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Abstract. This paper presents a verification of an invari-
ant property for the Vector class from java’s standard
library (API). The property says (essentially) that the ac-
tual size of a vector is less than or equal to its capacity.
It is shown that this “safety” or “data integrity” prop-
erty is maintained by all methods of the Vector class, and
that it holds for all objects created by the constructors
of the Vector class. The verification of the Vector class
invariant is done with the proof tool pvs. It is based on
a semantics of java in higher order logic. The latter is in-
corporated in a special purpose compiler, the loop tool,
which translates java classes into logical theories. It has
been applied to the Vector class for this case study. The
actual verification takes into account the object-oriented
character of java: (non-final) methods may always be
overridden, so that one cannot rely on a particular im-
plementation. Instead, one has to reason from method
specifications in such cases. This project demonstrates
the feasibility of tool-assisted verification of non-trivial
properties for non-trivial java classes.

Keywords: Java – Invariant – Program verification –
Specification

1 Introduction

One of the reasons for the popularity of object-oriented
programming is the possibility it offers for reuse of code.
Usually, the distribution of an object-oriented program-
ming language comes together with a collection of ready-
to-use classes, in a class library or API (application pro-
gram interface). Typically, these classes contain general
purpose code, which can be used as basis for many appli-
cations. Before using such classes, a programmer usually
wants to know how they behave and when their methods
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terminate normally or throw exceptions. One way to do
this is to study the actual code. This is time-consuming
and requires understanding all the particular ins and outs
of the implementation – which may even be absent, for
native methods. Hence, this is often not the most efficient
way. Another approach is to study the (informal) doc-
umentation provided. As long as this documentation is
clear and concise, this works well, but otherwise a pro-
grammer is still is forced to look at the actual code.
One way to improve this situation is to formally spec-

ify suitable properties of standard classes, and add these
specifications as annotations to the documentation. Ex-
amples of properties that can be specified are termina-
tion conditions (in which cases will a method terminate
normally? In which cases will it throw an exception?),
pre-post-condition relations, and class invariants. Once
sufficiently many properties have been specified, one only
has to understand these properties; and then there is no
need anymore to study the actual code, in order to be able
to use a class safely.
Programmers must of course be able to rely on such

specifications. This introduces the obligation to actually
verify that the specified properties hold for the imple-
mentation. Even stronger, specifications can exist inde-
pendently of implementations, as so-called interface spe-
cifications. As such they may describe library classes in
a component-oriented approach, based on interface speci-
fications regulating the interaction between components.
In such a “design by contract” scenario the provider of
a class implementation has the obligation to show that
the specification is met. Naturally, every next version of
the implementation should still satisfy the specification,
ensuring proper upgrading.
Thus, verification of class specifications is an import-

ant issue. This paper describes a case study verification
of one particular library class, namely Vector, which is
in the standard java distribution [5, 10, 12]. An object
belonging to the Vector class basically consists of an ar-
ray of “element” objects. At run-time, according to needs,
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this array may be replaced by an array of a different size
(but containing the same elements)1. The essence of the
Vector invariant that is proven is that the size of a vec-
tor never exceeds the length of this internal array. Clearly,
this is a crucial safety property.
The choice for the Vector class in this verification is

in fact rather arbitrary: it serves our purposes well be-
cause it involves a non-trivial amount of code (includ-
ing the code from its surrounding classes from the li-
brary), and gives rise to an interesting invariant. How-
ever, other classes than Vector could have been veri-
fied. In fact, there are many classes in the java API,
like StringBuffer using an array of characters with
a count, for which a similar invariant can be formulated.
Thus, the property that we consider is fairly typical as
a class invariant.

1.1 Languages and tools

For the specification of the Vector invariant (and many
pre- and post-conditions) we make use of the experi-
mental behavioural interface specification language jml
(short for java modeling language) [25] (see [43]). Its
syntax is much like java’s, and mostly self-explanatory.
jml is also used for a follow-up specification and verifica-
tion project focussing on the entire javacard API [37]
(which is much smaller than the standard java API).
In these projects, the jml specifications are added post
hoc, after the java code has already been written. It
would have been much more efficient (for us, as verifiers)
if the jml specifications had been written together with
(or even before) the java implementation. One of the
main points behind jml is that writing such specifica-
tions at an early stage really pays off. It makes many of
the implicit assumptions underlying the implementation
explicit (e.g., in the form of invariants), and thus facil-
itates the use of the code and increases the reliability
of software that is based on it. Furthermore, the formal
specifications are amenable to tool support, for verifica-
tion purposes. It is our hope that the use of specifica-
tion languages like jml (and subsequent verification) be-
comes standard, certainly for crucial classes in standard
libraries. For such library classes, the additional effort is
justifiable.
This verification project makes use of two tools: the

pvs [34, 35] proof tool and the loop [17, 24, 28] transla-
tion tool. The latter is a compiler which translates java
classes2 into logical theories in the higher order logic of
pvs

3, in the following way.

1 Arrays in java have a fixed size; vectors are thus useful if it is
not known in advance how many storage positions are needed.
2 Currently, the translation covers basically all of sequential java
(without threads).
3 The loop tool can also produce output for the proof tool is-
abelle [36], but that is not relevant for this verification because it
is done with pvs.
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The generated logical theories contain definitions, em-
bodying the semantics of the classes, plus special lemmas
that are used for automatic rewriting. These logical the-
ories can be loaded into the proof tool, together with the
so-called semantical prelude, which contains basic defi-
nitions, like in Sect. 3 below. Subsequently, the user can
state desired properties about the original java classes
and prove these on basis of the semantical prelude and
the generated theories. For example, a user may want to
prove that a method terminates normally, returning a cer-
tain value.
The loop tool makes use of a semantics of sequen-

tial java in higher order logic. This paper includes a de-
scription of a relevant part of this (sequential) semantics
(see Sect. 3). The methods in java’s Vector class can be
executed in a multi-threaded scenario, but we abstract
away from this. Extending our semantics to concurrent
java would require a major change, because we would
have to transform our big-step semantics into a small-
step semantics. Abstracting away from concurrency does
not affect the validity of our verification, because all
methods that modify the vector are preceded by the key-
word synchronized. This means that every method first
has to acquire a lock before it can execute its body, and
thus it is impossible to change the vector in two different
ways at the same time. More information can be obtained
from [7, 18, 19, 21, 22, 24].
An important aspect of the verification of the Vector

invariant is the extensive use we have made (in pvs)
of a Hoare logic that can handle abrupt termination
(caused, for example, by an exception or a return)(see [19]
and Sect. 4). This Hoare logic has various “correctness
modes”, not only for normal termination as in stan-
dard Hoare logic, but also for abrupt termination caused
by an exception, return, break or continue. These dif-
ferent modes are needed for reasoning about the fre-
quently occurring abrupt terminations in java pro-
grams. In its actual use, the extended Hoare logic is
very similar to traditional Hoare logic, involving, for ex-
ample, variants and invariants to handle while and for
loops.
The loop tool is currently being extended to also

translate jml specifications. They will give rise to specific
proof obligations in Hoare logic. The jml specifications
used in this paper have been translated by hand, and
not automatically, into correspondingHoare sentences (in
pvs), which are used in verifications (see Sect. 5).
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1.2 Positioning

This paper presents state-of-the-art work in (object-ori-
ented) program specification and verification, using mod-
ern tools both for compilation and for reasoning. The
work is not about programs written in some clean, math-
ematically civilised, abstract programming language, but
about actual java programs with all their messy (seman-
tical) details. We consider it a challenge to be able to
handle such details. This is the largest case study done
so far within the loop project. It demonstrates the feasi-
bility of the formal approach to software development, as
advocated in the loop project.
There are relatively few references on formal verifi-

cation for object-oriented languages. Specific logics for
reasoning about abstract object-oriented programs are
proposed in [1, 8, 27]. When it comes to java, one can dis-
tinguish between: (1) reasoning about java as a language;
and (2) reasoning about programs written in java. In the
first category there is work on, for example, safety of the
type system [33, 42], or bytecode verification [16, 39, 40].
However, the present paper falls into the second category.
Related work in [38] does not, in its current state of devel-
opment, cover abrupt termination (caused, for instance
by exceptions). In [32], a Hoare logic for java is presented
which is shown sound and complete with respect to the
java semantics presented in [33].
In addition, also being able to reason about abrupt

termination (see also [19]) is crucial for the verification in
this paper.
The paper is organised as follows: it starts with a brief

introduction to the (standard) type theoretic language
that will be used (instead of the possibly less familiar lan-
guage of pvs). Section 3 explains some basic aspects of
the semantics of java in this type theory. It forms the ba-
sis for our extended Hoare logic in Sect. 4. Section 5 gives
a brief introduction to jml, explaining how specifications
give rise to proof obligations in Hoare logic. Then, Sect. 6
starts the Vector class case study, by first introducing the
Vector class in java and its translation into pvs. Then
it explains the invariant, and its verification by discussing
several typical Vector methods with their jml specifica-
tion in detail. Finally, Sect. 7 discusses conclusions and
experiences.

2 Type theory

The semantics for java on which the verification effort of
this paper relies is sketched in Sect. 3. This semantics is
described in a simple type theory with higher order logic.
Using this general type theory and logic enables us to ab-
stract away from the particulars of the language of pvs
andmakes this workmore accessible to readers unfamiliar
with pvs.
Our type theory is a simple type theory with types

built up from:

– type variables;
– type constants nat, bool, string (and some more);
– exponent types σ→ τ ;
– labeled product (also called record) types [ lab1 : σ1,
. . . , labn : σn ];

– labeled coproduct (or variant) types { lab1 : σ1 | . . . |
labn : σn };

for given types σ, τ, σ1, . . . , σn, and with all labels labi
within one (co)product type distinct.
For exponent types, the standard notations for lambda

abstraction λx : σ.M and application NL are used.
Given terms Mi : σi, there exists a labeled tuple ( lab1 =
M1, . . . , labn =Mn ) in the corresponding labeled prod-
uct type [ lab1 : σ1, . . . , labn : σn ]. Given a term
N : [ lab1 : σ1, . . . , labn : σn ] in such a product, N.labi
denotes the selection term of type σi. Terms for la-
beled coproducts are formed as follows: given a term
M : σi there exists a tagged term labiM , inhabiting
the labeled coproduct type { lab1 : σ1 | . . . | labn : σn }.
For a term N : { lab1 : σ1 | . . . | labn : σn }, and n terms
Li(xi) : τ , where xi : σi is free in Li, there is a case
term

CASE N OF { lab1 x1 �→ L1(x1) | . . . | labn xn �→ Ln(xn) }

of type τ , which binds the variables xi. It reduces to
Li[M/xi] if N is of the form labiM . The introduction
and elimination terms for exponents, labeled products,
and labeled coproducts satisfy standard (β)- and (η)-
conversions.
New types can be introduced via definitions, as in:

lift[α] : TYPE
def
= { bot : unit | up : α }

where unit is the empty product type [ ]. This lift type
constructor adds a bottom element to an arbitrary type,
given as type variable α.
Formulas in higher order logic are terms of type bool.

The connectives ∧ (conjunction), ∨ (disjunction), ⊃ (im-
plication), ¬ (negation, used with rules of classical logic)
and constants true and false are used, together with the
(typed) quantifiers ∀x : σ. ϕ and ∃x : σ. ϕ, for a formula ϕ.
There is also a conditional term IF ϕ THENM ELSE N ,
for termsM,N of the same type.

3 Java semantics

This section presents the basic ingredients of the seman-
tics for java as used for the Vector invariant verification.
It describes the semantics of statements and expressions,
the underlying memory model, and the formalisation of
references (including arrays). Inheritance does not play
an important rôle in the Vector class, so we will not dis-
cuss its type theoretic semantics here, and refer the inter-
ested reader to [18] instead.
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3.1 Statements and expressions

In classical program semantics the assumption is that
statements either terminate normally, resulting in a suc-
cessor state, or do not terminate at all (see, for ex-
ample, [6, Chap. 3] or [41, Sect. 2.2]). In the latter case,
one also says that the statement hangs, typically because
of a non-terminating loop. Hence, statements may be un-
derstood as partial functions from states to states. Writ-
ing Self as a type variable for the state space, statements
can be seen as “state transformer” functions of the type:

type theory

Self // { hang : unit | norm : Self }

This classical view of statements turns out to be inad-
equate for reasoning about java programs. java state-
ments may hang, or terminate normally (as above), but
they may additionally “terminate abruptly” (see, for ex-
ample, [5, 12]). Abrupt termination may be caused by an
exception (for example, caused by a division by 0), a re-
turn, a break or a continue (inside a loop). Abrupt (or ab-
normal) termination is fundamentally different from non-
termination: abnormalities may be temporary because
they may be caught at some later stage, whereas recovery
from non-termination is impossible. Abnormalities can
both be thrown and be caught, basically via re-arranging
coproduct options. Abrupt termination affects the flow of
control: once it arises, all subsequent statements are ig-
nored, until the abnormality is caught (see the definition
of composition “;” later in this section). From that mo-
ment on, the program executes normally again.
Abrupt termination requires a modification of the

standard semantics of statements and expressions, result-
ing in a failure semantics, as for example in [41, Sect. 5.1].
Therefore, in our approach, statements are modeled as
more general state transformer functions

type theory

Self // StatResult[Self]
def
=

{ hang : unit
| norm : Self
| abnorm : StatAbn[Self] }

The first option hang captures the situation where a state-
ment hangs. The second option norm occurs when it
terminates normally, resulting in a successor state. The fi-
nal option abnorm describes abrupt termination, yielding
a value of the type StatAbn (for Statement Abnormal). It
can be subdivided into four parts:

type theory

StatAbn[Self] : TYPE
def
=

{ excp : [ es : Self, ex : RefType ]
| rtrn : Self
| break : [ bs : Self, blab : lift[string] ]
| cont : [ cs : Self, clab : lift[string] ] }

These four constituents of StatAbn typically consist of
a state in Self together with some extra information. An
exception abnormality consists of a state together with
a reference to an exception object. The reference is rep-
resented as an element of the type RefType, which is de-
scribed below (see Sect. 3.3). A return abnormality only
consists of a (tagged) state, and break and continue ab-
normalities consist of a state, possibly with a label (given
as string).
A similar reasoning applies to expressions. In classi-

cal semantics, expressions are viewed as functions of the
form:

type theory

Self // Out

The type Out is the type of the result. This view is
not quite adequate for our purposes, because it does
not involve non-termination, abrupt termination or side-
effects. As statements, expressions in java may hang,
terminate normally or terminate abruptly. If an expres-
sion terminates normally, it produces an output result (of
the type of the expression) together with a successor state
(since it may have a side-effect). If it terminates abruptly,
this can only be because of an exception (and not because
of a break, continue or return (see [12, §15.5]). Hence an
expression of type Out is (in our view) a function of the
form:

type theory

Self // ExprResult[Self,Out]
def
=

{ hang : unit

| norm : [ ns : Self, res : Out ]
| abnorm : ExprAbn[Self] }

Notice that the second option norm occurs when an ex-
pression terminates normally, resulting in a successor
state together with an output result. The third option
abnorm describes abrupt termination – because of an ex-
ception – for expressions:

type theory

ExprAbn[Self] : TYPE
def
=

[ es : Self, ex : RefType ]
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To summarise, in our formalisation, statements are
modeled as functions from Self to StatResult[Self], and
expressions as functions from Self to ExprResult[Self,
Out], for the appropriate result type Out. This abstract
representation of statements and expressions as “one
entry/multi-exit” functions (terminology of [9]) forms the
basis for the work presented here. It is used to give a (com-
positional) meaning to basic programming constructs like
composition, if-then-else, and while. For example, the
statement composition operator “;” of java is translated
into “;” in type theory. Thus, for java statements s, t,

[[s;t]] = [[s]] ;[[t]]

where the definition of ; in type theory is as follows:

type theory

s, t : Self→ StatResult[Self] �

(s ; t) : Self→ StatResult[Self]
def
=

λx : Self.CASE s x OF {
| hang �→ hang
| norm y �→ t y
| abnorma �→ abnorma }

Thus if statement s terminates normally in state x, re-
sulting in a next state y, then (s ; t)x is t y. In addition, if
s hangs or terminates abruptly in state x, then (s ; t)x is
s x and t is not executed.
A typical example of an abruptly terminating state-

ment in java is the return statement. When a return

statement is executed, the program immediately exits
from the current method. A return statement may have
an expression argument; if so, this expression is evaluated
and returned as the result of the method. The translation
of the java return statement (without argument) is,

[[return]] = RETURN

where RETURN is defined as:

type theory

RETURN : Self→ StatResult[Self]
def
=

λx : Self. abnorm(rtrn x)

This statement produces an abnormal state, which will be
caught at the end of a method body. The translation of
a return statement with argument is similar, but more
subtle. First, the value of the expression is stored in a spe-
cial local variable, and then the state becomes abnormal,
via the above RETURN.

To recover from this return abnormality, functions
CATCH-STAT-RETURN and CATCH-EXPR-RETURN are
used. In our translation of java programs, a function
CATCH-STAT-RETURN is wrapped around every method
body that returns void. First, the method body is eval-
uated. This may result in an abnormal state, because
of a return. In that case the function CATCH-STAT-
RETURN turns the (abnormal) state back to normal
again. Otherwise, it leaves the state unchanged.

type theory

s : Self→ StatResult[Self] �

CATCH-STAT-RETURN(s) : Self→ StatResult[Self]
def
=

λx : Self.CASE s x OF {
| hang �→ hang
| norm y �→ norm y
| abnorma �→

CASE a OF {
| excp e �→ abnorm(excp e)
| rtrn z �→ norm z
| break b �→ abnorm(break b)
| cont c �→ abnorm(cont c) } }

If a method returns a value, a function CATCH-EXPR-
RETURN is used, instead of CATCH-STAT-RETURN. Re-
call that the result value of a method is stored in a special
variable. This function CATCH-EXPR-RETURN turns the
state back to normal and, in that case, returns the output
that is held by this special variable.
Below, a similar function CATCH-CONTINUE is used,

which catches an abnormal state, because of a continue,
and turns it back to normal. Since continue statements
can only occur in loops, with the effect that control skips
the rest of the loop’s body and starts re-evaluating (the
update statement, in a for loop, and) the Boolean expres-
sion which controls the loop, this function is used in the
semantics of loops.
Finally, there is one technicality that deserves some

attention. Sometimes an expression has to be trans-
formed into a statement, which is only a matter of for-
getting the result of the expression. However, in our
formalisation this transformation has to be done explic-
itly, using a function E2S.

type theory

e : Self→ ExprResult[Self,Out] �

E2S(e) : Self→ StatResult[Self]
def
=

λx : Self.CASE e x OF {
| hang �→ hang
| norm y �→ norm(y.ns)
| abnorma �→ abnorm(excp(es= a.es,

ex= a.ex)) }
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In the last line an expression abnormality (an exception)
is transformed into a statement abnormality.
A more detailed elaboration of this semantics can be

found in [19, 21].

3.2 Memory model

This section starts by defining memory cells for storing
java objects and arrays. They are used to build up the
main memory for storing arbitrarily many such items,
without any garbage collection. This object memory OM
comes with various operations for reading and writing.
More information on this memory model is given in [7].

3.2.1 Memory cells

A single memory cell (or object cell) can store the con-
tents of all the fields from a single object belonging to an
arbitrary class. The (translated) types that the fields of
objects can have are limited to byte, short, int, long, char,
float, double, bool and RefType (which is defined below in
Sect. 3.3). Therefore, an object cell has entries for all of
these. The number of fields for a particular type is not
bounded, so infinitely many are incorporated in a mem-
ory cell. This makes memory cells basically untyped in
the sense that they can store the contents of the fields
of an arbitrary java object. The ability to do this is the
main contribution of our memory model. Often this typ-
ing problem is avoided by only considering one or two
types.

type theory

ObjectCell : TYPE
def
=

[
bytes : CellLoc→ byte,
shorts : CellLoc→ short,
ints : CellLoc→ int,
longs : CellLoc→ long,
chars : CellLoc→ char,
floats : CellLoc→ float,
doubles : CellLoc→ double,
booleans : CellLoc→ bool,
refs : CellLoc→ RefType

]

where the type CellLoc is defined separately, simply as
nat, for reasons of abstraction. Our memory is organised
in such a way that eachmemory location points to a mem-
ory cell, and each cell location to a position for a particu-
lar label inside the cell.
Storing an object belonging to a class with, for in-

stance, two integer fields and one Boolean field in a mem-
ory cell is done by (only) using the first two values (at 0
and at 1) of the function ints : CellLoc→ int and (only) the
first value (at 0) of the function booleans : CellLoc→ bool.
Other values of these and other functions in the object

cell are irrelevant, and are not used for objects belonging
to this class. Enormous storage capacity is wasted in this
manner, but that is unproblematic. The LOOP compiler
attributes these cell locations to (static) fields of a class,
local variables, and parameters. These cell locations are
hidden from the user.

3.2.2 Object memory

Object cells form the main ingredient of a new type
OM representing the main memory. It has a heap, stack,
and static part, for storing the contents of, respectively,
instance variables, local variables and parameters, and
static (also called class) variables:

type theory

OM : TYPE
def
=

[
heapmem : MemLoc→ObjectCell,
heaptop : MemLoc,
stackmem : MemLoc→ ObjectCell,
stacktop : MemLoc,
staticmem : MemLoc→ [ initialised : bool,

staticcell : ObjectCell ]
]

Once again, for abstraction we define MemLoc : Type
def
=

nat. The entry heaptop (resp. stacktop) indicates the next
free (unused) memory location on the heap (or stack).
These numbers change during program execution (in type
theory). The LOOP compiler assigns locations (in the
static memory) to classes with static fields. At such lo-
cations a Boolean initialised tells whether static initialisa-
tion has taken place for this class. One must keep track of
this because static initialisation should be performed at
most once.

3.2.3 Reading and writing in the object memory

Accessing a specific value in an object memory x : OM, ei-
ther for reading or for writing, involves the following three
ingredients: (1) an indication of which memory (heap,
stack, static); (2) a memory location (in MemLoc); and
(3) a cell location (in CellLoc) giving the offset in the cell.
These ingredients are combined in the following variant
type for memory addressing:

type theory

MemAdr : TYPE
def
=

{ heap : [ml : MemLoc, cl : CellLoc ]
| stack : [ml : MemLoc, cl : CellLoc ]
| static : [ml : MemLoc, cl : CellLoc ] }

For each type typ from the collection of types byte, short,
int, long, char, float, double, bool, and RefType occurring
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in object cells (see the definition of ObjectCell), there are
two operations:

type theory

get_typ(x,m) : typ for x : OM,m : MemAdr
put_typ(x,m, u) : OM for x : OM,m : MemAdr, u : typ

These functions are described in detail only for typ= byte;
the other cases are similar. Reading from the memory is
easy: for x : OM,m : MemAdr

type theory

get_byte(x,m)
def
=

CASEm OF {
| heap � �→ ((x.heapmem(�.ml)).bytes)(�.cl)
| stack � �→ ((x.stackmem(�.ml)).bytes)(�.cl)
| static � �→ ((x.staticmem(�.ml)).staticcell.bytes)(�.cl) }

The corresponding write-operation uses updates of re-
cords and also updates of functions; both these use a
‘WITH’ notation, which is hopefully self-explanatory: for
x : OM,m : MemAdr and u : byte

type theory

put_byte(x,m, u)
def
=

CASEm OF {
| heap � �→ xWITH

[ ((x.heapmem(�.ml)).bytes)(�.cl) = u ]
| stack � �→ xWITH

[ ((x.stackmem(�.ml)).bytes)(�.cl) = u ]
| static � �→ xWITH

[ ((x.staticmem(�.ml)).staticcell.bytes)(�.cl) = u ] }

The various get- and put-functions (18 in total) satisfy
obvious commutation equations, such as:

type theory

get_byte(put_byte(x,m, u), n)=IFm= n
THEN u
ELSE get_byte(x, n)

get_byte(put_short(x,m, v), n)=get_byte(x, n).

Such equations (81 in total) are used for auto-rewriting:
whenever these equations can be applied, the back-end
proof-tool simplifies goals automatically.

3.3 Formalising references to objects and arrays

Reference types are used in java for objects and arrays.
A reference may be null, indicating that it does not refer

to anything. In our model, a non-null reference contains
a pointer ‘objpos’ to a memory location (on the heap, see
Sect. 3.2.2), together with a string ‘clname’ indicating the
run-time type of the object, or the run-time elementtype
of the array, at this location, and possibly two natural
numbers describing the dimension and length of non-null
array references. This leads to the following definition4:

type theory

RefType : TYPE
def
=

{ null : unit | ref : [ objpos : MemLoc,
clname : string,
dimlen : lift[ [ dim : nat, len : nat ] ] ] }

Based on this type RefType, various operations on ref-
erences can be formalised in type theory, e.g., comparing
two references is translated as

[[r1 == r2]]
def
= [[r1]] == [[r2]]

where == is defined in type theory in Fig. 1, following [12,
§§ 15.20.3].
Appropriate operations, such as accessing and stor-

ing elements in an array are formalised. A multi-dimen-
sional array is represented as an array of arrays, e.g.,
a two-dimensional array of Booleans is stored as an ar-
ray of references, and these references in their turn are
one-dimensional arrays of Booleans. For example, the
array_access function, defined below, is used for the trans-
lation of indexing an array, in the following way:

[[a[i]]]
def
= array_access(get_typ, [[a]], [[i]])

assuming that a[i] is not the left-hand side of an assign-
ment. The function get_typ is determined by the com-
ponent type of a, for example: if a is an integer array of
type int[], then get_typ = get_int. Furthermore, if a is
a 2-dimensional array of, say Booleans, then get_typ =
get_ref.
The java evaluation strategy prescribes that, first,

the array expression, and then the index expression
must be evaluated. Subsequently, it must be checked
first whether the array reference is non-null, and then
whether the (evaluated) index is non-negative and below
the length of the array. Only then can the memory be
accessed (see [12, §§ 15.12.1 and §§ 15.12.2]). This is de-
scribed in our setting as in Fig. 2 (omitting the details of
how exceptions are thrown; for more information on ex-
ceptions the reader is referred to [22]). Notice that the
function array_access has to be defined over the object
memory OM, instead of over an arbitrary state space Self,
because it uses the get- and put-functions defined on OM.

4 Recently, we have changed the representation of references: the
clname and dimlen entry have moved from references to object cells
(see [21]). However, the verification described here has been done
with references as described.
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Notice that arrays, like objects, are stored on the
heap. All translated non-null array references have a non-
bottom dimlen field by construction, so, in the case indi-
cated as “should not happen”, we choose to use hang as
output. We also could have thrown some non-standard
exception. There is a similar function array_assign which
is used for assigning a value at a particular index in
an array. Further, there are also functions for array cre-
ation and returning the array length. The function for

type theory

r1, r2 : Self→ ExprResult[Self,RefType] �

r1== r2 : Self→ ExprResult[Self, bool]
def
=

λx : Self.CASE r1 x OF {
| hang �→ hang
| norm y �→ CASE r2 (y.ns) OF {

| hang �→ hang
| norm z �→ norm (ns= z.ns, res= CASE y.res OF {

| null �→ CASE z.res OF {
| null �→ true
| ref s �→ false }

| ref r �→ CASE z.res OF {
| null �→ false
| ref s �→ r.objpos= s.objpos } })

| abnorm b �→ abnorm b }
| abnorma �→ abnorma }

Fig. 1. Formalisation of Java’s equality == in type theory

type theory

a : OM→ ExprResult[OM,RefType], i : OM→ ExprResult[OM, int] �

array_access(get_typ, a, i) : OM→ ExprResult[OM, typ]
def
=

λx : OM.CASE a x OF {
| hang �→ hang
| norm y �→ CASE i (y.ns) OF {

| hang �→ hang
| norm z �→ CASE y.res OF {

| null �→ [[new NullPointerException()]]
| ref r �→ CASE r.dimlen OF {

| bot �→ hang // should not happen
| up p �→ IF z.res< 0 ∨ z.res≥ p.len

THEN [[new ArrayIndexOutOfBoundsException()]]
ELSE norm(ns= z.ns, res=

get_typ(z.ns, heap(ml= r.objpos, cl= z.res))) } }
| abnorm c �→ abnorm c }

| abnorm b �→ abnorm b }

Fig. 2. Accessing array a at index i in type theory

array creation sets up an appropriately linked number of
(empty) memory cells, depending on the dimension and
lengths of the array that is being created.

4 A Hoare logic for Java

Many verifications of java programs can be done imme-
diately in terms of the semantics as described in Sect. 3.
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However, “... reasoning about correctness formulas in
terms of semantics is not very convenient. A much more
promising approach is to reason directly on the level
of correctness formulas.” (quote from [3, p. 57]). Hoare
logic [20] is a formalism for doing precisely this. This sec-
tion describes an extension of Hoare logic which is espe-
cially tailored to java. The proof rules that are discussed
here are heavily used in the Vector case study described
below.
Our Hoare logic extension is a concrete and detailed

elaboration and adaptation of existing approaches to pro-
gramming logics with exceptions, notably from [9, 26, 29]
(which are mostly in weakest precondition form). Al-
though the basic ideas used here are the same as in [9, 26,
29], the elaboration is different. For example, in this elab-
orationmany forms of abrupt termination are considered,
and not just one sole exception. In addition, a seman-
tics of statements and expressions as particular functions
is used (as described in Sect. 3), and not a semantics of
traces.
Hoare logic, for a particular programming language,

consists of a series of deduction rules for special sen-
tences, involving constructs from the programming lan-
guage, such as assignment, if-then-else and composition.
In particular, (while) loops have received much atten-
tion in Hoare logic, because they involve a judicious and
often non-trivial choice of a loop invariant. For more
information (see, for example, [3, 4, 6, 13, 15]). There is
a so-called “classical” body of Hoare logic, which ap-
plies to standard constructs from an idealised impera-
tive programming language. This forms a well-developed
part of the theory of Hoare logic. It is based on sen-
tences of the form {P}S {Q}, for partial correctness,
or [P ]S [Q], for total correctness. They involve asser-
tions P and Q in some logic (usually predicate logic),
and statements S from the programming language that
one wishes to reason about. The partial correctness sen-
tence {P}S {Q} expresses that if the assertion P holds
in some state x and if the statement S, when evalu-
ated in state x, terminates normally, resulting in a state
x′, then the assertion Q holds in x′. Total correctness
[P ]S [Q] expresses something stronger, namely: if P
holds in x, then S in x terminates normally, resulting in
a state x′ where Q holds. These partial and total cor-
rectness sentences can be translated easily into our type
theory.

type theory

pre, post : Self→ bool, stat : Self→ StatResult[Self] �

PartialNormal?(pre, stat, post) : bool
def
=

∀x : Self. prex⊃ CASE statx OF {

| hang �→ true

| norm y �→ post y

| abnorma �→ true }

pre, post : Self→ bool, stat : Self→ StatResult[Self] �

TotalNormal?(pre, stat, post) : bool
def
=

∀x : Self. prex⊃ CASE statx OF {

| hang �→ false

| norm y �→ post y

| abnorma �→ false }

To adapt this classical body to java, proof rules are
described for normally terminating statements. Follow-
ing Gordon [14], these proof rules are shown to be sound
with respect to the semantics. In our case, the soundness
of all the rules with respect to our semantics has been
proven in pvs (and isabelle), but completeness is not
our main concern, because we want to actually use these
rules and not study their meta-theoretical properties (as
in [32]).
This enables both semantic and axiomatic reason-

ing about (translated)5 java programs. These (standard)
proof rules are described in more detail in [19, 21].

4.1 A Hoare logic with abrupt termination

Unfortunately, the proof rules for normal termination do
not give enough power to reason about arbitrary java
programs. Therefore it is necessary to have a “correct-
ness notion” for being in an abnormal state, e.g., if exe-
cution of S starts in a state satisfying P , then execution
of S terminates abruptly, because of a return, in a state
satisfying Q. To this end, the notions of abnormal cor-
rectness are introduced. They appear in four forms, cor-
responding to the four possible kinds of abnormalities.
Rules are formulated to derive the (abnormal) correct-
ness of a program compositionally. These rules allow the
user to move back and forth between the various correct-
ness notions.
The first notion that is introduced is partial break

correctness (with notation: {P}S {break(Q, l)}), mean-
ing that if execution of S starts in some state satisfy-
ing P , and execution of S terminates in an abnormal
state, because of a break, then the resulting abnormal
state satisfies Q. If the break is labeled with lab, then
l = up(“lab”), otherwise l = bot.
Naturally, there exists also total break correctness

([P ]S [break(Q, l)]), meaning that if execution of S starts
in some state satisfying P , then execution of S terminates
in an abnormal state, satisfying Q, because of a break. If
this break is labeled with lab, then l = up(“lab”), oth-
erwise l = bot. Continuing in this manner leads to the
following eight notions of abnormal correctness:

5 Traditionally, Hoare logic rules are syntax-based. Our rules are
semantics-based, which allows us to reason about translated pro-
grams. Since the translation is compositional, we can still follow
the program structure.
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partial break correctness
{P}S {break(Q, l)}

partial continue correctness
{P}S {continue(Q, l)}

partial return correctness
{P}S {return(Q)}

partial exception correctness
{P}S {exception(Q,E)}

total break correctness
[P ]S [break(Q, l)]

total continue correctness
[P ]S [continue(Q, l)]

total return correctness
[P ]S [return(Q)]

total exception correctness
[P ]S [exception(Q,E)]

The formalisation of these correctness notions in type
theory is straightforward. As an example, consider the
predicate PartialReturn? for partial return correctness.
This is used to give meaning to the notation

{P} [[S]] {return(Q)}= PartialReturn?(P, [[S]], Q).

This predicate is defined as follows:

type theory

pre, post : Self→ bool, stat : Self→ StatResult[Self] �

PartialReturn?(pre, stat, post) : bool
def
=

∀x : Self. prex⊃ CASE statx OF {
| hang �→ true
| norm y �→ true
| abnorma �→ CASE a OF {

| excp e �→ true
| rtrn z �→ post z
| break b �→ true
| cont c �→ true } }

Many straightforward proof rules can be formulated
and proven, for these correctness notions. First of all,
there are the analogues of the skip axiom, e.g.:

type theory

{P}RETURN{return(P )}

Then there are rules, expressing how these (partial and
total) correctness notions behave with “traditional” pro-
gram constructs, e.g., with statement composition.

type theory

[P ]S [return(R)]

[P ]S ;T [return(R)]

[P ]S [Q] [Q]T [return(R)]

[P ]S ;T [return(R)]

{P}S {return(R)} {P}S {Q} {Q}T {return(R)}

{P}S ;T {return(R)}

There are rules to move between two correctness notions,
from normal to abnormal and vice versa. Here are some
examples for the return statement again:

type theory

{P}S {return(Q)} {P}S {Q}

{P}CATCH-STAT-RETURN(S) {Q}

[P ]S [return(Q)]

[P ]CATCH-STAT-RETURN(S) [Q]

Most of these proof rules are easy and straightforward to
formulate, and they provide a good framework to reason
about programs in java. However, proof rules for while
loops with abrupt termination are more difficult to for-
mulate.

4.2 Hoare logic of while loops with abrupt termination

Recall that in classical Hoare logic, reasoning about while
loops involves the following ingredients: (1) an invariant,
i.e., a predicate over the state space which is true initially
and after each iteration of the while loop; (2) a condi-
tion, which is false after normal termination of the while
loop; (3) a body, which is iterated a number of times; and
(4) (when dealing with total correctness) a variant, i.e.,
a mapping from the state space to some well-founded set,
which strictly decreases every time the body is executed.
To see what is needed to extend this to abnormal correct-
ness, first a silly example of an abruptly terminating while
loop is discussed.

java

while (true) { if (i < 10) { i++; }

else { break; } }

This loop always terminates, and a variant can be con-
structed to show this, but after termination it cannot
be concluded that the condition has become false. Thus,
proof rules have to be formulated in such a way that, in
this case, it can be concluded that after termination of the
while loop i < 10 does not hold (anymore). This desire
leads to the development of special rules for partial and
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total abnormal correctness of while loops. Below, the par-
tial and total break correctness rules are described in full
detail, the rules for the other abnormalities are basically
the same. The java while statement is formalised in type
theory by a functionWHILE(l)(C)(S), where l is a formal-
isation of the possible label of the while statement, C is
a formalisation of the condition, and S of the body. This
definition boils down to iterating the so-called iteration
body

E2S(C) ;CATCH-CONTINUE(l)(S)

an appropriate number of times. More information on the
definition of WHILE can be found in [19, 21].

4.2.1 Partial break while rule

Assume a while loopWHILE(l1)(C)(S), which will be ex-
ecuted in a state satisfying P . The aim is to prove that
if the while loop terminates abruptly, because of a break,
then the result state satisfies Q – where P is the loop in-
variant and Q is the condition which holds upon abrupt
termination (in the example above: i ≥ 10). A natural
condition for the proof rule is thus that if the body ter-
minates abruptly, because of a break, thenQ should hold.
Furthermore, it should be shown that P is an invariant if
the body terminates normally. This leads to the proof rule
in Fig. 3.
This rule states the following: suppose: (1) if the it-

eration body E2S(C) ;CATCH-CONTINUE(l1)(S) is exe-
cuted in a state satisfying P and terminates normally,
then P still holds; and (2) if the iteration body is executed
in a state satisfying P and ends in an abnormal state, be-
cause of a break, then this state satisfies some propertyQ.

type theory

{P}E2S(C) ;CATCH-CONTINUE(l1)(S) {P}

{P}E2S(C) ;CATCH-CONTINUE(l1)(S) {break(Q, l2)}
[partial-break]

{P}WHILE(l1)(C)(S) {break(Q, l2)}

Fig. 3. Break version of the partial while rule

type theory

[P ∧C]CATCH-BREAK(l2)(E2S(C) ;CATCH-CONTINUE(l1)(S)) [true]

{P ∧C ∧variant = n}E2S(C) ;CATCH-CONTINUE(l1)(S) {P ∧C ∧variant< n}

{P ∧C}E2S(C) ;CATCH-CONTINUE(l1)(S) {break(Q, l2)}

[P ∧C]WHILE(l1)(C)(S) [break(Q, l2)] [total-break]

Fig. 4. Break version of the total while rule

Then, if the while statement is executed in a state satisfy-
ing P and it terminates abruptly, because of a break, then
its final state satisfiesQ.
The soundness of this rule is easy to see (and to

prove): suppose there exists a state satisfying P , in which
the statementWHILE(l1)(C)(S) terminates abruptly, be-
cause of a break. This means that the iteration body in-
volved, E2S(C) ;CATCH-CONTINUE(l1)(S), terminates
normally a number of times. All these times, P re-
mains true. However, at some stage the iterated state-
ment must terminate abruptly, because of a break,
labeled l2, and then the resulting state satisfies Q.
As this is also the final state of the whole loop,
{P}WHILE(l1)(C)(S) {break(Q, l2)} can be concluded.

4.2.2 Total break while rule

Next, a proof rule for the total break correctness of the
while statement is presented. Suppose there exists a state
satisfying P ∧C6. Notice that if C did not hold in the ini-
tial state, the loop would never terminate abruptly. The
aim is to prove that execution ofWHILE(l1)(C)(S) in this
state terminates abruptly, because of a break, resulting in
a state satisfying Q. Therefore, it has to be shown that:
(1) the iteration body terminates normally only a finite
number of times (using a well-founded variant) keeping
the condition true; and (2) if the iteration body does not

6 The use of the (translated) java condition C in here is de-
liberately sloppy. This C is a Boolean expression, of type OM→
ExprResult[OM, bool], but occurs in P ∧C, where P is a predicate
OM→ bool. The latter conjunction ∧ in a state x : OM should be
understood as: P (x) holds, and C(x) terminates normally, and its
result is true.
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terminate normally, it must be because of a break, result-
ing in an abnormal state, satisfyingQ. This gives the rule
in Fig. 4.
The first condition states that execution of the it-

eration body followed by a CATCH-BREAK, in a state
satisfying P ∧C, always terminates normally, thus the
iteration body itself must terminate either normally, or
abruptly because of a break. The second condition ex-
presses that if the iteration body terminates normally,
the invariant and condition remains true and some vari-
ant decreases. Thus, the loop will not terminate normally,
because the condition remains true. Since the variant is
well-founded the iteration body can only terminate nor-
mally a finite number of times. Finally, the last condition
of this rule requires that when the iteration body termi-
nates abruptly (because of a break), the resulting state
satisfies Q. Soundness of this rule is easy to prove.

5 Class annotations

A behavioural interface specification language for java
is proposed in [25], following the tradition of Eiffel and
the well-established design by contract approach [31].
This language is called jml, short for java modeling lan-
guage. A programmer can annotate java code with spe-
cifications in jml, using the annotation markers //@ and
/*@ ... @*/. For a java compiler these annotations are
ordinary comments, so the annotated java code still re-
mains valid. In this paper we shall use jml specifications
to express the properties – including the invariant – that
we wish to prove about java’s Vector class.
A behavioural interface specification consists of var-

ious specification declarations. Here we will only men-
tion invariants, and pre- and post-conditions for methods
and constructors. For more information (see [25]). From
a client’s perspective the specifications describe proper-
ties that can be assumed, but from the provider’s perspec-
tive they represent proof obligations, because the pro-
vided code is supposed to satisfy these properties. Here,
we shall take the latter perspective.

5.1 Predicates in JML

The predicates used in jml are built from java expres-
sions extended with logical operators, such as equiva-
lence, <==>, and implication, ==>, and with the existential
and universal quantifiers, \exists and \forall, respec-
tively. In addition, some new expression syntax is added:
\old(E) is used for evaluation of expression E in the
“pre-state” of a method (i.e., in the state before method
execution is started), \result denotes the result of a non-
voidmethod. These are only used in post-conditions.
Predicates in jml are required to be side-effect free,

and, therefore, they are not allowed to contain assign-
ments, including the increment and decrement operators,

++ and --. Methods may be invoked in predicates only if
they are pure, i.e., terminate normally, and do not modify
any field.
Requiring that predicates are side-effect free does not

imply that predicates always terminate normally. Con-
sider the predicate a.length >= 0, for a an array. If this
predicate is evaluated in a state where a is a null ref-
erence, it will terminate abruptly with a NullPointer-

Exception. To prevent this kind of abrupt termination,
an extra conjunct has to be added to the predicate:
a != null && a.length >= 0.

5.2 Behaviour specifications

In jml behaviour specifications can be written for
methods and constructors. Below, we concentrate on
methods. jml supports three kinds of behaviour specifi-
cations, namely normal_behavior, exceptional_beha-
vior, and behavior specifications. If a method has
a normal_behavior specification, then it should termi-
nate normally, assuming the pre-condition holds. Simi-
larly, an exceptional_behavior prescribes that a meth-
od terminates abnormally, and a behavior specification
that the method can terminate sometimes normally and
sometimes abnormally.
Let’s consider a normal_behavior specification for

a method m:

jml

/*@ normal_behavior

@ requires: P; // P is a predicate

@ ensures : Q; // Q is a relation,

@ // between the method’s pre-state

@ // and post-state.

@*/

void m();

The basic ingredients of normal_behavior are its pre-
condition, in jml called the requires clause, and its
post-condition, the ensures clause. This normal_beha-
vior specification is a total correctness assertion: it says
that if P holds in a state x, then method m executed in
state x will terminate normally, resulting in state y with
Q holding of (x, y). The pre-state x is needed in the post-
condition because Q may involve an \old(-) expression
for evaluation in the pre-state.
A behavior specification can consist of the two above-

mentioned clauses, extended with a signals clause:

jml

/*@ behavior

@ requires: P;

@ ensures : Q;

@ signals : (E) R;

@*/

void m();
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The signals clause is the post-condition, in case of
abrupt termination of method m. This example specifi-
cation is a conjunction of two partial correctness Hoare
sentences. The first one says that if P holds in a state x
and method m executed in state x terminates normally
resulting in a state y, then Q should hold of (x, y). The
second one says that if P holds in a state x and method m
executed in state x terminates abruptly with an exception
of type E’ in a state y, then R should hold of (x, y), and E’
should be a subclass of E.

5.3 Invariants

An invariant is a predicate on states which always holds,
as far as an outsider can see: an invariant holds imme-
diately after an object is created and before and after
a method is executed, but during a method’s execution it
need not hold. To prove that a certain predicate is an in-
variant, one therefore proves that it holds: (1) after object
creation; and (2) after (normal or abnormal) termination
of a method, assuming that it holds when the method’s
execution starts. Note that even when a method termi-
nates abruptly, an invariant should hold. This means that
if something goes wrong, a method must throw an excep-
tion before any crucial data is corrupted. A consequence
is that if the exception is caught at some later stage, the
invariant still holds.
An example of a (trivial) jml invariant is:

jml

class A {

//@ invariant: true;

...

}

jml offers the possibility to write multiple invariants
within one class. They can be transformed into a single
invariant via conjunctions. Invariants can be preceded by
the keywords public, private or protected. This means
that the invariant property is preserved by all public, pri-
vate or protected methods, respectively.We verified a pri-
vate invariant property of Vector, i.e., a property that is
a closure under all methods.

5.4 Proof obligations

As already mentioned, invariants and behaviour specifi-
cations give rise to proof obligations. They can be ex-
pressed in our extended Hoare logic. This requires the use
of so-called logical variables (such as z below) in order
to allow post-conditions to be relations. For example,
the normal_behavior specification for m above, together
with an invariant I, yields the following proof obligation
for total correctness:

type theory

∀z : OM. [λx : OM. I(x)∧P (x)∧z = x ]
m
[λy : OM. I(y)∧Q(z, y) ]

Similarly, the behavior specification yields a conjunction
of two partial Hoare sentences:

type theory

∀z : OM. {λx : OM. I(x)∧P (x)∧z = x }
m
{λy : OM. I(y)∧Q(z, y) }
∧

{λx : OM. I(x)∧P (x)∧z = x }
m
{ exception(λy : OM. I(y)∧R(z, y), E) }

In this way the proof rules for the extended Hoare logic
can be used to prove jml obligations in pvs.

6 The case study: Java’s Vector class

6.1 Vector in Java

java’s Vector class7 is part of the java.util package. It
can be found in the sources of the JDK distribution. The
class as a whole is too big to describe here in detail. It
contains three fields, three constructors, and twenty-five
methods. Most of the method bodies consist of between
five and ten lines of code. The interface of the Vector

class, and also its “surrounding” classes in the java li-
brary are described. The latter are classes that are used in
the Vector class.

6.1.1 Interface of the Vector class

The Vector class has three fields: an array elementData
of type Object [] in which the elements of the vec-
tor are stored, an integer elementCount which holds the
number of elements stored in the vector, and an inte-
ger capacityIncrement which indicates the amount by
which the vector is incremented when its size (element-
Count) becomes greater than its capacity (the length
of elementData). If capacityIncrement is greater than
zero, every time the vector needs to grow, the capacity of
the vector is incremented by this amount, otherwise the
capacity is doubled. These fields are all protected, so that
they can only be accessed in (a subclass of) Vector.
The Vector class has three constructors, which all

are public and thus can be accessed in any class. The

7 For our verification we use version number 1.38, written by Lee
Boynton and Jonathan Payne, under Sun Microsystems copyright.
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constructor Vector() creates an instance of the Vector
class by allocating the array elementData with an ini-
tial capacity of ten elements, and a capacity increment
of zero. The second constructor Vector(int initial-

Capacity) takes an integer argument, which is the ini-
tial capacity, and sets the capacity increment to zero.
The third constructor Vector(int initialCapacity,

int capacityIncrement) takes two integer arguments,
one for the initial capacity and the other for the capacity
increment. After creating an instance of the Vector class
the field elementCount is implicitly set to zero.

java

public class Vector implements Cloneable, java.io.Serializable {

// fields

protected Object elementData[];

protected int elementCount;

protected int capacityIncrement;

// constructors

public Vector(int initialCapacity, int capacityIncrement);

public Vector(int initialCapacity);

public Vector();

// methods

public final synchronized void copyInto(Object anArray[]);

public final synchronized void trimToSize();

public final synchronized void ensureCapacity(int minCapacity);

private void ensureCapacityHelper(int minCapacity);

public final synchronized void setSize(int newSize);

public final int capacity();

public final int size();

public final boolean isEmpty();

public final synchronized Enumeration elements();

public final boolean contains(Object elem);

public final int indexOf(Object elem);

public final synchronized int indexOf(Object elem, int index);

public final int lastIndexOf(Object elem);

public final synchronized int lastIndexOf(Object elem, int index);

public final synchronized Object elementAt(int index);

public final synchronized Object firstElement();

public final synchronized Object lastElement();

public final synchronized void setElementAt(Object obj, int index);

public final synchronized void removeElementAt(int index);

public final synchronized void insertElementAt(Object obj, int index);

public final synchronized void addElement(Object obj);

public final synchronized boolean removeElement(Object obj);

public final synchronized void removeAllElements();

public synchronized Object clone();

public final synchronized String toString();

}

Fig. 5. The interface of Java’s Vector class

Space restrictions prevent us from describing all
methods of the Vector class in detail. Therefore, the
reader is referred to the standard documentation [10] for
more information, and only the interface of the Vector
class is listed here, (see Fig. 5). The names and types give
some idea of what these methods are supposed to do.

6.1.2 Surrounding classes

The Vector class implicitly extends the Object class.
All fields and methods declared in the Object class are
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thus inherited. Of particular importance in the Vector
class are the methods equals, clone, and toString from
Object. These may be overridden in particular instan-
tiations of the data in a vector (and the new versions
are then selected via the “dynamic method look-up” or
“late binding” mechanism). The Vector class also imple-
ments two (empty) java interfaces, namely Cloneable

and Serializable.
The following java classes are used in the Vector

class, in one way or another: CloneNotSupportedExcep-
tion, InternalError, Object, StringBuffer, String,
System, ArrayIndexOutOfBoundsException (all from
the java.lang package), Enumeration, NoSuchElement-
Exception (both from the package java.util), and
Serializable (from the java.io package). These addi-
tional classes are relevant for the verification, since they
also have to be translated into pvs. They are intertwined
via mutual recursion.

6.2 Translation of Vector into PVS

The loop tool translates java classes into logical theo-
ries for pvs, following the semantics as described before.
In this section, some aspects of the actual translation of
the Vector class are briefly discussed. For this project, it
is not needed to translate the whole java library. Only
those classes that are actually used in the Vector class
– called the “surrounding” classes – have to be trans-
lated. A further reduction has been applied: from these
surrounding classes, only those methods that are actually
needed have been translated. Thus, 10K of java code re-
mains, excluding documentation. The loop tool turns it
into about 500K of pvs code8.
java’s Object and System classes have several na-

tive methods. A native method lets a programmer use
some already existing (non-java) code, by invoking
it from within java. In the Vector class two native
methods are used, namely clone from Object, and
arraycopy from System. Our own pvs code has been
inserted as translation of the method bodies of these
native methods. An alternative approach would be to
use requirements (e.g., jml specifications) for these
methods, such as for toString and equals (see the next
section).
The current version of our loop tool handles prac-

tically all of “sequential” java, i.e., of java without
threads. The possible use of vectors in a concurrent sce-
nario is not relevant for this invariant verification. The
synchronized keyword in the method declarations is
therefore simply ignored.
There is one point where we have cheated a bit in the

Vector translation. Often in the Vector class an excep-

8 This may seem a formidable size multiplication, but it does
not present problems in verification. Reductions in size may still
be possible by making more efficient use of parametrisation in pvs
code generation.

tion is thrown with a message, such as in the following
code fragment:

java

public final synchronized Object

elementAt(int index) {

if (index >= elementCount) {

throw new ArrayIndexOutOfBoundsException

(index + " >= " + elementCount);

}

...

}

Implicitly in java, the integers index and elementCount
are converted to strings in the exception message. Such
conversion is not available in pvs. Of course, it can be de-
fined, but that is cumbersome and totally irrelevant for
the invariant. Therefore, we have reduced such exception
messages in throw clauses to the empty string "", thereby
avoiding the conversion issue altogether. This affects the
output, but not the invariant.

6.3 The class invariant

The first step is to formulate the desired class invariant
property. Finding an appropriate, provable, invariant is,
in general, a non-trivial exercise. Usually one starts with
some desired property, but to be able to prove that this is
an invariant, it has to be strengthened in an appropriate
manner9. As suggested by the informal documentation in
the Vector class, a class invariant should be:

the number of elements in the array of a vector ob-
ject never exceeds its capacity.

This property alone cannot be proven to be a class in-
variant. Strengthening is necessary to obtain an actual
invariant. This invariant has been obtained “by hand”,
and not via some form of automatic invariant gener-
ation. Precisely annotating all the methods in the Vector
class with jml-specifications helps in finding the ap-
propriate strengthening, because it brings forward the
pre-conditions for normal and abrupt terminations. The
strengthened version of the above property can be ex-
tracted from these pre-conditions for normal termination.
During verification it turned out that the resulting prop-
erty had to be strengthened only once more (in a very
subtle manner). In jml, the main ingredients of the in-
variant are listed in Fig. 6.
One more requirement is needed that is directly re-

lated to the particular memory model that we use (see
Sect. 3.2), and is not expressible in jml. It says that
elementData refers to an “allocated” cell in the heap
memory, whose position is below the heaptop.

9 This is in analogy with the informal notion of “induction load-
ing”, where a statement that one wishes to prove by induction must
be strengthened in order to get the induction going.
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jml

/*@ invariant:

@ elementData != null &&

@ elementCount <= elementData.length && // main point

@ elementCount >= 0 &&

@ elementData != this &&

@ elementData instanceof Object[] &&

@ (\forall (int i) 0 <= i && i < elementData.length

@ ==> (elementData[i] == null || elementData[i] instanceof Object));

@*/

Fig. 6. Essentials of the Vector invariant

The resulting combined property onOM will be called
VectorIntegrity?. Notice that it says nothing about the
value of the capacityIncrement field. One would expect
the value of capacityIncrement to be positive, but this
is not needed, since the only time capacityIncrement

is actually used (in the body of the method ensure-

CapacityHelper), it is first tested whether its value is
greater than zero. The informal documentation for this
field states that “if the capacity increment is 0, the cap-
acity of the vector is doubled each time it needs to grow”,
but a more precise statement would be “if the capacity
increment is 0 or less, ...”.

6.4 Verification of the class invariant of Vector

After translation of the Vector class (and all surround-
ing classes), the generated theories are loaded into pvs
and the verification effort starts. This means that we have
to show that the predicate VectorIntegrity? is indeed an
invariant. To this end, it has to be shown that: (1) Vector-
Integrity? is established by the constructors; and (2) that
VectorIntegrity? is preserved by all public methods of class
Vector (see Sect. 5.3). Notice that it is essential that the
fields of the Vector class are protected, so that they can-
not be accessed directly from the outside, and the Vector-
Integrity? predicate cannot be corrupted in this manner.
Point (1) is relatively easy. Point (2) is handled by as-

suming an arbitrary state x, satisfying VectorIntegrity?;
for eachmethodm, say with arguments)a, the cases where
m()a)(x) terminates normally, and where it throws an ex-
ception are distinguished. This is done via jml behaviour
specifications. In all the cases, it has to be shown that the
predicate VectorIntegrity? still holds in the resulting state,
(see Sect. 5.4).
Before going into some proof details, we illustrate

that detecting all possible exceptions is a non-trivial, but
useful exercise. Therefore, we consider in Fig. 7 a frag-
ment from the Vector class, which describes the method
copyInto together with its informal documentation.
This method throws an exception in each of the follow-

ing cases:

– the field elementCount is greater than zero, and the
argument array anArray is a null reference;

– elementCount is greater than zero, anArray is a non-
null reference, and its length is less than element-

Count;
– elementCount is greater than zero, anArray is a non-
null reference, its length is at least elementCount, and
there is an index i below elementCount such that the
(run-time) class of elementData[i] is not assignment
compatible with the (run-time) class of anArray.

The first of these three cases produces a NullPointerEx-
ception, the second one an ArrayIndexOutOfBounds-

Exception, the third one an ArrayStoreException10.
This last case is subtle, and not documented at all; it can
easily be overlooked. However, in all three cases, no data
in Vector is corrupted, and the predicate VectorIntegrity?
still holds in the resulting (abnormal) state.
Below, the verification in pvs of several methods will

be discussed in some detail, namely of setElementAt,
toString, and indexOf. These methods are exemplary:
the method setElementAt is a typical example of a meth-
od for which the invariant is verified automatically. The
verification of toString shows how we deal with late
binding and indexOf demonstrates the use of the ex-
tended Hoare logic for java. The verifications make ex-
tensive use of automatic rewriting to increase the level
of automation. For instance, the low-level memory ma-
nipulations (involving the get- and put-operations from
Sect. 3.2) require no user interaction at all. Automatic
rewriting is also very useful in verifications using Hoare
logic, because it simplifies the application of the rules.

Verification of setElementAt

The first method that is discussed in more detail is set-
ElementAt. This method takes a parameter obj belong-

10 See the explanation in [12], Sect. 15.25.1, second paragraph on
page 371. This exception occurs for example during execution of
the following (compilable, but silly) code fragment.
Vector v = new Vector();
v.addElement(new Object());
v.copyInto(new Integer[1]);
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java

/**

* Copies the components of this vector into the specified

* array. The array must be big enough to hold all the

* objects in this vector.

*

* @param anArray the array into which the components get copied.

* @since JDK1.0

*/

public final synchronized void copyInto(Object anArray[]) {

int i = elementCount;

while (i-- > 0) { anArray[i] = elementData[i]; }

}

Fig. 7. The copyInto method from Vector with its informal documentation

ing to class Object and an integer index, and replaces the
element at position index in the vector with obj. A pos-
sible jml specification for this method is given in Fig. 8.
Notice that we have given a “functional” specifica-

tion by describing post-conditions for this method. These
post-conditions can be strengthened further, e.g., by in-
cluding that the fields elementCount and capacityIn-

crement are not changed. However, for our invariant
verification, these post-conditions are usually not rele-
vant, and so we shall simply write true in the ensures:
clause, giving so-called lightweight specifications (such
as in [37]). In contrast, the pre-conditions are highly
relevant.
Ignoring the post-conditions, the proof obligations (as

Hoare sentences, see Sect. 5.4) for this method are:

type theory

∀obj : RefType.∀index : int.
[λx : OM.VectorIntegrity?(x) ∧

index≥ 0 ∧
index< elementCount(x) ]

setElementAt(obj, index)
[VectorIntegrity? ]

∀obj : RefType.∀index : int.
[λx : OM.VectorIntegrity?(x) ∧

(index< 0 ∨
index≥ elementCount(x)) ]

setElementAt(obj, index)
[ exception(VectorIntegrity?,

“ArrayIndexOutOfBoundsException”) ]

The proofs of these properties proceed mainly by auto-
matic rewriting in pvs. For the first proof obligation,
regarding normal termination, we do explicitly have to
make the case distinction whether the argument obj is
a null reference or not.

Verification of toString

Unfortunately, the correctness of the methods in Vector

is not always as easy to prove as for the above example
setElementAt. Several methods in the Vector class in-
voke other methods, or contain while or for loops.
Above, we already have seen copyInto as an example of
such a method. We now concentrate on the method invo-
cations in Vector’s toStringmethod.
Recall that each class in java inherits the toString

method from the root class Object. In a specific class this
method is usually overridden to give a suitable string rep-
resentation for instances of that class. For a vector object
the toString method in the Vector class yields a string
representation of the form [ s0, . . . , sn−1 ], where n is the
vector’s size elementCount, and si is the string obtained
by applying the toString method to the ith element in
the vector’s array. The particular implementations that
get executed as a result of these toString invocations are
determined by the actual (run-time) types of the elem-
ents in the array (via the late binding mechanism). Thus,
they cannot be determined statically. This is a key issue in
object-oriented verification.
The annotated java code of toString in Vector

is given in Fig. 9. It reveals an undocumented possible
source of abrupt termination: when one of the elements of
a vector’s array is a null reference, invoking toString on
it yields a NullPointerException.
The “behavioural subtyping” approach to late bind-

ing that we take here, following [30], involves writing
down requirements on the method toString in Object

and using these requirements in reasoning. In our verifi-
cation, we thus assume that the definition of toString
that is actually used at run-time satisfies these require-
ments, i.e., that the classes of the component objects are
a behavioural subtypes of Object. Thus, we prove that
toString in Vector works correctly, assuming that we
have a reasonable implementation of toString, without
unexpected behaviour.
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jml

/*@

@ normal_behavior

@ requires: index >= 0 && index < elementCount;

@ ensures: \forall (int i) 0 <= i && i < elementCount ==>

@ ((i == index && elementData[i] == obj) || (i != index && elementData[i] ==

@ \old(elementData[i])));

@ also

@ exceptional_behavior

@ requires: index < 0 || index >= elementCount;

@ signals: (ArrayIndexOutOfBoundsException)

@ \forall (int i) 0 <= i && i < elementCount ==> elementData[i] == \old(elementData[i];

@*/

public final synchronized void setElementAt(Object obj, int index) {

if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index +

" >= " + elementCount); }

elementData[index] = obj;

}

Fig. 8. The setElementAt method with its jml annotation

jml

/*@

@ normal_behavior

@ requires: \forall (int i) 0 <= i && i < elementCount ==> elementData[i] != null;

@ ensures: true;

@ also

@ exceptional_behavior

@ requires: elementCount > 0 &&

@ ! \forall (int i) 0 <= i && i < elementCount ==> elementData[i] != null;

@ signals: (NullPointerException) true;

@*/

public final synchronized String toString() {

int max = size() - 1;

StringBuffer buf = new StringBuffer();

Enumeration e = elements();

buf.append("[");

for (int i = 0 ; i <= max ; i++) {

String s = e.nextElement().toString();

buf.append(s);

if (i < max) { buf.append(", "); }

}

buf.append("]");

return buf.toString();

}

Fig. 9. The toString method with its jml annotation

In ordinary language, the requirements on toString

say that:

– it terminates normally, and has no side-effects;
– it returns a non-null reference to a memory location
in newly allocated memory, i.e., between the heaptop

in the pre-state and the heaptop in the post-state (the
state after execution of toString);

– this reference has run-time type String, and points to
a memory cell with integer fields offset and count

(from class String), which are non-negative, and an
array field value (also from String), which
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– is a non-null reference with a cell position which
is above the heaptop in the pre-state, below the
heaptop in the post-state, and different from the
previously mentioned String reference;

– has run-time elementtype char and a length ex-
ceeding the sum of offset and count.

The verification of the toString method from Vector

is then not difficult, but very laborious. This is be-
cause it uses (indirectly via append from StringBuffer)
several different methods from other classes, such as
extendCapacity from StringBuffer, and getChars,
valueOf from String. For all these methods appropriate
“modifiable” results – describing which cells and pos-
itions therein can be modified – are needed to prove that
the methods do not affect the VectorIntegrity? predicate.

Verification of indexOf

Next, we consider the verification of a for loop, namely in
the method indexOf. It makes extensive use of the Hoare
logic rules as described in Sect. 4.
First we consider the specification and implementa-

tion of indexOf in Fig. 10. The method indexOf takes
a parameter elem belonging to class Object and an in-
teger parameter index, and checks whether elem oc-
curs in the segment of the vector between index and
elementCount. If so, the position at which it occurs is re-
turned, otherwise −1 is returned.
Notice that the equalsmethod in the condition of the

if statement is invoked on the parameter elem. Since we
cannot know elem’s run-time type, we also have to use the
behavioural subtype approach here, and assume that cer-
tain requirements hold for equals, such as for toString
in the previous example. We shall not elaborate on this
point, but concentrate on the for loop.
To show that indexOfmaintains VectorIntegrity?, sev-

eral cases are distinguished. If the parameter elem is non-
null and index is non-negative, the Hoare logic rules for
abruptly terminating loops, as described in Sect. 4, are
needed for the verification. A distinction is made between
the case that elem is found, and that it is not found (be-
cause in the first case the for loop terminates abruptly,
because of a return, and in the second case it terminates
normally, thus different rules have to be used). In both
cases it is shown that the method preserves VectorIn-
tegrity?. To this end, the rule in Fig. 11 for total return
correctness of a for loop, is used11.
Notice the similarity with the rule for total break cor-

rectness of the while statement, as described in Fig. 4.
However, the for loop has a different iteration body,
namely E2S(C) ;CATCH-CONTINUE(l)(S) ;U , where U
is the formalisation of the update statement of the for

11 The java statement for(init, cond, update){body} is trans-
lated into [[init]] ;FOR([[cond]], [[update]], [[body]]), where FOR is de-
fined in type theory similar to WHILE (see [21]). The proof rule
only deals with this FOR function.

loop. Recall that for while loops the iteration body is
E2S(C) ;CATCH-CONTINUE(l)(S).
This rule is instantiated as follows:

l bot

C [[i < elementCount]]

U [[i++]]

S [[if (elem.equals(elementData[i]))
{return i;}]]

variant [[elementCount - i]]

P λx : OM.
VectorIntegrity? (x)∧
i≥ index∧
i≤ elementCount∧
(∃j.index≤ j < elementCount∧

j ≥ i∧
elem.equals(elementData[j]))∧

(∀k.index≤ k < i⊃
¬elem.equals(elementData[k]))

Q VectorIntegrity?

Notice that the loop invariant (P ) implies that the condi-
tion i< elementCount remains true, because if i would
be equal to elementCount, the last two clauses of the in-
variant would be contradicting.
In the case that elem is not found in the vector, the

rule for total (normal) correctness of the for loop is used,
with a similar instantiation, to show that in that case the
loop always terminates normally (returning −1).
In the case that index≥ elementCount, or in the case

of abrupt termination (i.e., index< 0 or elem is a null
reference), it can be shown that the condition of the for-
loop immediately evaluates to false or throws an excep-
tion, respectively. Since no changes are made to the fields
of Vector, the property VectorIntegrity? is preserved.
Actually, we have proved a bit more about the

indexOf method than stated here. More is needed be-
cause the method is used in another Vector method,
namely in contains. With these stronger results, the
containsmethod can be verified by automatic rewriting
in pvs. In this case, late binding cannot occur because the
indexOfmethod is declared as final, so that it cannot be
overridden.

7 Conclusions and experiences

We have formally proved with pvs a non-trivial safety
property for the Vector class from java’s standard li-
brary. The verification is based on careful (lightweight)
specifications of all Vector methods, using the experi-
mental behavioural interface specification language jml.
It makes many non-trivial and poorly documented (nor-
mal and abnormal) termination conditions explicit (see
also [43]).
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jml

/*@

@ normal_behavior

@ requires: index >= elementCount || (elem != null && index >= 0);

@ ensures: true;

@ also

@ exceptional_behavior

@ requires: elem == null && index < elementCount;

@ signals: (NullPointerException) true;

@ also

@ exceptional_behavior

@ requires: elem != null && index < 0;

@ signals: (ArrayIndexOutOfBoundsException) true;

@*/

public final synchronized int indexOf(Object elem, int index) {

for (int i = index; i < elementCount; i++) {

if (elem.equals(elementData[i])) { return i; } }

return -1;

}

Fig. 10. The indexOf method with its jml annotation

type theory

[P ∧C]CATCH-STAT-RETURN(E2S(C) ;CATCH-CONTINUE(l)(S) ;U) [true]

{P ∧C ∧variant = n}E2S(C) ;CATCH-CONTINUE(l)(S) ;U {P ∧C ∧variant< n}

{P ∧C}E2S(C) ;CATCH-CONTINUE(l)(S) ;U {return(Q)}
[total-return]

[P ∧C]FOR(l)(C)(U)(S) [return(Q)]

Fig. 11. Return version of the total for rule

The whole invariant verification presented here was
a lot of work. In total, it involved 13,193 proof commands
(atomic interactions) in pvs. Somemethods required only
a few proof commands – and could be verified entirely by
automatic rewriting – but others required more interac-
tion. The toString method was most labour intensive,
requiring 4,922 proof commands, about one-third of the
total number. Quantifying the time it took is more dif-
ficult, because much of the work was done for the first
time in such a large project, and could be done faster
given more experience. However, 3–4 months full-time
work (for a single, experienced person) seems a reason-
able estimate.
In the end one should ask: is it worthwhile to do these

kinds of formal specifications and verifications, and do
they scale up? We think that writing (lightweight) spe-
cifications (even without formal verifications) is certainly
worthwhile, because it can make many implicit assump-
tions explicit, at relatively little cost. Such specifications
facilitate the use of the code and increase the reliability.
Extended static checking of such specifications is becom-

ing possible [11]. Actual verification of the specifications
is far more labour intensive. It may be worthwhile to do
this for library classes (such as Vector) which are in-
tensively used, but not for classes which are specific for
a particular application. However, the entire java class
library has become so large that it would be an unrealis-
tically large investment to fully verify it in the way that
we have done for one single class. However, it may still be
worthwhile to do this for certain central and crucial parts
of the library.
On the basis of the experiences in this project we have

chosen to concentrate next on the javacard [23] class li-
brary [37]. It is much smaller (about 45 classes), and is
used in smaller applications (namely javacard applets,
which are small programs for smart cards with modest
resources). There, both specification and verification are
more easily justified, not only because of the smaller in-
vestment due to smaller size, but also because there is
a great need for reliability in this area, since smart cards
are being used in large numbers in often security sensitive
environments.
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