
International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-024-00766-x

GENERAL

Special Issue: SOAP 2023

State of the art in program analysis

Pietro Ferrara1 · Liana Hadarean2

Accepted: 10 September 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Over the last several decades, static and dynamic program analysis techniques have received widespread attention. Their
application to mainstream programming languages always requires extending theories and finding practical solutions. This
special issue of Software Tools for Technology Transfer presents novel theoretical directions and practical applications of
these techniques. The papers in this special issue are extended versions of selected workshop papers from the proceedings of
the 12th ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis (SOAP’23).

Keywords Static analysis · Software engineering · Formal methods

1 SOAP

The 12th ACM SIGPLAN International Workshop on the
State Of the Art in Program Analysis (SOAP’23) [3], co-
located with the 44th ACM SIGPLAN International Con-
ference on Programming Language Design and Implemen-
tation (PLDI’23), comprised three invited and ten regular
talks. This special issue of the journal Software Tools for
Technology Transfer (STTT) contains revised and extended
versions of 4 papers selected from this program.

Static and dynamic analysis techniques and tools for
mainstream programming languages (such as Java, C, and
JavaScript) have received widespread attention for a long
time. These analyses’ application domains range from core
libraries to modern technologies like web services and mo-
bile applications. Over time, various analysis frameworks
have been developed that provide techniques for optimizing
programs, ensuring code quality, and assessing security and
compliance.

Given this context, SOAP aims to bring together the mem-
bers of the program analysis community to share new devel-
opments and shape innovations in program analysis. This
workshop covered novel analysis framework ideas, the ap-
plication of existing static analysis techniques to industrial

software, the adoption of static analysis in software engi-
neering practices (such as DevOps), innovative designs, and
analysis techniques, including preliminary results or work in
progress. A main focus was also on the state of the practice of
program analysis in the industry. The workshop agenda con-
sisted of lively discussions on extensions of existing frame-
works, the development of novel analyses and tools, and how
program analysis is used in real-world scenarios.

2 This special issue

The guest editors selected the peer-reviewed papers that are
part of this special issue among the papers presented at
SOAP’23. They represent a good balance between academic
results and industrial applications [4, 5], both in authorship
and content.

In particular, the first two papers investigate novel ap-
proaches to improve analyzes’ efficiency [1], and to define
the run-time semantics of low-level constructs of the C pro-
gramming language [2]. In contrast, the following two papers
explain how Amazon CodeGuru Reviewer was highly opti-
mized to achieve scalability [4], and the inner technical de-
tails of CodePeer [5], an industrial static analyzer developed
by AdaCore.

Below, we give a summary of each paper.

2.1 Speeding up static analysis with the split
operator [1]

This paper introduces a new abstract operator modeling
the split of control flow paths in the context of Abstract

� P. Ferrara
pietro.ferrara@unive.it

L. Hadarean
hadarean@amazon.com

1 Ca’ Foscari University, Venice, Italy
2 Amazon Web Services, Santa Clara, USA

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-024-00766-x&domain=pdf
mailto:pietro.ferrara@unive.it
mailto:hadarean@amazon.com


P. Ferrara, L. Hadarean

Interpretation-based static analysis. The ultimate goal of this
operator is to enable a more efficient analysis when using
abstract domains that are computationally expensive. This
operator has no negative effect on precision and occasionally
results in a more precise analysis.

This work focuses on conditional branches guarded by
numeric linear constraints, including implicit numerical
branches. The experimental evaluation on real-world test
cases shows that, by using the split operator, one can achieve
significant efficiency improvements with respect to the clas-
sical approach for a static analysis based on the domain of
convex polyhedra.

2.2 When long jumps fall short: control-flow
tracking and misuse detection for non-local
jumps in C [2]

The C programming language offers setjmp/longjmp as a
mechanism for non-local control flow. This mechanism has
complicated semantics. As most developers do not encounter
it day-to-day, they may be unfamiliar with all its intricacies –
leading to subtle programming errors. At the same time, most
static analyzers lack proper support, implying that otherwise
sound tools miss whole classes of program deficiencies.

This paper introduces a concrete semantics of a subset
of C with setjmp/longjmp, where interprocedural longjmps
are performed directly, and an equivalent formulation where
such jumps are implemented via stack-unwinding at the
call-sites. Reflecting this semantic equivalence, an ap-
proach for lifting existing interprocedural analyzes to sup-
port setjmp/longjmp and flag their misuse is proposed. To
deal with the non-local semantics, this approach leverages
side-effecting transfer functions, which, when executed, may
additionally trigger contributions for program points that are
not static control-flow successors. The analysis is applied
to a real-world example and a set of litmus tests for other
analyzers.

2.3 User-assisted code query customization and
optimization [4]

Running static analysis rules in the wild, as part of a com-
mercial service, demands special consideration of time lim-
its and scalability given the large and diverse real-world
workloads. Furthermore, these rules do not run in isola-
tion, which exposes opportunities to reuse partial evaluation
results across rules. Amazon CodeGuru Reviewer and its
underlying rule-authoring toolkit, known as the Guru Query
Language (GQL), encountered performance and scalability
challenges.

This paper identifies corresponding optimization oppor-
tunities such as caching, indexing, and customization of data-
flow specification, which rule authors can take advantage of

as built-in GQL constructs. The experimental evaluation on
a dataset of open-source GitHub repositories shows three
times speedup and perfect recall using indexing-based con-
figurations and two times speedup and a 51% increase in
the findings for caching-based optimization. Customizing
the data-flow specification, such as expanding the tracking
scope, can yield a remarkable increase in the number of find-
ings, as much as 136%. However, this enhancement comes
at the expense of a longer analysis time.

2.4 Sound and precise static analysis using a
generalization of static single assignment
and value numbering [5]

This paper presents CodePeer, an industrial static analysis
tool based on compiler optimization techniques such as static
single assignment and value numbering. CodePeer infers and
reports on implicit preconditions for each function of the
program based on limitations it identifies within the algo-
rithm of the function. Presuming these inferred precondi-
tions are satisfied, CodePeer then simulates the execution of
each function and identifies places where a program might
still fail at run time due to violating some run-time check
or an error that leads to undefined behavior. CodePeer uses
static single assignment and global value numbering to en-
sure that the determination of possible run-time values of
each variable and expression encountered during the simu-
lation of the execution of each function is both sound and
precise. The approximations performed to ensure that the
determination of possible values converges in the face of
loops and recursion are systematic and based on the kinds
of conservative analysis performed by compiler optimizers.
The output of CodePeer includes, for each function, an enu-
meration of its global inputs and global outputs and inferred
preconditions and postconditions. The output also includes,
interspersed within a listing of the source of the function, an
identification of the places where possible run-time failures
or undefined behavior could occur. This output is designed
to support code review, which gives the tool its CodePeer
name.

Acknowledgement First, we thank all the authors for their contribu-
tions. A special thanks also goes to the program committee of SOAP
2023 for their help in selecting the papers for the conference program
and to all the referees who reviewed the extended versions of the papers
that appear in this special issue.

References

1. Arceri, V., Dolcetti, G., Zaffanella, E.: Speeding up static analysis
with the split operator. Int. J. Softw. Tools Technol. Transf. (2024,
in press)

Springer



State of the art in program analysis

2. Erhard, J., Schwarz, M., Vojdani, V., Saan, S., Seidl, H.: When long
jumps fall short: Control-flow tracking and misuse detection for
non-local jumps in c. Int. J. Softw. Tools Technol. Transf. (2024, in
press)

3. Ferrara, P., Hadarean, L. (eds.): Proceedings of the 12th ACM SIG-
PLAN International Workshop on the State of the Art in Program
Analysis, SOAP ACM, New York (2023). https://doi.org/10.1145/
3589250

4. Liblit, B., Lyu, Y., Mukherjee, R., Tripp, O., Wang, Y.: User-assisted
code query customization and optimization. Int. J. Softw. Tools
Technol. Transf. (2024, in press)

5. Taft, T.: Sound and precise static analysis using a generalization of
static single assignment and value numbering. Int. J. Softw. Tools
Technol. Transf. (2024, in press)

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Springer

https://doi.org/10.1145/3589250
https://doi.org/10.1145/3589250

	State of the art in program analysis
	Abstract
	SOAP
	This special issue
	Speeding up static analysis with the split operator [1]
	When long jumps fall short: control-flow tracking and misuse detection for non-local jumps in C [2]
	User-assisted code query customization and optimization [4]
	Sound and precise static analysis using a generalization of static single assignment and value numbering [5]

	References


