illustrated in Fig. 20. The
loads acting in the drive with �z = 2 vary more evenly than
those with �z = 1, while the maximum load is about half
the value in the disk with �z = 1.

(2) The shared loads on an individual flank in the case
of �z = 2 vary also evenly, while the shared load is also
reduced, Fig. 21. The differences come from that the profile
portion having the transmission angle γ smaller than π/2 is
less in the case of �z = 1.

Table 4 Additional design parameter for analysis

Items/symbols Value

�z = 1 �z = 2

Radius of the pin rP 8mm 4mm

Eccentricity e 3.5mm 3.5mm

Fig. 20 Loads shared by various contact tooth pairs in the drive with
�z = 1 and 2

Fig. 21 Comparison of the shared loads acting on the cycloid flank
for the drive with �z = 1 and 2

Fig. 22 Comparison of the contact stress on the cycloid flank for the
drive with �z = 1 and 2
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Fig. 23 Comparison of the radial forces for the cycloid disk with�z =
1 and 2

Fig. 24 Comparison of the bearing support loads for the cycloid disk
with �z = 1 and 2

5.2 Contact stress

Although the pin radius is smaller in the case of �z = 2,
the high contact stress on the cycloid flank in the case of
�z = 1 is significantly reduced to about 2/3, Fig. 22. On the
other hand, the contact stress varies along the flank also in
a type of jumping compared with the case of �z = 1. This
phenomenon is significant in the concave profile segment
because of the sensitive change of the mesh stiffness. In
other words, the gradient of the relative curvature in this
segment is larger than the other convex segment.

5.3 Bearing loads

Although the normal loads acting on the cycloid disk with
�z = 2 are reduced, the result loads Ft and Fc in the tan-
gential and circumferential direction (see Fig. 6) remains
constant during rotation of the crank with a constant output
torque Tout. The result radial load Fr, on the other hand, is

Table 5 Comparison of the analysis results

Items �z = 1 �z = 2

Theoretical contact ratio 20 23.53

Max. shared load on the flank [N] 3311 1719

Max. contact stress [N/mm2] 1241 794

Max. bearing load [N] 24,687 24,188

Peak-to-peak value of bearing load [N] 20,448 19,486

affected by the transmission angle γ. The influence can be
recognized from Fig. 23. The radial force Fr in the case of
�z = 2 is reduced with about half the value of the normal
drive. However, the lowered radial force Fr, is still much
smaller than the circumferential force Fc, which is equal to
a constant value 14,444N, see Eq. 31. In other words, The
effect by using �z = 2 to reduce the bearing force (FCRr and
FCR) is small, as the results in Fig. 24 show. Only 2% of
the maximum bearing force is reduced.

6 Conclusion and outlook

In order to improve the transmission performances of the
cycloid planetary gear drive with a high gear ratio, the con-
cept with tooth number difference of two (�z = 2) is pro-
posed. The loaded contact characteristics of this drive type
are explored with aid of a developed loaded tooth contact
analysis model based on the influence coefficient method.
No only the influences of the design parameters, here the
eccentricity and the pin radius, but also the comparison with
�z = 1 is analyzed. The comparison of the analysis results
are summarized in Table 5.

The analysis results enable us to draw the following con-
clusions:

● The theoretical contact ratio of the cycloid drives with
�z = 2 can be increased by using suitable design parame-
ters, where a smaller pin radius and a larger eccentricity
are expected for use.

● The eccentricity affects significantly the specific sliding.
With a larger eccentricity, the point with infinitely great
specific sliding ζC will shift in the direction to the tooth
root the cycloid profile, and the values of ζC are reduced,
but ζP are enlarged accordingly.

● The shared acting load and contact stress on the contact
flanks with �z = 2 can be significantly reduced with re-
spect to the case�z = 1. A smaller pin radius and a larger
eccentricity are suitable for designing such the drive.

● The variation of the shared load and the contact stress
on flanks with �z = 2 performs in cyclic jumping type,
similarly to the phenomenon in involute spur gearing.

● The effect by using�z = 2 to reduce the bearing loads on
the cranks is small, because the influence of the circum-
ferential force is much stronger.
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However the modified cycloid profile is applied in prac-
tical application, not the theoretical profile, because of the
necessary backlash. For further design of flank modification
of the cycloid drive with �z = 2, the presented results can
be still good references and the proposed analysis approach
is also an efficient tool.
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