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Abstract Intensive research in the field of mathematical
modelling of the pneumatic cylinder has shown that its
mathematical model is nonlinear and that a lot of impor-
tant details cannot be included in the model. Selection of the
model and the identification method have been conditioned
by the following facts:

(a) The nonlinear model of the system can be approximated
by a linear model with time-variant parameters.

(b) There is the influence of the combination of heat coeffi-
cient, unknown discharge coefficient and change of tem-
perature on the pneumatic cylinder model. Therefore it
is assumed that the parameters of the pneumatic cylinder
are random (stochastic parameters).

(c) In practical conditions, observations have a non-Gaus-
sian distribution.

Due to the abovementioned reasons, it is assumed that
the pneumatic cylinder model is a linear stochastic model
with variable parameters. The Masreliez-Martin filter (ro-
bust Kalman filter) was used for identification of parame-
ters of the model. For the purpose of increasing the practical
value of the filter, the following two heuristic modifications
were performed:

(1) It was adopted that T (k) = 1 holds for the scalar trans-
formation of residuals.

(2) Fisher information was approximated by a derivative of
the Huber’s function.

The proposed modifications were confirmed through inten-
sive simulations. In order to provide persistent excitation,
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the autocovariance function “1/f ” of the signal was used.
The behaviour of the new approach to identification of the
pneumatic cylinder is illustrated by simulations.

Robuste Identifikation von pneumatischen
Servo-Aktuatoren in der realen Situationen

Zusammenfassung Intensive Forschung auf dem Gebiet
der mathematischen Modellierung des pneumatischen Zy-
linders hat gezeigt, dass sein mathematisches Modell nicht-
linear ist und dass viele wichtige Details nicht in das Modell
einbezogen werden können. Die Auswahl des Modells und
die Art der Identifikation werden durch folgende Tatsachen
bedingt:

(a) Das nichtlineare Modell des Systems kann durch ein li-
neares Modell mit zeitvarianten Parametern angenähert
werden.

(b) Es besteht ein Einfluss der Kombination von Wärme-
durchgangs-Koeffizient, unbekanntem Durchflusskoef-
fizienten und Änderungen der Temperatur auf das pneu-
matischen Zylinder-Modell. Es wird daher angenom-
men, dass die Parameter des pneumatischen Zylinders
zufälligen Charakters sind.

(c) Unter praktischen Bedingungen haben die Beobach-
tungsergebnisse eine nicht-Gaußsche Verteilung.

Aufgrund der vorgenannten Gründe wird davon ausgegan-
gen, dass das Pneumatikzylinder Modell ein lineares, sto-
chastisches Modell mit variablen Parametern sein muss. Der
Masreliez-Martin-Filter (robust Kalman-Filter) wurde für
die Identifizierung von Parametern des Modells verwendet.
Zur Erhöhung des praktischen Werts des Filters, wurden
die beiden folgenden heuristischen Modifikationen durch-
geführt:
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(1) Es wird angenommen, dass T (k) = 1 für das skalare
Transformation der Residuen hält.

(2) Die Fisher-Information wird durch ein Derivat des Hu-
bers Funktion approximiert.

Die vorgeschlagenen Änderungen werden durch intensive
Simulationen bestätigt. Um für eine anhaltende Erregung zu
sorgen, wird die Autokovarianzfunktion “1/f ” des Signals
verwendet. Das Verhalten des neuen Ansatzes zur Identifika-
tion des pneumatischen Zylinders wird durch Simulationen
aufgezeigt.

List of symbols
PS supply pressure
Pi pressure in the chamber i = a, b

Po outer absolute pressure
m total mass of the piston and the load
βe nonlinear viscous friction coefficient
ke load spring gradient
Fext load force disturbance on the piston
Ff friction forces
Ai effective area of the piston
TS supply temperature
R the universal gas constant
ṁl leakage mass flow rate between the cylinder

chambers
ṁi mass flow rates through the orifice i = a, b

Cd(t) valve discharge coefficient
α(t) heat coefficient
β(t) uncertain bound parameter
τ(t) variation of the temperature
W port width
y displacement of the piston
y(k) discrete scalar observations of the piston

displacement
x(k) discrete time n × 1 state vector
u(k) input signal
F(k) n × n state transition matrix
H(k) 1 × n observation matrix
w(k) process noise
v(k) measurement noise
T (k) a linear transformation
W(k) covariance for process noise w(k)

P (k|k − 1) a priori covariance matrix
P(k|k) a posteriori covariance matrix
EPε {·} expectation with respect to the least favourable

pdf
I (p) Fisher information for the least favourable pdf
ε degree of contamination
ψp[·] vector influence function
ϕ(k) 1 × n regression vector
θ(k) n × 1true parameter vector
θ̄ mean value of true parameter vector
	θ covariance matrix of true parameter vector

θ̂ (k) estimation of true parameter vector
C a priori known non-singular matrix
ŷ(k) adjustable predictor
ai, bj system parameters (i = 1, . . . , n; j = 1, . . . ,m)
rd
k , r̂k desired and non central autocovariances of

excitation signal
st excitation signal
φ1/f spectrum of bandlimited noise
ω,ω, ω̄ frequency and its lower and upper limits

Subscripts
a head side of the piston
b rod side of the piston

Abbreviations
ARX autoregressive with exogenous input
ARMA autoregressive moving average
ARMAX autoregressive moving average with exogenous

input
RLS recursive least square
OE output error
MSE mean square error
SISO single input/single output
pdf probability density function

1 Introduction

Since pneumatically driven systems have a lot of distinct
characteristics of energy-saving, cleanliness, simple struc-
ture and operation, and high efficiency and are suitable for
working in a harsh environment, they have been extensively
used for many years in robot driven systems and industrial
automation [1]. However, pneumatic actuators are charac-
terized by high-order time-variant dynamics, nonlinearities
due to the compressibility of air, internal and external distur-
bances, and payload variations [2–4]. It is difficult to build
an accurate dynamic model for describing pneumatic servo-
drive behaviour. Therefore, in order to design controllers
that are reliable and easy to understand in practice, simpli-
fied plant models are obtained by linearization around oper-
ating points [5–8].

The purpose of this paper is to use the theory and findings
of system identification to obtain a mathematical model, so
that the controller can be designed on the basis of the model.
Numerous researchers have employed auto-regressive (mov-
ing average) with exogenous input AR(MA)X models and
recursive algorithms in their work. Östring et al. [9] identi-
fied the behaviour of an industrial robot in order to model its
mechanical flexibilities, while Johansson et al. [10] used a
state-space model to identify the robot manipulator dynam-
ics. Although, it is possible to obtain a linear model for a
single-link flexible robot [11, 12], massive problems occur
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when trying to obtain an accurate analytical model for multi-
link flexible robots in practice, as the extent of the equations
grows rapidly with each additional link. Tutunji et al. [13]
used a recursive least squares (RLS) algorithm to identify
gyroscopic system behaviour. Their results showed that an
RLS algorithm based on ARMA models provides a reason-
ably accurate transfer function of the systems under study.
Assuming most parameters in pneumatic servo system do
not change during operation, Shih and Tseng [14] performed
the identification offline and adjusted servo-control before
the operation accordingly. Furthermore, they investigated
the impact of different parameters (sampling time, order
model, different supply pressures, etc.) in the identification
process. They used RLS identification algorithm based on
ARX models.

The mentioned references consider the linear models of
the pneumatic cylinder which are ad hoc adopted, without
considering justification of such an approach. It is necessary
to notice the following details:

i. The pneumatic cylinder is a nonlinear system (presence
of friction force)

ii. There is a significant influence of the combination of
the heat coefficient, unknown discharge coefficient and
change of temperature on the behaviour of the pneumatic
cylinder [15]. The mentioned influences cannot be easily
included in the cylinder model and have random charac-
ter.

On the other hand, recent research has shown that the
nonlinear model of the system can be approximated by a lin-
ear system with time-variant parameters [16]. In this paper
it is assumed that the parameters of the pneumatic cylinder
model change randomly. The change of parameters is de-
scribed by the random walk method, where the correspond-
ing noise is modelled as the Gaussian stochastic process.
The output error (OE) method is used as the identification
algorithm. It is assumed that the measurement noise is non-
Gaussian. Justification of this approach was confirmed in
practice [17]. Namely, in measurements there are rare, in-
consistent observations with the largest part of population of
observations (outliers). Their presence can considerably de-
grade the performance of linearly recursive algorithms based
on the assumptions that measurements have a Gaussian dis-
tribution. Therefore, synthesis of robust algorithms is of pri-
mary interest. The synthesis is based on Huber’s theory of
robust statistics [18]. Robustness of algorithms is accom-
plished by introducing the nonlinear transformation of pre-
diction error (Huber’s function).

The Masreliez-Martin filter (robust Kalman filter) is the
natural frame for realization of the described algorithm. The
model in the state space in which the process noise has a
Gaussian distribution, and the measurement noise has a non-
Gaussian distribution corresponds to the adopted model for
the pneumatic cylinder.

In order to increase flexibiilty, in terms of practical appli-
cation of the robust Kalman filter, the following two heuris-
tic modifications were performed:

i. The scaling factor was adopted to be T (k) = 1
ii. The Fisher information in the a posteriori covariance ma-

trix of the filter was approximated by a derivative of Hu-
ber’s function.

The heuristic modifications were confirmed by intensive
simulations. The side benefit obtained by intervention (ii) is
the increase in the rate of convergence of estimated param-
eters. The reason is the increase in the robust Kalman filter
gain.

The paper also considers the possibility of synthesis of
the input signal in the system identification phase (experi-
ment design), which increases the rate of convergence of es-
timated parameters. Experiment design is based on the the-
ory of predictive regulators whose input signal belongs to
the finite alphabet.

The illustration of behaviour of the proposed algorithm is
presented through simulations.

2 Modelling of the pneumatic servo-system

This section is devoted to derivation of a mathematical
model for the pneumatic servo-system and includes the most
relevant dynamic and nonlinear effects that are involved in
pneumatic servo-systems. The system under consideration
consists of an electro-pneumatic position control servo drive
and a pneumatic actuator with a load as shown in Fig. 1. The
external load consists of the mass of external mechanical el-
ements connected to the piston and a force produced by an
environmental interaction.

The present model was established considering the fol-
lowing assumptions:

• the air flow media is a perfect gas,
• the air chamber’s thermodynamic states (pressure, tem-

perature and density) within the system components are
homogenous,

• the entire system’s air temperature varies from its nominal
value,

• the servovalve is characterized by one uncertain discharge
coefficient,

• the motion of the (piston+rod+load) may be assembly
conducted under friction,

• the process is polytrophic,
• the servovalve dynamics are negligible.

2.1 Force balance equation for the piston

Applying Newton’s second law to the forces on the piston,
the resulting force equation is

AaPa − AbPb = mÿ + βeẏ + Ff (ẏ) + key + Fext (1)
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Fig. 1 Schematic representation of the valve-controlled asymmetric
piston

where Pa and Pb denote the pressure of the chamber a and
b, respectively, m denotes the total mass of the piston and the
load referred to the piston, y is the piston displacement, βe is
the nonlinear viscous friction coefficient, ke denotes the load
spring gradient; and Fext denotes the load force disturbance
on the piston. The term Ff in (1) describes the summing
nonlinear effects of static and Coulomb friction forces of the
system. The detailed analysis for the influences of friction
forces can be found in [19].

The area ratio of the asymmetric piston is Aa/Ab > 1,
where Aa is the effective area of the head side of the piston,
and Ab is the effective area of the rod side of the piston, see
Fig. 1.

2.2 Pressure dynamics in the cylinder chambers

The governing equations of the pneumatic cylinder dynamic
behaviour rely entirely on the study of charging and dis-
charging processes of air to the controlled volume in the
cylinder chambers. The traditional approach to the anal-
ysis is based on linearization, which makes the analysis
valid only for small perturbations about an operating point
[5–8]. Figure 1 illustrates schematically the relationship of
the cylinder’s chambers and the inlet connections. Pressure
dynamics in the chambers, for i = a, b, is given by [15]

dPi

dt
= −α(t)gi(Pi, y, ẏ) + β(t)hi(t,Pi, y)u1 (2)

in which

gi(Pi, y, ẏ) = PiV̇i(ẏ)

Vi(y)
(3)

and

hi(t,Pi, y) =
√

RTS

Vi(y)
Wf (Pi)sgn(u1) (4)

where R is the universal gas constant, W is a spool constant,
TS is ambient absolute temperature. If it is noted that u1

represents the control input for the five-port control valve,
then it can be written that u1 = ya = −yb (see Fig. 1).

Notation f (Pi) is given by

f (Pi) =

⎧
⎪⎪⎨

⎪⎪⎩

f̄

(
Pi

Po

)

Po if Po ≥ Pi

−f̄

(
Po

Pi

)

Pi if P0 < Pi

(5)

where Po represents outer absolute pressure, f̄ denotes the
reduced flow function.

Uncertain heat coefficient α(t) depends on the actual heat
transfer occurring during the process. As it can be seen from
[15], α(t) takes values between 1 and 1.3997.

Uncertain bound parameter β(t), which takes values be-
tween 0.075 and 1.3297 (see [15]), is used to characterize
the combination of the heat coefficient α(t), the unknown
valve discharge coefficient Cd(t) and the variation of the
temperature τ(t). Thus, β(t) is generally expressed by

β(t) = α(t)Cd(t)
√

τ(t) (6)

If the state variables and the input variables are defined as
x1 = y, x2 = ẏ, x3 = Pa , x4 = Pb , u1 = ya = −yb (valve
input), u2 = Fext (external disturbance) then a completely
nonlinear model of the pneumatic servo-system, can be writ-
ten as

ẋ1 = x2

ẋ2 = 1

m

(
Aax3 − Abx4 − βex2 − Ff (x2) − kex1 − u2

)

ẋ3 = −α(t)g(x1, x2, x3) + β(t)h(t, x1, x3)

ẋ4 = −α(t)g(x1, x2, x4) + β(t)h(t, x1, x4)

(7)

Since uncertain heat coefficient α(t) and uncertain bound
parameter β(t), are only known in the certain range, it can be
considered that their changes have random character. Since
mentioned uncertain coefficients are involved (directly or in-
directly) in the state variables, previous analysis has justified
the assumption that the system is considered as stochastic.

In general, the problem with complex nonlinear models,
such as the pneumatic servo cylinder, is that it is difficult to
choose the large number of physical parameters involved in
the model. Although a lot of parameter values are known a
priori with reasonable accuracy, a large number of param-
eters are only known within a certain range, and some are
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even completely unknown. This may be due to manufactur-
ing tolerances, or due to the fact that manufacturers do not
provide parameter values because they consider them as pro-
prietary information.

Furthermore, it is extremely difficult to accurately ac-
quire the system parameters, such as component dimen-
sions, internal leakage coefficients, valve discharge coeffi-
cient, spool viscous friction coefficient, static and dynamic
friction force between the piston and the cylinder bore and
piston viscous friction coefficient because the mentioned pa-
rameters cannot be directly measured or calculated. This
causes a great difficulty in system modelling and control.

The consequence of these problems is that the theoreti-
cal model is often not useful for quantitative analysis of the
pneumatic servo-system behaviour. Obviously, it is not easy
to accurately derive and simulate the mathematical model of
a nonlinear system.

3 Identification of the pneumatic cylinder

3.1 Robust Kalman filter as the parameter estimator

The previous section shows that the mathematical model of
the pneumatic cylinder in nonlinear and that it is not pos-
sible to include a large number of important details in the
model. The natural way of solving this problem is to apply
the identification theory. In that case the following problems
arise:

i. Type of the model (linear, nonlinear, deterministic,
stochastic)

ii. Nature of disturbance (uniformly constrained, stochastic)

The following three facts have conditioned the choice of the
model:

(a) Recent research has shown that the nonlinear model of
the system can be correctly approximated by a system
with time variant parameters [16].

(b) A more detailed analysis of the pneumatic cylinder
model described in the previous section shows that the
combination of heat coefficient, unknown discharge co-
efficient and change of temperature influences the model
of cylinder [15]. Those influences are random and there-
fore it is assumed that the parameters of the pneumatic
cylinder are random.

(c) Practical and theoretical research has shown that in
a stochastic model of the system there are some ob-
servations that are inconsistent with the largest part
of the population (outliers) [17], and that is why the
disturbance in the model (measurement noise) is non-
Gaussian.

The mentioned reasons lead to the assumption that the
model of the pneumatic cylinder is a stochastic linear model

with time variant parameters. As far as the authors are in-
formed, such a pneumatic cylinder model has not been con-
sidered in the literature so far.

The change of parameters of the pneumatic cylinder
will be described first. It is possible to introduce different
changes of parameters (jump, continual). Taking into ac-
count the physics of the problem, it will be assumed that
the change of the parameters has the form of random walk

θ(k + 1) = θ(k) + w(k) (8)

where the stochastic process w(k) is Gaussian with the mean
value zero and the covariance matrix W(k). In this paper the
Gaussian (normal) distribution will further on be denoted as
N(s̄, S) where s̄ is the mean value, and S is the covariance
matrix.

Remark 1 It is possible to present the model (8) in a more
general form

θ(k + 1) = Cθ(k) + w(k) (9)

where C is the a priori known non-singular matrix. This ma-
trix is suitable for entering a priori information on the phe-
nomenon which is being identified.

The relation (9) results in the possibility of modelling de-
terministically variable parameters

θ(k + 1) = Cθ(k) (10)

The output error method based on systems with a ref-
erence model will be used as a model which describes the
dynamics of the pneumatic cylinder.

The output of the model without disturbance will be de-
noted as yn(k). The dynamics of the model in that case is
described as

yn(k) = − a1(k)yn(k − 1) − · · · − an(k)yn(k − n)

+ b1(k)u(k − 1) + · · · + bm(k)u(k − m) (11)

Let us introduce the following vectors

θ(k) = [a1(k), . . . , an(k), b1(k), . . . , bm(k)]T (12)

ϕ0(k) = [−yn(k − 1), . . . ,−yn(k − n),

u(k − 1), . . . , u(k − m)]T (13)

In that case the dynamics of the system with disturbance
is given by the following relation

y(k) = θT (k)ϕ0(k) + ν(k) (14)
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The disturbance ν(k) is non-Gaussian and includes the
presence of outliers. Those are approximately normal distri-
bution classes.

Pε = {
p(ν) : p(ν) = (1 − ε)pN(ν) + εq(ν)

}
(15)

where p(·) denotes the probability density. The probability
density p(ν) represents a mixture of normal (Gaussian) dis-
tribution

pN(ν) ∼ N(0, σ 2
N) (16)

where σ 2
N denotes dispersion and arbitrary probability den-

sities q(ν). The parameter 0 ≤ ε < 1 is called the degree of
contamination. If ε = 0, then the value ν has normal distri-
bution. If ε = 1, then there is complete absence of the infor-
mation on the probability density.

Remark 2 In applications, the class of distribution Pε has
the form

Pε = {
p(ν) : p(ν) = (1 − ε)pN(ν) + εqN1(ν)

}
(17)

where pN(ν) ∼ N(0, σ 2
N), qN1(ν) ∼ N(0, σ 2

N1), σ
2
N1 � σ 2

N .

The problem with the relation (13) is that the values
yn(k − i), (i = 1,2, . . . , n) cannot be measured. Therefore,
these values are calculated by using the current estimates of
the parameters θ . It results in

ŷn(k) = −â1(k)ŷn(k − 1) − · · · − ân(k)ŷn(k − n)

+ b̂1(k)u(k − 1) + · · · + b̂m(k)u(k − m) (18)

If the following vectors are introduced

θ̂ (k) = [â1(k), . . . , ân(k), b̂1(k), . . . , b̂m(k)]T (19)

ϕ(k) = [−ŷn(k − 1), . . . ,−ŷn(k − n),

u(k − 1), . . . , u(k − m)]T (20)

the relation

ŷn(k) = θ̂ T (k)ϕ(k) (21)

is obtained. At the moment k, before the estimate θ̂ (k) is
known, the prediction of the model is [20]

ŷ(k) = θ̂ T (k − 1)ϕ(k). (22)

The natural definition of the prediction error is

ν(k) = y(k) − ŷ(k). (23)

Depending on the adopted identification criterion, using
the relations (14) and (20)–(22), different recursive identi-
fication algorithms can be obtained. Let us notice that the

vector ϕ0(k) from the relation (14) is replaced with the vec-
tor ϕ(k) from the relation (20), so that it could be realized
by the recursive algorithm.

Let us assume that the system in the state space can be
described as

x(k + 1) = F(k)x(k) + w(k) (24)

y(k) = H(k)x(k) + v(k) (25)

where

x(·) ∈ Rn, F (·) ∈ Rn×n, w(·) ∈ Rn

y(·) ∈ R1, H(·) ∈ R1×n, v(·) ∈ R1

The value x(·) is the state vector, y(·) is the system out-
put, and w(·) and e(·) are the process noise and the mea-
surement noise, respectively. It is assumed that the process
noise is Gaussian N(0,W(k)), where W(k) is the covari-
ance matrix, and ν(·) is the measurement noise which has
non-Gaussian distribution defined by the relation (15).

In [21] Masreliez and Martin proposed the robust Kalman
filter for the mentioned situation. This filter has small sen-
sitivity to the presence of outliers in comparison with the
standard Kalman filter deduced for the case when the values
w(·) and ν(·) have Gaussian distribution. The filter equa-
tions are

x̂(k|k) = F(k − 1)x̂(k − 1|k − 1)

+ P(k|k − 1)HT (k)T (k)ψ[ν(k)] (26)

P(k|k − 1) = F(k − 1)P (k − 1|k − 1)F T (k − 1)

+ W(k − 1) (27)

P(k|k) = P(k|k − 1) − P(k|k − 1)HT (k)T 2(k)H(k)

× P(k|k − 1)Ef0

{
ψ ′(ν(k))

}
(28)

In the relation (26), ν(k) represents transformed residuals

ν(k) = T (k)
[
y(k) − H(k)F (k − 1)x̂(k − 1|k − 1)

]
(29)

As the measurement equation (25) is scalar, then T (k)

is also a scalar. The transformation T (k) was introduced so
that the innovation variable ν(k) could satisfy the conditions
of symmetry of certain probability densities as well as con-
ditions for marginal probabilities [21].

The nonlinear function ψ(·) for the class of ε-contami-
nated distributions of probabilities is Huber’s function and
it is obtained with the application of game theory in statis-
tics [18]. It is defined on the basis of the least favourable
distribution of probability for the given class of probability
distribution.
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Fig. 2 Nonlinear function of residuals. (a) Huber’s function.
(b) Derivative of Huber’s function

The originally proposed robust Kalman filter [21] (rela-
tions (26)–(28)) includes two values which are not easy to
determine in practical conditions. They are the scalar trans-
formation T (k) as well as the member in the a posteriori
covariance matrix Ef0{ψ ′(ν(k))}. The mentioned member
represents Fisher information for the least favourable prob-
ability density [22]

I (p) =
∫ ∞

−∞
p′2(ζ )

p(ζ )
dζ. (30)

In order to increase the practical values of the algorithm
(26)–(28) the following heuristics were performed:

(a) For the scalar transformation T (k) it has been adopted
that T (k) = 1

(b) The member EPε {ψ ′(ν(k))} was approximated by the
realization of ψ ′(ν(k)).

Behaviour of the algorithms under the above modifica-
tions will be considered on the next fourth-order state esti-
mation problem

x(k + 1) =

⎡

⎢
⎢
⎣

0.99 −0.012 0.001 −0.001
−0.005 0.98 −0.001 0.005
−0.001 0.01 1 −0.001

0.01 0.001 −0.002 1

⎤

⎥
⎥
⎦

× x(k) + w(k) (31)

y(k) = [1 0 0 0 ]x(k) + v(k). (32)

The process noise w(k) is Gaussian with the zero mean
value and the covariance matrix

W =

⎡

⎢
⎢
⎣

0.001 0 0 0
0 0.001 0 0
0 0 0.001 0
0 0 0 0.001

⎤

⎥
⎥
⎦ . (33)

The measurement noise ν(k) has non-Gaussian distribution
defined by (17):

Pε = {
p(ν) : p(ν) = (1 − 0.1) ·N(0;0.1)+ 0.1 ·N(0;10)

}
.

(34)

The transformation T (k) will be determined in the algo-
rithm (26)–(28). Taking into account the relations (17), (24),
(25) and [21] for the matrix of the transformation T (k), the
following relation holds:

T 2(k)
[
H(k)P (k|k − 1)HT (k) + σ 2

N

] = 1. (35)

Where from it follows that

T (k) = [
H(k)P (k|k − 1)HT (k) + σ 2

N

]−1/2
. (36)

That value of transformation is introduced in the relations
(26)–(28), which results in obtaining

x̂(k|k) = F(k − 1)x̂(k − 1|k − 1) + P(k|k − 1)HT (k)

× [
H(k)P (k|k − 1)HT (k) + σ 2

N

]−1/2

× ψ

(
y(k) − H(k)F (k − 1)x̂(k − 1|k − 1)

[H(k)P (k|k − 1)HT (k) + σ 2
N ]1/2

)

(37)

P(k|k − 1) = F(k − 1)P (k − 1|k − 1)F T (k − 1)

+ W(k − 1) (38)

P(k|k)

= P(k|k − 1) − P(k|k − 1)HT (k)H(k)P (k|k − 1)

H(k)P (k|k − 1)HT (k) + σ 2
N

× EPε

{

ψ ′
(

y(k) − H(k)F (k − 1)x̂(k − 1|k − 1)

[H(k)P (k|k − 1)HT (k) + σ 2
N ]1/2

)}

(39)

The remaining step is to determine the value EPε {ψ ′(·)}.
In accordance with [21], it is obtained that

EPε {ψ ′(·)} = (1 − ε)[�(k) − �(−k)]
= (1 − ε)

[
2�(k) − 1

]
, 1 ≤ k ≤ 3 (40)

The value �(k) is the function of standard normal distri-
bution

�(k) = 1√
2π

∫ k

0
e− x2

2 dx. (41)

The relations (37)–(41) define the robust filter for the case
when the transformation T (k) is used. It is seen that this
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Fig. 3 Mean square error, obtained in nongaussian noise environment
with contamination ε = 0.1

transformation complicates the relations for the filter. If the
value y(k) is a vector, determination of the transformation
T (k) requires a non-trivial numerical procedure. That is why
the heuristic approximation T (k) = 1 is introduced in the
paper (T (k) = I for the case of a multivariable system).

In this case, the robust filter has the form:

x̂(k|k) = F(k − 1)x̂(k − 1|k − 1) + P(k|k − 1)HT (k)

× ψ
(
y(k) − H(k)F (k − 1)x̂(k − 1|k − 1)

)
(42)

P(k|k − 1) = F(k − 1)P (k − 1|k − 1)F T (k − 1)

+ W(k − 1) (43)

P(k|k)

= P(k|k − 1) − P(k|k − 1)HT (k)H(k)P (k|k − 1)

× EPε

{
ψ ′(y(k) − H(k)F (k − 1)x̂(k − 1|k − 1)

)}

(44)

EPε

{
ψ ′(y(k) − H(k)F (k − 1)x̂(k − 1|k − 1)

)}

= (1 − ε)[2�(k) − 1], 1 ≤ k ≤ 3 (45)

The value �(k) is determined by the relation (41).
The algorithms (37)–(41) and (42)–(45) are compared in

simulations.
The following approximation is

EPε {ψ ′(·)} ∼= ψ ′(·). (46)

The Huber’s function is considered in this paper. Now the
algorithm of robust filtration (with the introduced approxi-

Fig. 4 Mean square error, obtained in nongaussian noise environment
with contamination ε = 0.1

mation T (k) = 1) has the form

x̂(k|k) = F(k − 1)x̂(k − 1|k − 1) + P(k|k − 1)HT (k)

× ψ
(
y(k) − H(k)F (k − 1)x̂(k − 1|k − 1)

)
(47)

P(k|k − 1) = F(k − 1)P (k − 1|k − 1)F T (k − 1)

+ W(k − 1) (48)

P(k|k) = P(k|k − 1) − P(k|k − 1)HT (k)H(k)P (k|k − 1)

× ψ ′(y(k) − H(k)F (k − 1)x̂(k − 1|k − 1)
)

(49)

The algorithm (47)–(49) represents a significantly sim-
plified applicability of robust filters in practice. Simulation
in this part of the paper represents comparison of the filters
(37)–(41) and (47)–(49).

Intense simulations justified such interventions. Now the
algorithm (26)–(28) obtains the modified form (47)–(49).

It is important to notice that the second heuristic modi-
fication increases the rate of convergence (47)–(49) in the
initial iterations. Namely, the relations (47)–(49) for the ro-
bust Kalman filter gain result in:

K(k) = F(k − 1)[P(k − 1|k − 2) − P(k − 1|k − 2)

× HT (k)H(k)P (k − 1|k − 2)

× ψ ′(ν(k))]FT (k − 1)HT (k) + W(k − 1)HT (k)

(50)

If

|ν(k)| > kε,

ν(k) = y(k) − H(k)F (k − 1)x̂(k − 1|k − 1)
(51)
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Fig. 5 Power spectral density
of bandlimited ‘1/f ’ noise
signal for ω = 0.5 and ω̄ = 2.5

the relation (50) becomes

K(k) = F(k − 1)P (k − 1|k − 2)F T (k − 1)HT (k − 1)

+ W(k − 1)HT (k) (52)

because ψ ′(ν(k)) = 0 with the condition (51) (see Fig. 2).
By comparing the relations (50) and (52), it is seen that

the gain K(k) in the second case is higher. It means that the
bigger the estimation errors, the higher the filter gain and
thus the higher rate of estimation convergence.

By comparing the relations (8) and (14) with the relations
(24) and (25) and taking care that the vector ϕ0(k) should be
replaced with ϕ(k) and by substituting for the values

F(k) = I, H(k) = ϕT (k), x̂(k|k) = θ̂ (k) (53)

a recursive algorithm for estimation of time variant param-
eters is obtained in the relation (47)–(49). For transparency,
the algorithm shall be given in the form of Table 1.

3.2 Generation of the input signal

Optimal test signals are frequently specified in terms of their
second order properties, e.g. autocovariance or spectrum.
This leads to the problem of implementing a real signal with
specified second order properties. In addition, it is usual that
the input should also be constrained in its amplitude; there-
fore, the amplitude must lie in an interval.

Within the constraints of its amplitude, it is important to
implement an input signal which has maximum power. It is
of great importance in experiment design, where the qual-
ity of estimation typically increases with the signal to noise
ratio. If an input with higher power is chosen, it is obvious
that the signal to noise ratio is improved. Binary signals have
precisely this desirable property: their power is maximum
for the given amplitude constraint.

As it is mentioned in the introductory section, the ideas
from model predictive control are used to generate a binary

Table 1 Algorithm for robust identification of the system with time
variant parameters

Model of change of parameters

θ(k + 1) = θ(k) + w(k)

Model of measurement

y(k) = θT (k)ϕ0(k) + ν(k)

A priori data

w(k) ∼ N(0,W(k))

ν(k) ∼ (1 − ε)N(0, σ 2
N1) + εN(0, σ 2

N2), σ
2
N2 � σ 2

N1

θ(0) ∼ N(θ̄,	θ )

cov
(
w(j), ν(k)

) = cov
(
θ(0),w(k)

) = cov
(
θ(0), ν(k)

) = 0

Replacement in the robust Kalman filter (47)–(49)

F(k) = I,H(k) = ϕT (k), x̂(k|k) = θ̂ (k)

Estimation of parameters

θ̂ (k) = θ̂ (k − 1) + P (k|k − 1)ϕ(k) · ψ[y(k) − ϕT (k)θ̂(k − 1)]
Gain coefficient

K(k) = P (k|k − 1)ϕ(k)

A priori covariance matrix

P (k|k − 1) = P (k − 1|k − 1) + W(k − 1)

A posteriori covariance matrix

P (k|k) = P (k|k − 1) − P (k|k − 1)ϕ(k)ϕT (k)P (k|k − 1)

× ψ ′(y(k) − ϕT (k)θ̂(k − 1))

Initial conditions

θ̂ (0|0) = θ̂ (0) = θ̄ , P (0|0) = 	θ

waveform whose sampled autocovariance is as close as pos-
sible to some prescribed autocovariance [23]. Heuristically
speaking, the idea is to solve, for each time instant, a finite
horizon optimisation problem to find the optimal set of the
next, say, T values of the sequence so that the sampled au-
tocovariance sequence thus obtained is as close as possible
(in a prescribed sense) to the desired autocovariance. One
then takes the first term of this optimal set for the sequence,
advances time by one step and repeats the procedure. The
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Fig. 6 Characteristics of the
generated pseudo bandlimited
‘1/f ’ noise signal for m = 1,
N = 104 and n = 40

idea behind this procedure is thus closely related to finite
alphabet receding horizon control, where receding horizon
concepts are employed to control a linear plant whose input
is restricted to belong to a finite set.

Before the algorithm begins, the user of the algorithm has
to convert the desired autocovariance sequence {rd

k }∞k=0 into

the non-central autocovariance of a {0,1} sequence {r̂d
k }∞k=0.

Also, the user must choose three variables: N—the length
of the signal to be generated, n—the number of lags {rd

k }∞k=0
to be compared to the corresponding lags of the sampled
autocovariance sequence of the designed signal, and m rep-
resents the length of the receding horizon over which the op-
timisation algorithm is applied. For details see [23]. An out-
line of the algorithm is now presented as a series of steps:

1. Set t = 1
2. Set (ŝt , . . . , ŝt+m−1) = O1,m where O1,m denotes a zero

matrix of 1 × m order
3. Compute the first n lags of the sampled non-central auto-

covariance of (s̃, . . . , s̃t−1, ŝt , ŝt+1, . . . , ŝt+m−1) via

r̂k := 1

t + m − 1

t+m−1∑

i=k+1

ŝi ŝi−k, k = 0, . . . , n (54)

where ŝi = s̃i is considered for i = 1, . . . , t − 1
4. Generate a new m-tuple (ŝt , . . . , ŝt+m+1) ∈ {0,1}m and

repeat step 3 until all m-tuples have been tested
5. Let s̃t = ŝt for the m-tuple (ŝt , . . . , ŝt+m−1) ∈ {0,1}m for

which ‖{r̂i}ni=0 − {r̃d
i }ni=0‖2 is minimum

6. If t < N , let t = t + 1 and go to step 2
7. Convert the {0,1} N -tuple (s̃1, s̃2, . . . , s̃N ) into a {a, b}

N -tuple (s1, s2, . . . , sN ) via

st := (b − a)s̃t + a, t = 1, . . . ,N (55)

Generation of the input signal is inspired by recent work
on experiment design where it was shown that a bandlim-
ited ‘1/f ’ noise has good properties in robust identification

Fig. 7 Input binary sequence of generated pseudo bandlimited ‘1/f ’
noise signal for m = 1, N = 104 and n = 40

[24]. The bandlimited ‘1/f ’ noise is defined by the follow-
ing spectrum:

φ1/f (ω) :=
⎧
⎨

⎩

1/ω

ln ω̄ − ω
ω ∈ [ω, ω̄]

0 otherwise
(56)

where ω, ω̄ ∈ R, (ω < ω̄). The autocovariance sequence of
this signal is given by

r
1/f
k := 1

ln ω̄ − ω

∫ ω̄

ω

coskx

x
dx, k ∈ N0 (57)

Figure 5 shows the ideal spectral density of bandlim-
ited ‘1/f ’ noise signal for ω = 0.5 and ω̄ = 2.5. Figure 6
presents the results obtained from the receding horizon al-
gorithm for ω = 0.5, ω̄ = 2.5, m = 1, N = 104 and n = 40.
This last figure verifies the ability of the algorithm to gen-
erate a binary non-white noise signal. The discrepancies be-
tween the desired and the achieved autocovariances seem
to be due to the impossibility of generating a binary signal
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with a true bandlimited ‘1/f ’ spectrum, as the results do not
appear to improve significantly by increasing m and n. For
more details see [23].

4 Simulation results

It has already been noted that the change of the parame-
ters has the form of random walk, see (8). To demonstrate

the performance of the proposed robust procedure for pa-
rameters estimation, it is considered the model of pneumatic
cylinder whose time varying parameter vector has expected
value:

θ̄ = [−0.9131 −0.3523 0.1118 0.2318 −0.0413 0.0766 0.0115 0.0647 ]T .

In the system identification example, will be considered the case when the covariance matrix of process noise w(k) has the
form:

W(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 · 10−6 0 0 0 0 0 0 0
0 3 · 10−6 0 0 0 0 0 0
0 0 2.5 · 10−6 0 0 0 0 0
0 0 0 2.2 · 10−6 0 0 0 0
0 0 0 0 2 · 10−8 0 0 0
0 0 0 0 0 2.2 · 10−8 0 0
0 0 0 0 0 0 2.5 · 10−8 0
0 0 0 0 0 0 0 3 · 10−8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Such models of pneumatic cylinders can be meet in ex-
ploitation with varying outdoor conditions, for example in
the buses, nail guns, etc. The excitation signal was binary
sequence obtained from the receding horizon algorithm.

The system identification example, is based on measured
input-output data obtained during the simulations. During
the simulations, it is assumed that measured noise has non-
Gaussian distribution, see (17):

ν(k) ∼ (1 − ε)N(0,0.1) + εN(0,10).

Fig. 8 Simulation of the measured output signal of the system with
contamination ε = 0.05

From the process 1000 input-output data points were
collected and loaded into MATLAB form. Figures 8 to 11
shows system output, parameter estimates, and mean square
error in the case when the contamination ε = 0.05.

The simulation results are compared in terms of mean
square error (MSE), defined by

MSE = log

(∥
∥
∥θ̂ (k) − θ(k)

∥
∥
∥

2
)

Fig. 9 Estimates of parameter ai (i = 1,4), obtained in nongaussian
noise environment with contamination ε = 0.05 (solid line: Robust fil-
ter, dash-dot: Kalman filter, dotted line: True time-variant parameters)
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Fig. 10 Estimates of parameter bi (i = 1,4) obtained in nongaussian
noise environment with contamination ε = 0.05 (solid line: Robust fil-
ter, dash-dot: Kalman filter, dotted line: True time-variant parameters)

Fig. 11 Mean square error, obtained in nongaussian noise environ-
ment with contamination ε = 0.05

Fig. 12 Simulation of the measured output signal of the system with
contamination ε = 0.1

Fig. 13 Estimates of parameter ai (i = 1,4) obtained in nongaussian
noise environment with contamination ε = 0.1 (solid line: Robust filter,
dash-dot: Kalman filter, dotted line: True time-variant parameters)

Fig. 14 Estimates of parameter bi (i = 1,4) obtained in nongaussian
noise environment with contamination ε = 0.1 (solid line: Robust filter,
dash-dot: Kalman filter, dotted line: True time-variant parameters)

Fig. 15 Mean square error, obtained in nongaussian noise environ-
ment with contamination ε = 0.1
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Fig. 16 Simulation of the measured output signal of the system with
contamination ε = 0.15

Fig. 17 Estimates of parameter ai (i = 1,4) obtained in nongaussian
noise environment with contamination ε = 0.15 (solid line: Robust fil-
ter, dash-dot: Kalman filter, dotted line: True time-variant parameters)

Remark 3 The presented results have shown that the classi-
cal Kalman filter is very sensitive to the nongaussian mea-
surement noise presence, as opposed to the proposed robust
Kalman filter. The proposed robust Kalman filter gives sim-
ilar performance to the commonly used Kalman filter in the
case of stationary pure Gaussian additive noise.

Figures 12 to 15 show system output, parameter esti-
mates, and mean square error in the case when the contami-
nation ε = 0.1.

Figures 16 to 19 show system output, parameter esti-
mates, and mean square error in the case when the contami-
nation ε = 0.15.

Comparing Figs. 11, 15 and 19, it can be clearly seen that
the superiority of the modified robust Kalman filter is greater
in higher degrees of contamination.

Fig. 18 Estimates of parameter bi (i = 1,4) obtained in nongaussian
noise environment with contamination ε = 0.15 (solid line: Robust fil-
ter, dash-dot: Kalman filter, dotted line: True time-variant parameters)

Fig. 19 Mean square error, obtained in nongaussian noise environ-
ment with contamination ε = 0.15

5 Conclusion

The paper considers a new mathematical model of the pneu-
matic cylinder. Change of parameters of the model is de-
scribed by random walk. It is assumed that the cylinder is
described by means of the output error model, where the
measurement noise is non-Gaussian. Since the system is de-
scribed with a stochastic model with variable parameters,
the natural frame for identification is the Masreliez-Martin
filter (the robust Kalman filter). Heuristic modifications of
the mentioned filter which considerably increase its practi-
cal values were performed. Experiment design was used in
identification for synthesis of input signals.

The results of this paper can be the starting point for de-
sign of an adaptive regulator. It is also necessary to create a
methodology of experiment design for the case of identifica-
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tion of a system with time-variant parameters (research on
these problems is at its beginnings). The mentioned topics
are the authors’ subject of interest.
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