
Int J STTT (1998) 2: 192–201 1998 Springer-Verlag

DOI 10.1007/s100099800007

Regular contribution

The Code Validation Tool (CVT)∗

Automatic verification of a compilation process

A. Pnueli, O. Shtrichman, M. Siegel

Dept. of Applied Mathematics and Computer Science, the Weizmann Institute of Science, Rehovot, Israel;
E-mail: {amir|mis|ofers}@wisdom.weizmann.ac.il

Abstract. We describe CVT – a fully automatic tool for
code validation, i.e., verifying that the target code pro-
duced by a code-generator (equivalently, a compiler or a
translator) is a correct implementation of the source spe-
cification. This approach is a viable alternative to a full
formal verification of the code-generator program, and
has the advantage of not “freezing” the code generator de-
sign after verification. CVT was developed in the context
of the ESPRIT project SACRES, and validates the trans-
lation from StateMate/Sildex mixed specification into C.
The use of novel techniques based on uninterpreted func-
tions and their analysis over a BDD-represented small
model enables us to validate source specifications of sev-
eral thousand lines, which represents a typical industrial-
size safety-critical application.

Key words: Compiler verification – Translation valida-
tion – Code validation – BDD – Industrial application

1 Introduction

A significant number of embedded systems contain safety-
critical aspects. There is an increasing industrial aware-
ness of the fact that the application of formal specification
languages and their corresponding verification/validation
techniques may significantly reduce the risk of design er-
rors in the development of such systems. However, if the
validation efforts are focused on the specification level,
the question arises of how we can ensure that the quality
and integrity achieved at the specification level is safely
transferred to the implementation level. The development

∗ This research was done as part of the ESPRIT project
SACRES, and was supported in part by a grant from the Deutsche
Forschungs Gemeinschaft, the Minerva Foundation, and an infra-
structure grant from the Israeli Ministry of Science and Art.

process of such systems today consists of hand-coding
followed by extensive unit and integration-testing.

The highly desirable alternative, both from a safety
and a productivity point of view, of automatically gen-
erating code from verified/validated specifications, has
failed in the past due to the lack of technology which
could convincingly demonstrate to certification authori-
ties the correctness of the generated code. Although there
are many examples of compiler verification in the litera-
ture (see, for example, [2, 3, 5–10]), the formal verification
of industrial code generators is generally prohibitive due
to their size. Another problem with compiler verification
is that formal verification freezes their designs, as each
change to the code generators nullifies their previous cor-
rectness proof.

Alternatively, code validation suggests the construc-
tion of a fully automatic tool which establishes the cor-
rectness of the generated code individually for each run
of the code generator. In general, code validation can be
the key enabling technology to allow the usage of code
generators in the development cycle of safety-critical and
high quality systems. The combination of automatic code
generation and validation improves the design flow of em-
bedded systems in both safety and productivity by elim-
inating the need for hand-coding the target code (and
consequently coding errors are less probable) and by con-
siderably reducing unit/integration test efforts.

Of course, it is not clear that every compiler and
every source and target language can be verified accord-
ing to the code validation paradigm. But the fact that
the compiler we considered was highly optimized and
the source and target languages had completely different
structures (synchronous versus sequential code) indicates
that this method has the potential of solving realistic,
non-trivial cases.

The work carried out in the SACRES project proves
the feasibility of code validation for the industrial code
generator used in the project, and demonstrates that

A. Pnueli et al.: The Code Validation Tool (CVT) 193

industrial-size programs can be verified fully automati-
cally in a reasonable amount of time. In the next section
we describe the SACRES project and the role of code val-
idation in this context. In Sect. 3 we briefly describe the
logical basis of the correctness proof. In Sect. 4 we de-
scribe the architecture of CVT and the role of each of its
modules, and we summarize in Sect. 5 by presenting re-
sults from an industrial case study that was one of the pi-
lot applications considered within the SACRES project.

2 Code validation in the context of the SACRES
project

The Code Validation Tool (CVT) is developed as part
of the ESPRIT-supported project SACRES [4](which
stands for Safety Critical Real-time Embedded Systems).
The objective of this project is to provide designers of
safety-critical systems with an enhanced design method-
ology supported by a toolset, significantly reducing the
risk of design errors and shortening the overall design
time. The emphasis within the project is on formal devel-
opment of systems, providing formal specification, formal
verification supported by model checking technology, and
validated code-generation.

The architecture of the SACRES toolset is shown
in Fig. 1.

The following is a typical scenario of usage of the
toolset: after completing the design in his/her favorite
design tool (currently the “StateMate” and “Sildex”
tools are supported), the user invokes the automatic

Fig. 1. The SACRES architecture

translation of designs into DC+, a common format for
synchronous languages. The design can be mixed: dif-
ferent components can be designed using different tools,
as long as these tools are supported within the toolset.
In the next step the user invokes the Proof-Manager ,
and performs component and system verification. In this
stage the user verifies that the design satisfies vari-
ous properties, which she expresses in the requirement
specification language of Timing Diagrams , using the
Timing-Diagrams Editor (TDE). These properties typ-
ically correspond to the requirements listed in a require-
ment document, or to general safety and liveness proper-
ties of the system, such as the absence of deadlocks.

The Proof-Manager combines BDD-based automatic
verification tool and a theorem-prover, which is invoked
when the automatic verification fails (typically due to
the size of the model). The various components thus can
be verified by different means, while the proof-manager
guarantees that the necessary compositionality require-
ments are maintained. If the system finds a design error,
it presents a counter example by means of simulation (ei-
ther in StateMate or in TDE).

After the design is verified, the user invokes the code
generator (produced by the SACRES partner TNI) to au-
tomatically generate executable code (C or ADA). This
is where the code validation tool is invoked: the valida-
tion of the generated code via CVT establishes that the
code generator worked as expected and thus the prop-
erties which were verified at the specification level are
preserved at the implementation level. We expect that
the process of code validation will provide the convincing

194 A. Pnueli et al.: The Code Validation Tool (CVT)

evidence required by the certification authorities in order
to allow the use of automatic code generators for the de-
velopment of safety-critical systems.

3 Code generation and “Correct
Implementation”

The first step in proving the correctness of the compi-
lation process is to define when a generated C program
correctly implements its DC+ source program. For this
definition, we will briefly explain the semantics of DC+
programs and the basic ideas of the compilation process.
Afterwards we define a relation between C programs and
DC+ programs which will serve us as the “correct imple-
mentation” relation.

DC+ is a synchronous, declarative language. A DC+

program describes a reactive system whose behavior
along time is observable as an infinite sequence of states.
State changes are triggered by the arrival of new values
for the input variables. A list of constraints (on program
variables), which constitutes the main part of the DC+

program, determines upon such an arrival the values of all
the remaining variables. These remaining variables con-
sist of a set of output variables, a set of internal variables,
and a set of register variables which store information
about the history of the current computation, such as
values of expressions at previous time instances. The list
of constraints determines the transition relation of the
system. At each instance in time all constraints have to
be satisfied by the values that the variables have at that
instance, and their values at the next state.

In order to perform code validation, both the DC+

and the generated C program need to be translated into
a common semantic domain. Synchronous transition sys-
tems (sts) as introduced in [14] turned out to be a con-
venient candidate for such a translation. An sts S =
(V,Θ, ρ) consists of a finite set V of typed variables, a
satisfiable assertion Θ characterizing the initial states of
system S, and a transition relation ρ. Basically, a DC+

programD is translated into S = (V,Θ, ρ) as follows: the
set V contains all program variables of D, the initial con-
dition Θ characterizes the initial state ofD, and the tran-
sition relation ρ is obtained by a one-to-one translation of
the list of constraints of D into logical formulas involving
primed and unprimed variables. Unprimed and primed
variables refer to the values of these variables - the cur-
rent and the next state, respectively. The resulting ρ is a
conjunction of these formulas which restrict the possible
values of variables in the next state.

The conjuncts in the relation ρ constitute a Set of
Logical Equations (SLE) on the variables in V . Solutions
of this SLE for given values of the input variables deter-
mine the values of the remaining variables. Conceptually,
the observable behavior of such a system can be under-
stood as shown in the figure below where the first dot
depicts an initial state of the system.

I1, O1
I2, O2

DC+

Note, that in accordance with the synchrony hypoth-
esis there is no time delay between the reception of new
values Ij for input variables and the generation of corre-
sponding output values Oj satisfying SLE, i.e., all vari-
ables are updated simultaneously.

3.1 The compilation schema

The task of the code generator is to derive from a given
DC+ programD a C program which computes, for given
values of the input variables, a solution of the SLE of D.

The obtained C program belongs to a fragment of
ANSI-C and has the typical structure of control systems:
exactly one control loop, where one iteration corresponds
to one step of the DC+ program. Whereas the values
for all variables in DC+ were updated simultaneously,
the control loop first consumes new values for input vari-
ables and afterwards successively computes (one by one)
the values of the remaining variables as shown in the
next figure.

C

O1 O2I2I1

The states marked with a bullet, corresponding to the be-
gin (and also end) of the control-loop, match the states
of the original DC+ program. Intermediate states, where
only some variables have been updated, are not depicted
since they do not correspond to any state of the DC+

program.
As stated before, the C program is also translated

into an sts representation for the purpose of a semantical
comparison. In the rest of this section the letters C and
DC+ will denote the sts representation of the respective
programs.

3.2 The “Correct Implementation” relation

The notion of correct implementation used in CVT is a
variation of the standard language inclusion relation as
commonly used in refinement theory. Program C imple-
ments DC+ denoted by C ref DC+, if for every com-
putation σ of C there exists a computation τ of DC+

such that σ and τ agree state-wise on the values of ob-
servable variables, i.e., input and output variables, as
depicted below.

ρ
DC+DC+

ρcC

=I,O =I,O =I,O

It follows that we can identify a set of observable vari-
ables O which are common to the C and DC+ programs.

A. Pnueli et al.: The Code Validation Tool (CVT) 195

For simplicity and clarity we prefer to keep the sets of
variables of the two programs disjoint. Consequently, we
rename the concrete C-version of every observable vari-
able x ∈ O to xc. Thus,the requirement of correct imple-
mentation can be stated as:

For every computation of C (concrete computation)
σ : s0, s1, . . . , there exists a computation of DC+ (ab-
stract computation) σa : S0, S1, . . . such that, for every
i= 0, 1, . . . and every x ∈ O, Si[x] = si[xc], i.e., Si and si
assign to x and xc identical values.

We use proof techniques from refinement theory in order
to establish that C ref DC+ indeed holds for two given
systems. The standard constructive proof technique re-
quires us to devise an abstraction mapping f , which maps
computations σ of the concrete system C to computations
f(σ) of the abstract system DC+ such that σ and f(σ)
agree on the values of the observable variables. Typically,
f is induced by a state mapping α from concrete states
to abstract states. Syntactically, α is specified by a sub-
stitution [x1 7→ t1, . . . , xn 7→ tn] which assigns to every
abstract variable xi a term over the concrete variables.
For a concrete state s, we define the corresponding ab-
stract state S = α(s) as the state in which, for all xi, S[xi]
equals s[ti], i.e., the value of the term ti in the state s.
Thus, we can view α both as a substitution and a state
mapping.

The fact that fα indeed is a an abstraction mapping is
proven by induction on the length of computations. The
proof obligations are:
1. The substitution α replaces every observable variable

x ∈O by its concrete version xc, i.e., x[α] = xc.
2. The mapping α maps initial concrete states to initial

abstract states.
3. Concrete transitions are mapped by α to possible ab-

stract transitions. That is, if s2 is a C-successor of s1,
then α(s2) is a (DC+)-successor of α(s1).
Usually, finding such a mapping α is left to the ingenu-

ity of the verifier. In the context of translation validation
it is essential that α can be automatically constructed
from the source and target programs.

In order to facilitate the generation of suitable re-
finement mappings, we perform a transformation of the
transition relation of C. Originally, the transition relation
in C updates variables successively till finally the result
of the simultaneous update of variables in DC+ has been
computed. We construct a new transition relation which
reflects the accumulated effect of the individual steps in
the execution of the loop’s body, as illustrated in the fig-
ure below.

αα

DC+

C
ρc

ρ
DC+

α

While standard state mappings in refinement theory re-

construct the values of all abstract variables from the
values of their concrete counterparts, this was not pos-
sible in our case due to the more than 100 optimization
rules applied by the code generator. These optimizations
eliminate for example (whenever possible) internal vari-
ables of the DC+ program such that a complete recon-
struction of abstract states is impossible without addi-
tional (reliable!) information about the code generation
process. We dealt with this variable elimination process
by hiding all internal variables in the formulation of the
proof obligation by means of existential quantification.
For more technical details on the automatic construc-
tion of suitable state mappings solely from the given pro-
grams, we refer to [13].

All in all, CVT automatically generates the two proof
obligations corresponding to the premises of Rule ref (see
Fig. 2). If both of these proof obligations are found to be
valid, we can conclude that C is a correct refinement of
the corresponding DC+ program.

The Verification Condition Generator, which is the
first module invoked in CVT, generates these implica-
tions from the C and DC+ source codes. The formu-
las ρ

DC+
and ρ

C
are both large conjunctions of atomic

sub-formulas, where typically (but not always) each sub-
formula corresponds to an assignment line in the code or
a constraint imposed by the abstraction (see Sect. 4.3).
These sub-formulas reflect the semantics of the source
languages and the mapping between their variables.

Rule ref: Proving Refinement

R1. ΘC ⇒ ΘDC+[α] Initiation

R2. ρC ⇒ ρDC+ [α] Propagation

C refDC+

Fig. 2. The proof obligations of Rule ref

4 Architecture of CVT

The code validation tool offers a fully automatic utility
which establishes the correctness of the generated code
individually for each run of the code generator. Therefore,
there is no user-interface to this tool - just configuration
parameters and a command line. The overall architec-
ture of CVT is presented in Fig. 3. In the next sections
we will explain what is the role of each module and what
are its inputs and outputs. In general, only the first mod-
ule (the verification-condition module) is dependant on
the specific languages and compiler we considered. All the
other modules serve as the decision procedure of CVT,
and can be reused (under minor adjustments) in valida-
tion of other compilers.

4.1 The Verification Condition Generator module

CVT receives as input the DC+ and C source codes.
These are the source and target code for the code gener-

196 A. Pnueli et al.: The Code Validation Tool (CVT)

Verification
Condition
Generator

Abstraction
Decision
ProcedureCG

DC+

C

Auto-
Decomposition

Abstraction Level ++

Minimization
Range

CVT

Fig. 3. The CVT architecture

ator. Two separate sub-modules (combined into the Ver-
ification Condition Generator module in Fig. 3) generate
the verification condition (which is actually a large logical
implication) by means of various translations and trans-
formations. The validity of this logical implication implies
the correctness of the generated code w.r.t. the source
code while its invalidity indicates a potential mistake in
the code generation process. Each of the conditions is sep-
arated into two files representing the left- and right-hand
side of the implication (in R2 these are ρ

C
and ρ

DC+
).

Since at the end of this process we use TLV [12], the veri-
fication condition is generated in the appropriate format
(the models TLV expects are compatible with the more
broadly used SMV model-checker [1]).

4.2 The auto-decomposition module

The next step is auto-decomposition. We are interested in
handling industrial-size programs, and therefore decom-
position is essential. As will be demonstrated in Sect. 5,
the auto-decomposition is one of the key enabling steps
for scalability. The Auto-Decomposition module takes
advantage of the fact that the right-hand side of the im-
plication is in the form of a conjunction (typically of hun-
dreds of sub-formulas), and simply breaks it into smaller
conjuncts which can be verified independently.

Since the time it takes to verify a program using BDD
based tools is worst-case exponential in the size and com-
plexity of the formula, it is the size of the single for-
mula that has to be verified that determines the bottle-
neck of the validity checking. The complexity of solving
each task may depend exponentially on the number of
conjuncts appearing in the antecedent in the case that
most of them are conditional. This is because each con-
dition (if-then-else) introduce a case splitting which to-
gether are compounded into exponentially many cases.
Note that conditional statements arise not only from con-
ditions in the C-program, but also from the definition of
the internal variables in the (DC+)-program, and from
the α substitution, which also appear in the antecedent
of the implication.

The auto-decomposition module breaks a program
that is n times longer into n times more separate files
to validate. Each of these files represent a smaller ver-
ification task, although in most cases it is larger than

1/n of the original formula, as will soon be explained.
Thus, although there is a linear increase in the number
of validation tasks, there is an exponential decrease in the
validation time of each of these tasks. This phenomena,
which is characteristic of verification tasks, is the reason
why decomposing the formula is so important, and why
the possibility of splitting the formula into as many sub-
formulas as the number of conjuncts is a significant factor
in the attained scalability of CVT.

The size of the decomposed verification condition is
optionally set by a configuration parameter (called the
“chunk size”), and can range from 1 (a single conjunct)
to the total number of conjuncts. In the latter case the
entire formula will be verified at once, which is only pos-
sible for relatively small files. After breaking the right-
hand side, the Auto-Decomposition module returns to
the left-hand side of the implication, and calculates the
Cone of Influence (COI), i.e., the portion of the formula
in the left-hand side that is needed for proving the se-
lected conjuncts on the right-hand side.

This is the way the COI is calculated: as a first step
CVT makes a list of all the variables that are used in the
right-hand side of the implication (obviously the smaller
the right-hand side is, the shorter the list). Assume xi is
such a variable. CVT looks for the definition of xi on the
left-hand side, which is an expression over other variables
x1 . . . xk. It then erases xi from the list and instead adds
each of the variables xi . . . xk that were not in this list be-
fore. This procedure is repeated until the list is empty.
At the end, the only conjuncts retained on the left-hand-
side are the defining equations for the variables that were
considered throughout the computation.

Example 1. Consider the following implication, where x1

and x7 are input variables:

x4 = x1∧ x2 = x6∧ x6 = x3 ∧ x3 = x7 ∧ x5 = 2 →

x4 = x5 +x6∧ x6 = x7 +x5

The auto-decomposition module will split the right-hand
side into two files, one for each conjunct. The calculation
of the COI for the first one appears in Fig. 4.

Thus, the cone of influence of x4 = x5 +x6 is made of four
conjuncts, excluding the conjunct x2 = x6. If we did not

A. Pnueli et al.: The Code Validation Tool (CVT) 197

stage variables list now looking at... cone of influence

1 x4, x5, x6 x4 x4 = x1

2 x5, x6, x1 x5 x4 = x1∧x5 = 2
3 x6, x1 x6 x4 = x1∧x5 = 2∧x6 = x3

4 x1, x3 x1 x4 = x1∧x5 = 2∧x6 = x3

5 x3 x3 x4 = x1∧x5 = 2∧x6 = x3∧x3 = x7

6 x7 x7 x4 = x1∧x5 = 2∧x6 = x3∧x3 = x7

Fig. 4. Calculating the Cone of Influence

decompose the file, the formula would have consisted of
two conjuncts in the right and five in the left.

After repeating this process until all conjuncts are cov-
ered, we are left with (possibly hundreds) pairs of files,
each significantly smaller than the original ones. There is
an obvious tradeoff between having files with a very small
right-hand side, which leads to significantly shorter verifi-
cation time, and the number of these files which incurs an
additional invocation overhead cost associated with each
file. It is therefore left to the user to decide on the chunk
size which may be optimal for his/her case.

Another configuration parameter module is called
“Reverse Cone (RC)”. When this flag is set, after calcu-
lating the COI, the program returns to the right-hand
side and looks for additional conjuncts that can be proven
with the same cone that was just calculated. This option
is useful for reducing the number of files and reducing
the over-all time for performing the proof (the time TLV
takes mainly depends on the transition relation, i.e., the
left-hand side. Thus if we use the same formula for prov-
ing more conjuncts, we save time). When setting this
option, the “chunk size” is no longer an exact number
of conjuncts taken each time, rather it is the size of
the initial set of conjuncts, which possibly grows after
the RC calculation. The efficiency of the RC calculation
obviously depends on the ordering of conjuncts we are in-
vestigating. An optimal ordering would be such that if
cone(Ci)⊆ cone(Cj) then Ci and Cj are verified together
(with simple sequential ordering this will happen only if
Cj appears first or if cone(Ci) = cone(Cj)). This ordering
can be achieved, for example, by calculating all the cones
and then partitioning the files accordingly. We did not im-
plement this because we suspected that the overhead of
this calculation will be larger than the saving resulting
from the better ordering.

4.3 The abstraction module

After decomposing the files, CVT invokes the abstraction
module. The underlying theory of the abstraction is de-
tailed in [13]. Basically, abstraction is needed since we
are trying to verify a formula which contains integer and
float variables, as well as functions over these variables
using a BDD-Based decision procedure for finite-state
models. The abstraction module treats these functions
as uninterpreted functions , replacing them by new sym-

bols. The faithfulness of this technique depends on the
way that the compiler manipulates these functions and
the kind of functions we leave interpreted. The more we
interpret, the more faithful the model is. On the other
hand, the less we interpret, the smaller the model is.

The abstraction works in an incremental manner, fol-
lowing an abstraction hierarchy designed according to the
specific optimizations the compiler performs. We begin
with maximum abstraction (called Level-0 abstraction)
where all functions except equalities, Boolean opera-
tors and if-then-else are left uninterpreted. If the proof
fails, CVT invokes the abstraction module again, ask-
ing for Level-1 abstraction where, additionally, compar-
isons operators on integers (“>”, “<”, etc) are now
interpreted.

If, for example, the compiler reads “a < b” in the ab-
stract system and transforms it to “b > a” in the concrete
system (which are obviously semantically equivalent),
Level-0 abstraction will result in a false negative (i.e., the
abstracted formula is pronounced invalid, while the con-
crete formula is valid) where as level-1 will succeed.

The function encoding scheme works as follows: as-
sume we are given a formula ϕ, and let f be a func-
tion symbol occurring in ϕ. Then the function encoding
scheme for f appears as follows.

– Replace each occurrence of the form f(t1, .., tk) in ϕ by
a new variable vif of a type equal to that of the value re-
turned by f . Occurrences f(t1, .., tk) and f(u1, .., uk)
are replaced by the same vif iff tj is identical to uj for
every j = 1, . . . , k.

– For every pair of newly added variables vif and vjf ,
i 6= j, corresponding to the non-identical occurrences
f(t1, .., tk) and f(u1, .., uk), add the implication t1 =
u1∧ . . .∧ tk = uk → vif = vjf as an antecedent to the
transformed formula.

Example 2. Assume that a source program contained the
statement z := (x1 + y1) · (x2 + y2) which the translator
we wish to verify compiled into the following sequence of
three assignments:

u1 := x1 +y1; u2 := x2 +y2; z := u1 ·u2,

introducing the two auxiliary variables u1 and u2.
For this translation, the abstraction module will con-
struct the verification condition

198 A. Pnueli et al.: The Code Validation Tool (CVT)

u1 = x1 +y1∧ u2 = x2 +y2∧ z = u1 · u2 →

z = (x1 +y1) · (x2 +y2),

whose validity we wish to check.
The abstracted version of the above implication is:

u1 = F (x1, y1)∧u2 = F (x2, y2)∧z =G(u1, u2) →

z = G(F (x1, y1), F (x2, y2))

Clearly, if the abstracted version is valid then so is the
original concrete one.

Following the abstraction schema, the abstraction
module now replaces each functional term by a fresh vari-
able but adding, for each pair of terms with the same
function symbol, an extra antecedent which guarantees
the functionality of these terms. Namely, that if the two
arguments of the original terms were equal, then the
terms should be equal. It is not difficult to see that this
transformation preserves validity. We thus obtain the fol-
lowing equality formula:

ϕ :

(x1= x2 ∧ y1 = y2→ f1= f2)∧
(u1= f1 ∧ u2 = f2→ g1= g2)∧
u1 = f1 ∧ u2 = f2 ∧ z = g1

 → z = g2 (1)

Note the extra antecedent ensuring the functionality of
F by identifying the conditions under which f1 should
equal f2 and the similar requirement for G. This shows
how equality formulas such as ϕ of Equation (1) arise in
the process of translation validation.

The reason we first interpret the comparison operators
on moving from level-0 to level-1 is that the compiler we
are considering employs these kinds of optimizations fre-
quently. To handle commutativity of the “+” function,
for example, we need another abstraction level. However,
so far, Level-0 and Level-1 abstractions proved to be suf-
ficient for the purposes of code validation of the study-
cases we have considered.

This leaves us with a quantifier-free first-order logic
formula which enjoys the small model property (i.e., it is
satisfiable iff it is satisfiable over a finite domain). There-
fore the next issue the abstraction module handles is the
calculation of a finite domain, such that the formula is
valid if and only if it is valid over all interpretations into
this domain. The latter can be checked algorithmically,
using BDD techniques. The domain that is many times
taken when using these techniques is simply a finite set
of integers whose size is the number of (originally) inte-
ger/float variables (e.g., if there are n integer/float vari-
ables, then each of these variables ranges over [1..n]). It
is not difficult to see that this range is sufficient for prov-
ing the invalidity of a formula if it was originally not valid.
The invalidity of the formula implies that there is at least
one assignment that makes the formula false. Any as-
signment that preserves the ordering of variables in this
falsifying assignment will also falsify the formula (the ab-
solute values are of no importance). This is why the [1..n]

range, which allows all orderings, is sufficient regardless of
the formula’s structure.

4.4 The range minimization module

The size of the state-space imposed by the [1..n] range
as suggested in the previous section is nn. For many
industrial-size programs this state-space is far too big to
handle. For example, a program with 100 variables re-
quires a state space of size 100100 which obviously cannot
be handled in reasonable time. But apparently there is
a lot of redundancy in this range that can be avoided.
The [1..n] range is given without any kind of analysis of
the formula’s structure. Note that the informal sound-
ness proof we described before, is independent of the
structure of the formula we try to validate, and thus the
range is sufficient for all formulas with the same num-
ber of variables. But in fact, there is no reason why
we should treat the validated formula as arbitrary. Ana-
lyzing the structure of the formula we wish to validate
makes it possible to significantly decrease the ranges and
therefore decrease the state space. This analysis is per-
formed by the “Range Minimization” module (RMM),
using the range allocation algorithm , which significantly
reduces the range of each of these (now enumerated type)
variables, and thus increases the size of programs we can
handle. By invoking this module CVT decreases the state
space of the verified formulas typically by orders of mag-
nitude. We have many examples of formulas containing
150 integer variables or more (which results in a state
space of 150150 if the [1..n] range is taken), which after
performing the range allocation algorithm, can be proved
with a state space of less than 100, in a few seconds.

The range allocation algorithm is somewhat complex
and its full description is beyond the scope of this paper.
We refer the reader to [11] for more details, and describe
here only the general idea. The algorithm is relevant at
this point to Level-0 abstraction only, hence it analyzes
formulas where all functions are abstracted except the
equality function and the standard Boolean operators.

The range allocation algorithm tries to solve a satis-
fiability (validity) problem efficiently, by determining a

range allocation R : Vars(ϕ) 7→ 2N, mapping each integer
variable xi ∈ ϕ into a small finite set of integers, such
that ϕ is satisfiable (valid) iff it is satisfiable (respectively,
valid) over some R-interpretation. After each variable xi
is encoded as an enumerated type over its finite domain
R(xi), we use a standard bdd package, such as the one in
TLV, to construct a bdd Bϕ. Formula ϕ is satisfiable iff
Bϕ is not identical to 0.

Obviously, the success of our method depends on our
ability to find range allocations with a small state space.

In theory, there always exists a singleton range allo-
cation R∗, satisfying the above requirements, such that
R∗ allocates each variable a domain consisting of a single
natural, i.e., |R∗|= 1. This is supported by the following
trivial argument. If ϕ is satisfiable, then there exists an

A. Pnueli et al.: The Code Validation Tool (CVT) 199

assignment (x1, . . . , xn) = (z1, . . . , zn) satisfying ϕ. It is
sufficient to take R∗ : x1 7→ {z1}, . . . xn 7→ {zn} as the sin-
gleton allocation. If ϕ is unsatisfiable, it is sufficient to
take R∗ : x1, . . . , xn 7→ {0}.

However, finding the singleton allocation R∗ amounts
to a head-on attack on the primary NP-complete prob-
lem. Instead, we generalize the problem and attempt to
find a small range allocation which is adequate for a set
of formulas Φ which are “structurally similar” to the for-
mula ϕ, and includes ϕ itself.

Consequently, we say that the range allocation R is
adequate for the formula set Φ if, for every equality for-
mula in the set ϕ ∈ Φ, ϕ is satisfiable iff ϕ is satisfiable
overR.

4.4.1 An approach based on the set of atomic formulas

We assume that ϕ has no constants or Boolean variables,
and is given in a positive form, i.e., negations are only al-
lowed within atomic formulas of the form xi 6= xj . Any
equality formula can be brought into such positive form,
by expressing all Boolean operations such as →, ↔ and
the if-then-else construct in terms of the basic Boolean
operations ¬, ∨, and ∧, and pushing all negations inside.

Let At(ϕ) be the set of all atomic formulas of the form
xi = xj or xi 6= xj appearing in ϕ, and let Φ(ϕ) be the
family of all equality formulas which have the same set of
atomic formulas as ϕ. Obviously ϕ ∈ Φ(ϕ). Note that the
family defined by the atomic formula set {x1 = x2, x1 6=
x2} includes both the satisfiable formula x1=x2 ∨x1 6=x2

and the unsatisfiable formula x1=x2∧x1 6=x2.
For a set of atomic formulas A, we say that the sub-

set B = {ψ1, . . . , ψk} ⊆A is consistent if the conjunction
ψ1∧· · ·ψk is satisfiable. Note that a set B is consistent
iff it does not contain a chain of the form x1 = x2, x2 =
x3, . . . , xr−1 = xr together with the formula x1 6= xr.

Given a set of atomic formulas A, a range allocation
R is defined to be satisfactory for A if every consistent
subset B ⊆A is R-satisfiable.

For example, the range allocation R : x1, x2, x3 7→ {0}
is satisfactory for the atomic formula set {x1 = x2, x2 =
x3}, while the allocation R : x1 7→ {1}, x2 7→ {2}, x3 7→
{3} is satisfactory for the formula set {x1 6= x2, x2 6= x3}.
On the other hand, no singleton allocation is satisfac-
tory for the set {x1 = x2, x1 6= x2}. A minimal satisfac-
tory allocation for this set can be given by R : x1 7→
{1}, x2 7→ {1, 2}.

Claim. The range allocation R is satisfactory for the
atomic formula set A iff R is adequate for Φ(A) the set of
formulas ϕ such that At(ϕ) =A.

Thus, we concentrate our efforts on finding a small range
allocation which is satisfactory for A =At(ϕ) for a given
equality formula ϕ. In view of the claim, we will continue
to use the terms satisfactory and adequate synonymously.

We partition the set A into the two sets A = A= ∪
A6=, where A= contains all the equality formulas in A,
while A6= contains the inequalities. Variable xi is called a
mixed variable iff (xi, xj)∈A= and (xi, xk)∈A6= for some
xj , xk ∈Vars(ϕ).

Note that the sets A=(ϕ) and A6=(ϕ) for a given for-
mula ϕ can be computed without actually carrying out
the transformation to positive form. All that is required
is to check whether a given atomic formula has a pos-
itive or negative polarity within ϕ, where the polarity
of a sub-formula p is determined according to whether
the number of negations enclosing p is even (positive po-
larity) or odd (negative polarity). Additional consider-
ations apply to sub-formulas involving the if-then-else
construct.

Example 3. Let us illustrate these concepts on the for-
mula ϕ of Equation (1), whose validity we wished to
check.

Since our main algorithm checks for satisfiability, we
proceed by calculating the positive form of ¬ϕ, which is
given by:

¬ϕ :

(x1 6= x2 ∨ y1 6= y2 ∨ f1 = f2)∧
(u1 6= f1 ∨ u2 6= f2 ∨ g1 = g2)∧
u1 = f1 ∧ u2 = f2 ∧ z = g1

 ∧ z 6= g2,

and therefore

A= :{(f1 = f2), (g1 = g2), (u1 = f1), (u2 = f2), (z = g1)}

A6= :{(x1 6= x2), (y1 6= y2), (u1 6= f1), (u2 6= f2), (z 6= g2).}

Note that u1, u2, f1, f2, g2 and z in this example are mixed
variables.

As explained above, the sets A= and A6= can be com-
puted directly by counting the number of negations en-
closing the atomic formulas in ϕ without transforming to
positive form or even explicitly negating ϕ. For example,
the comparison x1 = x2 in ϕ is contained within two nega-
tions implied by appearing on the left-hand side of two
(nested) implications. Since we are considering ¬ϕ, this
amounts to 3 negations. Since 3 is odd, we add x1 6= x2 to
A6=. In a similar way, the comparison f1 = f2, being under
2 negations, is added to A=.

This example would require a state space of 1111 if we
used the [1..n] range, where n= 11. The range allocation
algorithm will find ranges adequate for this formula, with
a state space of 16.

4.4.2 A graph-theoretic representation

The sets A6= and A= can be represented by two graphs,
G= and G

6=
defined as follows:

(xi, xj) is an edge on G= , the equalities graph , iff
(xi = xj) ∈A=.

200 A. Pnueli et al.: The Code Validation Tool (CVT)

x1 x2 y1 y2 g1 g2

f1
u1 f2 u2 z

Fig. 5. The Graph G :G6= ∪G= representing ¬ϕ

(xi, xj) is an edge on G
6=

, the inequalities graph, iff
(xi 6= xj) ∈A6=.

We refer to the joint graph as G. Each vertex in these
graphs represents a variable, and therefore some of them
represent mixed variables. We refer to these vertices as
mixed vertices.

An inconsistent subsetB ⊆Awill appear, graphically,
as a cycle consisting of a single G

6=
-edge and any pos-

itive number of G=-edges. We refer to these cycle as
contradictory cycles.

In Fig. 5, we present the graphs corresponding to the
formula ¬ϕ, where G=-edges are represented by dashed
lines and G

6=
-edges are represented by solid lines,

The range allocation algorithm has several stages of
traversing the graph, analyzing reachability, removing
vertices etc. We once more refer the reader to [11] for fur-
ther details.

4.5 The verifier module (TLV)

The validity of the verification conditions is checked by
TLV [12], an SMV-based tool which provides the capabil-
ity of BDD-programming and has been developed mainly
for finite-state deductive proofs (and thus convenient in
our case for expressing the refinement rule). In the case
that the equivalence proof fails, a counter example is
displayed. Since it is possible to isolate the conjunct(s)
that failed the proof, this information can be used by
the compiler developer to check what went wrong. CVT
invokes TLV for each pair of files generated by the auto-
decomposition module. A proof log is generated as part of
this process, indicating which files were proved, at what
level of abstraction, and when.

5 A case study

We used CVT to validate an industrial-size program, a
code generated for the case study of a turbine developed
by SNECMA, which is one of the industrial case stud-
ies in the SACRES project. The program was partitioned
manually (by SNECMA) into 5 units which were sepa-
rately compiled. Altogether the DC+ specification is a
few thousand lines long and contains more than 1000 vari-
ables. After the abstraction we had about 2000 variables
(as explained in Sect. 4.3, the abstraction module replaces

function symbols with new variables). Following is a sum-
mary of the results achieved by CVT:

Module Conjuncts Verified Time (min.)

M1 530 100% 1:54
M2 533 100% 1:30
M3 124 100% 0:27
M4 308 100% 2:22
M5 860 99.8% 3:31 + ?
Total : 2355 99.9% 9:44 + ?

As can be seen, only a fragment of a percent (3 conjuncts
out of 2355) could not be verified in reasonable time using
the current implementation of CVT. These 3 conjuncts
had several characteristics that made them hard to check:

– The cone of influence for these conjuncts was very big,
and in fact included most of the left-hand side of the
formula.

– As a result, there was a very large number of functions
that had to be abstracted. As explained in Sect. 4.3,
each abstraction requires the addition of constraints.
For a two argument function like “+”, to abstract n
occurrences of the function requires the addition of
O(n2/2) constraints (because the arguments of each
pair of functions is compared). In the case of these 3
conjuncts, typically there were more than 50 of each
kind of function (“+”, “-”...”>” ”<” etc) and thus
thousands of constraints had to be added.

We are currently working on additional optimizations
and improvements of our basic algorithms that, hopefully,
will enable us to handle these three cases of last resis-
tance. The progress so far seems to be most encouraging.

References

1. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, J.: Sym-
bolic model checking: 1020 states and beyond. Information
and Computation 98(2): 142–170, 1992

2. Buth, B., Buth, K., Franzle, M., Karger, B., Lakhneche, Y.,
Langmaack, H., Müller-Olm, M.: Provably correct compiler
development and implementation. In: Compiler Construction
92, 1992

3. Clutterbuck, D., Carre, B.: The verification of low-level code.
Software Engineering Journal, pp. 97–111, 1998

4. Consortium, T.S.: Safety critical embedded systems: from re-
quirements to system architecture, 1995. Esprit Project De-
scription EP 20.897, URL http://www.tni.fr/sacres

5. Curzon, P.: A verified compiler for a structured assembly

A. Pnueli et al.: The Code Validation Tool (CVT) 201

language. In: international workshop on the HOL theorem
Proving System and its applications. IEEE Computer Society
Press, 1991

6. Guttman, J.D., Ramsdell, J.D., Swarup, V.: The VLISP ver-
ified scheme system. Lisp and Symbolic Computation 8: 33–
110, 1995

7. Guttman, J.D., Ramsdell, J.D., Wand, M.: VLISP: A verified
implementation of scheme. Lisp and Symbolic Computation 8:
5–32, 1995.

8. Müller-Olm, M.: Modular Compiler Verification: A Refinement-
Algebraic Approach Advocating Stepwise Abstraction. LNCS
1283. Berlin, Heidelberg, New York: Springer-Verlag, 1997

9. Oliva, D.P., Ramsdell, J.D., Wand, M.: The VLISP verified
PreScheme compiler. Lisp and Symbolic Computation 8: 111–
182, 1995

10. O’Neill, I.M., Clutterbuck, D.L., Farrow, P.: The formal veri-
fication of safety-critical assembly code. In IFAC Symposium
on safety of computer control systems, 1988

11. Pnueli, A., Rodeh, Y., Shtrichman, O., Siegel, M.: An efficient
algorithm for the range minimization problem. Technical re-
port, Minerva Center for Verification of Reactive Systems at
the Weizmann Institute, Dec. 1998

12. Pnueli, A., Shahar, E.: A platform for combining deduc-
tive with algorithmic verification. In: Alur, R., Henzinger,
T. (eds.): Proc. 8th Intl. Conference on Computer Aided
Verification (CAV’96). LNCS. Berlin, Heidelberg, New York:
Springer-Verlag, 1996, pp. 184–195

13. Pnueli, A., Siegel, M., Shtrichman, O.: Translation valida-
tion for synchronous languages. In: Larsen, K., Skyum, S.,
Winskel, G. (eds.): Proc. 25th Int. Colloq. Aut. Lang. Prog..
LNCS 1443. Berlin, Heidelberg, New York: Springer-Verlag,
1998, pp. 235–246

14. Pnueli, A., Siegel, M., Singerman, E.: Translation valida-
tion. In: Steffen, B. (ed.): 4th Intl. Conf. TACAS’98. LNCS
1384. Berlin, Heidelberg, New York: Springer-Verlag, 1998,
pp. 151–166

