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Abstract The aim of this paper is to present two techniques
for simply and accurately determining space-variable heat
transfer coefficient, given measurements of temperature at
some interior points in the body. The fluid temperature is
also measured as part of the solution. The methods are for-
mulated as linear and non-linear least-squares problems.
The unknown parameters associated with the solution of
the inverse heat conduction problem (IHCP) are selected to
achieve the closest agreement in a least squares sense be-
tween the computed and measured temperatures using the
Levenberg–Marquardt method (method I) or the singular
value decomposition (method II). The methods presented
in the paper are used for determining the local heat trans-
fer coefficient on the circumference of the vertical smooth
tube placed in the tube bundle with a staggered tube arrange-
ment. Good agreement between the results is obtained. The
uncertainties in the estimated heat transfer coefficients are
calculated using the error propagation rule of Gauss. The
main advantage of the presented methods is that they do
not require any complex simulation of flow and temperature
field in the fluid.

Ermittlung des örtlichen Wärmeübergangskoeffizienten
aus der Lösung des inversen Wärmeleitungsproblems

Zusammenfassung In der Arbeit wurden zwei Verfah-
ren zur einfachen und genauen Bestimmung des lokalen
Wärmeübergangskoeffizienten auf der Basis der in inneren
Punkten des Körpers gemessenen Temperaturen entwickelt.
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Die Umgebungstemperatur wird auch gemessen. Das er-
ste Verfahren wird als lineare und das zweite Verfahren
als nichtlineare Aufgabe der kleinsten Quadrate formuliert.
Die unbekannten Parameter, die in dem inversen Problem
der Wärmeleitung auftreten, werden so gewählt, daß die
beste Übereinstimmung zwischen den berechneten und ge-
messenen Temperaturen erzielt wird. Zur Bestimmung der
unbekannten Parameter wurden zwei Methoden angewandt:
das Verfahren von Levenberg–Marquardt (Methode I) und
die singuläre Matrix-Zerlegung (Methode II). Die ent-
wickelten Methoden wurden zur Bestimmung des örtlichen
Wärmeübergangskoeffizienten an der außen Oberfläche
des Rohres, das sich in der Bündel mit der versetzten
Rohranordnung befindet, angewandt. Die Unsicherheiten
in den ermittelten Wärmeübergangskoeffizienten wurden
nach dem Gaußschen Prinzip der Fehler Fortpflanzung be-
rechnet. Eine numerische Simulation des Temperatur- und
Strömungsfeldes im Fluidgebiet ist nicht notwendig, was
der Hauptvorteil der beiden Methoden ist.

List of Symbols

fi measured temperature, ◦C
h heat transfer coefficient, W/(m2 K)
H tube height, m
In identity matrix
Jm Jakobian matrix
k thermal conductivity, W/(m K)
m number of measurement points
n number of unknown parameters
q̇ heat flux, W/m2

Q̇ heat flow rate, W
r radius, m
si singular value
S sum of squares, K2

T temperature, ◦C
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Ti calculated temperature, ◦C
x vector of unknown parameters

Greek symbols

ϕ angle measured from the stagnation point on the in-
flow tube side, rad

σ standard deviation

Subscripts

h heated surface
in inner
m measured
o outer
∞ fluid

1 Introduction

Local convective heat transfer coefficient can be measured
by a variety of different methods. Mass transfer methods
are widely used since many years [1–4]. The heat-mass
transfer analogy, in conjunction with the naphthalene sub-
limation technique, was used to investigate local and aver-
age heat transfer coefficients in two-row plate fin and tube
heat exchanger with circular tubes [1]. The local mass trans-
fer coefficients on this geometry have also been measured
by Krückels and Kottke [3]. They used a chemical method
based on absorption, chemical reaction and coupled colour
reaction [4]. The solid surface is coated with a wet filter pa-
per and ammonia to be transferred is added as a short gas
pulse. The locally transferred mass is visible as colour dens-
ity distribution and the colour intensity corresponds to the
local mass (heat) flow.

Thermochromic liquid crystals have been applied exten-
sively to heat transfer measurements [4–7]. Using tempera-
ture maps obtained from liquid crystals applied to a constant
heat flux surface, the Newton’s Law of Cooling (the bound-
ary condition of the third kind) is used to establish distribu-
tions of the convective heat transfer coefficient. A constant
heat flux at the body surface is typically generated by pass-
ing an electrical current through a fin film with uniform
electrical resistivity.

Thermographic phosphors have also been used for local
heat transfer measurements [8, 9]. Application of tempera-
ture sensitive paints to heat transfer measurements are de-
scribed by Liu and Sullivan [10].

Optical measurement techniques have found widespread
application in heat transfer investigations [7, 11, 12]. Differ-
ential interferometry can be used to determine local tem-
perature gradients in the fluid and a local heat transfer coef-
ficient at the solid surface.

However, these methods either require expensive experi-
mental equipment or have limited application to high tem-

peratures. An alternative method to obtain the local convec-
tive heat coefficient, that feasible for examination of objects
at high temperature, is the inverse heat conduction technique.

The purpose of this study is to use a solution of an inverse
heat conduction problem for measuring the distribution of
convective local heat transfer coefficients on the surface
of a body. One advantage of this method is that measure-
ments can be carried out with simple, low cost experimental
models and equipment.

The determination of the distribution of the heat trans-
fer coefficient on the surface of cylinders immersed in
transversal flow of a fluid has been the subject of many pa-
pers [13–18] for many years. The values of the local heat
transfer coefficient are necessary to determine the max-
imum temperatures of structural elements, e.g. of super-
heater tubes or fibers of hot-wire anemometers. Experimen-
tal determination of the local heat transfer coefficient on
the surface of a cylinder or tube is very difficult in view
of the small difference between the surface temperature of
the cylinder which is immersed in cross flow and the li-
quid, and considering the high circumferential heat flow in
the tube or cylinder wall. The occurrence of a circumferen-
tial heat flow impedes calculating the heat flow density q̇o

(on the outer surface of a tube or hollow cylinder with ro

radius) from an experimentally known flux density q̇in on
the internal surface (with radius rin) using the simple rela-
tion, q̇oro = q̇inrin , which is valid only for one dimensional
temperature fields.

New experimental techniques, as well as new algorithms
to solve inverse problems enabling determination of the
local heat transfer coefficient are still being elaborated. In
spite of many efforts of theorists and experimentalists, they
did not achieve a simple and accurate method to determine
h(ϕ), where ϕ denotes the angle measured from the stagna-
tion point on the liquid inflow side.

In inverse algorithms, being very sensitive even to mi-
nor temperature measurement inaccuracies, postulations are
often assumed, which are hard to be implemented in prac-
tice, e.g. that the measurement points shall lay exactly in the
nodes of the control volumes grid, or that an excessive num-
ber of temperature measurement points should be assumed,
disturbing the temperature field to be identified.

The disadvantage of experimental techniques consists in
the simplified theoretical analysis [13, 14].

Figure 1 presents some constructions of test cylinders,
which can be applied to determine the local heat transfer
coefficient.

The heat flux is generated in the center of the cylinder
(Fig. 1a) or tube (Fig. 1b) by an electric heating element.
A tube can also be heated by means of heating foils glued to
the internal surface (Fig. 1c) or external surface (Fig. 1d) of
the tube. If the temperature distribution in the cross-section
of a tube or cylinder is to be determined by solving the in-
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Fig. 1 Location of heating elements and thermocouples in tubes and
cylinders in transversal air flow; 1 – tube or cylinder, 2 – heating
element, 3 – thermocouple, 4 – heating foil, 5 – foamed polystyrene,
6 – PVC tube

verse heat conduction problem, then the thermocouples used
to measure the wall temperature should be located close to
the external surface (Figs. 1a–c), in order to avoid ill condi-
tioning of the inverse problem.

Solving the inverse problem is avoided when applying
the heating foil on the external tube surface. The foil tem-
perature is measured by means of thermocouples placed in
grooves made in the external surface of a phenolic resin tube
with small wall thickness.

In the inside of the phenolic resin tube there is a foamed
polystyrene tube with low thermal conductivity. In view
of the small thickness of the Inconel 600 heating foil,
amounting of 25 µm, the circumferential heat flow can be
neglected [14].

When measuring the local heat transfer coefficient on
a single tube placed in transversal air flow, the number of
thermocouples under the foil can be small as the cylinder
can be rotated about its axis by a small angle during the
measurements [14].

While there have been many studies on local forced heat
transfer from a single cylinder to air, there have been few
such studies for cylinders placed in the tube bundle. With
known uniform heat flux at the inner surface of the tube
placed in the tube array, heat flows by conduction not only
in radial but also in the circumferential direction due to the

asymmetric nature of the air flow around the perimeter of
the tube so that it is impossible to calculate heat flux on the
outer tube surface from the one dimensional relation.

The circumferential heat flow affects the wall tempera-
ture distribution to such an extent that the heat flux at the
outer tube surface is highly non-uniform. The temperature
of the tube is measured at seven locations on the outer
half of the tube circumference using K-type sheathed ther-
mocouples of 1 mm in diameter placed at the distance of
0.5 mm from the outer tube surface. The heat flux q̇h on the
inner surface of the tube is calculated based on the measured
electric power of the resistance heater placed inside the tube.
The temperature distribution on the entire tube cross-section
and heat flux distribution on the outer tube surface will be
determined from the solution of the inverse heat conduction
problem. The heat flux at the inner surface, q̇h , fluid tem-
perature, T∞, thermal conductivity of tube wall material, k,
and measured tube wall temperatures fi are the input data
for solving inverse heat conduction problem.

Two methods presented in the paper will be used to solve
the IHCP problem and to determine the local heat transfer
coefficient around the tube periphery.

In the first method, the problem of determining space-
variable heat transfer coefficient is formulated as a non-
linear parameter estimation problem by approximating the
distribution of the heat transfer coefficient on the bound-
ary by the trigonometric Fourier polynomial. The un-
known Fourier coefficients are estimated by the Levenberg–
Marquardt method. The finite volume method [19] is used
for solving direct heat conduction problem at each iteration
step.

Linearization of the least-squares problem in the second
method is accomplished by approximating unknown tem-
perature on the boundary using the Fourier polynomial. The
coefficients of the Fourier polynomial are the parameters to
be estimated. The temperature distribution in the studied do-
main is determined by the method of separation of variables.
After the IHCP is solved, the distributions of the boundary
heat flux and heat transfer coefficients are evaluated using
the Fourier and the Newton Law of Cooling, respectively.

2 Formulating the inverse problem

The temperature field T(r, ϕ) in the cross-section of a tube or
hollow cylinder is described by the heat conduction equation

∂2T

∂r2
+ 1

r

∂ T

∂ r
+ 1

r2

∂2T

∂ϕ2
= 0 (1)

and the boundary condition on the internal surface
(Figs. 1a–c)
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−k
∂ T

∂ r

∣
∣
∣
∣
r=rin

= q̇h . (2)

The boundary condition on the outer surface of the tube
r = ro is unknown. Determining the temperature field in
the whole analyzed area including the external surface is
made possible due to temperature measurements at m inter-
nal points (ri, ϕi)

T (ri, ϕi) = fi , i = 1, . . . , m , m ≥ n . (3)

The following nomenclature is assumed in the Eqs. 1–3:
T – temperature in ◦C, r – radius in m, rin – internal radius
in m, ϕ – angle measured from the stagnation point on the
inflow side in rad, k – thermal conductivity in W/(mK), fi –
temperature measured at the point (ri , ϕi) in ◦C, m – number
of temperature measurement points, n – number of searched
parameters.

In the following two methods are presented for determin-
ing the local heat transfer coefficient h(ϕ), using the above
formulated inverse problem.

In both methods the unknown parameters x = (x1, . . . ,
xn)

T are determined by minimizing sum of squares

S = ( f − Tm)T ( f − Tm) , (4)

where f = ( f1, . . . , fm)T is the vector of measured tem-
peratures, and Tm = (T1, . . . , Tm)T the vector of computed
temperatures Ti = T(riϕi), i = 1, . . ., m.

3 Method I – Solving the non-linear problem of least
squares by the Levenberg–Marquardt method

The heat transfer coefficient on the circumference of the
tube can be approximated by the function

Fig. 2 Segmentation of a half
tube cross-section into control
volumes; • – nodes of control
volumes, ◦ – temperature
measurement points

h (ϕ) = h (ϕ, x) =
n

∑

i=1

xi cos [(i −1) ϕ] . (5)

The boundary condition on the external tube surface has the
form

−k
∂ T

∂ r

∣
∣
∣
∣
r=ro

= h (ϕ)
(

T |r=ro − T∞
)

, (6)

where T∞ denotes the temperature of the medium in ◦C, and
h(ϕ) is given by Eq. 5. The parameters x1, . . ., xn will be
determined by using the Levenberg–Marquardt method [20]
so that the Eq. 4 is minimum. The parameters, x, are deter-
mined by the following iteration

x(k+1) = x(k) + δ(k) , k = 0, 1, . . . (7)

where

δ(k) =
[(

J(k)
m

)T
J(k)

m +µ(k) In

]−1 (

J(k)
m

)T [

f − Tm
(

x(k)
)]

.

(8)

The Jacobian Jm is determined by the equation

Jm = ∂Tm (x)

∂xT
=

[(
∂Ti (x)

∂xj

)]

m×n

i = 1, . . . , m j = 1, . . . , n . (9)

The symbol In denotes the identity matrix of n ×n dimen-
sion, and µ(k) the weight coefficient, which changes in ac-
cordance with the algorithm suggested by Levenberg and
Marquardt. The upper index T denotes the transposed ma-
trix. Temperature distribution T(r, ϕ, x(k)) is computed at
each iteration step by the control volume method. The sys-
tem of algebraic equations for the temperatures in the nodes
of control volumes is solved by the Gauss–Seidel method.
The division of the tube cross section into 4(N +1) control
volumes is shown in Fig. 2.

1 3



Forsch Ingenieurwes (2007) 71: 69–78 73

4 Method II – Solving the linear problem of least
squares by matrix decomposition according
to singular values

The second method is based on the singular value decom-
position method (SVD) [21] that is used to find the least-
squares solution to an over-determined set of linear alge-
braic equations. SVD is a very powerful method for dealing
with sets of equations that may be singular, as in the case
of inverse heat conduction problems which are very often
ill-conditioned. The SVD technique will diagnose what the
problem is: well-conditioned or ill-conditioned.

The method aims at finding the temperature distribu-
tion on the outer surface of a hollow cylinder or tube To =
T(ro, ϕ), which is being approximated by the trigonometric
polynomial

T |r=ro =
n

∑

i=1

xi cos [(i −1) ϕ]

= x1 +
n

∑

i=2

xi cos [(i −1) ϕ] . (10)

The solution of the boundary problem (1, 2, 10) has the
form

T (r, ϕ) = x1 + q̇h rin

k
ln

ro

r

+
n

∑

i=1

(
rin

ro

)i xi+1

1 +
(

rin
ro

)2i

[(
r

rin

)i

+
(rin

r

)i
]

cos (iϕ) ,

(11)

where the heat flux density on the internal surface r = rin is
computed by the formula q̇h = Q̇h/(2πrin H).

The symbols Q̇h and H denote the power of the heater
and the height of the examined tube. The expression 11 de-
scribing the temperature distribution can be written in the
form

y (r, ϕ) = T (r, ϕ)− q̇hrin

k
ln

ro

r
=

n
∑

i=1

xi φi (r, ϕ) , (12)

where φ1 = 1, and φi (r, ϕ) for i = 2, 3 . . . is given by the
expression

φi = φ (ri , ϕi)

=
(

rin

ro

)i xi+1

1 +
(

rin
ro

)2i

[(
r

rin

)i

+
(rin

r

)i
]

cos (iϕ) ,

i = 2, 3, . . . , n . (13)

The over-determined system of equations in respect to
xi , i = 1, . . . , n

fj − q̇h rin

k
ln

ro

rj
− yj

∼= 0, j = 1, . . . , m (14)

is solved using the matrix of coefficients A with singular
values s1, . . . , sn .The system of Eq. 14 can be written in the
form

A x ∼= b, (15)

where A is a matrix of m ×n dimension, the elements ajk

of which are expressed by n basis functions φi calculated
at m points, i.e.: ajk = φk

(

rj , ϕj
)

, j = 1, . . . , m, k =
1, . . . , n.

The matrix A and the vector b have the form

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 φ2 (r1ϕ1) . . . φn (r1ϕ1)

1 φ2 (r2ϕ2) . . . φn (r2ϕ2)

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

1 φ2 (rmϕm) . . . φn (rmϕm)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

m×n

,

b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1 − q̇h rin
k ln ro

r1

. . .

. . .

. . .

. . .

fm − q̇h rin
k ln ro

rm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

m

(16)

The matrix of coefficients A of m ×n size is being decom-
posed according to singular values [20]

A = U · S · VT , (17)

where U is an orthogonal matrix of m ×n size, S – a diag-
onal matrix of singular values of n ×n size with positive
or zero singular values s1, . . . , sn , and V – an orthogonal
matrix of n ×n size.

The solution of the over-determined set of Eq. 15 has the
form

x = V · S−1 · (UT ·b
)

(18)

When the singular value si equals zero, then in the inverse
matrix S−1 it is to be assumed that 1/si also equals zero.

Upon determining the coefficients x = (x1, . . . , xn)
T

from Eq. 18 it is possible to determine the temperature dis-
tribution on the entire cross-section, while the heat flux
density can be determined using the Fourier law as follows

q̇ = q̇ (r, ϕ) = −k
∂ T (r, ϕ)

∂ r
= q̇hrin

r

− k

r

n
∑

i=1

i xi+1

1 +
(

rin
ro

)2i

[

1 −
(rin

r

)2i
]

cos (iϕ) . (19)

The heat transfer coefficient on the external surface of the
tube following Newton’s law is

h (ϕ) = q̇ (ro, ϕ)

[T (ro, ϕ)− T∞]
. (20)

1 3



74 Forsch Ingenieurwes (2007) 71: 69–78

The advantage of the method II is the very short compu-
tation time, as both the determination of the temperature
field and of the parameters x1, . . . , xn do not require it-
eration. Method II can also be easily modified in order to
account for the dependence of the thermal conductivity k on
temperature.

5 The uncertainty of the results

The uncertainties of the determined parameters x and
heat transfer coefficient h(ϕ) were obtained using the
error propagation rule of Gauss [20, 22]. The propaga-
tion of uncertainty in the independent variables: meas-
ured wall temperatures f1, . . . , f7, thermal conductivity k
and air temperature T∞ is estimated from the following
equation

2σxi =
⎡

⎣

7∑

j=1

(
∂xi

∂ fj
2σ fj

)2

+
(

∂xi

∂k
2σk

)2

+
(

∂xi

∂T∞
2σT∞

)2

+
(

∂xi

∂rj
2σrj

)2

+
(

∂xi

∂ϕj
2σϕj

)2
]1/2

, i = 1, 2, 3

(21)

The uncertainty in the calculated heat transfer coefficient
hk = h(ϕk) is determined in similar manner

2σh(ϕk) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

7∑

j=1

(
∂h(ϕk)

∂ fj
2σ fj

)2 +
(

∂h(ϕk)
∂k 2σk

)2

+
(

∂h(ϕk)

∂T∞ 2σT∞
)2 +

(
∂h(ϕk)

∂rj
2σrj

)2

+
(

∂h(ϕk)

∂ϕj
2σϕj

)2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

1/2

,

k = 1, 2 , (22)

where ϕk is an angle from the interval: 0◦ ≤ ϕk ≤ 180◦.
The 95% uncertainty in the estimated parameters can be ex-
pressed in the form of a bilateral tolerance using 95% limits
as

xi = x∗
i ±2σxi ,

h (ϕk) = h∗ (ϕk)±2σh(ϕk) , (23)

where x∗
i , i = 1, 2, 3 and h∗ (ϕk), k = 1, 2, . . . represent the

value of the parameters and heat transfer coefficients ob-
tained using the least squares method.

The sensitivity coefficients ∂xi/∂ fj , ∂xi/∂k, ∂xi/∂T∞,
∂xi/∂rj , and ∂xi/∂ϕj in the expression 22 and the coeffi-
cients ∂h (ϕk) /∂ fj , ∂h (ϕk) /∂k, ∂h (ϕk) /∂T∞, ∂h (ϕk) /∂rj ,
and ∂h (ϕk) /∂ϕj in Eq. 22 were calculated by means
of the numerical approximation using central difference
quotients.

6 Example of determination
of the local heat transfer coefficient

First numerical experiment with simulated data is presented.
Consider a steel tube with the following parameters:

• outside diameter – do = 25.0 mm,
• inside diameter – din = 19.8 mm,
• thermal conductivity of the tube material (carbon steel) –

k = 53 W/(mK).

Because of the symmetry, only a half of the tube was con-
sidered. The tube wall temperature is measured by thermo-
couples located every 30◦ at 0.5 mm distance from the outer
tube surface (ri = rm = 12 mm, i = 1, . . . , 7). The positions
of thermocouples are assumed to be known exactly. The
air temperature is T∞ = 22.17 ◦C. The boundary conditions
at inner and outer surfaces are assumed to be known. The
heat flux at the inner surface is q̇h = 5293.91 W/m2, and the
local heat transfer coefficient h (ϕ) is given by

h (ϕ) = 165.133 +108.46 cos(ϕ)+123.76 cos (2ϕ) , (24)

where ϕ is the angle from the forward stagnation point.
Then, the measured data were artificially generated using
the commercial codes: FLUENT and ANSYS. A finite
element mesh used with an ANSYS computation is shown
in Fig. 3.

The temperature distribution in the tube cross sec-
tion is shown in Fig. 4. The same “measured” values
of the temperature were obtained using FLUENT: f1 =
45.54 ◦C, f2 = 46.22 ◦C, f3 = 47.84 ◦C, f4 = 49.42 ◦C,
f5 = 50.22 ◦C, f6 = 50.26 ◦C, f7 = 50.17 ◦C. The inverse
analysis is then conducted to show the accuracy of the
methods presented in the paper.

The unknown heat transfer coefficient in the first method
and the unknown surface temperature in the second method
were approximated by the polynomial of the third degree.
The accuracy of the proposed method is assessed by com-
paring the estimated results with the input (exact) distribu-
tion of the heat transfer coefficient.

Fig. 3 Finite element mesh
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Fig. 4 Temperature distribution in ◦C in the tube cross section ob-
tained by using ANSYS code

Fig. 5 Comparison of heat transfer coefficient h(ϕ) on the tube half
circumference determined by the presented methods with input distri-
bution

The estimated results are shown in Fig. 5. The agreement
between the known input distribution of the heat transfer co-
efficient and the inverse solutions is very good.

Both methods were applied to determine the distribu-
tion of the heat transfer coefficient on the circumference of
a tube situated at the center of the fourth row of a bundle
with staggered tube arrangement (Fig. 6).

A bundle of 36 tubes of length H = 0.3 m, internally
heated by electric heater elements, is placed in a rect-
angular channel of 0.25 × 0.3 m size. The pitches of the
arrangement of tubes made of K18 steel with external diam-
eter do = 0.025 m and internal diameter din = 0.0198 m,
are: s1 = 0.05325 m and s2 = 0.031 m (Fig. 6). The tube
wall temperature was measured by sheathed thermocou-
ples NiCr−Ni located every 30◦ at 0.5 mm distance from

Fig. 6 Layout of the investigated bundle with staggered tube arrange-
ment

the external tube surface (ri = rm = 0.012 m, i = 1, . . . , 7,
m = 7). The thermal conductivity of the material of the
tubes is k = 53 W/(mK). The temperature was measured
when the heater power was Q̇h = 112.8 W and the Reynolds
number equaled Re = wmaxdo/ν = 11 775 m where wmax

is the air velocity in the narrowest cross section, do – the
outer tube diameter, and ν – the kinematic viscosity of air.
The air temperature was T∞ = 30.49 ◦C, and the wall tem-
peratures at seven points located on the half of the tube
were: f1 = 105.0 ◦C, f2 = 105.8 ◦C, f3 = 107.6 ◦C, f4 =
110.5 ◦C, f5 = 113.8 ◦C, f6 = 113.7 ◦C and f7 = 112.7 ◦C.
The temperature measurement points are numbered starting
from the inflow side, i.e. the first thermocouple was situ-
ated at the point (rm , 0◦) and the seventh thermocouple at the
point (rm , 180◦).

In order to show the influence of the measurement er-
rors on the determined distributions of the heat transfer
coefficients, the 95% confidence intervals were calculated.
The following uncertainties of the measured values were as-
sumed (at a 95% confidence interval):

∆ fj = ±0.1 K , j = 1, . . ., 7 , ∆T∞ = ±0.1 K ,

∆Q̇h = ±0, 01Q̇h , ∆k = ±0.5 W/(mK) ,

∆rj = ±0 m , ∆ϕj = ±0 rd, j = 1, . . ., 7 .
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The uncertainties of the coefficients xi and the heat transfer
coefficient h(ϕ) were determined using the error propaga-
tion rule formulated by Gauss.

The calculation according method I, assuming n = 3,
m = 7 and N = 30, yielded the following results: x1 =
62.1773 ±0.6159W/(m2K), x2 = 59.6261 ± 0.8315 W/

(m2K), x3 = 47.0777 ± 2.1291W/(m2K). The minimum
sum of squares is = 2.6577 K2. The second method gave
the results: x1 = 109.9594 ± 0.3849 ◦C, x2 = −4.4483 ±
0.5043 ◦C, x3 = −0.9702 ±0.5261 ◦C. The minimum sum
of squares is: S = 2.7477 K2. The singular values of the
matrix A: s1 = 2.6956, s2 = 1.8655, s3 = 1.983 are con-
siderably greater than zero, so the inverse heat conduction

Fig. 7 Comparison of heat transfer coefficients h(ϕ) on tube half
circumference determined by both methods; a Re = 11 775, b Re =
43 676

problem is well conditioned. The variation of the heat
transfer coefficient h(ϕ) and the wall temperature T(rm, ϕ)

determined by the first method are shown in Figs. 7a and 8a,
respectively. Figure 9a presents the upper and lower limit of
the 95% confidence interval for h(ϕ) determined by method
I. Similar results are achieved using method II. It follows
from Fig. 9a that the uncertainty of the determined plot of
h(ϕ) is moderate. Figure 9a demonstrates that the presented
methods are able to determine heat transfer coefficient for
actual data perturbated with errors.

Fig. 8 Comparison of the temperatures T(rm , ϕi) on tube half
circumference determined by both methods with measured data;
a Re = 11 775, b Re = 43 676

1 3
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The heat transfer coefficient was also determined for the
higher Reynolds number: Re = 43 676. The following data
was used for the inverse analysis: Q̇h = 98.79 W, T∞ =
22.17 ◦C, f1 = 45.8 ◦C, f2 = 46.31 ◦C, f3 = 47.27 ◦C, f4 =
49.60 ◦C, f5 = 50.74 ◦C, f6 = 49.95 ◦C, f7 = 50.23 ◦C.

The uncertainties of the measured values are assumed to
be the same as in the previous case.

The calculation according method I, assuming n = 3,
m = 7 and N = 30 gave the following results: x1 =
165.133±1.892 W/(m2K), x2=108.460±2.704 W/(m2K),
x3 = 123.76 ± 8.223 W/(m2K). The minimum sum of

Fig. 9 Heat-transfer coefficient values on tube half circumference de-
termined by method I and the 95% confidence interval; a Re = 11 775,
b Re = 43 676

squares is S = 0.7952 K2 . The second method yielded:
x1 = 48.628 ± 0.385 ◦C, x2 = −2.349 ± 0.504 ◦C, x3 =
−0.804 ±0.526 ◦C. The minimum sum of squares is S =
0.8593 K2. The singular values of the matrix A are the same
as for Re = 11 775 because the matrices A are identical in
both cases. The comparison of the calculated temperature
variation with the experimental data is shown in Fig. 8b.
The comparison of the heat transfer distribution obtained
by the both methods is depictured in Fig. 8. It is seen
that both methods yield nearly the same results. A bet-
ter agreement between the calculated values of T(rm, ϕi)

and the varying temperatures can be achieved by increasing
the degree of the trigonometric polynomial, e.g. to n = 5.
In order to raise the accuracy of values h(ϕ) along the
tube circumference it is however indispensable to increase
the number of wall temperature measuring points and at
the same time to increase the degree of the trigonometric
polynomial. The estimated distribution of the heat trans-
fer coefficient on the tube semi-circumference is shown
in Fig. 9b.

7 Conclusions

Comparing both methods to determine the values of the
heat transfer coefficient on the tube circumference presented
in this paper leads to the conclusion that both methods
yield very similar results. The first one, based on numer-
ical iterative determination of the temperature field and
solving the non-liner inverse problem by the Levenberg–
Marquardt scheme is more universal, but the computing
time is longer.

When the number of unknown parameters is greater, then
it is difficult to select the parameter start values, which as-
sure the convergence of the iteration process.

In the second method, the distribution of temperature is
determined analytically and the over-determined set of alge-
braic equations is solved by decomposition of the matrix of
coefficients according to singular values. The computation
time needed by the second method is very short.

Both methods are suitable to solve ill conditioned inverse
problems of heat transfer. Upon minor modifications they
can also be used to determine the heat transfer coefficient
on the surface of tubes with the heat thermal conductivity
dependent on temperature.
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