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Abstract. The design of distributed systems is an in-
creasingly complex task, yet competitiveness requires fas-
ter developments. Formal Description Techniques (FDT)
are a way to deal with this requirement, as they come
with tools allowing us to simulate and verify the behav-
ior of a system without actually having to execute it, thus
translating part of the costly testing effort to the design
effort. In this article, we present the verification toolset
Aldébaran. This verification toolset is designed inde-
pendently of any FDT, yet allows us to work with the
two most used ones. It is implemented in a modular way,
for easy use and integration with other system design
tools. We present the technical principles of this toolset,
the performances obtained, and the application domains
through the presentation of some case studies.

Key words: Protocol engineering – Formal methods –
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1 Introduction

Distributed systems in general and more particularly
telecommunications systems are more and more com-
plex, yet the time-to-market becomes shorter and shorter,
as the competition between service manufacturers is in-
creasing. It becomes crucial to develop systems rapidly, at
the lowest cost, with a good quality level. To keep up with
these various and conflicting goals, engineering teams
need to evolve more and more towards reuse (integration
of previously implemented software components in a new
application) and concurrent engineering (development in
parallel of different parts of the same application).
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Moreover, there is one crucial requirement which dom-
inates the area of large scale distributed telecommunica-
tions. It is the requirement for openness, which means
that a telecommunication system can be composed of
products designed by different, often competing manufac-
turers. Openness imposes that the interactions between
the products components are based on standard defini-
tions, such as interfaces, services and protocols. These
standard definitions should be as much as possible im-
plementation independent, to allow for maximum freedom
for each manufacturer. Yet it should be possible to derive
actual implementations for it, and to check if the cho-
sen implementation conforms to the standard it is derived
from.

Setting such standards is the aim of Formal De-
scription Techniques (FDT). An FDT is basically about
founding a description language on a suitable mathe-
matical model, to allow a designer to express a design
unambiguously and to reason about it. This is the basis
for a language whose aim is to allow different designers to
give the same meaning to the same system’s description.
Furthermore, this language should be an international
standard, recognized as such by an international associa-
tion such as the ISO or the ITU.

Such Formal Description languages are currently
three:

Estelle [36]: Estelle (extended finite state machine
language) is an ISO standard. It is designed for the
description of protocols, as a hierarchy of communi-
cating extended state machines.

Lotos [38]: Lotos (language of temporal ordering se-
quences) is a language coming from process algebra
theories. Its first application for the design of pro-
tocols dates back to 1984, but Lotos became an
ISO standard in 1989. It is based on the algebraic
composition of elementary actions, the resulting com-
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plex sequential behaviours can be encapsulated into
processes. These processes can communicate together
through interaction ports. The communication mode
is a multi-way rendezvous.
Lotos is based on two sub-languages, one similar to
the CCS and CSP process algebras, for the descrip-
tion of the control; the other is the Abstract Data
Type (ADT) definition language called Act-One, for
the description of data.

Sdl [11]: Sdl (specification and description language)
first appeared in a Ccitt recommendation in 1976.
Sdl has since evolved from an informal graphical de-
scription technique to a full Formal Description Tech-
nique, published in the Ccitt recommendation Z-100.
Sdl is subject to revision every four years. Object-
orientation and other extensions were introduced in
1992.
Sdl is based on communicating extended state ma-
chines, communicating via bi-directional links. These
links are connected to the state machines via interac-
tion ports. Each state machine owns an input queue,
which is common to all of its interaction ports.

A complete FDT is not only a description language,
but is usually completed by the following parts:

A design methodology: a design can be obtained by
many different, yet equivalent ways. Designers have
to make frequent choices during the design process.
Making the right choices to obtain the “best” design is
a difficult task. Even defining what best design means
is already hard. However, to enforce re-usability and
communication between different designers, a com-
mon design methodology is mandatory. So most FDTs
come with their specific design methodology [4, 12].

Tools: tools such as editors are of course necessary for
any language. Compilers are usually also needed, how-
ever for FDTs, compilation for implementation pur-
poses is not always possible or even desirable. In fact,
the characteristic tool for FDTs is for taking advan-
tage of the formal definition of the language; this for-
mal definition allows us to build tools for reasoning
about the program’s behaviour without having to ac-
tually execute it. There are tools for symbolic simu-
lation, invariant analysis, deadlock checking, logical
properties verification, etc.

A coherent set of efficient tools is crucial for a real use
of FDTs in any development environment. Commercial
companies already provide well designed editors, simula-
tors and C code generators for a language such as Sdl.
Some similar, but academic works exist for Estelle and
Lotos. The simulators of these toolsets use the formal
definition of the language to render a correct view of the
behaviour of a system in its real environment. Moreover,
they allow some more in-depth analysis such as deadlock
or assertions checking. However, most of these toolsets
actually stop here, and do not offer more advanced an-
alysis functionalities like the comparison of the system

under development with a formal definition of its require-
ments, or with another more abstract description of its
behaviour. This is what formal verification is about.

In this article, we present the Aldébaran toolset al-
lowing us to perform such formal analysis activities.
Aldébaran is itself part of the Cæsar-Aldébaran

Distribution Package (Cadp). Cadp is a toolset de-
veloped jointly with the Vasy action of Inria, the
Cæsar part being designed for working with the FDT
Lotos. Another interconnection of Aldébaran is with
the commercial environment ObjectGeode from Ver-

ilog. ObjectGeode is an environment for the design of
systems with the FDT Sdl. In each case, Aldébaran

brings the verification and static analysis functionalities
that these two environments lack.

This article is structured as follows: in Sect. 2, we
present the theoretical principles Aldébaran is based
on. In particular, we present the model checking prin-
ciple, and what are the critical points for an efficient
application of this principle. In Sect. 3, we explain how
Aldébaran implements these principles, what are the
techniques employed and the performances obtained. One
strong point of Aldébaran is its modular architecture,
allowing us to efficiently and quickly evaluate new verifi-
cation algorithms with new modelling techniques.

In Sect. 4, we present two examples of integration of
Aldébaran modules for enhancing existing validation
activities. Finally, Sect. 5 consists in the description of
some significant case studies and of the benefits brought
by using Aldébaran for their verification.

2 Principles of model based validation techniques

Model checking [16, 51] consists in building a finite model
of the system under analysis and to check the desired
requirements on this model. The check itself amounts
to a partial or complete exploration of the model (see
Fig. 1).
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Fig. 1. Model checking principles
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The main advantages of this technique are that it can be
automated and is fast. Furthermore, model checking al-
lows the easy production of counterexamples, when a re-
quirement is not fulfilled. The main problem of model
checking is the potential size of the model, which depends
on the system complexity, and which can be huge. This
problem is the state explosion problem.

Given this model, it is then possible to simulate step
by step, or randomly the system. Furthermore, if the
model is finite, we can also explore it exhaustively, thus
providing the basis for formal verification.

2.1 What is the model?

The model considered in the case of the toolset presented
below is a Labelled Transition System (LTS). An LTS

is a state graph with anonymous states (no information
except a distinguishing number) and transitions labelled
with an identification of the actions performed during the
states change. The notion of LTS is therefore quite simi-
lar to the usual notion of automaton (or state machine).
Figure 2 is an example of LTS, with the state 0 being the
initial state.
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Fig. 2. Example of Labelled Transition System

2.2 How is the model generated?

FDTs usually come with a definition of their operational
semantics: the consequences of the execution of any in-
struction are unambiguously defined by a set of mathe-
matical rules. This set of rules is designed to be complete,
coherent, and computable for all the instruction set.

More precisely, these rules rely on a abstract execution
model. This execution model is defined as a sequential
machine, where one state corresponds to a system’s con-
figuration (where is the control, what are the variables
values). The execution of any instruction corresponds
then to a transition from one state to another. Execution
sequences can be given as sequences of transitions.

Given this set of rules, it is possible to derive static-
ally and automatically any execution sequences; static-
ally means that we do not have to actually execute the

system under investigation in its operating environment
(which is what testing is about). Automatically means
that we can use a computer to derive these execution se-
quences.

Traditionally, the set of all possible execution se-
quences is built as an execution tree: as systems like
communication protocols are designed to run indefinitely,
this tree is usually of infinite depth. However, one sys-
tem’s state can occur many times in this tree: it is then
possible to fold the tree by merging some of the identical
states. The result is then an LTS, which is traditionally
called the model of the system. The generation steps of
this graph are resumed in Fig. 3.
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Fig. 3. Generation of the model of a parallel system

In this figure, we consider a first process s1 able to per-
form indefinitely the action a, and a second process s2

able to perform the action b once. s1 and s2 work asyn-
chronously (they do not communicate with each other).
If we apply usual operational semantics rules on this sys-
tem description (e.g., those of Lotos or Sdl), then we
obtain an infinite execution tree. However, many states of
this tree are identical, in the sense that they correspond to
the same control states and variables values. Then we can
merge these identical states and fold the execution tree
into a graph.

If we consider states with a bounded size (no un-
bounded dynamic creation of processes) and variables
with a bounded domain, then the resulting graph (the
model) is finite. However, its size is exponential with re-
spect to the number of processes, and therefore usually
huge.

2.3 Aldébaran presentation

Aldébaran is a formal verification tool. It has been de-
veloped for 10 years and integrates state-of-the-art tech-
niques as well as less recent, but intensively tested and ap-
plied techniques. It is distributed as a part of the Cæsar-
Aldébaran [19] toolbox.
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Fig. 4. Aldébaran principles

The architecture of this toolset is centered on the model.
More precisely, three main issues are addressed (see
Fig. 4):

Model Generation: use or design compilers from high
level languages to generate the functions needed for
the model generation.

Model Representation: data structures and methods to
store and explore efficiently this model.

Analysis Program: use or design algorithms and tools to
explore this model for simulation and verification pur-
poses.

Aldébaran is designed with respect to this decom-
position. So the model exploration module presented in
Fig. 4 is a generic box providing what is necessary for the
exploration of the model. Once completed by a compiler
with the generation functions, this module can be coupled
to an analysis program. We detail each of these issues, and
present the available analysis programs in the next para-
graphs.

2.4 Various techniques for efficient representation

In order to deal efficiently with the state explosion prob-
lem, Aldébaran uses two different, but complementary
techniques to represent the model.

Enumerative representation: this kind of representation
is the most classical one; sets of states or transitions
are represented by the complete enumeration of their
elements. So the size of the computer representation
of these sets is proportional to the number of their
elements. However, the performances obtained with

this representation, especially in memory terms, de-
pend greatly on the exploration technique used (see
Sect. 2.6).

Symbolic representation: in this kind of representation,
a set is no longer represented by the enumeration of
its elements, but by a formula. Thus, the size of the
representation of a set is not proportional to its num-
ber of elements. For example, if we consider the set of
all even integers between 0 and 10, we can either rep-
resent it by the enumeration {0,2,4,6,8,10} or by the
formula {x ∈N | ∃k ∈N,x= 2k and 0≤ x≤ 10}.
So symbolic techniques can lead to a very concise rep-
resentation of huge (even infinite) sets, and can allow
us to perform analysis on models untractable by enu-
merative methods. On the other hand, symbolic meth-
ods involve costly computations and can also explode
in memory size depending on the system characteris-
tics.

Enumerative and symbolic representations are com-
plementary. Depending on the system from which the
model is built, one of the representation can be more effi-
cient than the other. So it is important to be able to work
with both.

2.5 Generation from higher-level languages

Aldébaran is independent of any language, as the
model it works with is low level and sufficiently general.
However, to ease the description of complex systems, we
usually use compilers from high-level languages to pro-
duce the functions needed for the model exploration.
Generally, the functions init (returning the initial state),
succ (computing the firable transitions from any state)
and = (comparing two states) are required. Depending
on the kind of exploration to perform, it is sometimes
necessary to have the function pred (computing the tran-
sitions leading to a state). We use also the functions pre
(resp. prea) computing the transitions (resp. the transi-
tions labelled by a) leading to a set of states. The com-
piler usually also indicates the exact structure of a state,
a transition and a label.

Aldébaran works with several different compilers.
The main compilers are Cæsar which is an efficient com-
piler of Lotos description and ObjectGeode, for dealing
with Sdl description. Another ad-hoc compiler allows the
generation of the model from a set of Extended Labelled
Transition Systems (ELTSs).

An ELTS is an LTS extended with some local vari-
ables, and whose transitions are decorated by a label, by
a guard (allowing the firing of the transition), and by a set
of assignments performed on its variables. This kind of
ELTS can be viewed as a Guarded Command language,
extended with an implicit notion of control variable. Fi-
nally, we consider several ELTSs working in parallel. The
structure of the composition and the communications be-
tween these ELTSs is given as an algebraic composition
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expression, based either on the binary rendezvous and re-
striction operators of CSP [32], or the n-ary rendezvous
and abstraction operators of CCS [48].

This language is internal to Aldébaran and serves
for research and experimentation purposes. It is also used
as an intermediate form for transformations from higher
level descriptions (see Sect. 4.1).

2.6 Analysis programs

The analysis program is the algorithm which pilots the
exploration of the model to check some properties, com-
pute some information or allow the user to simulate the
system. It is coupled more or less tightly with the explo-
ration module, depending on the kind of representation
chosen. When we leave aside any interaction of the user,
the efficiency of the exploration becomes a crucial factor
for successful verification. This efficiency depends in part
on the representation of the model and the data struc-
tures used for its exploration, which is discussed in the
previous paragraph. It depends also on the quality of the
algorithm and on the optimizations one can bring to the
model’s size.

When we consider an enumerative representation of
the model, we can choose two different approaches:

Working with the explicit representation: this consists in
using the exploration module to fully compute the
reachable parts of the model and store all the transi-
tions on the way, then to apply the analysis program.
In that case, the analysis program can be implemented
rather independently of the exploration module, and
have its own way of retrieving and storing the model.
This is obviously limited to models of “reasonable”
size, however it is sometimes necessary for algorithms
needing a global knowledge of a model to work on it,
like some minimization algorithms.

Working with the implicit representation: this consists in
designing analysis algorithms which directly interact
with the exploration module, to pilot the exploration
of the model according to their own strategies. This
allows to implement the so-called “on-the-fly” verifi-
cation. One of the benefits of this approach is in terms
of memory, as it is not usually necessary to record the
transitions of the graph. For some algorithms, it is not
even necessary to keep an exact idea of the explored
states, keeping either partial information (like in Holz-
mann’s bit-state hashing) or only some states (at least
the stack in a depth-first search). So the savings in
memory can be considerable.

Finally, working with the symbolic representation re-
quires the analysis algorithm to be implemented with
respect to the API of the exploration module. The algo-
rithms working with this representation tend to be very
different, as they operate directly on sets of states, so in
a breadth-first like mode. Algorithms working on enumer-
ative representations work with individual states, gener-
ally depth-first.

2.7 Available analysis programs

The available analysis programs of Aldébaran include
tools for locating deadlocks, livelocks, or some execution
sequences loading to a given state.

On the verification side, Aldébaran capabilities be-
long to two main categories, behavioural verification and
logical verification.

Behavioural verification

Behavioural verification consists in comparing two differ-
ent descriptions of the behaviour of a system. One should
be the system’s description, the other is usually a formal-
ization of the system’s requirements. It can be a set of ex-
ecution sequences, Mscs, or another Labelled Transition
System. This LTS can itself be produced from another
high-level description, possibly more abstract or from an-
other point of view. Two examples of such behavioural
requirements are shown in Fig. 5.
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Fig. 5. Examples of behavioural requirements

A crucial point with behavioural verification is the defini-
tion of an adequate comparison relation. As we want to
compare behaviours, a good candidate for a comparison
relation should satisfy most or all of the following criteria:

Preservation of execution sequences: this is the basis of
behavioural comparison, it ensures that two LTSs
said to be equal represent the same sets of execution
sequences (equivalence of language or trace equiva-
lence).

Abstraction: we would like to compare two different de-
scriptions of the same system, at different levels of ab-
straction. This means for example that a given event
can be present in the more detailed description, and
absent from the more abstract one, or an event of the
most abstract one can be refined into a sequence of
events in the more detailed description. So the com-
parison relation should take into account some ab-
straction/observation criteria to allow the compari-
son of the descriptions at the same abstraction level.
This is usually done by defining a set of observable
events, and by considering other events as internal,
thus anonymous or invisible.

Preservation of the branching structure: two LTSs can
represent the same language, yet be different in their
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structure. This structure reflects the internal choices
made in the corresponding system. These internal
choices can often influence the interactions one system
has with another. So it is important to take them into
account when verifying some properties.

Thus, the comparison relation is either a preorder rela-
tion, checking the behaviour inclusion, or a equivalence
relation, checking the behaviour equality.

The relations considered in Aldébaran belong to the
class of the simulation and bisimulation [50] relations.
Simulation relations are preorder relations, whereas
bisimulation relations are equivalence relations. These re-
lations respect all the criteria defined above. By variation
of the abstraction criteria, and of how internal actions
are considered, we obtain a lattice of relations (see Fig. 6)

observational equivalence

branching bisimulation

safety equivalence

strong simulation

strong bisimulation

safety preorder

Fig. 6. Lattice of bisimulation relations

from the weakest, safety equivalence, to the strongest,
strong bisimulation, an interesting compromise being the
branching bisimulation. Strongest here means the rela-
tion which distinguishes more LTSs. The strength of one
relation is directly related to the kind of properties it pre-
serves. For example, the strong bisimulation preserves
both properties (safety or liveness), where the safety
equivalence preserves only safety properties. So choosing
the right relation depends first on what is to be verified.

Minimization

If we have two LTSs equivalent for one of these bisim-
ulation relations, obviously it is better to work with the
smallest one (in terms of number of transitions), as veri-
fying properties on it is equivalent to verifying properties
on the other. As these equivalence relations define equiva-
lence classes for LTSs, we would like to be able to pick one
of the smallest in this class, and to continue to work with
it. Some of the algorithms for behavioural comparison
do in fact compute this minimal equivalent LTS. Two of
these algorithms [5, 49] are implemented in Aldébaran,
and are in effect used also to produce this minimal LTS.

Logical verification

Logical verification consists in checking if the system ver-
ifies a property expressed as a temporal logic formula.

Temporal logics allow us to express overall properties
of a program execution, such as liveness, mutual exclu-
sion, fairness, etc. These logics can be interpreted over
LTSs: each formula exactly represents a class of LTSs,
and the verification problem consists in deciding whether
the LTS associated to a given program belongs or not to
this class. In particular, whenever the LTS is finite, this
kind of verification can be fully automated, which gave
rise to the actual model-checking activity [16, 51].

Numerous temporal logics have been proposed in the
literature [16, 46, 51] to express program properties. Basi-
cally, most of them are built upon propositional calculus
or first-order logic (interpreted over program states, i.e.,
variables and control points), extended with a set of tem-
poral operators to reason about program execution. Two
family of logics are usually distinguished: linear-time log-
ics, expressing program execution as a set of execution se-
quences; and branching-time logics, expressing program
execution as an execution tree.

The logic we consider within Aldébaran is the so-
called alternation-free µ-calculus [43]. This is a branching-
time logic, based upon the propositional calculus with
fix-point operators. More formally, its formulae are de-
scribed by the following grammar:

ϕ ::= T | X | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ |

<a> ϕ | [ a ] ϕ | µX.ϕ | νX.ϕ

The intuitive semantics of these formulae is defined on the
state-space of an LTS S as follows:

– T (true) is true in any state of S
– <a> ϕ is true in state p if there exists an a-transition

from p leading to a state satisfying ϕ
– [ a ]ϕ is true in state p if each a-transition from p leads

to a state satisfying ϕ
– µX.ϕ and νX.ϕ denote the usual greatest fix-point

and least fix-point operators (where X is a free vari-
able of ϕ representing a set of states of S)

– ¬, ∨ and ∧ denote the usual boolean operators: nega-
tion, disjunction, and conjunction

From this low-level specification formalism, several
Ctl-like macros operators are proposed. These macros
allow us to express many usual program requirements,
such as: “there is no deadlock”, “any a action is eventu-
ally followed by a b action”, “It is not possible to perform
an a action followed by a c action without performing a b
action between them”, etc.

3 Implementation of these techniques within
ALDÉBARAN

We present in this section how the principles described in
the previous section are implemented in Aldébaran. In
particular, we take the point of view of the model’s repre-
sentation, and present for each different type of represen-
tation what technique is used and what kind of analysis is
possible.
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3.1 Explicit Aldébaran

Historically the first model-checking tools worked accord-
ing to Fig. 1:

– First, a compiler is used to produce explicitly the
model

– Then, the model-checking tool gets back this model
and builds its own explicit representation

– Finally, analysis is performed on this internal repre-
sentation

Obviously, such an approach suffers directly from the
state explosion problem, but it allows us to apply nearly
all of the analysis programs that are interesting for verifi-
cation.

With explicit representation, Aldébaran allows us
to minimize an LTS or to compare two LTSs efficiently,
using various equivalence or preorder relations. The key
to this efficiency is the implementation of an algorithm,
which is an adapted version of the Paige and Tarjan algo-
rithm [21, 49]. Moreover, as an LTS is represented explic-
itly by its transition relation (a transition is no more than
a number, a label, and a number coding respectively the
source state, the identification of the transition action,
the target state), the tool may be interfaced very quickly
with compilers translating a high level description to the
LTS, e.g., compilers for Lotos, Sdl.

3.1.1 The Algorithm Principle

Intuitively, Strong bisimulation puts together in a single
class states which have the same behaviour in terms of
elementary steps, i.e., a transition. This means that two
states are in the same class if they reach the same classes
via a transition. The algorithm solves the relational coars-
est partition problem which is an instance of the partition
refinement paradigm. A partition P of a set S is a set of
pairwise disjoint subsets of S whose union is all of S. In the
context of formal verification, the relational coarsest par-
tition problem may be expressed as follows: given an LTS

and an initial partition Pinit of the set of states, find the
coarsest refinement P of Pinit such that P is compatible
with the transition relation. The last property is another
characterization of bisimulation relations.

The algorithm uses a primitive refinement operation
that generalizes the one used in Hopcroft’s algorithm: if C
and C’ are two classes of the current partition, then, using
the function pre, C is split into two subsets: one whose
states have a successor in C’ and the other whose states
have no successor in C’.

A naive implementation of this idea leads to an al-
gorithm proportional in the size of the product between
the number of states and the size of the transition rela-
tion. Paige and Tarjan proposed an optimization which
keeps track, for each state, of the number of successors in
a reachable class.

3.1.2 Explicit model minimization

For bisimulation equivalence, the LTS is preprocessed,
following the abstract criterion which parametrizes the
equivalence relation, and then minimized using the Paige
and Tarjan algorithm with the universal partition as ini-
tial partition. For example, considering the observational
equivalence, the preprocessing consists in:

– Detecting maximal strongly connected component of
the relation labelled with the internal action τ

– Computing the transitive closure of the transition re-
lation labelled with τ

– Minimizing the result using the strong bisimulation

3.1.3 Explicit model comparison

Given two LTSs, each of them is minimized following the
equivalence relation under consideration, and the LTS

defined as the union of the two resulting LTSs is mini-
mized. If the two initial states are in the same class, then
the two LTSs are equivalent.

3.1.4 Performance

Let m, n and c be respectively the number of states,
transitions and the maximal number of successors by an
action. The theoretical complexity of the partition algo-
rithm, implemented in Aldébaran is in O(c∗m logn).
This allow the minimization of LTSs of about a few
thousands of states and a few millions of transitions on
a Sparc 20 with 128 MB of memory.

This point is particularly interesting using a compiler
for high level language. For example, strong bisimula-
tion usually reduces the size of ObjectGeode LTS by 2
to 10 factor, with very good performances: for example,
the LTS of a satellite control protocol was reduced from
147 007 states and 555 877 transitions to 66 695 states and
254 030 transitions in 6 min on a Sparc 20 with 128 MB
of memory.

Minimization is useful especially for two purposes,
first the possibility of visualizing the resulting minimal
model, second the possibility of speeding up the verifica-
tion process.

Visualization of the minimal model
During the design of a distributed system, it becomes
rapidly difficult to understand how the different interac-
tions occur. Trying to understand the behaviour of the
system by interactive simulation does not always help.
Too often the key events are bogged down in too many in-
significant events. However, once the LTS has been min-
imized, it is possible to draw it to grasp its structure,
and sometimes discover and understand some behaviours
which were hidden in the description’s complexity. It is
particularly effective when choosing a handful (usually 2
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or 3) of key events and hiding everything else. The re-
sulting minimized model is usually very small, yet often
more complex than one expects. The Cadp toolbox in-
tegrates a tool for the automatic drawing and interactive
edition of LTS. It allows us to picture rapidly and eas-
ily the structure of these small LTSs (at most 10 to 20
states). Even if this LTS remains too big to be drawn, the
Cæsar-Aldébaran simulator still allows us to explore
it interactively. So, combining the abstraction, minimiza-
tion and visualization allows us to do what is sometimes
called “visual verification”, that is verify “on sight” on
a small enough model that a property is correct.

Speeding-up the verification process
Another interest of minimization is purely a perform-
ance aspect. Usually, the verification process includes the
checking of many properties, so it involves exploration of
many models. Some of the properties will need only a sim-
ple exploration (e.g., for deadlocks), others the checks of
liveness conditions (e.g., for livelocks), some others the
use of elaborate algorithms involving the computation of
bisimulations. So if before performing all these checks, it
is possible to generate a minimized model with respect
to a suitable equivalence, the whole verification process
will be sped up by at least the reduction factor (and usu-
ally much more, as many of the verification algorithms
involved are not linear).

3.2 Implicit Aldébaran

As already mentioned in Sect. 2, one of the main motiva-
tions for using an implicit model representation is to par-
tially avoid the state explosion problem occurring when
using an explicit one. However, to benefit from this ad-
vantage, program analysis has to be performed on-the-fly,
which means that the corresponding algorithms are based
on a forward traversal of the underlying LTS.

We present here the common interface shared by the
components of Cæsar-Aldébaran to access an implicit
representation of an LTS, and then the main verification
capabilities offered by this toolset on such a representa-
tion.

3.2.1 A common interface to handle implicit LTSs

The purpose of this interface is to provide the verification
algorithms with a unified access to an implicit LTS repre-
sentation, independently of the compiler used to produce
this LTS from a high-level source program. However, as
a matter of fact, the internal architecture of the interface
depends on this compiler, as described below and illus-
trated in Fig. 7.

Lotos programs and ELTSs composition expressions
Originally designed by H. Garavel to provide on-the-fly
verification facilities for Lotos programs, the Open-

Cæsar environment [26]) implements the Model Explo-
ration Module presented in Sect. 2 as follows:

Analysis Program Result

Lotos ELTSsSDL

init

succ

=

Data structures Functions 

hashtables, stacks

heap management

Representation Generation

GEODE

SIMULATOR
OPEN-CAESAR

Object
CAESAR GEODEObject ExpOpen

Fig. 7. A common interface to handle implicit LTSs

– Model generation is implemented by a graph module,
namely a set of C data types to represent the states
and labels of the LTS, and a set of C functions for
computing on-the-fly its transition relation (functions
init and succ, delivering respectively the initial state
and the firable transitions from any given state). Of
course, although the interfaces of this module can be
“standardized”, its body depends on the source pro-
gram under consideration. Therefore, it has to be au-
tomatically generated from this source program.

– Model representation is implemented by a C library,
the storage module, providing data structures and as-
sociated primitives to efficiently store the part of the
state space of the LTS that has to be memorized dur-
ing its exploration. Data structures currently available
are the following: a state table with hash access to per-
form exhaustive simulation, a state queue and a state
stack to manage breadth-first and depth-first explo-
ration, a bitmap table to implement Holzmann’s bit
hashing technique [33, 34], etc. As it is based on an ab-
stract representation of states and labels, the storage
module is independent of the program under verifica-
tion.

Practically, verification tools are built upon this envi-
ronment as follows:

The kernel of the verification algorithm is provided as
a C program, the so-called analysis program. This ker-
nel is quite independent of the program under verification
and accesses it only through the graph module interface.
Depending on its storage policy, it can also use some of
the data structures available within the storage module.
A graph module is then generated from the source pro-
gram under verification and the link edition of these three
modules produces an analysis tool dedicated to this par-
ticular source program. Examples of such analysis tools
include interactive or exhaustive simulation, deadlock de-
tection, execution sequence search, etc.
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More recently, the following developments have been
performed to extend this initial environment:

– A graph module generator for ELTSs composition ex-
pressions

– Two analysis programs, respectively dedicated to be-
havioural and logical verification, and described in
Sects. 3.2.2 and 3.2.3.

Sdl programs
The successful results obtained with on-the-fly verifica-
tion of Lotos programs led us to extend implicit LTS

representation within Aldébaran to the Sdl FDT. To
this purpose, a similar environment of Open-Cæsar

has been designed upon the ObjectGeode compiler [39].
More precisely, this environment is implemented through
an Application Programming Interface (API) to the Ob-
jectGeode simulator, graciously provided by Verilog.

This API is written in C and it makes available the
functions used by the simulator to explore the underly-
ing LTS (init and succ), as well as data structures for
state storage (i.e., stacks, bitmap tables, etc.). Moreover,
it also gives access to the scenario generation functions,
thus diagnostic sequences computed by Aldébaran can
be played back by the simulator (see Sect. 3.2.4).

3.2.2 Behavioural verification using implicit LTSs

Verifying a behavioural specification consists in compar-
ing two LTSs with respect to an equivalence or a preorder
relation. To this purpose an efficient algorithm has been
presented in Sect. 3.1.4, able to deal with explicit LTSs.

Unfortunately this algorithm is of no interest when
one of these LTSs has to be accessed only through an
implicit representation. Indeed, it is based on partition
refinements of the state space of the two LTSs, which
requires a global knowledge of their transition relations.
This is therefore not compatible with an implicit repre-
sentation, since a pre-computation of the transition rela-
tion would lose the memory gain induced by such a repre-
sentation.

In this context, a new algorithm has been proposed
for comparing two LTSs with respect to a simulation
or a bisimulation relation [24]. This algorithm is based
on a traversal of the LTSs, thus allowing on-the-fly be-
havioural verification from an implicit representation.
More precisely, it relies on the fact that the existence of
a bisimulation relation between two LTSs can be charac-
terized by a criterion on the execution sequences of a syn-
chronous product of these two LTSs. This criterion can
be checked by exhaustive enumeration of these execution
sequences, and therefore carried out during a depth-first
exploration of the synchronous product, without requir-
ing us to store the transition relations of the two LTSs

(only their state space has to be stored). When one of
the two LTSs under comparison is deterministic (i.e.,
when its labelled transition relation is in fact a function),

then this check can be reduced to a simple reachability
problem on the synchronous product. This happens to be
often the case in practice, since the LTS describing the
property to be verified is usually deterministic.

This algorithm has been implemented for several
simulation and bisimulation relations, the most interest-
ing of which in practice are strong (bi)simulation, branch-
ing bisimulation, safety equivalence, and safety preorder.

The worst case time complexity of this algorithm is
in O(m1.n1.m2.n2) in the general case (resp. O(m1.m2)
when one LTS is deterministic) where n1, n2 and m1,
m2 denote respectively the number of states and transi-
tions of each LTS. However, it appears in practice that
this theoretical complexity is far from being reached, and
that the comparison times are close to the ones obtained
on explicit LTSs with the Paige & Tarjan algorithm.
Moreover, as transition relations are never stored, this
algorithm could be applied to LTSs with a large size tran-
sition relation (a few millions of transitions), that could
not be handled using an explicit representation. Finally,
thanks to the on-the-fly approach, this algorithm is par-
ticularly efficient when the two LTSs are not related (i.e.,
when the behavioural specification under check happens
to be false) since in this case only a small part of the state
space of their synchronous product has to be explored and
memorized.

3.2.3 Logical verification using implicit LTSs

The good results obtained in practice when verifying be-
havioural specifications on-the-fly naturally led us to in-
vestigate how this same kind of algorithm could be ex-
tended to the model-checking of logical specifications.

It turned out that boolean equation systems (Bes,
for short), with mixed fix-point equations, are a suit-
able framework to formalize such algorithms [1, 2, 60].
More precisely, we proposed a general algorithm for com-
puting the solution δ(Xinit) of a given Bes E , where
Xinit is a distinguished variable of E . This algorithm
can be viewed as a generalization of the one described
in Sect. 3.2.2: it relies on depth-first traversals of the de-
pendency graph of the Bes, starting from variable Xinit.
During these traversals a solution is computed for each
variable of E following a postfixed order.

This general algorithm has been implemented within
Aldébaran and applied to the verification of alternation-
free µ-calculus formulae on implicit LTSs. The results
obtained from this implementation are quite similar to
the ones obtained when verifying a behavioural specifica-
tion: the worst-case time complexity is rarely reached in
practice, and, since the transition relation of the LTS is
never stored, large size LTSs can be dealt with (a few mil-
lions of states and transitions). Moreover, here again this
algorithm is particularly efficient when the logical for-
mula under check happens to be false, since only a small
part of the LTS has to be computed in such a case.
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3.2.4 Diagnostic computation

As shown in this section, performing on-the-fly verifica-
tion on an implicit LTS is particularly attractive when
the specification under check happens to be false. Thus,
this kind of representation is very useful in the early
stages of the verification process, when the program
under check usually still contains several errors. In this
situation the verification tools are mainly used for de-
bugging purposes, and therefore they have to produce
accurate diagnostic elements.

However, since the verification algorithms are based
on a depth-first exploration of the corresponding LTS,
whenever an incorrect state is encountered, an execution
sequence leading to this state is available in the execu-
tion stack of the algorithm. Although not sufficient from
theoretical point of view, this diagnostic sequence usually
provides enough information to identify the error (pos-
sibly by using a simulation tool to replay it).

3.3 Symbolic Aldébaran

Using symbolic techiques for the representation of the
model can allow us to push the limits of the state explo-
sion problem. However, this implies the design of special
verification algorithms and of encoding functions to ob-
tain the symbolic representation of a model from the sys-
tem’s description.

Binary decision diagrams (Bdds) [9] have proved to be
very efficient for representing and manipulating boolean
functions symbolically in many application domains.
Their success relies on two important properties: they
are canonical representations and allow efficient (graph-
based) computations with finite functions.

We have implemented an efficient procedure to build
a symbolic model representation using different types of
decision diagrams for systems described by communicat-
ing ELTSs. We also propose a suitable interface to this
representation allowing the rapid development of com-
plex symbolic verification tools.

3.3.1 The Symbolic Model Interface

The Symbolic Model Interface (SMI) is a library which
provides for the efficient construction and manipulation
of symbolic representations (with decision diagrams) for
finite state systems described as networks of communicat-
ing ELTSs. The SMI components, illustrated in Fig. 8,
are briefly described below.

Decision diagrams module
The decision diagrams module provides a uniform

framework for the use of Dd in symbolic verification. It
consists of a set of C++ generic classes handling decision
diagrams, variables, variable lists, substitution lists, etc.

These classes can be easily instantiated with any par-
ticular Dd implementation. We have already done this for
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Fig. 8. The SMI architecture

some efficient Bdd implementations: TiGeR Bdds [17],
Colorado University Cudds [56], Berkeley Bdds [8] and
Verimag Bdds [52]. We have also experimented with
a particular version of multivalued decision diagrams
(Mdds), the Mdds with binary branching, developed at
Verimag [6].

Symbolic model generation module
The generation module provides functions to build the

symbolic model representation. It uses the decision dia-
gram module, i.e., a symbolic representation consisting of
a set of decision diagrams which encode the model transi-
tions and the model initial state set.

The generation follows a compositional approach.
First, a representation is built independently for each
ELTS and then all these representations are composed to
obtain the whole symbolic representation.

The symbolic model generation is parameterized with
various options. We can use two different semantics for
ELTSs and composition operators: the first one, with bi-
nary rendezvous and restriction operator CSP-like [32],
and the second with n-ary rendezvous and abstraction
operator CCS-like [48]. We can a priori compute the
reachable states using different strategies (taking all pre-
viously reached states or only the frontier states to com-
pute the next states). This computation can be improved
using the simultaneous composition of asynchronous
transitions. We allow partitioned transition representa-
tions. We can also explicitly specify the Dd variables
order corresponding to the system variables.

The module consists of a set of C++ classes model-
ing all the ELTSs concepts: processes, variables, expres-
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sions, assignments, transitions, etc. Specific methods to
build corresponding decision diagrams are given for any
of them. Finally, the whole model is represented as an in-
stance of the SmiModel class, whose interface is:

class SmiModel {
...

public:
// basic sets
SmiDDStateSet GetInitialStateSet();
SmiDDStateSet GetReachableStateSet();
// successors / predecessors computation
SmiDDStateSet GetPost(SmiDDStateSet aSet,

char* aLabel);

SmiDDStateSet GetPre(SmiDDStateSet aSet,
char* aLabel);

SmiDDStateSet GetPreTilda(SmiDDStateSet aSet,
char* aLabel);

// transitions
SmiDDTransition GetTransition(char* aLabel);
SmiDDTransition GetTauTransition();
SmiDDTransition GetGlobalTransition();
// model initialization
void Initialize(...);
}

Symbolic model analysis module
The symbolic model analysis module can be considered as
the main program. Usually it is written by hand and con-
tains the implementation of the verification algorithm.
This module determines how the model is explored, what
kind of analysis is performed (forward, backward), which
states are stored, etc.

Basic operations on sets, such as union, intersection,
or complementation are directly mapped to Dds func-
tions. The inclusion or the equality test are straightfor-
ward using Dds. Some specialized functions which per-
form the model exploration, e.g., to compute the ini-
tial/reachable state set (init, reachable) or the succes-
sors/predecessors for a given state set (post, pre) are also
provided.

For example, consider a simple algorithm which com-
putes the reachable states for a given model. The imple-
mentation using the SMI library appears as follows:

SmiModelManager manager; // the manager
SmiModel* model = NULL; // the model
SmiDDStateSet reach, prev; // two state sets
// create the model from the “example” file
model = manager.CreateModel(“example”);
// build the symbolic representation
model->Initialize();
// the reachable state computation
reach = model->GetInitialStateSet();
do {

prev = reach;
// get and store next states
reach = SmiDDOr(prev, model->GetPost(prev));

} while (prev != reach)

// print the reachable states number
printf(“%lf reachable states”,model->Cardinal(reach));

3.3.2 Symbolic analysis tools

Using the SMI library we have implemented two verifi-
cation algorithms: a µ-calculus model checking algorithm
and a minimal model generation algorithm with respect
to various equivalence relations. The algorithms’ princi-
ples and their performance are briefly described in the
rest of this section.

µ-calculus model checker
The model checker performs the backward evaluation of
µ-calculus formulae over symbolic model representations.
The algorithm for a formula ϕ0 works in two steps:

– Initially, the set [[ϕ0]] of model states satisfying the
formula ϕ0 is constructed. All needed operations are
straightforward to implement using the SMI func-
tions. The basic boolean expressions are directly eval-
uated over the system variables and a Dd for the
satisfying states is obtained. The next state formu-
lae (<a> ϕ, [ a ]ϕ) are evaluated using the primitive
pre. The fixed point formulae are successively iter-
ated until a stabilized state set is obtained. Finally,
any boolean combination of formulae is reduced to the
corresponding set operation (complementation, inter-
section, etc.).

– After this stage, one out of three different decision pro-
cedures can be invoked. The standard evaluation pro-
cedure tests if the initial state set init is included in
[[ϕ0]]. The forward analysis procedure checks if some
reachable states exist satisfying the formula, if the
intersection [[ϕ0]]∩reachable is not empty. If such
states exist, a shortest sequence to one of them is also
extracted. Finally, the invariance checking procedure
tests if the formula is satisfied by the initial states and
if it is always preserved by one transition step.

Minimal model generator
Classical minimization tools (see Sect. 3.1.4) usually dis-
sociate two tasks for computing the minimal model. One
task is to compute the partition refinement which ac-
tually corresponds to the minimization, the other is to
compute reachability from the initial states. The result
is a minimal and reachable model. The computation of
reachability (which amounts to the production of the ex-
plicit model as in Sect. 3.1.4) suffers from the state explo-
sion problem. It would be better to be able to compute the
partition refinement and reachability at the same time.

This is the aim of the Minimal Model Generation
(Mmg) algorithm [5]. Given a transition relation and an
initial partition, this algorithm allows us to compute the
minimal and reachable model up to bisimulation equiv-
alence (currently, strong, weak, and branching bisimu-
lation). As is the case for the Paige and Tarjan algo-
rithm, this same algorithm can be used to compare two
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models, again without having to compute reachability be-
forehand.

This algorithm relies on a symbolic representation of
the transition relation. It is for example also used for the
analysis of timed automata with a symbolic representa-
tion based on linear inequalities [57]. We adapted it for
a use with decision diagrams in Aldébaran, with inter-
esting results [20].

3.3.3 Performance

These implementations have been successfully tested on
several protocols. For example the verification of the mu-
tual exclusion property in a model of the token ring pro-
tocol [27] with more than 5×108 states takes 1 hour and
16 minutes using the symbolic model checker. The same
model can be minimized by the symbolic Mmg with re-
spect to the branching bisimulation in less than 10 min-
utes. Good results can be mentioned also for Fischer’s
mutual exclusion protocol: in a discrete time version with
12 processes (the model having more than 1013 states!)
the mutual exclusion property was instantaneously veri-
fied (less than 3 seconds). Further results obtained using
the symbolic Aldébaran can be found in [7] where an
efficient approach for the symbolic verification of asyn-
chronous circuits was proposed.

4 ALDÉBARAN at work

4.1 Compositional generation

One of the possible approaches to overcome the state
explosion problem inherent to model-based verification
methods relies on the following observation: instead of
considering the initial LTS S obtained from the pro-
gram description, verification can be performed on its
quotient S/R, where R is an equivalence relation pre-
serving the properties under check. However, the main
difficulty remains to obtain this quotient without having
first to explicitly generate the whole LTS S. In particular,
a first solution to this problem has already been proposed
in Sect. 3.3.2, the Minimal Model Generation algorithm,
based on a symbolic representation of S.

4.1.1 Compositional LTS generation

We present here an alternative solution, when the pro-
gram under consideration is described by a composi-
tion expression between communicating LTSs. More pre-
cisely, provided that R is a congruence with respect to
the operators of this expression, the quotient S/R can be
obtained following a compositional approach [59]: it con-
sists in (repeatedly) generating the LTS S′ associated to
a given sub-expression, and replacing this sub-expression
in the initial one by the quotient S′/R.

S1 S2 S3

S12 S123

S

S1/R S2/R S3/R

S/R

S12/R

E

Fig. 9. Compositional generation

Figure 9 illustrates this approach for a composition ex-
pression E built from LTSs S1, S2 and S3 (in the left-
hand side of the bold line):

1. Each LTS Si is replaced by its quotient Si/R
2. S12 is generated by composition of S1/R and S2/R,

then minimized into its quotient S12/R
3. S12/R is then composed with S3/R, leading to LTS

S123

4. Finally, S123 is minimized itself to produce the quo-
tient S/R associated to E.

Thus, the whole LTS S never has to be generated.
Unfortunately, this straightforward technique is not

always so appealing in practice. In particular, intermedi-
ate LTSs (like S12 in the above example) may often con-
tain lots of unnecessary execution sequences, forbidden
by the synchronizations expected by its environment (the
rest of the composition expression). In the worst cases,
the size of these LTSs may even exceed that of S, leading
to a failure of this approach.

4.1.2 Reducing the size of intermediate LTSs

An appealing solution was proposed by [29, 31] and [14,
15] to reduce the size of the intermediate LTSs produced
during a compositional generation. Intuitively, it consists
in expressing the environment of a sub-expression as an
interface, i.e., an LTS representing a set of “authorized”
execution sequences that can be performed by this sub-
expression. Thus, using a projection operator, only a re-
stricted LTS associated to a sub-expression is generated,
in which useless execution sequences have been cut off ac-
cording to its corresponding interface.

These results obtained by [31] and [14] lead us to gen-
eralize this approach to the composition expressions used
within Cæsar-Aldébaran [44]. To this purpose, a suit-
able projection operator has been defined and imple-
mented upon the implicit LTS interface (see Sect. 3.2.4),
thus allowing us to generate on-the-fly the restricted LTS

associated to a sub-expression of a composition expres-
sion. Two kinds of interface can be handled by this opera-
tor:

– “exact” interfaces, that are automatically computed
from the environment of the sub-expression
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– “user-given” interfaces, that can be supplied by the
user when the computed ones are not sufficient (i.e.,
they do not restrict the sub-expression enough).

Note that in this latter case, the correctness of these in-
terfaces can be automatically checked at the end of the
compositional generation process.

Finally, a compositional generation tool has also
been implemented within Cæsar-Aldébaran. This tool
takes as inputs a composition expression E (extended
with projection operators) between LTSs, and one of
the bisimulation relation R accepted by Aldébaran.
Then, it automatically generates the LTS quotient S/R
associated to E by performing corresponding calls to the
components of Cæsar-Aldébaran.

4.1.3 Practical results

The practical results obtained so far on large size case-
studies demonstrated the interest of compositional gen-
eration, in particular when symbolic representations are
too large to efficiently work on. As an example, compo-
sitional generation has been successfully applied to the
verification of an atomic multicast protocol (the rel/Rel

protocol [55]): an LTS quotient of about 1 million states
was generated in a few hours on a Sun SS 20 workstation,
whereas several days of computation on the same work-
station were necessary to produce the symbolic represen-
tation of the whole LTS (containing about 200 million
states).

4.2 Support for automatic conformance test generation

Another example of application of the Aldébaran mod-
ularity is the tool Tgv (for Test Generation with Verifi-
cation technology). Tgv is a prototype for the automatic
generation of conformance test suites [22, 23].

It is being developed jointly by Verimag and the In-

ria project Pampa.

4.2.1 Working principles

Tgv takes as input the model of a formal specification,
a test purpose and a test architecture. Tgv outputs test
suites either as an LTS or in the standard language for
conformance test suites Ttcn. The external view of the
Tgv package is illustrated in Fig. 10. The generation of
a test case can be decomposed in several functional parts
which are performed by different tools. We present in
more detail each of these parts.

Test architecture
The Test Architecture describes how the Implementation
Under Test (IUT) is placed in its testing environment
and how the tester communicate with the IUT. The com-
munications with the IUT usually go through Points of

abstract and
deterministic IOLTS

system description
Lotos or SDL

Test purpose
(IOLTS, MSC, ...)

T G V

compilation

abstraction

determinization
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Fig. 10. External view of TGV

Control and Observation(PCO). A test architecture can
be quite complex, depending on the tester (which can be
itself composed of several coordinated testers) and the
PCOs (which can be separated from the IUT by some lay-
ers of the testing environment). More details can be found
in the Itu-T recommendation ISO 9646 [37].

The model of the implementation
The tester has an external, black box view of the IUT.
It can only send outputs to and receive inputs from the
IUT, it cannot observe any internal actions, much less the
state of the IUT. Outputs are controllable actions initi-
ated by the tester and sent to the IUT whereas inputs are
observable actions, initiated by the IUT and received by
the tester.

In contrast, a formal specification generally models
the internal view of the system, i.e., the behaviour of the
system with its internal actions and states changes.

To produce a model of the IUT in its testing envi-
ronment, we replace internal actions by invisible transi-
tions denoted by τ . Then these τs are abstracted away
with respect to the weak bisimulation and the result is
determined. Other specification transformations are also
performed to take care of asynchronous communications
between the IUT and the tester.

The result is an Input-Output LTS (IOLTS), ab-
stract (no more reference to internal action) and deter-
ministic.

Test purpose
A test purpose defines a pattern on some particular in-
teractions between the IUT and the tester. This pattern
is usually extracted from the system’s requirements. So
a test purpose describes the desired test cases for testing
the conformance of the system with respect to a given re-
quirement.
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A test purpose is modeled as a direct acyclic graph
with a set of distinguished accepting states (indicating
success of the test). In the current version of Tgv it is
given as an LTS, extended with attributes on states, for
distinguishing accepting states.

4.2.2 Test generation process

The current version of Tgv works either with the implicit
or explicit representation of the model. In the explicit
case, we use Aldébaran to produce the abstract and
deterministic IOLTS modeling the implementation. In
the implicit case, we apply a specially designed algorithm
which performs abstraction and determinization on the
fly. The rest of Tgv processing is done on this explicit or
implicit abstract and deterministic IOLTS.

Test graph generation
This is the kernel of the tool. The algorithm is based on
a depth-first traversal of a kind of synchronous product
between the IOLTS of the model and the LTS represent-
ing the test purpose.

During the traversal, two different things are done:

– The algorithm checks that the test purpose is at least
feasible.

– Meanwhile, a skeleton graph of the test case is syn-
thesized.

Some transitions are decorated with the verdicts
(PASS), PASS, FAIL, and INCONCLUSIVE.

Finally, timer management is added to the test case.
Timers are used in test cases when a reaction of the im-
plementation is expected but one does not want to wait
for an unbounded time because an error that is not ob-
servable may have occurred. The difficulty in the man-
agement of timers is that concurrency and non-determi-
nism should not be treated in the same way. Timers are
managed by Tgv in the following way. A timer tm is as-
sociated to each possible reception of the message m by
the tester. The timer tm is started in the last transition
which necessarily precedes the reception of m. When the
reception of message m is expected, the expiration of tm
may occur. Thus there is always a choice between recep-
tion of m and reception of tm i.e., timeout of tm. In each
transition sequence, a timer tm is cancelled in a transi-
tion following its start and as soon as the reception of m
is no longer possible in the future.

Once completed with timer management, the result-
ing LTS can be translated into Ttcn or be kept in the
Aldébaran format for translation in other proprietary
test cases formats.

4.2.3 Advantages in using Tgv

Formal techniques developed in the area of verification
could be useful and profitable for the automatic gener-
ation of test suites. The main gains are qualitative and
quantitative:

– Qualitative. The comparison between test suites auto-
matically generated with hand-written test suites has
shown some errors to be detected in the manual test

– Quantitative. Tgv already provides a productivity (of
test cases) improvement of +25 %.

4.3 Conclusion

The first prototype of Tgv was developed in a few weeks,
by reusing some modules of Cadp and by adapting some
efficient verification techniques, such as on-the-fly veri-
fication, synchronous product of LTSs and behavioural
equivalence [23]. The actual version continues to evolve
with Aldébaran, in particular for the implicit intercon-
nection with the ObjectGeode tool. This version should
be the basis for the industrial transfer of Tgv in the fu-
ture version of ObjectGeode.

5 Practical use of ALDÉBARAN

Aldébaran is actually distributed as a part of the
Cæsar-Aldébaran toolset in more than 130 sites. It is
used in many places for teaching purposes. Aldébaran

is also used in several significant case-studies. We present
in this section some of these case studies.

5.1 Telecommunications

Generation of test suites for the Drex protocol [22]
The Drex protocol is part of an industrial contract spon-
sored by the Dga Direction Générale pour l’Armement
of the French Army. Partners of this contract are Cnet

(Centre National d’Etude des Télécommunications), Cap
Sesa Régions, Verilog, the Pampa team from Irisa, and
Verimag.

The goal of this contract was to find out if the
automatic generation of test sequences is feasible and
profit-earning in industrial contexts. Three tools have
been studied and/or developed, TVéda (Cnet), Topic
(Verilog) and Tgv (Irisa/Verimag). In order to com-
pare the methods and the tools, these three tools had to
generate test suites, starting from the same specification
Sdl specification of the Drex protocol and test purposes
in natural languages, and to compare the results with
handwritten test suites. It appears that finally the consor-
tium agrees on the different components of a realistic test
generator, and that Tgv represents a good demonstrator
of these ideas.

The Drex protocol runs on a network called Socrate

and connects several MTBX (Telecommunication Means
of Air-Bases). Only a subset of the services offered by the
Drex protocol has been specified in Sdl: priority, rov-
ing user, call forwarding, implicit partitioning of users,
safety path and user to user signalling. A generic Sdl

specification of around 2000 lines has been written and
instantiated for each service.
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Results obtained using Aldébaran and Tgv

The time needed for the generation of a test case has
to be separated into two parts: the time needed for the
graph generation with Géode which took between 3.5 s
and 400 s and the test case generation with Tgv which
took between 1 s and 2 s.

As we have already mentioned, we have discovered er-
rors in the hand written test suites, and we have proved
that automatic generation provides a productivity im-
provement.

Other recent telecommunication case studies include:
feature interactions in telephony systems [42], Isdn

User Part protocol [41], Sscop protocol (ongoing work),
Vires protocol (ongoing work).

5.2 Hardware protocols

Verification of the Powerscale bus arbiter protocol
PowerScale is the multiprocessor, PowerPC-based archi-
tecture used by Bull in its Escala series of workstations
and servers. In this case-study [13], the main components
of this architecture (processors, memory controller and
bus arbiter) were described by 760 lines of Lotos.

Results obtained using Aldébaran

This case study is a good illustration of the power of com-
positional generation. It was not possible to generate the
whole model, and on the fly verification techniques failed
due to lack of memory. Using compositional generation,
it was possible to break the system into three main parts,
generate the corresponding LTS, and after minimization
of these LTSs, generate a bisimulation-equivalent LTS of
the whole system. This resulting LTS was 52 320 states
and 176 284 transitions, so it became easy to perform all
needed verifications.

5.3 Embedded systems

Dms Design Validation (Ddv)
Ddv [3] is a case study sponsored by Esa-Estec and
developed in collaboration Matra-Marconi Space (Mms)
and Dornier. Dms (Data Management System) is the con-
trol system of a satellite. Is is responsible for the detection
and treatment of failures.

One of the goals of this study was to define a method-
ological framework for specifying and validating fault tol-
erant systems. It is based on the combined use of Sdl for
the specification of the system and of the Fault Detection,
Isolation and Recovery (Fdir) methodology.

Results obtained using Aldébaran

For this case study, Aldébaran was used in combina-
tion with Géode (ObjectGeode was not available at
the time), with only the explicit connection. Two Sdl

descriptions were produced: one functional description
written by Mms whose main aim was the verification of

the requirements, and one architectural description writ-
ten by Dornier, whose main aim was code generation.
The requirements themselves were established during the
Failure Mode Effects and Criticality Analysis (Fmeca).
The aims of the study was to verify that both descrip-
tions were correct with respect to the requirements. Each
Sdl specification was about 4000 lines of comment-free
Sdl-88. We were able to find some errors and test some
requirements on the first one. We present more detailed
results on the second one, namely the Architectural de-
scription with Fault Injection, which proved to be the
most difficult to verify.

The complete model was too large to be generated. In-
stead, a classical partial generation method was applied:
using the Géode simulator, we produced an execution
sequence leading the system into an interesting state for
verification. In that case, this sequence corresponded to
the firing of all initialization procedures of the system.
The model was generated from this state, with the injec-
tion of one particular fault. Then the stop conditions of
the Géode simulator were applied to stop the generation
of the model, when the system was able to come back
to a stable state (i.e., the fault was treated) or a given
depth was reached. The resulting model (depending on
the fault) was up to 147 007 states and 555 877 transi-
tions. Using minimization and visualization, we were then
able to verify the properties corresponding to the correct
treatment of faults.

Other recent embedded systems case studies include: rail-
yard systems [25] and the satellite control system Msg

[53].

5.4 Security protocols

Verification of the Equicrypt Protocol
The Equicrypt Trusted Third Party protocol is an au-
thentification protocol for the conditional access to mul-
timedia services. It is based on the use of a Trusted
Third Party for authentification. The specification [45]
consisted in around 2000 lines of Lotos.

Results obtained with Aldébaran

Model-checking is often viewed as being inadequate for
this kind of protocols, due to the relative complexity of
data manipulation with respect to the control. However,
when applicable, model checking brings up the possibility
to generate counter examples to unsatisfied properties. In
this case study, this ability was crucial, as it allowed us
to produce two possible attacks on the protocol. The pro-
duction of attacks is generally up to the protocol verifier
when using more theorem proving based methods. Fi-
nally, the use of efficient minimization algorithms proved
essential, as the model was 786 681 states and 4 161 795
transitions and took 20 hours to be generated. It was
minimized by Aldébaran for strong bisimulation in 20
minutes using an Ultra-Sparc 2 with 800 MB of RAM.
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The resulting model was 69 754 states and 520 633 tran-
sitions, which allowed the authors of [45] to perform all
needed verifications.

5.5 Network protocols

Some network protocols case studies include a bounded
retransmission protocol [47], an Internet transport proto-
col Tcp [54], and some distributed leader election algo-
rithms [27].

6 Conclusion

The Aldébaran toolset we have presented in this art-
icle is devoted to the formal verification of distributed
systems. More precisely, it consists in an integrated set
of tools, closely interconnected, allowing us to address
several program validation issues, such as symbolic de-
bugging, formal verification of behaviour requirements,
and automatic test case generation.

This toolset relies on the so-called model-based ap-
proach: from a formal description of the program under
consideration a model is generated, then program analy-
sis is performed on this model. Several model represen-
tations are available within Aldébaran, each of them
offering particular advantages in terms of efficiency, and
each of them leading to different kinds of program analy-
sis algorithms.

The Aldébaran toolset has now been developing
for 10 years, with an important concern to keep it open
and evolutive, achieved through an architecture based on
clear-cut modules. In particular:

– It is open, as it is already connected to two Fdt-
based development environments : the Lotos com-
piler Cæsar, from the Inria action Vasy, and the
commercial Sdl environment ObjectGeode, from the
Verilog company. Conversely, parts of Aldébaran

are routinely used in conjunction with other tools, like
in the Tgv environment presented in Sect. 4.2. For
example, it is used to perform time abstraction on
timed-automata with the Kronos tool [57], or to min-
imize abstract state graphs produced by a theorem
prover [30]. Finally, Aldébaran is also open from an
internal point of view. For instance, its symbolic LTS

representation interface allows us to use several exist-
ing Dd packages (Sect. 3.3.3).

– It is evolutive, as it allows an easy prototyping of
new analysis algorithms or new verification strategies.
Moreover, some of its underlying algorithms have been
adapted to other contexts: in particular, the on-the-fly
algorithm used within Aldébaran for bisimulation
checking could be re-used both for the Tgv kernel
and within an optimizer for synchronous code distri-
bution [10].

The Aldébaran toolset has been already distributed
as a part of the Cæsar-Aldébaran package to more
than 130 sites, and thus used in numerous case studies,
some of them being of industrial origin. Therefore, thanks
to this user feedback, its components achieved a relative
robustness.

We conclude by an overview of the development per-
spectives of Aldébaran, according to the three main is-
sues of model-based verification addressed by this toolset,
namely model generation, model representation, and pro-
gram analysis.

– Regarding model generation, it is clear that the ver-
ification capabilities offered by Aldébaran can be
applied to any formalism whose (operational) seman-
tics can be expressed in terms of LTSs, provided that
there already exists a compiler able to produce this
LTS. If such a connection is usually straightforward
through an explicit LTS representation, it is more dif-
ficult to obtain it through an implicit representation,
and much more difficult through a symbolic one (un-
less the compiler already produces such a representa-
tion).
However, this latter kind of connection can be more
easily achieved using a higher level program represen-
tation than the LTS, like the communicating ELTSs

networks already existing within Aldébaran. To this
purpose, we plan to extend this intermediate pro-
gram representation to other communication mechan-
isms than rendezvous and shared variables, such as
fifo channels. Thus, formalisms like Sdl or Promela

could be translated in such a program representation,
making it possible to generate symbolic representa-
tions that could be processed by Aldébaran.

– Regarding model representations, most of the per-
spectives concern the definition of suitable symbolic
representation. Indeed, if the Bdd have been initially
proposed for boolean program representation (and
hence hardware verification), they are not necessar-
ily well adapted for representing programs with more
general data types, or asynchronous communication
modes. Even though many extensions have been al-
ready proposed, none of them is quite satisfactory at
the moment.
Furthermore, other kinds of symbolic representations
could be also considered when the program under
consideration is expressed in terms of communicating
ELTSs. In particular, representations based on con-
vex polyhedra have already proved their interest for
static analysis purposes [40].

– Finally, many directions remain to be explored regard-
ing model-based analysis algorithms, and, more gener-
ally, model-based verification strategies. Here, one of
the major concerns is clearly to push back the state
explosion problem. Thus, a general approach is to per-
form the analysis on a “reduced” model, which pre-
serves the properties under verification. At least two
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directions could be thoroughly investigated within
Aldébaran to compute such a reduced model:

– The compositional strategy presented in Sect. 4.1
could be improved and extended to other commu-
nication mechanisms, such as fifo channels. Thus,
this strategy could be also applied to the Sdl Fdt.

– The implicit LTS representation available within
Aldébaran is well adapted for implementing
the model reduction methods based on partial
orders [28, 58], or program symmetries [18, 35].
Moreover, these methods would be directly com-
bined with the on-the-fly analysis algorithms al-
ready provided by Aldébaran.

Of course, all these perspectives will still have to be
continuously validated through the confrontation with in-
dustrial case-studies. But reciprocally, it also seems obvi-
ous that the diffusion of formal methods within an indus-
trial context necessarily goes through the development of
verification toolsets like Aldébaran.

Aldébaran is available free of charge upon request
addressed to Alain.Kerbrat@imag.fr.
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