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Abstract. In spite of the impressive progress in the de-
velopment of the two main methods for formal verifica-
tion of reactive systems – Symbolic Model Checking and
Deductive Verification, they are still limited in their abil-
ity to handle large systems. It is generally recognized that
the only way these methods can ever scale up is by the
extensive use of abstraction and modularization, which
break the task of verifying a large system into several
smaller tasks of verifying simpler systems.

In this paper, we review the two main tools of com-
positionality and abstraction in the framework of linear
temporal logic. We illustrate the application of these two
methods for the reduction of an infinite-state system into
a finite-state system that can then be verified using model
checking.

The technical contributions contained in this paper
are a full formulation of abstraction when applied to
a system with both weak and strong fairness requirements
and to a general temporal formula, and a presentation of
a compositional framework for shared variables and its
application for forming network invariants .
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– Data abstraction – Control abstraction – Network in-
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1 Introduction

In spite of the impressive progress in the development
of the two main methods for formal verification of reac-
tive systems – Model Checking (in particular symbolic)
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and Deductive Verification, they are still limited in their
ability to handle large systems. It is generally recognized
that the only way these methods can ever scale up to
handle industrial-size designs is by the extensive use of
abstraction and modularization, which break the task of
verifying a large system into several smaller tasks of veri-
fying simpler systems.

In this paper, we review the two main tools of com-
positionality and abstraction in the framework of linear
temporal logic. We illustrate the application of these two
methods for the reduction of an infinite-state system into
a finite-state system that can then be verified using model
checking.

To simplify matters, we have considered two special
classes of infinite-state systems for which the combina-
tion of compositionality and abstraction can effectively
simplify the systems into finite-state ones. The first class
is where the unboundedness of the system results from
its structure. These are parameterized designs consisting
of a parallel composition of finite-state processes, whose
number is a varying parameter. For such systems, the
source of complexity is the control or the architectural
structure. We describe the techniques useful for such sys-
tems as control abstraction, since it is the control com-
ponent that we try to simplify. Another source for state
complexity is having data variables which range over in-
finite domains such as the integers. We refer to the tech-
niques appropriate for simplifying such systems as data
abstraction.

Many methods have been proposed for the uniform
verification of parameterized systems, which is the sub-
ject of our control abstraction. These include explicit in-
duction [12, 13], network invariants, which can be viewed
as implicit induction [15, 20, 23, 35], methods that can be
viewed as abstraction and approximation of network in-
variants [4, 6, 32], and other methods that can be viewed
as based on abstraction [13, 16]. The approach described
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here is based on the idea of network invariants as in-
troduced in [35], and elaborated in [20] into a working
method.

There has been extensive study of the use of data
abstraction techniques, mostly based on the notions of
abstract interpretation [9, 10]. Most of the previous work
was done in a branching context which complicates the
problem if one wishes to preserve both existential and
universal properties. On the other hand, if we restrict
ourselves to a universal fragment of the logic, e.g., actl

∗,
then the conclusions reached are similar to our main re-
sult for the restricted case that the property ψ contains
negations only within assertions.

The paper [7] obtains a similar result for the frag-
ment actl

∗. However, instead of starting with a concrete
property ψ and abstracting it into an appropriate ψα,
they start with an abstract actl

∗ formula Ψ evaluated
over the abstract system Dα and show how to translate
(concretize) it into a concrete formula ψ = C(Ψ). The con-
cretization is such that α−(ψ) = Ψ.

The survey in [8] considers an even simpler case in
which the abstraction does not concern the variables on
which the property ψ depends. Consequently, this is the
case in which ψα = ψ.

A more elaborate study in [11] considers a more com-
plex specification language – Lµ, which is a positive ver-
sion of the µ-calculus.

None of these three articles considers explicitly the
question of fairness requirements and how they are af-
fected by the abstraction process.

Approaches based on simulation and studies of the
properties they preserve are considered in [24] and [14].

A linear-time application of abstract interpretation is
proposed in [3], applying the abstractions directly to the
computational model of fair transition systems which is
very close to the fds model considered here. However,
the method is only applied for the verification of safety
properties. Liveness, and therefore fairness, are not con-
sidered.

2 A computational model: fair discrete structure

As a computational model for reactive systems, we take
the model of fair discrete system (fds), which is a slight
variation on the model of fair transition system [28]. The
fds model was first introduced in [19] under the name
“Fair Kripke Structure”.

An fds D : 〈V,W,O,Θ, ρ,J , C〉 consists of the follow-
ing components.

• V = {u1, ..., un} : A finite set of typed system vari-
ables, containing data and control variables. The set
of states (interpretation) over V is denoted by Σ. Note
that Σ can be both finite or infinite, depending on the
domains of V .
The variables in V are classified as follows:

• W = {w1, . . . , wn} ⊆ V : A finite set of owned vari-
ables. These are the variables that only the system
itself can modify. All other variables can also be
modified by the environment. A system is said to
be closed if W = V .
• O = {o1, . . . , on} ⊆ V : A finite set of observable

variables. These are the variables which the envi-
ronment can observe.

It is required that V =W ∪O, i.e., for every system
variable u ∈ V , u is owned, observable, or both.
• Θ : The initial condition – an assertion (first-order

state formula) characterizing the initial states.
• ρ : A transition relation – an assertion ρ(V, V ′), relat-

ing the values V of the variables in state s ∈ Σ to the
values V ′ in a D-successor state s′ ∈ Σ.
• J : {J1, . . . , Jk} : A set of justice (weak fairness) re-

quirements. The justice requirement J ∈ J is an as-
sertion, intended to guarantee that every computation
contains infinitely many J-state (states satisfying J).
• C : {〈p1, q1〉, . . . 〈pn, qn〉} : A set of compassion (strong

fairness) requirements. The compassion requirement
〈p, q〉 ∈ C is a pair of assertions, intended to guaran-
tee that every computation containing infinitely many
p-states also contains infinitely many q-states.

We require that every state s ∈ Σ has at least one D-
successor. This is often ensured by including in ρ the
idling disjunct V = V ′ (also called the stuttering step). In
such cases, every state s is its own D-successor.

Let σ : s0, s1, s2, ..., be an infinite sequence of states, ϕ
be an assertion, and let j ≥ 0 be a natural number. We say
that j is a ϕ-position of σ if sj is a ϕ-state.

LetD be an fds for which the above components have
been identified. We define a computation of D to be an
infinite sequence of states σ : s0, s1, s2, ..., satisfying the
following requirements:

• Initiality: s0 is initial, i.e., s0 |= Θ.
• Consecution: For each j = 0, 1, ..., the state sj+1 is

a D-successor of the state sj .
• Justice: For each J ∈ J , σ contains infinitely

many J-positions.
• Compassion: For each 〈p, q〉 ∈ C, if σ contains in-

finitely many p-positions, it must also
contain infinitely many q-positions.

For an fds D, we denote by Comp(D) the set of all com-
putations of D. An fds D is called feasible if Comp(D) 6=
∅, namely, if D has at least one computation.

An infinite state sequence σ is called a run of D if it
satisfies the requirements of initiality and consecution but
not, necessarily, any of the fairness requirements. System
D is said to be viable if every finite run can be extended
into a computation. One of the differences between the
model of fair transition systems and the fds model is that
every fts is viable by construction, while it is easy to de-
fine an fds which is not viable, e.g., by having the justice
list include the assertion false. On the other hand, every
fds which is derived from a program is viable.
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All our concrete examples are given in spl (Simple
Programming Language), which is used to represent con-
current programs (e.g., [26, 28]). Every spl program can
be compiled into an fds in a straightforward manner.
In particular, every statement in an spl program con-
tributes a disjunct to the transition relation. For example,
the assignment statement

`0 : y := x+ 1; `1 :

can be executed when control is at location `0. When exe-
cuted, it assigns x+ 1 to y while control moves from `0 to
`1. This statement contributes to ρ the disjunct

ρ`0 : at−`0∧at−`
′
1∧y

′ = x+ 1∧x′ = x.

The predicates at−`0 and at−`
′
1 stand, respectively, for

the assertions πi = 0 and π′i = 1, where πi is the control
variable denoting the current location within the process
to which the statement belongs.

Every variable declared in an spl program is specified
as having one of the modes in, out, in-out, or local. This
specification determines whether the variable is consid-
ered to be owned or observable or both according to the
following table

Mode Owned? Observable?

in N Y
out Y Y

in-out N Y
local Y N

3 Operations on fds’s

There are several important operations one may wish to
apply to fds’s.

The first useful set of operations on programs and sys-
tems is forming their parallel composition, implying that
the two systems execute concurrently. Consider the two
fair discrete systems D1 = 〈V1,W1,O1,Θ1, ρ1,J1, C1〉,
and D2 = 〈V2,W2,O2,Θ2, ρ2,J2, C2〉. We consider two
ways of forming the parallel composition of D1 and D2.

3.1 Asynchronous parallel composition

The systems D1 and D2 are said to be composable if W1 ∩
W2 = ∅, V1 ∩V2 = O1 ∩O2 and neither system modifies
the variables owned by the other, i.e.,

ρ1→ pres(W2∩ V1) and ρ2→ pres(W1∩ V2).

The first condition requires that a variable can only be
owned by one of the systems. The second condition re-
quires that variables known to both systems must be ob-
servable in both.

For composable systems D1 and D2, we define their
asynchronous parallel composition, denoted byD1‖D2, to
be the system D = 〈V,W,O,Θ, ρ,J , C〉, where

V = V1 ∪V2 W = W1∪W2

O = O1∪O2 Θ = Θ1∧Θ2

J = J1∪J2 C = C1∪C2

ρ =

(
ρ1∧pres(V2−V1) ∨
ρ2∧pres(V1−V2)

)
For a set of variables U ⊆ V , the predicate pres(U) stands
for the assertionU ′ =U , implying that all the variables in
U are preserved by the transition.

Obviously, the basic actions of the composed systemD
are chosen from the basic actions of its components, i.e.,
D1 and D2. Thus, we can view the execution of D as the
interleaved execution of D1 and D2.

As seen from the definition, D1 and D2 may have dis-
joint as well as common system variables, and the vari-
ables of D are the union of all of these variables. The
initial condition of D is the conjunction of the initial con-
ditions of D1 and D2. The transition relation of D states
that at any step, we may choose to perform a step of D1

or a step of D2. However, when we select one of the two
systems, we should also take care to preserve the private
variables of the other system. For example, choosing to
execute a step of D1, we should preserve all variables in
V2−V1 and all the variables owned by D2.

The justice and compassion sets ofD are formed as the
respective unions of the justice and compassion sets of the
component systems.

Asynchronous parallel composition corresponds to the
spl parallel operator ‖ constructing a program out of con-
current processes.

3.2 Synchronous parallel composition

We define the synchronous parallel composition ofD1 and
D2, denoted by D1‖|D2, to be the system

D : 〈V,W,O,Θ, ρ,J , C〉,

where

V = V1 ∪V2 W = W1∪W2

O = O1∪O2 Θ = Θ1∧Θ2

J = J1∪J2 C = C1∪C2

ρ = ρ1∧ρ2

As implied by the definition, each of the basic actions of
systemD consists of the joint execution of an action ofD1

and an action ofD2. Thus, we can view the execution ofD
as the joint execution of D1 and D2.

The main, well-established, use of synchronous par-
allel composition is for coupling a system with a tester
which tests for the satisfaction of a temporal formula, and
then checking the feasibility of the combined system. In
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this work, synchronous composition is also used for coup-
ling the system with a progress monitor, used to ensure
completeness of the data abstraction methodology pre-
sented in Sect. 7.

3.3 Modularization of an fds

Let P be an spl program and D its corresponding fds.
The standard compilation of a program into an fds views
the program as a closed system which has no interaction
with its environment. In the context of compositional ver-
ification, we need an open system view of an fds, which
takes into account not only actions performed by the sys-
tem but also actions (in particular, variable changes) per-
formed by the environment.

Let D : 〈V,W,O,Θ, ρ,J , C〉 be an fds and s 6∈ V be
a fresh Boolean variable. The modular version of D, is
given by D

M
: 〈V

M
,W,O

M
,Θ, ρ

M
,J , C〉, where,

V
M

=V ∪{s} O
M

= O∪{s}
ρ
M

=(ρ∧s′)∨ (W ′ =W ∧¬s′).

That is, D
M

the modular version of D admits as an ad-
ditional action a transition which preserves the values of
all variables owned by D but allows all other shared vari-
ables to change in an arbitrary way. This provides the
most general representation of an environment action.
The scheduling variable s is used to ensure interleaving
between the module and its environment. We refer toD

M

as the modular or open version of system D.
We define a modular computation of D to be any com-

putation of D
M

.

3.4 Restricting an open shared variable

When constructing a system out of smaller components,
it is often the case that all processes within the system
are allowed to access a certain shared variable, but only
a subset of the processes is allowed to modify its value.
For example, we may have a system

D =D1 ‖ D2 ‖ D3,

in which all processes are allowed to access variable x, but
only processes D1 and D2 are allowed to modify its value.

We provide a special restriction (sealing-off) opera-
tion, which moves one of the system variables to the cate-
gory of owned variables, thereby disallowing its modifica-
tion by the environment.

Let D : 〈V,W,O,Θ, ρ,J , C〉 be an fds and let U ⊆
V −W be a set of variables which are not owned by D.
The result of restricting U in D, denoted by D\U is the
fds D

R
: 〈V,W

R
,O,Θ, ρ,J , C〉, where W

R
=W ∪U .

Thus, to represent a system consisting of sub-systems
D1,D2, andD3, in whichD3 is not allowed to modify vari-
able x, we may write

D = ((D1 ‖ D2)\x) ‖ D3.

To represent the closing off of an entire system D,
we write D

R
, which is an abbreviation for D\(V −W ).

This restricts the environment from writing on any of
the system variables. A system such that W = V is of-
ten described as a closed system, because it can have no
interaction with its environment.

4 Specification language: temporal logic

As a requirement specification language for reactive sys-
tems we take temporal logic (tl) [27]. For simplicity, we
consider only the future fragment of tl. Extending the
approach to the full logic is straightforward.

We assume an underlying assertion language L which
contains the predicate calculus and interpreted sym-
bols for expressing the standard operations and relations
over some concrete domains. A temporal formula is con-
structed out of state formulas (assertions) to which we
apply the Boolean operators ¬ and ∨ (the other Boolean
operators can be defined from these), and the basic tem-
poral operators ◦ (next) and U (until).

A model for a temporal formula p is an infinite se-
quence of states σ : s0, s1, ..., where each state sj provides
an interpretation for the variables mentioned in p.

Given a model σ, we present an inductive definition for
the notion of a temporal formula p holding at a position
j ≥ 0 in σ, denoted by (σ, j) |= p.
• For a state formula p, (σ, j) |= p ⇐⇒ sj |= p

That is, we evaluate p locally, using the
interpretation given by sj .

• (σ, j) |= ¬p ⇐⇒ (σ, j) 6|= p
• (σ, j) |= p∨ q⇐⇒ (σ, j) |= p or (σ, j) |= q
• (σ, j) |= ◦p ⇐⇒ (σ, j+ 1) |= p
• (σ, j) |= pU q⇐⇒ for some k ≥ j, (σ, k) |= q,

and for every i such that j ≤ i < k, (σ, i) |= p
Additional temporal operators can be defined by

3p= true U p (eventually)
2p= ¬3¬p (henceforth)

For a temporal formula p and a position j ≥ 0 such that
(σ, j) |= p, we say that j is a p-position (in σ). If (σ, 0) |= p,
we say that p holds on σ, and denote it by σ |= p. A for-
mula p is called satisfiable if p holds on some model. A for-
mula p is called valid, denoted by |= p, if p holds on all
models.

Given an fds D and a temporal formula p, we say that
p is D-valid , denoted by D |= p, if p holds on all models
which are computations of D. A property ϕ is said to be
modularly valid over fds D, denoted D |=

M
ϕ, if ϕ is D

M
-

valid, i.e., D
M
|= ϕ.

An algorithm for model checking whether a tempo-
ral formula p is valid over a finite-state fds D is pre-
sented in [19]. The paper presents a version of the algo-
rithm using explicit state enumeration methods as well as
a symbolic version. Based on the ideas developed in [22]
and [5], the approach calls for the construction of a tester
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for the negation of p. This is an fds D¬p whose computa-
tions are all the sequences which satisfy the negated for-
mula ¬p. Then, we form the synchronous parallel compo-
sition Dcomb =D‖|D¬p and check for feasibility. If Dcomb

is found to be feasible, this implies thatD has a computa-
tion which violates p and therefore p is not valid overD. If
Dcomb is found to be infeasible, we can conclude that p is
D-valid.

5 Control abstraction

Let U ⊆ V be a subset of the system variables. For a V -
state s, we denote by s⇓U the U -state obtained by project-
ing s ontoU . That is, the interpretation s restricted to the
domain U .

The state sequence σ̃ : s̃0, s̃1, . . . is defined to be an ob-
servation of the fdsD : 〈V,W,O,Θ, ρ,J , C〉 if σ̃ is a stut-
tering variant of the O-projection

σ⇓O= s0⇓O, s1⇓O, . . . ,

where σ : s0, s1, . . . is a computation ofD. Let Obs(D) de-
note the set of all observations of system D.

The two fds’s D
A

: 〈V
A
,W

A
,O

A
,Θ

A
, ρ
A
,J

A
, C

A
〉

andD
C

: 〈V
C
,W

C
,O

C
,Θ

C
, ρ
C
,J

C
, C

C
〉 are defined to be

comparable, if O
A

= O
C

and O
A
∩W

A
=O

C
∩W

C
. The

fds D
A

is an abstraction of the comparableD
C

, denoted
by D

C
v D

A
, if Obs(D

C
) ⊆ Obs(D

A
), i.e., every obser-

vation of D
C

is also an observation of D
A

. We refer to
D
C

and D
A

as the concrete and abstract systems, respec-
tively. The abstraction relation is obviously reflexive and
transitive.

It would have been very useful if the abstraction re-
lation as defined above, had been compositional with re-
spect to (asynchronous) parallel composition. That is, if
D
C
vD

A
had implied (D

C
‖Q)v (D

A
‖Q) for every fds

Q. Unfortunately, this is not the case.
Consider, for example, the fds’s corresponding to

programs incxand incypresented in Fig. 1. Up to stut-
tering and idling, both of these fds’s have the unique
observation

〈x : 0 , y : 0〉, 〈x : 1 , y : 1〉, 〈x : 2 , y : 2〉, . . .

It follows that incxand incyhave the same set of observa-
tions. In particular, this implies that incxv incy.

However, when we consider the programQ given by

in-out x:integer

loop forever do
m0 : x := 0

we find out that the observation

〈x : 0 , y : 0〉, 〈x : 1 , y : 1〉, 〈x : 0 , y : 1〉, 〈x : 1 , y : 1〉, . . .

belongs to Obs(incx ‖Q) but does not belong to the set
Obs(incy ‖Q). Consequently, while incxv incy,

(incx ‖Q) 6v (incy ‖Q),

which shows that the abstraction relationv is not compo-
sitional.

Obviously, the problem lies in the fact that the rela-
tion v is based on the set of observations of the closed-
system fds semantics of programs. The difference be-
tween programs incxand incycan be observed only when
we take into account actions of the environment, such as
resetting variable x to 0. In the definition of the compu-
atations (and therefore observations) of the fds assigned
to these programs, such actions are not represented.

Once we diagnose the malady, the remedy is quite
straightforward. We say that fds D

A
is a modular ab-

straction of the comparable D
C

, denoted by D
C
v
M
D
A

,
if Obs((D

C
)
M

) ⊆Obs((D
A

)
M

), i.e., every observation of
(D

C
)
M

the modularized version of D
C

is also an observa-
tion of (D

A
)
M

the modularized version ofD
A

.
Note that, while incy is a plain abstraction of incx,

it is not a modular abstraction of incx. To see this we
point to

〈s : 0 , x : 0 , y : 0〉, 〈s : 1 , x : 1 , y : 1〉, 〈s : 0 , x : 0 , y : 1〉,
〈s : 1 , x : 1 , y : 1〉, . . . ,

which is an observation of incx
M

but not of incy
M

.
When we upgrade from plain abstraction to modu-

lar abstraction, we obtain the desired property of com-
positionality of the abstraction relation with respect to
the operations of parallel composition and restriction, as
stated by the following claim:

Claim 1. Let D
C

and D
A

be two comparable fds’s such
that D

C
v
M
D
A

. Then, for every fds Q, and temporal
formula ϕ,

1. (D
C
‖Q)v

M
(D

A
‖Q)

2. (D
C

)
R
v
M

(D
A

)
R

3. D
A
|= ϕ implies D

C
|= ϕ

We describe these compositionality properties by saying
that the operations of parallel composition and restric-
tion are monotonic with respect to modular abstraction,
while temporal validity is anti-monotonic.

This indicates how we propose to use abstraction in
order to simplify the verification task. Namely, given
a property p to be verified over a complex system D

C
, we

use modular abstraction in order to derive a simpler sys-
tem D

A
and then verify that p is D

A
-valid. Note that the

implication is still in one direction. Namely, validity over
the abstract system implies concrete validity but not, nec-
essarily, vice versa. The most striking applications of this
strategy are whenD

C
is an infinite-state system, while its

abstractionD
A

is finite-state and thus amenable to verifi-
cation by model checking.
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in-out x:integer where x= 0
out y:integer where y = 0

loop forever do
`0 : (x, y) := (x+ 1, x+ 1)

− incx −

in-out x:integer where x= 0
out y:integer where y = 0

loop forever do
`0 : (x, y) := (y+ 1, y+ 1)

− incy −

Fig. 1. Programs incxand incy

The comparable fds’s P andQ are defined to be mod-
ularly equivalent, denoted P ∼

M
Q, if both P v

M
Q and

Qv
M
P .

6 Verification by abstract network invariants

In this section, we concentrate on cases in which the sys-
tem is a parallel composition P (n) : (P1 ‖ · · · ‖ Pn)

R
,

where each Pi is a finite-state system. The final restric-
tion of the parallel composition guarantees that no fur-
ther interference from the environment is possible. The
unbounded number of states for system P (n) comes from
the fact that we consider an infinite family of systems, and
yet wish to verify uniformly (i.e., for every value of n > 1)
that the property p is valid.

The general principles of the method and one of the
examples presented in this section are shared with [20].
The main differences between the two presentations are
that, while [20] considers processes communicating by
synchronous message passing, we focus here on communi-
cation by shared variables, and we find the abstraction we
use somewhat simpler to comprehend, perhaps due to the
different communication mechanisms.

For simplicity, assume that the property p only refers
to the observable variables of P1 and that processes

P2, . . . , Pn

are identical (up to renaming). The strategy we propose
can be summarized as follows:

Verification by abstract network invariants

1. Devise a network invariant I, which is an fds in-
tended to provide a modular abstraction for the paral-
lel composition P2 ‖ · · · ‖ Pn for any n.

2. Confirm that I is indeed a network invariant, by
model checking that P2 vM I and that (I ‖ I) v

M
I.

The technique of model checking a modular abstrac-
tion is presented in Sect. 6.3.

3. Model check D
R
|= p, where D

R
is the restricted sys-

tem (P1 ‖ I)
R

.

We argue that this strategy is sound. Namely, if D
R
|= p

then P (n) |= p for every n > 1. Step 2 of the strategy
establishes P2 ‖ · · · ‖ Pn vM I. By monotonicity of the
parallel composition (Claim 1), it follows that

P1 ‖ · · · ‖ Pn vM (P1 ‖ I).

By monotonicity of the restriction operation, we can con-
clude that

P (n) = (P1 ‖ · · · ‖ Pn)
R
v
M

(P1 ‖ I)
R

= D
R
.

Due to the anti-monotonicity of the validity relation, it
follows that D

R
|= p implies P (n) |= p, establishing that

the proposed strategy is sound.
Step 1 in the strategy is the only one requiring ingenu-

ity and which cannot be fully mechanized. However, while
presenting the examples, we will provide some explana-
tions and clues for the choices we made.

6.1 Mutual exclusion by semaphores

As our first running example, we use program mux-sem

presented in Fig. 2. The program consists of n processes.
Each process P [i] cycles through three possible locations:
Ni, Ti, and Ci. Location Ni represents the non-critical
activity which the process can perform without coordina-
tion with the other processes. Location Ti, is the “trying”
location, at which a process decides it needs to access its
critical location. At the trying location, the process waits
for the semaphore variable y to become 1. On entering the
critical section Ci, the process sets y to 0. Finally, Ci is
the critical location which should be reachable only exclu-
sively by one process at a time. On exit from the critical
section, variable y is reset to 1.

The mode local specified for variable y identifies y as
being owned by the entire system but not by any of the
individual processes. This specification ensures that the
variable y cannot be modified by an enviornment agent
external to the program. By the standard compilation of
spl programs, each process P [i] is associated with a jus-
tice requirement Ji : ¬Ci and a compassion requirement
Ci : (Ti∧y > 0, Ci). The justice requirement ensures that
process P [i] does not remain stuck forever at location Ci.

local y : natural where y = 1

n

i=1

P [i] ::


loop forever doNi : NonCritical

Ti : request y
Ci : Critical; release y




Fig. 2. Program mux-sem
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The compassion requirement ensures that P [i] does not
remain stuck forever at location Ti while y turns positive
infinitely many times. Note that a process may choose to
stay forever atNi or may get stuck at Ti if y turns positive
only finitely many times and then remains zero forever.
The latter behavior cannot occur in program mux-sem

but this can be established only by a global analysis of the
complete system.

In Fig. 3, we present process inv-cand, which is
our first candidate for the network invariant abstracting
P [2] ‖ · · · ‖ P [n]. In this section we choose to represent
fds’s by transition diagrams, in which we explicitly list
the fairness requirements. Process inv-cand can be ob-
tained by simpilfying a single copy of the concrete P [2].
The simplification consists of merging locations N and T
into a single location N and relaxing the fairness require-
ments associated with this combined location. This sim-
plification is suggested by noting that the main liveness
requirement of accessibility is studied only for process
P [1]. The only liveness properties we require from the en-
vironment processes P [2], . . . , P [n], is that they eventu-
ally exit their critical sections and release the semaphore.
Thus, while being at location N , process inv-cand may
choose non-deterministically to stay at N or move to C
if y equals 1. There is no justice requirement associated
with location N , due to the possibility that the process
may choose to remain there. On the other hand, with lo-
cation C, we associate the justice requirement ¬C which
excludes behaviors in which inv-cand get stuck atC. Let
us denote by Ca the fds corresponding to inv-cand .

A useful heuristic that often leads to the generation
of network invariants is forming the sequence of fds’s
I1 = Ca, I2 =Ca ‖Ca, I3 = I2 ‖ Ca, . . . , and comparing
every two successive Ii’s, hoping that the sequence will
converge. Convergence means that we identify an index
j ≥ 0 such that Ij ∼M Ij+1. Trying this approach with
the fds Ca fails. Comparing I2 : Ca ‖Ca with I1 : Ca, we
find that (I2)

M
can generate the observation

〈y : 1 , s : 0〉, 〈y : 0 , s : 1〉, 〈y : 1 , s : 0〉, 〈y : 0 , s : 1〉,
〈y : 1 , s : 1〉, 〈y : 0 , s : 0〉, 〈y : 1 , s : 1〉, · · · ,

which cannot be generated by (I1)
M

. Such a behavior
can be explained as a scenario in the behavior of P [2] ‖
P [3] under an unrestricted environment. First, P [2] en-

J : ¬C

Fig. 3. Process inv-cand, a candidate for a network invariant

ters its critical section according to the step 〈y : 1 , s :
0〉 → 〈y : 0 , s : 1〉. Then, while P [2] is still in its criti-
cal section, the environment raises y to 1, according to
the step 〈y : 0 , s : 1〉 → 〈y : 1 , s : 0〉 (we know that this
is an environment step because s′ = 0). Then P [3] en-
ters its own critical section, as recorded in 〈y : 1 , s : 0〉 →
〈y : 0 , s : 1〉. Following that, P [2] exits its critical section
(〈y : 0 , s : 1〉,→ 〈y : 1 , s : 1〉), the environment resets y
to 1 (〈y : 1 , s : 1〉 → 〈y : 0 , s : 0〉), and finally P [3] exits
(〈y : 0 , s : 0〉, 〈y : 1 , s : 1〉). What is special about this
behavior is that I2 exits twice in succession without an
observable entry between these two exits. In all behaviors
of I1 = Ca, which has only one copy of P [2], every two
exits must be separated by an observable entry.

In a similar way, we find that I3 can exit its critical
sections three times in succession, if the environment co-
operates, which cannot be done by I2. This shows that
the sequence I1, I2, . . . will never converge.

Looking closer at this example, we realize that the fac-
tor that differentiates between I1 and I2 and between I2

and I3 is their response to a behavior of the environment
which will never be realized in the closed system, namely
raising the semaphore variable to 1 while one of the pro-
cesses is in its critical section. This leads us to the next
(and final) abstraction Imux, presented in Fig. 4.

The system Imux behaves as Ca as long as the envi-
ronment behaves properly. However, once it detects that
the environment has raised the value of y from 0 to 1 while
the system was in the critical section, it goes into a chaos
control state in which “anything goes”. That is, all arbi-
trary sequences of values for the observable variables will
be accepted from this point on. It is obvious that Imux
is an abstraction of Ca because it differs from Ca in all
the additional behaviors it is ready to generate once it
reached the chaos state.

It is not difficult to verify that Imux is a network in-
variant. We model checked that Ca vM Imux and that
(Imux ‖ Imux)v

M
Imux.

It only remains to perform step 3 in the abstraction
strategy presented in the beginning of the section. We
form the closed system fds D = (P1 ‖ I)

R
and use model

checking to verify the liveness property D |= 2(N1 →
3C1). This has been done and has established that pro-
cess P [1] of program mux-sem has the property of acces-
sibility for any number of processes.

J : ¬C

Fig. 4. The fds Imux, a network invariant for mux-sem
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6.2 The dining philosophers problem

As a more advanced example, we applied the technique
described above to the problem of the dining philoso-
phers. As originally described by Dijkstra, n philosophers
are seated at a round table. Each philosopher alternates
between a thinking phase and a phase in which he be-
comes hungry and wishes to eat. There are n chop-sticks
placed around the table, one chop-stick between every
two philosophers. In order to eat, each philosopher needs
to acquire the chop-sticks on both sides. A chop-stick can
be possessed by only one philosopher at a time.

A solution to the dining philosophers problem, using
semaphores, is presented by program dine-contr of
Fig. 5.

In this program, philosophers P [2], . . . , P [n] reach
first for the chop-stick on their left, represented by sema-
phore variable c[j] for philosopher j, and then for their
right chop-stick (semaphore c[j⊕n 1]). Philosopher P [1]
behaves differently, reaching first for his right chop-stick
(c[2]) and only later for his left chop-stick (c[1]). We wish
to prove the liveness property of accessibility for each of
the philosophers, which can be specified by the temporal
formula

ψacc : 2(at−`2[j] → 3(at−`4[j])),

for every j = 1, . . . , n. This property ensures that every
hungry philosopher eventually gets to eat.

Proceeding through a sequence of abstraction steps
similar to the previous example, we finally wind up with
the fds Icontr presented in Fig. 6.

The diagram of Fig. 6 consists of two components that
operate in parallel, one taking care of the left semaphore
L and the other handling the right semaphore R. When-
ever an environment fault is detected, i.e., the environ-
ment raises a semaphore that has been lowered by the
system, both components escape to the chaos state after
which all behaviors are possible. By the graphical conven-
tions, the transitions to a chaos state have priority over
internal transitions such as the one connecting (Nr, R) to
(Cr ,¬R).

Since Icontr is intended to abstract behaviors of
a string of consecutive philosophers

in n: integer where n≥ 2
localc : array [1..n] where c= 1

n

j=2

P [j] ::



`0 : loop forever do
`1 :NonCritical
`2 :request c[j]
`3 :request c[j⊕n 1]
`4 :Critical
`5 :release c[j]
`6 :release c[j⊕n 1]




P [1] ::



`0 : loop forever do
`1 :NonCritical
`2 :request c[2]
`3 :request c[1]
`4 :Critical
`5 :release c[2]
`6 :release c[1]




Fig. 5. Program dine-contr: solution with one contrary philosopher

J : ¬Cr , C : (R, ¬C`)

Fig. 6. The fds Icontr, the network invariant for program
dine-contr

P [i] ‖ P [i+ 1] ‖ · · · ‖ P [j],

we should not be surprised that the behavior of the left
semaphore L is only loosely coupled with that of the
right semaphore R. This is because L stands for c[i] (as-
suming i > 1) the left semaphore of process P [i] the left-
most process in the string, while R stands for c[j⊕n 1]
the right semaphore of P [j], the rightmost philosopher.
There is still a weak coupling which is expressed through
the fairness requirement. For ordinary philosophers, who
take the right chop-stick last, the obligation to release
semaphore R once it is taken, can be guaranteed locally,
independently of the environment. This is expressed by
the justice requirement ¬Cr forbidding the system to re-
main forever in Cr with the semaphore R occupied. The
situation is different with the left semaphore L. No sub-
system (modeled by Icontr) can unconditionally guaran-
tee release ofL once it is taken. Consequently, the fairness
requirement guaranteeing the release of L is formulated
as the compassion requirement (R,¬C`) making the re-
lease of L (as implied by being at N`) conditional on the
infinite recurrence of an available R. Already at the level
of a single philosopher, after acquiring L the system pro-
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ceeds to acquire R. If R is not available with sufficient
frequency, the system will fail in obtaining it, and will
keep L occupied forever.

It is straightforward to verify (using model check-
ing) that Icontr modularly abstracts any of the processes
P [2], . . . , P [n] and that (Icontr ‖ Icontr)vM Icontr. It fol-
lows that Icontr is a network invariant for any sequence
of regular philosophers. We can combine Icontr with P [1]
to establish the accessibility properties of the contrary
philosopher P [1].

We can also verify the accessibility property for all
ordinary philosophers. To do so, we consider the combina-
tion P [1] ‖ Icontr ‖ P [ordinary] ‖ Icontr, in which we use
the network invariant Icontr as an abstraction for the se-
quence of philosophers separating P [1] from P [ordinary]
and then again as an abstraction for the sequence of
philosophers separating P [ordinary] from P [1] in the
other direction.

In all of these combinations, we should remember to
close the ring by identifying the leftmost semaphore of the
combination with the rightmost semaphore.

6.3 Model checking modular abstraction

When carrying out the abstraction process as described
in this section, we are repeatedly required to verify that
one fds modularly abstracts another. Most of the avail-
able computer aided verification (cav) tools for ltl (e.g.,
step [2] and tlv-basic [31]) are designed to support ver-
ification tasks. That is, they accept as inputs a system
description, equivalent to an fds D, and a temporal for-
mula ϕ and attempt to establish (or refute) that D |= ϕ.

In this section, we show how the modular abstraction
problem D

C
v
M
D
A

can be reduced into a verification
problem. This reduction can be used in order to establish
the modular abstraction relation between systems while
using the available ltl verification tools.

The idea of proving abstraction (equivalently refine-
ment) by forming a superposition of the abstract and con-
crete systems, as we do here, has been proposed in [17].
The underlying theory of proving abstraction by simula-
tion relations is thoroughly discussed in [1] and applied
in [21, 25, 29, 34].

In theory, for the case that both D
C

andD
A

are finite-
state, the modular abstraction problem is algorithmically
solvable. All that is required is to convert the two systems
into ω-automata, compute the complement of the D

A
-

automaton, and check that the languages of D
C

and D
A

have an empty intersection. However, very few symbolic
model checkers provide that capability of complementing
a system and, even when they do, this operation could be
exponentially expensive.

Instead, we base our approach on the simple obser-
vation that when D

A
is deterministic, it is possible to

construct a combined system which will try to emulate
the joint computation of the two systems. For the case

that D
A

is non-deterministic, we rely on the user to pro-
vide an additional restriction on the possible actions of
D
A

, reducing them to a single possible action. Thus, we
trade computational complexity for full automation, and
our approach may require user interaction.

Consider two comparable fds’s:

D
C

: 〈V
C
,W

C
,O

C
,Θ

C
, ρ
C
,J

C
, C

C
〉

and it’s proposed abstraction

D
A

: 〈V
A
,W

A
,O

A
,Θ

A
, ρ
A
,J

A
, C

A
〉,

and assume we wish to establish that D
C
v
M
D
A

. With-
out loss of generality, we can assume that V

C
∩V

A
= ∅,

but that there exists a 1-1 correspondence between the
variables of O

C
and those of O

A
.

We say that the fdsD
S

: 〈V
S
,W

S
,O

S
,Θ

S
, ρ
S
,J

S
, C

S
〉

is a superposition of D
C

and D
A

if it has the following
form:

V
S

=V
C
∪V

A

W
S

=W
C
∪W

A

O
S

=O
C
∪O

A

Θ
S

=Θ
C
∧Θ

A
∧Θd

∧((∃V
A

: Θ
A
∧Θd∧OA =O

C
) → O

A
=O

C
)

ρ
S

=(ρ
P
∧ ((∃V ′

A
: ρ

P
∧O′

A
=O′

C
)→O′

A
=O′

C
))

∨ (ρ
E
∧ ((∃V ′

A
: ρ

E
∧O′

A
=O′

C
)→O′

A
=O′

C
))

where
ρ
P

=ρ
C
∧ρ

A
∧ρd

ρ
E

= pres(W
C

)∧pres(W
A

)
J
S

=J
C

and C
S

=C
C

The general idea in the construction of the superposi-
tion system D

S
is that every computation of D

S
induces

a computation of D
C

(when projected on V
C

) and a run
of D

A
(when projected V

A
). Thus, a computation of D

S

can be viewed as a joint computation of the two systems
D
C

and D
A

. There are two desired features a successful
superposition of D

C
and D

A
should satisfy.

1. Every computation of D
C

is induced by some com-
putation of D

S
. Thus, the additional conjuncts in Θ

S

and ρ
S

should not restrict the behavior of D
C

.
2. To the best of its ability, D

S
should attempt to main-

tain the correspondence O
C

=O
A

. This explains the
role of the implications conjuncted into Θ

S
and ρ

S
.

These implications require that, if it is possible to
choose abstract variables which are consistent with
the constraints of D

A
and maintain O

C
= O

A
, then

such a choice should be made.
Note also that the system D

S
has already been mod-

ularized by defining ρ
S

as the choice between a system
step ρ

P
which is compatible with ρ

C
∧ρ

A
and an environ-

ment step ρ
E

which only guarantees the preservation of
W
S

=W
C
∪W

A
.

The system D
S

has Θd and ρd as open parameters,
which should be provided by the user. Once they are spec-
ified, D

S
can be automatically constructed from D

C
and
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D
A

, and this is what has been implemented in the current
tlv-basic implementation of the modular abstraction
checker within tlv.

A very simple choice is to take Θd = ρd = 1, namely,
take them both as being identically true. This choice is
adequate in all cases that the abstract systemD

A
is deter-

ministic. Determinism in the abstraction context means
that, for every D

A
-state s and a set of specified values

U for the observable variables O
A

, there exists at most
one s′, a ρ

A
-successor of s, such that s′[O

A
] = U . All the

examples presented in this section, such as the network
invariants presented in Fig. 4 and Fig. 6 are determinis-
tic. In fact, one of the reasons for eliminating the trying
location T in process inv-cand and the other network in-
variants was to make them deterministic. In view of this,
all the modular abstractions mentioned in this section
were resolved by superposition systems in which we have
taken Θd = ρd = 1.

The following claim makes precise the relation be-
tween computations of D

S
, computations of D

C
and runs

of D
A

.

Claim 2. If σ is a computation of D
S

, then σ⇓V
C

is a com-
putation of D

C
and σ⇓V

A
is a run of D

A
.

In the preceding discussion, we listed two features which
are desirable in a good superposition. However, these
features are not automatically guaranteed. In Fig. 7, we
present a proof rule whose premises guarantee that the
system D

S
has the desired features.

A1.ΘC→∃VA : ΘA ∧Θd
A2.ρC →∃V

′
A

: ρA ∧ρd

A3.DS |=


2(OC =OA)
∧
∧
J∈J

A
23J

∧
∧

(p,q)∈C
A

(23p→ 23q)


DC vM DA

Fig. 7. Rule mod-abst

Premise A1 guarantees that for every value assignment
to the concrete variables V

C
satisfying Θ

C
, there exists

a value assignment to the abstract variables V
A

satisfy-
ing Θ

A
∧Θd. Thus, Θ

A
∧Θd does not restrict the choice of

values for V
C

.
Premise A2 stipulates a similar non-restriction re-

quirement for ρ
C

. It requires that, for every value as-
signment to V

C
, V ′

C
, and V

A
, which make ρ

C
(V
C
, V ′

C
)

true, there exists a value assignment to V ′
A

which satisfies
ρ
A

(V
A
, V ′

A
)∧ρd(V

C
, V ′

C
, V

A
, V ′

A
). Thus, ρ

A
∧ρd does not

restrict the choice of values for V
C

, V ′
C

, and V
A

.
Finally, premise A3 requires that every computation

σ of D
S

maintains the invariant 2(O
C

=O
A

), and σ⇓V
A

,
the projection of σ on the abstract variables V

A
, yields

a computation ofD
A

. According to Claim 2, σ⇓V
A

is a run
of D

A
. Adding to it the fact that σ satisfies all the fair-

ness requirements of D
A

, as established by A3, we can
conclude that σ⇓V

A
is also a computation of D

A
.

The following claim states that rule mod-abst is
sound.

Claim 3. If the premises of rule mod-abst are valid for
some choice of Θd and ρd, then D

A
is a modular abstrac-

tion of D
C

.

7 Data abstraction

In this section, we present a general methodology for data
abstraction, strongly inspired by the notion of abstract in-
terpretation [9]. Since in this case we do not deal with
compositionality and modularization, we use a slightly
simpler fds model, in which system variables are not clas-
sified into W and O.

Let D = 〈V,Θ, ρ,J , C〉 be an fds, and Σ denote the
set of states of D, the concrete states. Let α : Σ 7→ Σ

A
be

a mapping of concrete states into abstract states. We say
that α is a finitary abstraction mapping, if Σ

A
is a finite

set. The strategy of verification by data abstraction can
be summarized as follows:

Verification by data abstraction

1. Define a finitary abstraction mapping α to ab-
stract the (possibly infinite) concrete fds D
into a finite, abstract fds Dα.

2. Abstract the concrete temporal property ψ into
a finitary abstract temporal property ψα.

3. Verify Dα |= ψα.
4. Infer D |= ψ.

An implementation of this general strategy which speci-
fies a recipe for defining the abstractions Dα and ψα for
a given α is called a data abstraction method.

A data abstraction method is said to be safe (equiv-
alently, sound) if, for every fds D, temporal formula ψ,
and a state abstraction mapping α (not necessarily fini-
tary), |= ψα implies |= ψ, and Dα |= ψα implies D |= ψ.

7.1 Safe abstraction of temporal formulas

To provide a syntactic representation of the abstraction
mapping, we assume a set of abstract variables V

A
and

a set of expressions Eα, such that the equality V
A

=
Eα(V ) syntactically represents the semantic mapping α.

Let p(V ) be an assertion. We wish to define the ab-
straction pα(V

A
) such that |= pα(V

A
) implies |= p(V ). We

introduce the operator α−, defined by

α−(p(V )) : ∀V
(
V
A

= Eα(V ) → p(V )
)
∧map(VA),

where map(VA) : ∃V (VA = Eα(V )). The assertion α−(p)
holds for an abstract state S ∈ Σ

A
iff S is mappable and

the assertion p holds for all concrete states s ∈Σ such that
s ∈ α−1(S), i.e., all states s such that S = α(s). Alterna-
tively, α−(p) is the largest set of mappable statesX ⊆ΣA
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such that α−1(X)⊆ ‖p‖, where ‖p‖ represents the set of
states which satisfy the assertion p. If α−(p) is valid, then
‖α−(p)‖= Σ

A
implying α−1(‖α−(p)‖) = Σ which, by the

above inclusion, leads to ‖p‖= Σ establishing the validity
of p.

For complex formulas, we have to consider assertions
which are nested within an odd number of negations. To
abstract an assertion under such a context, we define the
operator α+, dual to α−, as follows

α+(p(V )) : ∃V
(
V
A

= Eα(V ) ∧ p(V )
)
.

The assertion α+(p) holds for an abstract state S ∈Σ
A

iff
the assertion p holds for some concrete state s ∈ Σ such
that s ∈ α−1(S), i.e., some state s such that S = α(s). Al-
ternatively, α+(p) is the smallest set X ⊆ ΣA such that
‖p‖ ⊆ α−1(X).

An abstraction α is said to be precise with respect to an
assertion p if α+(p)∼ α−(p). A sufficient condition for α
to be precise with respect to p is that the abstract vari-
ables include a Boolean variable Bp with the definition
Bp = p.

Having defined the abstractions α− and α+ which
operate on assertions, we lift them to the abstractions
α−τ and α+

τ which can be applied to temporal formulas.
These temporal abstractions are defined inductively, as
presented in Fig. 8.

We respectively refer to α−τ (p) and α+
τ (p) as the uni-

versal (or contracting) and existential (or expanding) ab-
straction of the formula p.

Note that equivalent temporal formulas may have dif-
ferent abstractions. For example, the contracting abstrac-
tions of the equivalent formulas

p∨ (q∨3r) and (p∨ q)∨3r,

where p, q, and r are assertions (state formulas) are re-
spectively given by the formulas

α−(p)∨α−(q)∨3α−(r) and α−(p∨ q)∨3α−(r),

which may be inequivalent. Similarly, the respective ab-
stractions of

p∧ (q∧2t) and p∧ q

For a state formula p,

α−τ (p) =α−(p) α+
τ (p) =α+(p)

For a formulaϕ ∈ {¬p, p∨ q,◦p, pUq},which is not a state formula,

α−τ (¬p) =¬α+
τ (p) α+

τ (¬p) =¬α−τ (p)

α−τ (p∨ q)=α−τ (p)∨α−τ (q) α+
τ (p∨ q)=α+

τ (p)∨α+
τ (q)

α−τ (◦p) =◦α−τ (p) α+
τ (◦p) =◦α+

τ (p)

α−τ (pU q) = (α−τ (p))U (α−τ (q)) α+
τ (pU q) =(α+

τ (p))U (α+
τ (q))

Fig. 8. Abstractions of temporal formulas

are

α+(p)∧α+(q) and α+(p∧ q).

Claim 4. Let ψ be a temporal formula and α be an ab-
straction mapping. Then

|= α−τ (ψ) implies |= ψ and |= ψ implies |= α+
τ (ψ)

The proof of this claim appears in [18].
In the following sections, we denote by ψα the con-

tracting abstraction α−τ (ψ) of the temporal formula ψ.

7.2 Safe abstraction of FDS’s

In the previous subsection, we established that the ab-
straction of the temporal formula ψ into ψα = α−τ (ψ) is
safe (equivalently sound) in the sense that if ψα is valid,
then so is ψ.

Here we will establish sufficient conditions for the joint
abstraction of the fds D and the temporal formula ψ to
be safe (sound) in the sense that Dα |= ψα implies D |= ψ.
To do so, we reduce the problem of the safe joint abstrac-
tion of an fds and a temporal property into the problem
of safe abstraction of a single temporal property, a prob-
lem that has been solved in the preceding subsection.

Given an fds D = 〈V,Θ, ρ,J , C〉, there exists a tem-
poral formula Sem(D), called the temporal semantics of
D [18], such that, for every infinite state sequence σ, it
holds that σ |= Sem(D) iff σ ∈ Comp(D). The temporal
semantics of an fds D is given by

Sem(D) :

Θ(V )∧2ρ(V,◦V )∧∧
J∈J 23J(V ) ∧∧
(p,q)∈C (23p(V )→23q(V ))

 ,

where we use the temporal expression ◦V to denote the
next values of the system variables V . Given a verification

problem D
?

|= ψ, we construct the temporal formula

Ver(D, ψ) : Sem(D) → ψ.

It is not difficult to establish that D |= ψ iff Ver(D, ψ) is
valid.
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Applying a safe α-abstraction to Ver(D, ψ), we obtain

α−τ (Ver(D, ψ)) =

α+(Θ) ∧ 2α++(ρ) ∧∧
J∈J 23(α+(J) ∧∧
(p,q)∈C (23α−(p)→ 23(α+(q))


where

α++(ρ) : ∃V,◦V :

VA = Eα(V ) ∧
◦V

A
= Eα(◦V )∧

ρ(V,◦V )


Based on the way α−τ (Ver(D, ψ)) abstracts the different
components of D, we define the α-abstracted version of D
to be the fds Dα = 〈V

A
,Θα, ρα,J α, Cα〉, where

Θα=α+(Θ) ρα=α++(ρ)
J α={α+(J) | J ∈ J}
Cα={(α−(p), α+(q)) | (p, q) ∈ C}

The following claim defines our recipe for verification by
data abstraction and states its soundness (safety).

Claim 5. (Soundness) The abstraction method which, for
a given α, abstracts ψ into α−τ (ψ) and abstracts D into
Dα = 〈V

A
,Θα, ρα,J α, Cα〉, is safe. That is,

Dα |= ψα implies D |= ψ.

Proof. An immediate consequence of claim 4 and the def-
initions of Dα and ψα. 2

local y1, y2 : natural where y1 = y2 = 0
`0 : loop forever do
`1 :NonCritical
`2 :y1 := y2 + 1
`3 :await y2 = 0∨y1 < y2

`4 :Critical
`5 :y1 := 0



||

m0 : loop forever do
m1 :NonCritical
m2 :y2 := y1 + 1
m3 :await y1 = 0∨y2 ≤ y1

m4 :Critical
m5 :y2 := 0




− P1 − − P2 −

Fig. 9. Program bakery-2: the Bakery algorithm for two processes

localBy1=0, By2=0, By1<y2 : boolean initially By1=0 =By2=0 = 1, By1<y2 = 0
`0 : loop forever do
`1 :NonCritical
`2 : (By1=0, By1<y2) := (0, 0)
`3 :awaitBy2=0∨By1<y2

`4 :Critical
`5 : (By1=0, By1<y2) := (1,¬By2=0)



||

m0 : loop forever do
m1 :NonCritical
m2 : (By2=0, By1<y2) := (0, 1)
m3 :awaitBy1=0∨¬By1<y2

m4 :Critical
m5 : (By2=0, By1<y2) := (1, 0)




− P1 − − P2 −

Fig. 10. Program Bakery-2: the Bakery algorithm for two processes

As an example, we consider program bakery-2, pre-
sented in Fig. 9.

Program bakery-2 is obviously an infinite-state sys-
tem, since the variables y1 and y2 can assume arbitrarily
large values.

The temporal properties we wish to establish are
given by

ψexc:2¬(at−`4∧at−m4)
ψacc:2(at−`2 → 3at−`4),

The safety property ψexc requires mutual exclusion, guar-
anteeing that the two processes never co-reside in their
respective critical section at the same time. The liveness
property ψacc requires accessibility for process P1, guar-
anteeing that, whenever P1 reaches location `2 it will
eventually reach location `4.

Following [3], we define abstract Boolean variables
Bp1 , Bp2 , . . . , Bpk , one for each atomic data formula,
where the atomic data formulas for bakery-2 are y1 = 0,
y2 = 0, and y1 < y2. Note that the formula y2 ≤ y1 is
equivalent to the negation of y1 < y2 and needs not be
included as an independent atomic formula.

The abstract system variables consist of the concrete
control variables, which are left unchanged, and a set
of abstract Boolean variables Bp1 , Bp2 , . . . , Bpk . The ab-
straction mapping α is defined by

α : {Bp1 = p1, Bp2 = p2, . . . , Bpk = pk}

That is, the Boolean variableBpi has the value true in the
abstract state iff the assertion pi holds at the correspond-
ing concrete state.
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It is straightforward to compute the α-induced ab-
stractions of the initial condition Θα and the transition
relation ρα. In Fig. 10, we present program Bakery-2

(with a capital B), the α-induced abstraction of program
bakery-2.

Since the properties we wish to verify refer only to
the control variables (through the at−` and at−m expres-
sions), they are not affected by the abstraction. Program
Bakery-2 is a finite-state program, and we can apply
model checking to verify that it satisfies the two proper-
ties of mutual exclusion and accessibility. By Claim 5, we
can infer that the original program bakery-2 also satis-
fies these two temporal properties.

7.3 Augmentation by progress monitors

Program Bakery-2 is an example of successful data
abstraction. However, there are cases when abstraction
alone is inadequate for transforming an infinite-state sys-
tem satisfying a property into a finite-state abstraction
which maintain the property. In the following we illus-
trate the problem and the proposed solution on a simple
example. For the treatment of the general case, see [18]. In
Fig. 11, we present a simple looping program. The assign-
ment at statement `2 assigns to y non deterministically
the values y+ 1 or y. The property we wish to verify is
that program sub-add always terminates, independently
of the initial value of the natural variable y.

A natural abstraction for the variable y is defined by

Y =

if y = 0 then zero
else if y = 1 then one
else large,


where y is abstracted into the three-valued domain

{zero, one, large}.

However, applying this abstraction yields the abstract
program sub-add-abs-1, presented in Fig. 12, where the
abstract functions sub2 and add1 are defined by

sub2 (Y ) =

(
if Y = {zero,one} then zero
else {zero,one, large},

)

add1 (Y ) =

(
if Y = zero then one
else large.

)
Unfortunately, program sub-add-abs-1 need not termi-
nate, because the function sub2 can always choose to
yield large as a result.

Termination of programs like program sub-add can
always be established by identification of a progress meas-
ure that never increases and sometimes is guaranteed
to decrease. In this case, for example, we can use the

y : natural

`0 : while y > 1 do`1 : y := y−2
`2 : y := {y+ 1, y}
`3 : skip


`4 :

Fig. 11. Program sub-add

Y : {zero, one, large}

`0 : while Y = large do`1 : Y :=sub2 (Y )
`2 : Y :={add1 (Y ), Y }
`3 : skip


`4 :

Fig. 12. Program sub-add-abs-1 abstracting program sub-add

y : natural
`0 : while y > 1 do`1 : y : = y−2

`2 : y : = {y+ 1, y}
`3 : skip


`4 :

‖|


define δ = y+ at−`2
inc : {−1, 0, 1}

m0 : always do
inc : = comp(δ, δ′)


− sub-add − − monitor Mδ −

Fig. 13. Program sub-add composed with a monitor

progress measure δ : y+ at−`2 which never increases and
always decreases on the execution of statement `1. To
obtain a working abstraction, we first compose program
sub-add with an additional module, to which we refer as
the progress monitor for the progress measure δ, as shown
in Fig. 13.

The construct always do appearing in monitor Mδ

means that the assignment which is the body of this con-
struct is executed at every step. The comparison function
comp(δ, δ′) is defined by

comp(δ, δ′) =

if δ < δ′ then 1
else if δ = δ′ then 0
else−1.


Note that the expressions on the right-hand-side of the
assignments in the monitor allow references to the new
values of δ as computed in the same step by the monitored
program.

The presentation of the monitor module Mδ in Fig. 13
is only for illustration purposes. The precise definition of
this module is given by the following fds:

V = VD ∪{inc : {−1, 0, 1}}
Θ : t

ρ : inc′ = comp(δ, δ′)
J : ∅, C : {(inc < 0inc > 0)}
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where VD are the system variables of the monitored
fds D. Thus, at every step of the computation, module
Mδ compares the new value of δ (δ′) with the current
value, and sets variable inc to -1, 0, or 1, according to
whether the value of δ has decreased, stayed the same,
or increased, respectively. This fds has no justice re-
quirements but has the single compassion requirement
(inc < 0, inc > 0) stating that δ cannot decrease infinitely
many times without also increasing infinitely many times.
This requirement is a direct consequence of the fact that
δ ranges over the well-founded domain of the natural
numbers, which does not allow an infinitely decreas-
ing sequence.

It is possible to represent this composition as (almost)
equivalent to the sequential program presented in Fig. 14,
where we have conjoined the repeated assignment of mod-
ule Mδ with every assignment of process sub-add. The
“almost” qualification admits that we did not conjoin this
assignment with the transition associated with location
`0 which tests the value of y and decides when to termi-
nate. In a fully formal treatment of this example, the as-
signment will also be conjoined to this testing transition.

The abstraction of the program of Fig. 14 will abstract
y into a variable Y ranging over {zero, one, large}. The
variable inc, ranging over the finite domain {−1, 0, 1},
is not abstracted. The resulting abstraction is presented
in Fig. 15.

The program sub-add-abs-2 (Fig. 15) differs from
program sub-add-abs-1 (Fig. 12) by the additional com-
passion requirement (inc < 0, inc > 0). However, it is this
additional requirement which forces program sub-add-

abs-2 to terminate. This is because a run in which sub1
always yields large as a result is a run in which inc is nega-
tive infinitely many times (on every visit to `1) and is

y : natural
inc : {−1, 0, 1}

`0 : while y > 0 do`1 : (y, inc) : = (y−2, comp(δ, δ′))
`2 : (y, inc) : =({y+ 1, y}, comp(δ, δ′))
`3 : inc : = comp(δ, δ′)


`4 :

Fig. 14. A sequential equivalent of the monitored program

Y : {zero, one, large}
inc : {−1, 0, 1}
compassion (inc < 0, inc > 0)

`0 : while Y = large do`1 : (Y, inc) : =(sub2 (Y ), −1)
`2 : (Y, inc) : =({add1 (Y ), Y }, {0,−1})
`3 : inc : =0


`4 :

Fig. 15. Abstracted version of the monitored- Program
sub-add-abs-2

never positive beyond the first state. The fact that sub-

add-abs-2 always terminates can now be successfully
model-checked.

The extension to the case that the progress measure
ranges not over the naturals but over lexicographic tuples
of naturals is straightforward.

7.4 The data abstraction method is complete

In a separate work [18], concentrating on the data ab-
straction method, we have established that this method is
relatively complete. Completeness in this context means
that for every (possibly infinite) system D and a tempo-
ral property ψ, such that D |= ψ, there exists a (progress)
monitorMδ whose composition withD does not constrain
the computations of D, and a finitary state abstraction
mapping α, such that (D‖|Mδ)

α |= ψα. This implies that
whenever ψ is a property valid for D, we can apply the
method of data abstraction described in this section in
order to formally verify that ψ is D-valid.

8 Conclusions

The paper presented two central techniques for reducing
a big verification task into several smaller ones. These
techniques are especially impressive when they reduce an
infinite-state system into a finite-state one.

The first technique is based on control abstraction
and reduces an unbounded environment for a single mod-
ule into an abstract environment model which repre-
sents the relevant features of the environment. Often,
the unbounded environment represents a set of brother
processes and the derived abstract model represents
a network-invariant which is independent of the size of
this set.

The second technique is that of data abstraction in
which variables ranging over infinite domains are ab-
stracted into variables ranging over finite domains. The
method presents a general recipe for computing such an
abstraction for every user-provided state mapping, such
that the abstraction preserves all counter-examples to
any temporal property. This means that if the property
has been verified to be valid on the abstract level, its con-
crete version is guaranteed to be valid (no false positives).

An important feature of our formulations of these two
methods is that they are not restricted to the verification
of safety properties as are many previous formulations of
similar approaches, but deal quite effectively with live-
ness properties, in fact with all temporally expressible
properties. On the system side, they take full account of
both weak (justice) and strong (compassion) fairness re-
quirements.
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