
Int J STTT (1999) 2: 208–218 1999 Springer-Verlag

Special section on model checking

Pragmatics of model checking: an STTT special section∗

Rance Cleaveland

Department of Computer Science, SUNY at Stony Brook, Stony Brook, NY 11794-4400, USA

Abstract. Since its discovery in the early 1980s, model
checking has emerged as one of the most exciting areas
in the field of formal verification of system correctness.
The chief reason for this enthusiasm resides in the fact
that model checkers establish in a fully automated man-
ner whether or not a system satisfies formal require-
ments; users need not construct proofs. Until the early
1990s, however, the practical impact of model checking
was modest, in large part because the state-explosion
problem limited the applicability of the technology. Re-
cent advances in the field have dramatically expanded the
scope of model checking, however, and interest in it on
the part of practitioners is growing. This special section
surveys several recent approaches to attacking the state
explosion that are supporting the continued advancement
of model checking as a viable technology for improved sys-
tem design.

Key words: Model checking – Temporal logic – State ex-
plosion – System verification

1 Introduction

Model checking [20, 22, 57] has emerged as one of the
most promising developments of the past two decades in
the area of formal methods for system correctness. As
the term suggests, in model checking one checks whether
a mathematically precise description of a system is
a model of, or satisfies, a mathematically precise descrip-
tion of its requirements. The crucial insight underpinning
the interest in model checking is that when the system

∗ Research supported in part by NSF grants CCR-9505562 and
CCR-9705998, and AFOSR grants F49620-95-1-0508 and F49620-
96-1-0087.

descriptions are finite-state, and the requirements are ex-
pressed in temporal logic [33, 52], then the satisfaction
check can be performed algorithmically, without requir-
ing interaction with the user. This contrasts with more
traditional approaches to system verification, which rely
on user-generated proofs that systems meet their require-
ments. Indeed, the term “model checking” has become
virtually synonymous with the (more precise) phrase “au-
tomatic temporal-logic model checking,” although other
automated analyses, including checks of refinement rela-
tions between systems [10, 12, 18, 27, 41, 45, 55, 60], may
also be seen as instances of the general notion. In the re-
mainder of this note we use “model checking” to mean
“automatic temporal-logic model checking.”

Despite the obvious appeal of model checking it has
only been within the past five years that it has begun
attracting serious attention from engineers, such as hard-
ware and communications-protocol designers, who build
finite-state systems. In addition to pedagogical and cul-
tural reasons, a key technical difficulty has impeded the
uptake of this technology: the state-explosion problem.
State explosion results from the fact that, in general, the
size of a state space of a system grows exponentially in
the size of the system description. This phenomenon has
several causes, two of which include the following.

– If the systemcontains data elements (variables, latches,
etc.) then the number of states is usually exponential
in the number of such elements.

– If a system consists of several parallel components,
then the number of system states is usually propor-
tional to the product of the sizes of the state spaces of
the individual processes.

Consequently, while the best traditional model-checking
algorithms [22, 29, 57, 63] are linear in the number of
states of a system, their applicability is severely restricted
by the prohibitive number of states systems can have.

R. Cleaveland: Pragmatics of model checking: an STTT special section 209

Over the past decade, researchers have begun to de-
velop effective techniques for ameliorating the conse-
quences of state explosion. Some of these approaches
have been implemented in different verification tools and
exercised on various case studies, with promising re-
sults [26]. Industrial interest, especially in the hardware
community but also in the telecommunications and em-
bedded systems areas, has grown significantly [42, 58]
with companies such as Cadence, Chrysalis, CS Verilog,
and Telelogic marketing model checkers as part of their
system design automation packages, and other compa-
nies such as Intel, Lucent, and HP supporting internal
model-checking groups.

Despite this developing industrial interest, however,
model checking represents only a small part of overall
industrial and governmental investment in system devel-
opment, and new methods for coping with state explosion
are needed for the technology to continue its advance.
This special section surveys some of the recent promising
approaches to this problem. Each of the topics presented
has a sound mathematical basis, has been implemented in
a tool, and has been used to undertake at least one signifi-
cant case study.

The remainder of this note sets the stage for the pa-
pers to come by providing some general background in
temporal logic and model checking. The next section re-
views basic definitions needed to understand temporal
logics and their use in specifying system requirements.
The following section then describes the classic model-
checking algorithm of [22] and points out how state ex-
plosion affects its behavior. The paper closes with brief
descriptions of the results presented in the rest of the spe-
cial section.

2 Temporal logic and state machines

The temporal-logic model-checking problem may be
phrased abstractly as follows.

Given: A system description and a formula in tempo-
ral logic.

Determine: Whether or not the system satisfies the
formula.

Model-checking algorithms take two inputs – a system
and a formula – and return a yes/no answer, depending
on whether or not the system satisfies (“is a model of”)
the formula. (Some model checkers also return diagnostic
information in the event the answer is “no”.) Generally
speaking, model checking is only guaranteed to be decid-
able if the system in question contains at most a finite
number of reachable states, although for some classes of
infinite-state systems the problem may also be solved au-
tomatically [3–5, 17, 40].

Model-checking tools typically provide users with
a programming-like notation for describing systems. The
tool then“compiles”system descriptions into (finite-)state
machines that are given, together with the temporal logic

formula, to the model-checking algorithm. The intention
behind the state machines is that they encode all the pos-
sible states and execution steps a system may exercise
as it runs; the algorithms use this information together
with the semantics of the temporal logic to calculate their
answers.

2.1 State machines

In the model-checking literature one may find two major
classes of state machines: Kripke structures , and labeled
transition systems. We present the mathematical defini-
tions of these concepts and discuss briefly the kinds of
systems they are generally used to model.

Kripke structures A Kripke structure contains five kinds
of information; hence, mathematically, a Kripke struc-
ture may be represented as a quintuple 〈S,P , `,−→, sI〉.
These five components have the following interpretation.

– S is a set of states.
– P is a set of atomic propositions that may be true in

some states and false in others.
– ` : S −→ 2P , the labeling function, maps states to sets

of atomic propositions satisfied by the states. So if p ∈
`(s) then proposition p holds in state s, and doesn’t
hold otherwise.

– −→⊆ S×S, the transition relation, indicates which
execution steps are possible. Intuitively, if 〈s, s′〉 ∈−→
then when the system is in state s it may perform an
execution step and evolve to state s′. Following the
usual notational convention, we write s−→ s′ in lieu
of 〈s, s′〉 ∈−→.

– sI ∈ S is the designated start state.

One may find variants of this definition in the liter-
ature: sometimes P is left implicit, and in some situa-
tions a nonempty set of start states, rather than a sin-
gle start state, is specified. It is also common to require
that the transition relation −→ be total , i.e., that every
state has at least one outgoing transition. Some Kripke-
structure-based formalisms are equipped with fairness
constraints that disallow certain pathological execution
sequences [52].

Kripke structures generally model systems that are
closed in the sense that they execute without interacting
with their environments. The atomic propositions typic-
ally refer to artifacts, such as values of variables, coming
from the (user-level) system-modeling notation. For ex-
ample, in the UNITY language [19] one represents sys-
tems as collections of if-then statements whose bodies
assign values to variables. If x is such a variable, an ex-
ample atomic proposition might be x > 0, which is true in
some states and false in others.

Labeled transition systems Labeled transition systems
differ from Kripke structures by allowing transitions as
well as states to bear labels. The set of transition labels,

210 R. Cleaveland: Pragmatics of model checking: an STTT special section

or actions, must therefore be part of the description of
a labeled transition system. Mathematically, a labeled
transition system is a sextuple 〈S,P ,A, `,−→, sI〉.

– The interpretation attached to S,P , `, and sI are the
same as for Kripke structures.

– A is a set of actions.
– The transition relation −→⊆ S×A×S labels transi-

tions with actions. Intuitively, if 〈s, a, s′〉 ∈−→, and if
the system is in state s, then it may perform an exe-
cution step and evolve to state s′ provided that the en-
vironment enables action a. Traditionally, one writes
s

a
−→ s′ in lieu of 〈s, a, s′〉 ∈−→.

As with Kripke structures, one may find minor vari-
ations of this definition in the literature. In process al-
gebras [7, 11, 46, 54], for instance, the set P is typically
taken to be empty, or to contain only the propositions tt
(for “true”) and ff (for “false”) which hold of all and no
states, respectively. In both cases P and ` are omitted,
and labeled transition systems become quadruples. Also,
the start state sI is sometime left out, in which case the
labeled transition system actually defines a collection of
systems differentiated on the basis of which state is the
start state.

In contrast with Kripke structures, labeled transi-
tion systems are usually used to model open systems
that interact with their environments. The actions encode
these interactions and are often interpreted as commu-
nications, i.e., as sends and receives. So if s

a
−→ s′ and

a is viewed as reception of an input, then the transi-
tion can “fire” only if the environment enables the input
by providing the corresponding output. Mathematically,
Kripke structures may be seen as labeled transition sys-
tems whose action set A contains exactly one element.

2.2 Temporal logics

Temporal logics provide constructs for describing the
properties systems have as they evolve over time. Differ-
ent logics are generally used for Kripke structures and
labeled transition systems, with notations like Computa-
tion Tree Logic (CTL) [22] and Linear-Time Temporal
Logic (LTL) [52, 56] being favored for the former and the
modal mu-calculus (also known as the propositional mu-
calculus) [49, 61] being used for the latter.

2.2.1 Logics for Kripke structures

Temporal logics for Kripke structures traditionally pro-
vide operators for describing properties of individual ex-
ecution sequences of systems together with mechanisms
for quantifying over such sequences. The number of such
logics is vast, and a summary of them all lies beyond the
scope of this note; the interested reader may consult the
survey paper of Emerson [33] for an overview. Here we
focus on the temporal logic CTL∗ [35] and various of its

sublogics; these have received the bulk of attention from
tool builders in the Kripke-structure community.

CTL∗ formulas fall into two categories. Path formulas
permit properties to be defined for execution sequences
(i.e., sequences of states) in a given Kripke structure,
while state formulas allow properties to be defined for
states. State formulas are the ones used to define prop-
erties of systems, the idea being that if a system’s start
state satisfies a state formula, then the system is deemed
to have the given property.

Path formulas have the following form.

– Any state formula S is also a path formula; the inten-
tion is that a path satisfies S if the initial state on the
path does.

– If P is a path formula, then so is ¬P , the “negation”
of P . A path satisfies ¬P if it does not satisfy P .

– If P and Q are path formulas, then so is P ∧Q, the
“conjunction” of P and Q. A path satisfies P ∧Q if it
satisfies both P and Q.

– If P is a path formula, then XP is a path formula. X is
often referred to as the “next-state” operator; a path
satisfies XP if the suffix, or “tail”, starting with the
state after the initial one satisfies P .

– If P andQ are path formulas, then so is P UQ. A path
satisfies P UQ if it keeps P true “until” it makes Q
true. More precisely, the path satisfies P UQ if some
suffix of the path satisfiesQ and every suffix up to this
one satisfies P .

In addition to these operators, formulas typically use the
following derived constructs.

– Additional propositional connectives such as ∨ (“or”)
and→ (“implies”) can be encoded in terms of¬ and∧.
Specifically, P ∨Q may be rendered as ¬((¬P)∧
(¬Q)) (“it is not the case that both P and Q are
false”) and P →Q as (¬P)∨Q.

– FP holds of paths in which path formula P eventu-
ally becomes true. It may be encoded as tt UP (“true
holds until P does”). Here tt, a formula that holds of
any path, is defined as S∨ (¬S) for an arbitrary state
formula S.

– GP holds of paths in which P remains true forever.
This may be defined as ¬F(¬P) (“it is not true that P
is eventually false”).

The operators X,U,F and G are often called path modal-
ities; their meanings are illustrated in Fig. 1. In the lit-
erature one sometimes finds XP , FP and GP written as
©P ,3P and 2P , respectively.

State formulas are intended to be interpreted with re-
spect to states in a Kripke structure. They may be defined
as follows, where P , a parameter to the definition, con-
tains the set of atomic propositions.

– Any atomic proposition p ∈ P is a state formula.
A state satisfies such a p if p belongs to the set that the
labeling in the Kripke structure assigns to the state.

– If S is a state formula then so is its negation, ¬S.
A state satisfies ¬S if it does not satisfy S.

R. Cleaveland: Pragmatics of model checking: an STTT special section 211

. . . .

. . . .

. . . .

. . . .

PX

P QU

P

P

P

P

G

F

P P P Q

P

P

P P P P P P

[[

[[

[[[[[

[[

[[[[[

Fig. 1. An illustration of the path modalities

– If S and T are state formulas then so is their conjunc-
tion, S∧T . A state satisfies S∧T if it satisfies both S
and T .

– If P is a path formula then AP is a state formula. In-
tuitively, a state satisfies AP if every execution path
beginning at the state satisfies path formula P .

The following derived constructs are also frequently used.

– Propositional operators such as ∨ and → may be en-
coded in the same way that their path-formula coun-
terparts are.

– EP holds of states having some execution path ema-
nating from them that satisfies path formula P . EP
may be encoded as ¬ A (¬P) (“it is not the case that
every path violates P”).

The operators A and E are often called path quantifiers .
Figure 2 illustrates the meaning of the A quantifier.

As stated previously, CTL∗ state formulas are the
ones used to define properties of Kripke structures;
a Kripke structure satisfies such a formula if its start
state does. Sample properties, and their natural language
equivalents, include the following; propositions in italics
denote atomic propositions.

– AG(¬inCS1 ∨¬inCS2)
“It is always the case that inCS1 (which would hold
when e.g., process 1 is in its critical section) or inCS2
is false.

– AG(sent → X((¬sent) U received))
“It is always the case that if a message has just been
sent, then another cannot be sent until a message has
been received.”

– AGEF reset
“It is always the case that the reset state is reachable.”

. . . .

. . . .

. . . .

. . . .

P

. . . .

[
P

A P

[
P

[

Fig. 2. An illustration of the A path quantifier

The intuitive accounts of the operators given above
can be formalized mathematically by giving a relation
indicating when sequences of states satisfy path formu-
las and states satisfy state formulas. In order to do this
we need to make precise the notion of “execution se-
quence”. Some auxiliary notation on infinite sequences
proves useful.

Definition 1. Let K = 〈S,P , `,−→, sI〉 be a Kripke
structure such that −→ is total, let Sω be the set of infinite
sequences of states, and let σ = s0s1s2 . . . be an element
of Sω.

1. σ[i] ∈ S is defined to be si.
2. σ[i〉 ∈ Sω is the infinite sequence sisi+1
3. σ is an execution sequence emanating from s if s0 = s

and for all i≥ 0, si −→ si+1. That is, s must be the
initial state in the sequence, and a state is reach-
able from its predecessor via an execution step. We
use EK(s) ⊆ Sω to represent the set of execution se-
quences emanating from s in Kripke structure K.

Given a Kripke structure K = 〈S,P , `,−→, sI〉 we now
define a relation |=K relating paths (i.e., elements of Sω)
to path formulas and states to state formulas. If σ |=K P
then σ is deemed to satisfy P , and likewise for s |=K S.
The definition is given below; in what follows p is an
atomic proposition, P and Q are assumed to be path for-
mulas, and S and T are state formulas.

σ |=K S if σ[0] |=K S
σ |=K ¬P if σ 6|=K P
σ |=K P ∧Q if σ |=K P and σ |=K Q
σ |=K XP if σ[1〉 |=K P
σ |=K P UQ if there is a n≥ 0 such that σ[n〉 |=K Q

and for all i with 0≤ i < n, σ[i〉 |=K P
s |=K p if p ∈ `(s)
s |=K ¬S if s 6|=K S
s |=K S∧T if s |=K S and s |=K T
s |=K AP if for all σ ∈EK(s), σ |=K P

212 R. Cleaveland: Pragmatics of model checking: an STTT special section

Finally, we writeK |= S if sI |=K S; a Kripke structure
satisfies a state formula exactly when its initial state does.

Sublogics of CTL∗ We close this section by commenting
on fragments of CTL∗ that appear frequently in the lit-
erature. Linear-time temporal logic, or LTL [33, 52], con-
sists of path formulas containing no occurrences of the
path quantifiers A and E. A system satisfies such a for-
mula P if it satisfies the CTL∗ state formula AP . Com-
putation Tree Logic, or CTL [22], formulas require that
every path modality (X,U,F or G) be immediately pre-
ceded by a path quantifier (A or E). For example, the
formula FGp is an LTL formula, but FEGp is not, owing to
the presence of the E operator. AFEGp is a CTL formula,
but AFGp is not, since the G operator is not immediately
preceded by either an A or an E.

As LTL formulas may only quantify over the execu-
tions leaving the start state of a system, they often prove
easier to formulate and conceptualize; consequently, most
of the non-model-checking literature on temporal logic
deals with LTL. Until relatively recently [48], however,
effective model-checking tools have not existed for LTL,
owing to worries about the inefficiency of the model-
checking procedures for it [51, 63]. On the other hand,
efficient model-checking algorithms for CTL and simi-
lar logics were developed in the early 1980s [21, 57], and
consequently the earliest model-checkers supported these
“pure branching-time” logics. Most current model check-
ers for Kripke structures still provide CTL as their tem-
poral logic for this reason. For a discussion on the relative
merits of branching-time and linear-time temporal logics,
the interested reader is referred to [35, 37, 50].

2.2.2 Logics for labeled transition systems

The modal mu-calculus [49, 61], the logic most frequently
used in the setting of labeled transition systems, differs
substantially in form from the temporal logics discussed
above. Specifically, it replaces the two-level syntax of
CTL∗ with a single syntax of state formulas, and instead
of a fixed collection of path modalities it provides a fam-
ily of action-labeled next-state operators together with
a general facility for defining properties recursively.

The definition of the mu-calculus is parameterized
with respect to three sets: a set P of atomic proposi-
tions, a set A of actions, and a set X of propositional
variables. These sets are assumed to be disjoint. For-
mulas are intended to describe properties of states in
a given labeled transition system, and may have one of the
following forms.

– Any atomic proposition p ∈ P is a mu-calculus for-
mula. A state satisfies such a formula if the state la-
beling in the labeled transition system indicates this is
the case.

– Any variable x ∈ X is a mu-calculus formula. To inter-
pret formulas of this form, one needs an environment

indicating what variables mean. Assuming such an en-
vironment is given, a state satisfies a variable if the
environment indicates this is the case.

– If S is a mu-calculus formula, then so is its negation,
¬S. A state satisfies ¬S if it does not satisfy S.

– If S and T are mu-calculus formulas, then their con-
junction, S∧T , is a formula. A state satisfies S∧T if
it satisfies both S and T .

– If a ∈ A is an action and S is a mu-calculus formula,
then [a]S is a mu-calculus formula. A state satisfies
[a]S if all the a-transitions emanating from the state
lead to states in which S holds. Figure 3 illustrates the
meaning of [a]S.

– If x ∈ X is a variable and S is a mu-calculus formula,
then µx.S is a mu-calculus formula. This formula is
intended to represent a “recursively defined” formula
that “solves” the equation x= S.

a

a S[]

S

aa

b

c

Fig. 3. The meaning of mu-calculus formula [a]S

In addition to adhering to the forms outlined above well-
formed mu-calculus formulas must satisfy two additional
constraints. First, a formula must be closed : every occur-
rence of a variable x must fall within the scope of a µx
construct. Second, in formulas of the formµx.S any (free)
occurrence x within S must be positive in the sense that
it falls within the scope of an even number of negations.
The first requirement ensures that variables are only used
in support of recursive definitions. The second restriction
is necessary to ensure that equations such as x= S indeed
have solutions.

The following derived constructs also prove useful.

– The propositional operators tt, ff, ∨ and → are en-
coded in the usual fashion.

– 〈a〉S holds of a state if it has an outgoing transition la-
beled by a and leading to a state satisfying S. It may
be encoded as ¬[a](¬S) (“it is not the case that every
a-transition leads to a state violating S”).

– νx.S represents another “solution” to the equation
x= S. It may be encoded as ¬µx.(¬S[¬x/x]), where
S[¬x/x] represents the formula obtained by replacing
all (free) occurrences of x in S by ¬x. We comment on
νx.S and its relationship with µx.S below.

The [a] and 〈a〉 constructs are single-step modalities
in that they only permit the expression of properties that
look one execution step into the future. Nevertheless, the
mu-calculus turns out to be more expressive than other
known temporal logics. This expressiveness results from
the inclusion of the µ construct, which is often referred
to as a least fixpoint operator. Semantically, µx.S repre-

R. Cleaveland: Pragmatics of model checking: an STTT special section 213

sents the “least solution” to the equation x= S, where
“least” means “satisfied by the fewest possible states.” In-
tuitively, at least for finite-state systems, µx.S may be
thought of as an infinitary disjunction,

S0∨S1∨S2∨· · · ,

where S0 represents the formula ff that holds of no states,
and Si+1 is S[Si/x] (i.e., S with all free occurrences of
x replaced by Si). As an example, consider the formula
µx.[a]x. According to the interpretation just given, this is
equivalent to

ff ∨ [a]ff∨ [a][a]ff ∨·.

A state satisfying this formula must satisfy either ff
(which no state can satisfy); or [a]ff, which holds if the
state has no a-transitions (this is the only way that “every
a-transition” can lead to a state satisfying ff); or [a][a]ff
(i.e., every a-transition leads to a state having no a-
transitions); etc. So for this formula to hold of a state in
a finite-state system, the state must be incapable of an
infinite sequence of a-transitions. The set of states satisfy-
ing this property may be seen as a “solution” to x= [a]x.

By way of contrast, νx.S represents the greatest solu-
tion to x= S and is consequently referred to as the great-
est fixpoint operator. Using the definition ν together with
DeMorgan’s laws, one sees that in the case of finite-state
systems, νx.S can be viewed as an infinite conjunction,

Ŝ0∧ Ŝ1∧ Ŝ2∧· · · ,

where Ŝ0 is tt and Ŝi+1 = S[Ŝi/x]. As an example, con-
sider νx.[a]x. A state in a finite-state system that satisfies
this formula must satisfy:

tt∧ [a]tt∧ [a][a]tt∧· · · .

So a state satisfying this formula satisfies tt (which every
state does); and [a]tt (i.e., every a-transition must lead to
a state satisfying tt, but every state has this property);
etc. It turns out that νx.[a]x is equivalent to tt in that
every state can satisfy it. Like µx.[a]x, this may be seen as
a reasonable “solution” to x= [a]x.

The following examples illustrate the kinds of proper-
ties one can express in the mu-calculus.

– µx.[login]x
“Only finitely many login attempts are possible.”

– νx.([receive]ff ∧ [idle]x)
“A receive becomes enabled only after a send ac-
tion occurs.” (Here we assume that the set of ac-
tions includes only send , receive and idle.) Recall that
a state satisfies [a]ff exactly when it has no outgoing
a-transitions.

The formal semantics of the mu-calculus is given in
terms of a function, [[−]]L, mapping formulas to sets of
state in a labeled transition systemL. Intuitively, [[S]]L re-
turns the set of states in L satisfying S. In order to define
[[−]]L inductively on the structure of formulas, we need

to cater for free occurrences of variables that arise when
giving the semantics of µx.S in terms of S. This may be
done by augmenting [[−]]L so that it also takes a second
argument, e, which is an environment assigning meanings
to free variables. Thus [[S]]Le returns a set of states sat-
isfying S, with e supplying the interpretation of any free
variables in S. The following notions make this precise.

Definition 2. Let L = 〈S,P ,A, `,−→, sI〉 be a labeled
transition system, and let X be a set of propositional vari-
ables.

1. Let s∈ S and a∈A be a state and action, respectively.
Then {s

a
−→ •} ⊆ S is the set of states reachable from

s via an a-transition:

{s
a
−→ •}= { s′ ∈ S | s

a
−→ s′ }.

2. An environment over X and L is a function e ∈ X −→
2S mapping variables to sets of states.

3. Let e be an environment over X and L, and let x ∈ X
and S′ ⊆ S be a variable and set of states, respec-
tively. Then e[x 7→ S′] is a new environment defined
as follows.

(e[x 7→ S′])(y) =

{
S′ if x= y
e(y)otherwise

In other words, e[x 7→ S′] behaves exactly like e except
on argument x, in which case it returns S′.

Let L= 〈S,P ,A, `,−→, sI〉 and e be an environment over
X and L. We may now define [[−]]L as follows.

[[p]]Le= `(p)
[[x]]Le=e(x)

[[¬S]]Le=S − ([[S]]Le)
[[S∧T]]Le=([[S]]Le)∩ ([[T]]Le)

[[[a]S]]Le={ s ∈ S | ∀s′ ∈ {s
a
−→ •}.s′ ∈ [[S]]Le }

[[µx.S]]Le=
⋂
{ S′ ⊆ S | [[S]]L(e[x 7→ S′])⊆ S′ }

The definition of [[µx.S]]Le relies on results from lattice
theory, and we comment more on it here. Given for-
mula µx.S and environment e, we may define a function
fe : 2S −→ 2S as follows.

fe(S
′) = [[S]]Le[x 7→ S

′]

Because of the syntactic restrictions on x in S (occur-
rences of x must appear within the scope of an even
number of negations), fe is guaranteed to be monotonic:
if S′ ⊆ S′′ then fe(S′) ⊆ fe(S′′). In addition, 2S forms
a complete lattice with respect to the subset ordering: any
set T ⊆ 2S of subsets of S has a greatest and least upper
bound given by

⋃
T and

⋂
T , respectively. Consequently,

the Tarski-Knaster Theorem from lattice theory [62] en-
sures that fe has a least fixpoint µfe ⊆ S and greatest
fixpoint νfe ⊆ S given as follows.

µfe=
⋂
{ S′ ⊆ S | fe(S

′)⊆ S′ }

νfe=
⋃
{ S′ ⊆ S | S′ ⊆ fe(S

′) }

214 R. Cleaveland: Pragmatics of model checking: an STTT special section

That is, µfe is the smallest set of states that is a “so-
lution” to the “equation” x = fe(x) in the sense that
fe(µfe) = µfe; similarly, νfe is the largest such solution.
From the definition of [[µx.S]]Le, one may see that

[[µx.S]]Le= µfe;

consequently, µx.S may be seen as the “smallest,” or
“least permissive,” property satisfying the equation
x= S. A similar line of reasoning establishes the dual
result for νx.S: it is the “most permissive” property sat-
isfying x= S.

When a formula S contains no free variables, it fol-
lows that the meaning of S cannot depend on an envi-
ronment; formally, [[S]]Le= [[S]]Le

′ for any environments
e and e′. In this case we write [[S]]L to represent this set of
states. We also write L |= S if sI ∈ [[S]]L; so a labeled tran-
sition system satisfies formula S exactly when its start
state does.

Researchers have identified useful variants and frag-
ments of the mu-calculus that we briefly touch on here.
Some accounts label the [−] and 〈−〉 modalities with sets
of actions rather than single actions [61]. Assuming that
A⊆A is such a set, a state satisfies [A]S if every transi-
tion labeled by an action in A leads to a state satisfying
S, and dually for 〈A〉S. Other accounts use systems of
equations to define formulas rather than the linear syntax
presented here [6]. Specifically, a system such as:

min

X1 =S1

...
Xn=Sn

defines n formulas, one for each equation, where the min
indicates that “smallest” solutions are intended. This no-
tation is no more expressive than the one given here,
although it can be more concise. Finally, the full mu-
calculus presents efficiency problems for model check-
ing [13], and researchers have thus focused on the de-
velopment of algorithms for fragments of the logic. The
alternation-free fragment forbids formulas of the follow-
ing form:

µx.(· · · νy.S · · ·)

where both x and y appear free in S. In essence, a formula
of this form introduces a “mutual dependency” between
x and y in that assigning a meaning to S requires values
for both x and y. If the type of fixpoint for x and y is the
same this does not present problems; however, if (as in the
example) one fixpoint is greatest while the other is least,
then the time-complexity of model checking can be af-
fected. The alternation-free mu-calculus [38] forbids such
situations by requiring that fixpoints of different types
be strictly nested within one another. Another fragment,
L2 [8, 36], copes with problems of alternation by restrict-
ing the ways in which variables may appear in the context
of the ∧ and [−] operators.

As was remarked at the end of Sect. 2.1, Kripke struc-
tures may be seen as labeled transition systems whose
action set A contains only one element. With A thus
restricted, one may then compare the expressive power
of CTL∗ and the mu-calculus. The latter turns out to
be strictly more expressive [33], and effective transla-
tion procedures exist from CTL∗ to the (L2 fragment
of the) mu-calculus [9, 31, 36]. It also turns out that the
CTL fragment of CTL∗ can be efficiently encoded in the
alternation-free mu-calculus [34].

3 Traditional model checking

This section explains the basic workings of traditional
model-checking procedures by examining in some detail
the classic algorithm for CTL presented in [22].

3.1 The Syntax of CTL

We begin by providing a more systematic account of the
syntax of CTL than the one given in Sect. 2.2.1. As CTL
formulas are special cases of CTL∗ formulas, the reader is
referred to Sect. 2.2.1 for a discussion of their semantics.

The syntax of CTL is parameterized with respect to
a set P of atomic propositions. CTL formulas then have
the following form.

– If p ∈ P then p is a CTL formula.
– If S is a CTL formula then ¬S and AXS are CTL for-

mulas.
– If S and T are CTL formulas then S∧T , A(S UT) and

E(S UT) are CTL formulas.

It should be noted that CTL formulas are all state formu-
las in the parlance of CTL∗. Also, both the E(_U _) and
the A(_U _) operators are needed; one cannot be encoded
in terms of the other.

3.2 CTL model checking

A CTL model-checking algorithm takes two inputs:
a Kripke structure K = 〈S,P , `,−→, sI〉, and a CTL for-
mula S. It returns the Boolean true if K |= S and false
otherwise. In what follows, we assume that K is fixed.

The model-checking procedure of [22] follows a “global
strategy” in that it calculates all states satisfying for-
mula S. Then K |= S exactly when sI is in this set of
states. For notational convenience we write [[S]]K ⊆ S to
represent the set of states satisfying formula S; so s ∈
[[S]]K if and only if s |=K S. We may therefore characterize
the model checker [22] as consisting of two steps.

– Calculate [[S]]K.
– Determine whether or not sI ∈ [[S]]K.

Clearly, the difficult step involves the calculation of
[[S]]K. The procedure is syntax-directed; it uses the struc-

R. Cleaveland: Pragmatics of model checking: an STTT special section 215

ture of formula S to guide the computation. The specific
strategy may be summarized as follows.1

– For each immediate subformula T of S, recursively
calculate [[T]]K.

– Use the topmost operator of S to compute [[S]]K from
the [[T]]K.

Most of the CTL operators present no difficulty and are
summarized below.

S = p :[[S]]K = `(p)
S = ¬T :[[S]]K = S − [[T]]K

S = T ∧U :[[S]]K = [[T]]K∩ [[U]]K

The set difference operator − and the intersection op-
erator ∩ can be implemented in obvious ways in time
proportional to the sizes of the sets being manipulated.

The AX operator is only slightly more difficult to han-
dle. Suppose that S = AXT and that [[T]]K has been com-
puted. To calculate [[S]]K, we scan through all states in
s ∈ S; for each such s, we traverse each transition ema-
nating from s and check whether the target state t is in
[[T]]K. If this holds for each such t then s may be added to
[[S]]K; otherwise, it is omitted. In general, computing [[S]]K
in this case requires that each state in K be visited and
that each transition be traversed once.

The complicated operators to handle are A(_U _) and
E(_U _); as the issues are similar for the two, we only
study the former in depth. So assume that S = A(T UU)
and that [[T]]K and [[U]]K have been computed. An it-
erative, approximation-based procedure is then used to
compute [[S]]K. Roughly speaking, the routine generates
a series S0, S1, . . . of approximations to [[S]]K. Each Si
contains more states than its predecessor, and each is
guaranteed to contain only states that are also in [[S]]K.
More formally, assuming Sn is the most recently gener-
ated approximation, the invariants maintained are the
following.

1. For all i with 0≤ i < n, Si ⊂ Si+1.
2. For all i with 0≤ i≤ n, Si ⊆ [[S]]K.

The procedure stops when no more states can be added
to the most recent approximationFn without invalidating
invariant 2. The Si are calculated as follows.

1. S0 is ∅
2. From the definition of the semantics of A and U,

every state that satisfies U is guaranteed to satisfy
A(T UU). Consequently, S1 is set to [[U]]K, if it is
nonempty. If it is empty, we stop and set [[S]]K=S0=∅.

3. For i ≥ 2, we generate Si+1 from Si by doing the
following.

(a)We calculate the set

S′i= { s ∈ S |s ∈ [[T]]K∧s 6∈ Si

∧∀t ∈ { t ∈ S | s−→ t }.t ∈ Si }

1 It should be noted that this account of the algorithm differs in
style, although not in substance, from the one given in [22].

Informally, S′i contains those states that satisfy T
and are not in Si but all of whose transitions lead
to states in Si.

(b)If S′i is empty we set halt, setting [[S]]K = Si.
(c) Otherwise, we set Si+1 = Si∪S′i.

Figure 4 illustrates how this works.

U

T

T

T

S

S

S 3

2

1

Fig. 4. Calculating [[A(T UU)]]

The key insight in the algorithm involves the efficient cal-
culation of set S′i in step 3a. A naive approach would
require scanning the entire Kripke structure K. Using
such a scheme would lead to a worst-case running time
quadratic in the size of K to calculate [[A(T UU)]]K, since
the number of approximations is bounded by the number
of states in K and the generation of each approximation
would require processing every state and transition in K.
It turns out, however, that the computation of set S′i can
be amortized over the computation of the preceding ap-
proximations by remembering, for each state, how many
of its transitions lead to states not contained in the cur-
rent approximation. When this number becomes 0 for
a state s ∈ [[T]]K, s has all its transitions contained in the
current approximationSi and should then be added to S′i.
As this set will then be merged into Si+1, states having
a transition into s must have their counts decremented.
It may be shown that each transition is traversed once in
this fashion throughout the calculation of all the approxi-
mations, and hence the computation of [[A(T UU)]] can be
done in time proportional to the size of K.

Implementing this approach requires some additional
storage in the form of a counter for each state (which may
be reused), and the data structure for K must allow tran-
sitions to be traversed backwards from target to source
so that counters can be decremented efficiently. At the
beginning of the approximation procedure the counters
must also be initialized; this requires a scan ofK.

216 R. Cleaveland: Pragmatics of model checking: an STTT special section

3.3 Practical impacts

The previous algorithm may be shown to have a running
time ofO(|K| · |S|), where |K| is the total number of states
and transitions in the system and |S| is the number of
subformulas of S. In practice, the latter quantity is much
smaller than the former, and thus the routine is essen-
tially linear in the size of K. The efficiency of the algo-
rithm led Clarke and colleagues to experiment with model
checking on actual systems; the EMC system was built
and used to analyze a variety of hardware designs [14, 15].
At the same time, Sifakis and coworkers built the CE-
SAR/XESAR model checker and applied it to the analy-
sis of several communications protocols [57, 59]. It may be
safely said that these groups’ work marked the emergence
of model-checking as an interesting and useful technology
for system design.

Nevertheless, the limitations of the traditional ap-
proach to model checking quickly became apparent,
because even though the algorithms exhibited running
times proportional to the size of the state machines, in
practice these state machines can be enormous. For ex-
ample, a (quite small) hardware design containing only
100 latches could have 2100, or over 1030, states. Thus,
while it generated excitement in the formal methods re-
search community in the 1980s, model checking did not
attract much attention from practicing engineers during
this time.

4 The special section

In the 1990s, advances in model-checking technology have
improved its practical utility to the point that it is be-
coming commercialized. These developments have come
about because of research aimed at alleviating the state-
explosion problem referred to in the introduction.

The papers in this special section describe approaches
to coping with state explosion. The methods presented
may be categorized on the following basis.

– Some techniques use compact data structures or effi-
cient search techniques to limit the storage needed to
analyze a Kripke structure or labeled transition sys-
tem.

– Other techniques attempt to exploit structure in sys-
tem descriptions before they are converted into Kripke
structures or labeled transition systems in order to re-
duce the sizes of the structures analyzed.

A number of other promising directions exist besides
the ones addressed in this special section; these include
abstraction-based approaches [25, 43, 44], the exploita-
tion of system symmetries and architectures [23, 24, 39],
and the use of semantic quotienting to eliminate redun-
dant states [32]. Interested readers may consult [26, 28]
for more complete overviews of research in the area.

The first paper in the section, “Model checking:
a hardware design perspective,” describes how model
checking may be used in traditional hardware design

methodologies as a means of getting early feedback on
the correctness of a design. The model-checking tech-
nology the authors describe uses ordered binary decision
diagrams [16] (OBDDs) to encode the Kripke structures
associated with designs. OBDDs afford extremely com-
pact representations of state spaces and transition rela-
tions; the authors discuss how OBDDs can significantly
expand the scope of designs that may be analyzed using
CTL model checking.

The second paper, “A minimized automaton represen-
tation of reachable states,” presents an alternative means
of efficiently encoding state spaces that is based on the
use of minimized deterministic automata. The authors
show how operations on sets of states may be imple-
mented efficiently, and they give a wide array of experi-
mental results for their technique, which they have imple-
mented in the SPIN verification tool [47].

The next paper, “State space reduction using partial
order techniques,” describes the use of partial order infor-
mation as a means of eliminating redundant states during
LTL model checking. The name of the method derives
from the fact that when a system consists of several paral-
lel components, the transitions of individual subsystems
may be independent in the sense that the occurrence of
one does not affect the other, and vice versa. When this is
the case, instead of considering the states resulting from
interleaving these transitions in all possible ways, one
may instead consider only one interleaving without sac-
rificing correctness. The paper describes the mechanics
of partial-order reduction and discusses practical experi-
ence with the technique in the context of the SPIN model
checker [48].

“Partial model checking of modal equations” also ad-
vocates an analysis of the “concurrency structure” of
a system in order to reduce state-space size. The basic
approach is to use the labeled transition systems for indi-
vidual components to “factor” a mu-calculus formula into
a formula that the rest of the system needs to satisfy for
the whole system to be correct. Consequently, the global
labeled transition system for the whole system need never
be constructed. The paper describes several heuristics for
reducing the sizes of the intermediate mu-calculus formu-
las generated and presents experimental results obtained
from an implementation of the method.

The final paper in the section, “Local model check-
ing and protocol analysis,” describes a local , or on-the-
fly, technique for comparing labeled transition systems to
formulas in the alternation-free modal mu-calculus. The
hallmark of local algorithms is that they compute partial
semantics of subformulas in a demand-driven manner;
this stands in contrast to traditional, global techniques.
This demand-driven aspect ensures that irrelevant infor-
mation is not computed; it also enables the labeled tran-
sition system itself to be computed in a demand-driven
manner. The potential savings of this technique are ana-
lyzed in the context of a case study involving a real-time
modification to the Ethernet protocol.

R. Cleaveland: Pragmatics of model checking: an STTT special section 217

References

1. Twelfth Annual ACM Symposium on Principles of Program-
ming Languages (POPL ’85). New Orleans, Louisiana, ACM
Press, January 1985

2. Symposium on Logic in Computer Science (LICS ’86).
Cambridge, Massachusetts, IEEE Computer Society Press,
June 1986

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreli-
able channels. Information and Computation 127(2): 91–101,
1996

4. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense
real time. Information and Computation 104(1): 2–34, 1993

5. Alur, R., Courcoubetis, C., Henzinger, T., Halbwachs, N., Ho,
P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The al-
gorithmic analysis of hybrid systems. Theoretical Computer
Science 138(1): 3–34, 1995

6. Andersen, H.R.: Model checking and boolean graphs. Theoret-
ical Computer Science 126(1): 3–30, 1994

7. Baeten, J.C.M. (ed): Applications of Process Algebra. Cam-
bridge Tracts in Theoretical Computer Science Vol. 17. Cam-
bridge University Press, Cambridge, England, 1990

8. Bhat, G., Cleaveland, R.: Efficient local model checking for
fragments of the modal µ-calculus. In: Margaria and Stef-
fen [53], pp. 107–126

9. Bhat, G., Cleaveland, R.: Efficient model checking via the
equational µ-calculus. In: Eleventh Annual Symposium on
Logic in Computer Science (LICS ’96). New Brunswick, New
Jersey: IEEE Computer Society Press, 1996, pp. 304–312

10. Bloom, B., Paige, R.: Transformational design and imple-
mentation of a new efficient solution to the ready simulation
problem. Science of Computer Programming 24(3): 189–220,
1995

11. Bolognesi, T., Brinksma, E.: Introduction to the ISO spe-
cification language LOTOS. Computer Networks and ISDN
Systems 14: 25–59, 1987

12. Bouali, A., Ressouche, A., Roy, V., de Simone, R.: The
fc2tools set. In: Margaria and Steffen [53], pp. 396–397

13. Browne, A., Clarke, E., Jha, S., Long, D., Marrero, W.: An
improved algorithm for the evaluation of fixpoint expressions.
Theoretical Computer Science 178(1–2): 237–255, 1997

14. Browne, M.C., Clarke, E.M., Dill, D.: Automatic circuit ver-
ification using temporal logic: Two new examples. In: Formal
Aspects of VLSI Design, 1985

15. Browne, M.C., Clarke, E.M., Dill, D., Mishra, B.: Automatic
verification of sequential circuits using temporal logic. IEEE
Transactions on Computing C-35(12): 1035–1044, 1986

16. Bryant, R.E.: Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers C-35(8),
1986

17. Burkart, O., Steffen, B.: Model-checking the full-modal mu-
calculus for infinite sequential processes. In: Degano, P., Gor-
rieri, R., Marchetti-Spaccamela, A. (eds.): Automata, Lan-
guages and Programming (ICALP ’97), Bologna, Italy, July
1997. LNCS 1256. Berlin, Heidelberg, New York: Springer-
Verlag, 1997, pp. 419–429. Full version to appear in Theoret-
ical Computer Science

18. Celikkan, U., Cleaveland, R.: Generating diagnostic infor-
mation for behavioral preorders. Distributed Computing 9:
61–75, 1995

19. Chandy, K.M., Misra, J.: Parallel Program Design: A Founda-
tion. Addison-Wesley, Reading, Massachusetts, 1988

20. Clarke, E.M., Emerson, E.A.: Synthesis of synchronization
skeletons for branching time temporal logic. In: Kozen, D.
(ed.): Logics of Programs: Workshop, Yorktown Heights, May
1981. LNCS 131. Berlin, Heidelberg, New York: Springer-
Verlag, 1981, pp. 52–71

21. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic ver-
ification of finite state concurrent systems using temporal
logic specifications: A practical approach. In: Tenth Annual
ACM Symposium on Principles of Programming Languages
(POPL ’83). Austin, Texas: ACM Press, 1983, pp. 117–126

22. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verifi-
cation of finite-state concurrent systems using temporal logic

specifications. ACM Transactions on Programming Languages
and Systems 8(2): 244–263, 1986

23. Clarke, E.M., Filkorn, T., Jha, S.: Exploiting symmetry in
model checking. In: Courcoubetis [30], pp. 450–462

24. Clarke, E.M., Grumberg, O., Jha, S.: Verifying parameterized
networks. ACM Transactions on Programming Languages and
Systems 19(5): 726–750, 1997

25. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and
abstraction. ACM Transactions on Programming Languages
and Systems 16(5): 1512–1542, 1994

26. Clarke, E.M., Wing, J.M.: Formal methods: state of the art
and future directions. ACM Computing Surveys 28(4): 626–
643, 1996

27. Cleaveland, R., Hennessy, M.C.B.: Testing equivalence as
a bisimulation equivalence. Formal Aspects of Computing 5:
1–20, 1993

28. Cleaveland, R., Smolka, S.: Strategic directions in concurrency
research. ACM Computing Surveys 28(4): 607–625, 1996

29. Cleaveland, R., Steffen, B.: A linear-time model-checking al-
gorithm for the alternation-free modal mu-calculus. Formal
Methods in System Design 2: 121–147, 1993

30. Courcoubetis, C. (ed): Computer Aided Verification (CAV ’93),
Elounda, Greece, June/July 1993. LNCS 697. Berlin, Heidel-
berg, New York: Springer-Verlag, 1993

31. Dam, M.: CTL∗ and ECTL∗ as fragments of the modal mu-
calculus. Theoretical Computer Science 126(1): 77–96, 1994

32. Elseaidy, W., Cleaveland, R., Baugh Jr., J.W.: Modeling and
verifying active structural control systems. Science of Com-
puter Programming 29(1–2): 99–122, 1997

33. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen,
J. (ed.): Handbook of Theoretical Computer Science Vol. B.
North-Holland, 1990, pp. 995–1072

34. Emerson, E.A., Clarke, E.M.: Characterizing correctness
properties of parallel programs as fixpoints. In: de Bakker,
J., van Leeuwen, J. (eds.): Automata, Languages and Pro-
gramming (ICALP ’80), Utrecht, July 1980. LNCS 85. Berlin,
Heidelberg, New York: Springer-Verlag, 1980, pp. 169–181

35. Emerson, E.A., Halpern, J.Y.: ‘Sometime’ and ‘not never’
revisited: On branching versus linear time temporal logic.
Journal of the Association for Computing Machinery 33(1):
151–178, 1986

36. Emerson, E.A., Jutla, C., Sistla, A.P.: On model-checking for
fragments of µ-calculus. In: Courcoubetis [30], pp. 385–396

37. Emerson, E.A., Lei, C.-L.: Modalities for model checking:
Branching time strikes back. In: Twelfth Annual ACM Sym-
posium on Principles of Programming Languages (POPL ’85)
[1], pp. 84–96

38. Emerson, E.A., Lei, C.-L.: Efficient model checking in frag-
ments of the propositional mu-calculus. In: Symposium on
Logic in Computer Science (LICS ’86) [2], pp. 267–278

39. Emerson, E.A., Sistla, A.P.: Symmetry and model checking.
In: Courcoubetis [30], pp. 463–478

40. Esparza, J.: Decidability of model-checking for infinite-state
concurrent systems. Acta Informatica 34: 85–107, 1997

41. Fernandez, J.-C.: An implementation of an efficient algorithm
for bisimulation equivalence. Science of Computer Program-
ming 13: 219–236, 1989/1990

42. Goering, R.: Model checking expands verification’s scope. EE
Times. Issue 939, February 3, 1997

43. Graf, S.: Characterization of a sequentially consistent memory
and verification of a cache memory by abstraction. Distributed
Computing 12(2+3): 75–99, 1999

44. Graf, S., Saidi, H.: Construction of abstract state graphs with
PVS. In: Grumberg, O. (ed.): Computer Aided Verification
(CAV ’97), Haifa, Israel, June 1997. LNCS 1254. Berlin, Hei-
delberg, New York: Springer-Verlag, 1997, pp. 72–83

45. Groote, J.F., Vaandrager, F.: An efficient algorithm for
branching bisimulation and stuttering equivalence. In: Pa-
terson, M.S. (ed.): Automata, Languages and Program-
ming (ICALP ’90), Warwick, England, July 1990. LNCS
443. Berlin, Heidelberg, New York: Springer-Verlag, 1990,
pp. 626–638

46. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-
Hall, London, 1985

47. Holzmann, G.J.: Design and Validation of Computer Proto-

218 R. Cleaveland: Pragmatics of model checking: an STTT special section

cols. Prentice-Hall, 1991
48. Holzmann, G.J., Peled, D.: The state of SPIN. In: Alur, R.,

Henzinger, T. (eds.): Computer Aided Verification (CAV ’96),
New Brunswick, New Jersey, July 1996. LNCS 1102. Berlin,
Heidelberg, New York: Springer-Verlag, 1996, pp. 385–389

49. Kozen, D.: Results on the propositional µ-calculus. Theoret-
ical Computer Science 27(3): 333–354, 1983

50. Lamport, L.: ‘sometimes’ is sometimes ‘not never’. In: Sev-
enth Annual ACM Symposium on Principles of Programming
Languages (POPL ’80). Las Vegas, Nevada: ACM Press, 1980,
pp. 174–185

51. Lichtenstein, O., Pnueli, A.: Checking that finite state con-
current programs satisfy their linear specification. In: Twelfth
Annual ACM Symposium on Principles of Programming Lan-
guages (POPL ’85) [1], pp. 97–107

52. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and
Concurrent Systems. Berlin Berlin, Heidelberg, New York:
Springer-Verlag, 1992

53. Margaria, T., Steffen, B. (eds.): Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’96), Passau,
Germany 1996. LNCS 1055. Berlin, Heidelberg, New York:
Springer-Verlag, 1996

54. Milner, R.: Communication and Concurrency. Prentice-Hall,
London, 1989

55. Paige, R., Tarjan, R.E.: Three partition refinement algo-
rithms. SIAM Journal of Computing 16(6): 973–989, 1987

56. Pnueli, A.: The temporal logic of programs. In: 18th Annual
Symposium on Foundations of Computer Science, Providence,
Rhode Island, October/November 1977. IEEE, pp. 46–57

57. Queille, J.P., Sifakis, J.: Specification and verification of con-
current systems in CESAR. In: Dezani-Ciancaglini, M., Mon-
tanari, U. (eds.): Proceedings of the International Symposium
in Programming. Turin, April 1982. LNCS 137. Berlin, Heidel-
berg, New York: Springer-Verlag, 1982, pp. 337–351

58. Rathje, T., Sandler, S.: CPU formal verification receives
a boost. EE Times, 1996. Issue 927, November 11, 1996

59. Richier, J., Rodgriguez, C., Sifakis, J., Voiron, J.: Verification
in XESAR of the sliding window protocol. In: Proceedings of
the IFIP Symposium on Protocol Specification, Testing and
Verification, Zurich, May 1987. North-Holland, pp. 235–250

60. Roscoe, A.W.: Model-checking CSP. In: Roscoe, A.W. (ed.):
A Classical Mind: Essays in Honour of CAR Hoare. Prentice-
Hall, chapter 21, pp. 353–378, February 1994

61. Stirling, C.: Modal and temporal logics. In: Abramsky, S.,
Gabbay, D., Maibaum, T.S.E. (eds.): Handbook of Logic in
Computer Science, Vol. 2. Oxford University Press, pp. 477–
563, 1992

62. Tarski, A.: A lattice-theoretical fixpoint theorem and its appli-
cations. Pacific Journal of Mathematics 25(2): 285–309, 1955

63. Vardi, M., Wolper, P.: An automata-theoretic approach to
automatic program verification. In: Symposium on Logic in
Computer Science (LICS ’86) [2], pp. 332–344

