
International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-024-00764-z

GENERAL

When long jumps fall short: control-flow tracking and
misuse detection for nonlocal jumps in C

Extended version

Julian Erhard1,2 · Michael Schwarz1 · Vesal Vojdani3 · Simmo Saan3 · Helmut Seidl1

Accepted: 14 August 2024
© The Author(s) 2024

Abstract
The C programming language offers setjmp/longjmp as a mechanism for nonlocal control flow. This mechanism has
complicated semantics. As most developers do not encounter it day-to-day, they may be unfamiliar with all its intricacies –
leading to subtle programming errors. At the same time, most static analyzers lack proper support, implying that otherwise
sound tools miss whole classes of program deficiencies. We propose a concrete semantics of a subset of C with setjmp/
longjmp, where interprocedural longjmps are performed directly, as well as an equivalent formulation where such jumps are
implemented via stack-unwinding at the call-sites. Reflecting this semantic equivalence, we propose an approach for lifting
existing interprocedural analyses to support setjmp/longjmp and to flag their misuse. To deal with the nonlocal semantics,
our approach leverages side-effecting transfer functions, which, when executed, may additionally trigger contributions for
program points that are not static control-flow successors. We showcase our analysis on a real-world example and propose a
set of litmus tests for other analyzers.

Keywords Abstract interpretation · Static analysis · setjmp/longjmp · Side-effecting constraint systems

1 Introduction

For statically analyzing real-world programs, analysis de-
velopers are confronted with a wealth of intricate language
features. Therefore analyzers often focus on a subset of the
programming language, ignoring some more obscure fea-
tures and making optimistic assumptions about others. As

noted by Livshits et al. [13], this is true even for tools that
claim to be sound, i.e., not to miss any bug. The authors
provide a checklist for static analyzers, making it easier for
analysis authors to indicate which features are supported and
which are not. For the C programming language, they men-
tion setjmp/longjmp as an example of often unsupported
language features. The functions setjmp/longjmp allow
defining exceptional control flow by dynamically jumping
up the callstack. Indeed, these nonlocal jumps are not sup-
ported even in many state-of-the-art tools [2, 4, 12, 17, 21].
Empirical studies by Christakis and Bird [6] indicate that
developers think it of exceptional importance to cover ex-
ceptional control flow. Therefore the lack of support for this
C language feature is unsatisfactory.

The setjmp/longjmp mechanism allows saving the cur-
rent state of execution into a jump buffer by means of setjmp.
At a later point of program execution, parts of the callstack
may be abandoned by calling longjmp. Execution then con-
tinues at the stackframe specified by the jump buffer. This
is not only conceptually intricate, but fraught with many
caveats. For example, accessing the values of nonvolatile lo-
cals that have been modified between the call to setjmp and
the call to longjmp is Undefined Behavior. As developers
typically only use setjmp/longjmp in few selected loca-

� J. Erhard
julian.erhard@tum.de

M. Schwarz
m.schwarz@tum.de

V. Vojdani
vesal.vojdani@ut.ee

S. Saan
simmo.saan@ut.ee

H. Seidl
helmut.seidl@tum.de

1 TUM School of Computation, Information and Technology,
Technical University of Munich, Garching, Germany

2 Institute of Informatics, Ludwig-Maximilians-Universität in
Munich, Munich, Germany

3 Institute of Computer Science, University of Tartu, Tartu, Estonia

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-024-00764-z&domain=pdf
mailto:julian.erhard@tum.de
mailto:m.schwarz@tum.de
mailto:vesal.vojdani@ut.ee
mailto:simmo.saan@ut.ee
mailto:helmut.seidl@tum.de

J. Erhard et al.

Fig. 1 Program fragment making use of setjmp/longjmp that contains two bugs

tions, familiarity with these intricacies is not widely spread,
resulting in potential vulnerabilities [14, 15]. Therefore a
static analyzer should not ignore setjmp/longjmp. Instead,
not to fall short of user expectations, it should take this fea-
ture into account during its analysis of other programming
deficiencies, as well as warn about potential misuses. While
exception handlers in Java or C++ are well structured, this
is not necessarily the case for setjmp/longjmp, where the
jump target may depend on the jump buffer’s runtime value,
making the analysis of setjmp/longjmp challenging.

We took up this challenge and demonstrate how existing
analyses for C can be lifted to support setjmp/longjmp by
reusing existing building blocks of interprocedural analyses,
instead of dedicated mechanisms. We propose that the anal-
ysis performs an abstract stack unwinding complemented
with

• an analysis of currently valid jump targets;
• a value analysis for jump buffers, and
• taint analysis to check for illegal accesses to locals.

For stack unwinding and the collection of abstract states at
setjmp locations, we rely on side effects in transfer func-
tions. Side-effecting constraint systems [1, 25] allow ac-
cumulating flow-insensitive information during a flow- and
context-sensitive analysis. They have been used, e.g., for the
analysis of the values of global variables [22, 24], expressing
a variety of approaches to context-sensitivity [1, 8], and for
tracking accesses to globals to check for races and invalid
dereferences [20, 27]. Here, side effects are used to han-
dle longjmps without polluting control-flow graphs with an
excessive number of additional edges (e.g., from every pro-
cedure call to every invocation of setjmp).

The rest of the paper is structured as follows. In Sect. 2,
we recall the semantics of setjmp/longjmp along an ex-
ample and identify possible programming errors. Com-
pared to the workshop version of this paper [23], Sects. 3
to 6 are added. Section 3 identifies a core C language
with setjmp/longjmp and describes an intuitive semantics
where longjmps are performed directly. Section 4 provides
an adapted formulation of the semantics where longjmps
between function boundaries are propagated via call sites,

and the following Sect. 5 establishes an equivalence rela-
tionship between the two semantics. In Sect. 6 the semantics
are adapted to not continue traces that would contain illegal
accesses to indeterminate variables. Turning to the analysis,
Sect. 7 describes a generic base approach to interprocedu-
ral analysis, which is extended in Sect. 8 to an analysis of
setjmp/longjmp, where it is argued when an analysis is
correct with respect to the concrete semantics from Sect. 4.
Section 9 explains how illegal accesses to locals are iden-
tified. Section 10 reports on our implementation within an
analyzer for multithreaded C based on Abstract Interpreta-
tion [7] and the results of a preliminary experimental evalu-
ation. Finally, Sect. 11 discusses related work, and Sect. 12
concludes.

2 Setjmp/Longjmp in C

The usage of setjmp/longjmp is best explained by an ex-
ample. The program in Fig. 1 has two global variables,
errorhandler of the predefined type jmp_buf and error
of type int. The main function first calls bar, which in turn
calls setjmp(errorhandler). That call saves the current
execution state into the jump buffer errorhandler, return-
ing the value 0. Thus the if branch in line 14 is not taken. The
function bar then sets its local variable logpath to the path
returned by a call to the external function get_logpath().
The program is meant to later record error messages into the
file identified by logpath. The function bar continues with
calling foo. Inside foo at line 5, the status information, as re-
turned by some function get_status(), is checked. A neg-
ative status is interpreted as an error indication, in which case
error is set to 42, and longjmp(errorhandler, err) is
invoked. This call transfers control back to the invocation of
setjmp inside of bar at line 14 – which now returns with
the value 42 passed as the argument to longjmp. Now the
if branch is taken, a message is printed to stdout, an error
message is written into the file, and the program terminates.

If no error occurs during foo on the other hand, foo and
bar both return regularly. Subsequently, the function main
checks the status again, and if it is negative, then error is

Springer

When long jumps fall short

set to -17, and a call to longjmp(errorhandler, err)
occurs. This, though, constitutes a fault in the program, as
it performs a longjmp to an invocation of setjmp inside
a function that already has returned, resulting in Undefined
Behavior.

However, this is not the only fault in the fragment: Con-
sider the case where a longjmp happens from foo at line
8. Here the function bar containing the call to setjmp has
not returned yet. The issue is different: the local variable
logpath has been modified between the calls to setjmp
and longjmp. Thus it has Indeterminate Value after the
longjmp, resulting in Undefined Behavior at the access in
line 17. There is an easy fix, though: Declaring logpath to
be volatile ensures that the correct value is read.

The example highlights pitfalls of using setjmp/
longjmp, which a static analyzer should be expected to flag.
The following misuses are possible and lead to Undefined
Behavior:

(A) Calling longjmp on a jmp_buf for which setjmp has
not been called.

(B) Calling longjmp when the function containing the cor-
responding call to setjmp has already returned.

(C) Calling longjmp from a thread different from the one
calling setjmp.

(D) Reading a nonvolatile variable 𝑥 of automatic storage
duration after a longjmp where 𝑥 has been modified
between setjmp and longjmp and has not been over-
written since the longjmp.

(E) Calling longjmp on a jmp_buf that has not been ini-
tialized via setjmp but instead by copying the content
of a different jmp_buf.

(F) Calling longjmp where the corresponding setjmp was
within the scope of a variable-length array, and this
scope has since been left.

Additionally,

(G) if argument 0 is passed to longjmp, then this argument
is silently changed to 1. Although this is not Undefined
Behavior, it still likely is a bug, and a warning should
be produced.

Furthermore,

(H) any code after a call to longjmp is unreachable, for
which an appropriate warning should also be issued.
We will discuss how to soundly detect all these possible
misuses and issue warnings in Sect. 8.

3 Language and semantics

We for now concentrate on the core subset of the C lan-
guage, which abandons dynamic memory allocation, recur-
sion, dynamic function calls, and structured data, which are

largely orthogonal features. We make this restriction only
for clarity of presentation; the implementation of the anal-
ysis targets real-world programs and thus supports all these
features. Thus a program consists of a finite set of functions
F with 𝑚𝑎𝑖𝑛 ∈ F being the dedicated start function and
with setjmp, longjmp ∉ F , as well as a set of global vari-
ables 𝐺 . Each function 𝑓 ∈ F is defined by its control-flow
graph (CFG), a list of parameters, and a finite set of local
variables 𝐿 𝑓 . The union of all local and global variables is
denoted by V . The nodes or program points of the CFG
for a function 𝑓 are from a finite set N 𝑓 , with st 𝑓 and ret 𝑓
referring to the (unique) start and end points of 𝑓 . For sim-
plicity, we assume that the function’s return value is assigned
to a dedicated global program variable retv. Each local and
global variable has one of the types int, int*, jmp_buf,
or jmp_buf*. Variables may be marked with the volatile
type modifier. We assume that programs are well-typed.

LetN denote the disjoint union of the setsN 𝑓 , 𝑓 ∈ F . An
edge (𝑢, 𝑎, 𝑣) ∈ E of the CFGs proceeds from source node
𝑢 to sink node 𝑣 and is labeled with some action 𝑎, which
may be an assignment, a function call, a guard, function
return, or a call to setjmp/longjmp. For a node 𝑢, there
may only be two edges (𝑢, 𝑎, 𝑣), (𝑢,′ 𝑎, 𝑣′) ∈ E with 𝑣 ≠ 𝑣′

in case that 𝑎 is a guard and 𝑎′ is its negated guard. Oth-
erwise, 𝑢 may only have one successor in E. Assignments
in a function 𝑓 have the form l = e, where l is a variable
𝑥 or dereference of a variable ∗𝑥 for 𝑥 ∈ 𝐺 ∪ 𝐿 𝑓 , and 𝑒 is
some expression of suitable type without side effects or func-
tion calls. One particular form of expression is &𝑥 for some
variable 𝑥, which returns a pointer to 𝑥. A guard is given
by some side-effect-free expression 𝑔 of type int. Function
calls have the form x = f(a1,...,a𝑛) with 𝑓 ∈ F , the ar-
guments having suitable types for 𝑓 , and, for simplicity of
exposition, the variable x being of type int. A call to setjmp
is represented by control-flow edges as well. According to
the C standard, it appears as if a call to setjmp may return
more than once: First, when setjmp is invoked, and possi-
bly again whenever a longjmp back to this program point
occurred. Accordingly, we introduce two control-flow edges
for each setjmp: one edge (𝑢,x = setjmp0(b), 𝑣), which
represents the first execution of the call, and an additional
edge (𝑢̄,x = setjmp1(b), 𝑣) for all subsequent returns, i.e.,
longjmps to this location. The additional edge has the same
sink node 𝑣, but a fresh source node 𝑢̄ without predecessors
in the CFG1 (see Fig. 2). Let B ⊂ N denote the set of the
barred nodes 𝑢̄. A call to longjmp is represented by an edge
with a label longjmp(𝑏, 𝑎), where 𝑏 is of type jump_buf,
and 𝑎 is of type int. For the treatment of longjmps, we
introduce for each function 𝑓 an artificial extra return node
ret′𝑓 ∈ N for irregular returns that has no ingoing or out-
going edges. For the sake of simplicity, direct and indirect

1 We allow assignments of setjmp to return values. In C, this is not
allowed, but one may directly branch over the returned value.

Springer

J. Erhard et al.

Fig. 2 Representation of a setjmp in the control-flow graph using two
edges. Returns from longjmps arrive at 𝑢̄

recursion is not allowed, i.e., no function may have multiple
active stack frames at a time. Moreover, we assume that all
functions have distinct sets of local variables.

As the concrete semantics of the language, we choose
a trace semantics. In our setting, a program execution
trace 𝑡 ∈ T consists of a sequence of program configura-
tions (𝑐𝑖)0≤𝑖≤𝑘 for some 𝑘 ∈ N, where each configuration
𝑐𝑖 = (𝑢, 𝜎) consists of a program node 𝑢 and a program state
𝜎 ∈ Σ. The program state is a type-correct mapping from
program variables to values. The set of initial traces is given
by the set init consisting of single-configuration traces 𝑐0 of
the form (stmain, 𝜎) with 𝜎 providing initial values for global
variables and for the locals of main. We formalize the con-
crete semantics using a constraint system over sets of traces
such that the least solution of that system describes all possi-
ble program executions. The constraint system has unknowns
[𝑢, 𝑐], 𝑢 ∈ N , 𝑐 ∈ T , where the value of [𝑢, 𝑐] is meant to
collect the set of traces reaching program point 𝑢 when the
function containing 𝑢 is reached with trace 𝑐. In particular,
the last step of 𝑐 contains the start node of the procedure
and its start state. We call 𝑐 the (concrete) context of [𝑢, 𝑐].
We rely on side-effecting constraint systems for the formula-
tion of the concrete constraint system [1]. Here side-effecting
constraint systems allow us to conveniently formalize the se-
mantics of longjmps: Side effects are used to propagate the
traces with which one may return to the setjmp location.
This allows handling jumps across function boundaries at
dynamic jump targets as required by a formalization of the
semantics of calls to setjmp and longjmp.

Example 1
Let us recall the notion of a side-effecting constraint system
along a self-contained example. Consider for now a different
set of unknowns given by U = {𝑥, 𝑦, 𝑧}. Each unknown takes
a value from the powerset lattice L = 2{𝑎,𝑏,𝑐} ordered by
⊆ with ⊥ = ∅ and � = {𝑎, 𝑏, 𝑐}. Assume that we have the
following constraint system over 𝜂 :U→ L:

(𝜂, 𝜂 𝑥) ⊇ 𝑓𝑥 𝜂 𝑓𝑥 𝜂 = (∅, {𝑎} ∪ ({𝑐} ∩ 𝜂 𝑧}))

(𝜂, 𝜂 𝑦) ⊇ 𝑓𝑦 𝜂 𝑓𝑦 𝜂 = ({𝑧 ↦→ 𝜂 𝑦}, {𝑏} � 𝜂 𝑥)

(𝜂, 𝜂 𝑧) ⊇ 𝑓𝑧 𝜂 𝑓𝑧 𝜂 = (∅,⊥)

where the ordering ⊇ is lifted to maps and tuples point-
wise. The right-hand sides of the constraints yield both

a contribution from L to the unknown on the left-hand
side (second component), as well as a (partial) mapping
from unknowns to elements of L (the side-effects) as the
first component. Here the right-hand sides are defined us-
ing functions 𝑓𝑖 : (U→ L) → (U→ L) × L for 𝑖 ∈ {𝑥, 𝑦, 𝑧}.
In this example, 𝑓𝑦 causes a side effect to the unknown 𝑧,
which does not receive any non-⊥ values from other con-
straints, and contributes {𝑏} � 𝜂 𝑥 to its left-hand side, i.e.,
𝑦. A total mapping from unknowns to L is a solution of
the constraint system if it satisfies all constraints. Consider
𝜂1 = {𝑥 ↦→ �, 𝑦 ↦→ �, 𝑧 ↦→ �}. While 𝜂1 is a solution of the
side-effecting constraint system, it is not the least solution
given by {𝑥 ↦→ {𝑎}, 𝑦 ↦→ {𝑎, 𝑏}, 𝑧 ↦→ {𝑎, 𝑏}}.

The constraint system C for the concrete semantics is
given by

𝜂 [stmain, 𝑡] ⊇ {𝑡}, 𝑡 ∈ init;
(𝜂, 𝜂 [𝑣, 𝑐]) ⊇ �(𝑢, 𝑎, 𝑣), 𝑐�𝜂, (𝑢, 𝑎, 𝑣) ∈ E, 𝑐 ∈ T .

Here ⊇ is lifted to maps and tuples, and 𝜂 : (N × T) → 2T

is some mapping from unknowns to sets of traces. Thus
𝜂 [𝑢, 𝑐] represents the set of traces reaching program point
𝑢 when the function containing 𝑢 was reached with trace
𝑐. The first constraint initializes the unknowns for the start
point. The constraint for each edge (𝑢, 𝑎, 𝑣) and context 𝑐

ensures that the mapping 𝜂 accounts for all side effects that
occur for the edge (𝑢, 𝑎, 𝑣) in the context 𝑐 and that 𝜂 [𝑣, 𝑐]

contains the traces reaching 𝑣 in context 𝑐 via that edge. We
rely on the following helper functions to define the semantics
�(𝑢, 𝑎, 𝑣), 𝑐� for each action 𝑎: The function last 𝑡 retrieves
the last configuration of the given trace 𝑡. As there are no
recursive calls, there is at most one invocation per function in
𝑡 that has not returned yet (either regularly or via longjmp).
Let calls 𝑡 denote this set of functions that have not returned.
Accordingly, the state in configuration last 𝑡 consists of a
mapping of globals and the locals of all functions 𝑓 ∈ calls 𝑡

to values. The function func 𝑢 determines for each node 𝑢 the
function it occurs in. The predicate here𝑢,𝑐 〈𝑢′, 𝑡′〉 is given
by (func 𝑢 = func 𝑢′) ∧ (𝑐 = context 𝑡′), where the function
context 𝑡′ yields the concrete context of the function invoca-
tion that is active in the last configuration of 𝑡′. In the follow-
ing, if some expression cannot be evaluated, e.g., a pointer is
dereferenced that evaluates to a local variable that is not on
the stack, we assume that the corresponding traces will not
be constructed and thus not propagated. Let 𝑒 = (𝑢, 𝑎, 𝑣) ∈ E

denote an edge in one of the control-flow graphs, and let 𝑐

denote some concrete context. Then we define the semantics
�𝑒, 𝑐� by case distinction on the action 𝑎. We will use some
OCaml-like pseudocode to do so.

Springer

When long jumps fall short

Assignment If 𝑎 is an assignment 𝑙 = 𝑟 , then

�𝑒, 𝑐�𝜂 = let 𝑇 = 𝜂 [𝑢, 𝑐] in
let 𝑇 ′ = {𝑡 � (𝑣, 𝜎 ⊕ {𝑥 ↦→ 𝑤}) |

𝑡 ∈ 𝑇, last(𝑡) = (𝑢, 𝜎), &𝑥 = �&𝑙�𝜎,

𝑤 =match type_of 𝑟 with jump_buf ↦→ err
| _ ↦→ �𝑟�𝜎}

in
(∅,𝑇 ′)

Here the operator � appends a configuration to a trace, and
the operator ⊕ replaces an entry in a map. Each trace 𝑡 that
reaches the unknown [𝑢, 𝑐], with a last state 𝜎 is extended
with one configuration where the assignment was performed.
The variable 𝑥, which is assigned to, is determined by the
address &𝑥 to which &𝑙 evaluates in 𝜎. To determine the
value 𝑤 to be assigned, the value of the right-hand side
expression 𝑟 in state 𝜎 is determined; in case 𝑟 is of type
jump_buf, the value 𝑤 is set to err, as jump buffers may
only be set via setjmp. Thus each trace is extended with a
configuration consisting of the next program point and the
updated state.

setjmp A jump buffer value is either an error value err
or a pair 〈𝑢̄, 𝑡〉, where 𝑢̄ is the program point later to be
long-jumped to, and 𝑡 is the trace with which the corre-
sponding setjmp was reached. We assume that all variables
of type jmp_buf are initialized with err. If the action 𝑎 is
x = setjmp0(b) for some variable 𝑥 and jump buffer ex-
pression 𝑏, then

�𝑒, 𝑐�𝜂 = let 𝑇 = 𝜂 [𝑢, 𝑐] in
let 𝑇 ′ = {𝑡 � (𝑣, 𝜎 ⊕ {𝑥 ↦→ 0,

�&𝑏�𝜎 ↦→ 〈𝑢̄, 𝑡〉}) | 𝑡 ∈ 𝑇, last(𝑡) = (𝑢, 𝜎)}

in
(∅,𝑇 ′)

Each trace is extended with a configuration where in the
updated state, 𝑥 is mapped to 0, and the value of the jump
buffer 𝑏 is set to the jump buffer value 〈𝑢̄, 𝑡〉, where 𝑢̄ is
the source node for all subsequent returns of the setjmp
operation with source node 𝑢, and 𝑡 is the trace that the
setjmp operation was reached with.

Now consider an action 𝑎 of the form x=
setjmp1(b). In this case, the start point 𝑢 of the edge is
of the form 𝑢̄′ for some program point 𝑢′ and an outgoing
edge with a corresponding action x = setjmp0(b). Here
the variable 𝑥 receives the value from the global variable
retv, which, as we will see, contains the value set by the
immediately preceding longjmp. Thus the constraint is the
same as for the assignment x = retv.

longjmp Subsequently, we require a predicate valid(𝑏, 𝑡),
which states whether the jump buffer expression 𝑏 is valid

for the trace 𝑡, i.e., contains a jump buffer value, which may
serve as the target of a longjmp in the last configuration of
𝑡. This predicate is defined by

valid(𝑏, 𝑡) = let (_, 𝜎) = last(𝑡) in
�𝑏� 𝜎 ≠ err ∧

let 〈𝑢̄′, 𝑡′〉 = �𝑏� 𝜎 in
onstack(𝑡′, 𝑡)

where it is first checked that the value of the jump buffer
expression 𝑏 is different from err. The value 〈𝑢̄′, 𝑡′〉 of 𝑏 is
then obtained, and it is verified with onstack(𝑡′, 𝑡) that the
function invocation containing the setjmp that was reached
with 𝑡′ is still on the call stack in 𝑡. Now assume that the
action 𝑎 is longjmp(𝑏, 𝑥). Then

�𝑒, 𝑐�𝜂 = let 𝑉 = {𝑡 | 𝑡 ∈ 𝜂 [𝑢, 𝑐], valid(𝑏, 𝑡)} in
let 𝐻 = {([𝑢̄′, 𝑐], (𝑟 � (𝑢̄′, 𝜎′)) |
𝑟 ∈ 𝑉, last(𝑟) = (𝑢, 𝜎),

𝜎′ = 𝜎 ⊕ {retv ↦→ �(𝑥 == 0) ? 1 : 𝑥�𝜎},

〈𝑢̄′, 𝑡′〉 = �𝑏�𝜎, here𝑢,𝑐 〈𝑢̄′, 𝑡′〉}
in
let 𝑂 = {([𝑢̄′, 𝑐′], 𝑟 � (ret′func𝑢, 𝜎

′
) � (𝑢̄′, 𝜎′′)) |

𝑟 ∈ 𝑉, last(𝑟) = (𝑢, 𝜎),
𝜎′ = 𝜎 ⊕ {retv ↦→ �(𝑥 == 0) ? 1 : 𝑥�𝜎},

〈𝑢̄′, 𝑡′〉 = �𝑏�𝜎,

𝜎′′ = remove_locals(𝜎′, 𝑡′),
𝑐′ = context(𝑡′),¬here𝑢,𝑐 〈𝑢̄′, 𝑡′〉}

in
(

−−−−−→

𝐻 ∪𝑂, ∅)

For a set 𝑅 of pairs (𝑋, 𝑡) of unknowns 𝑋 and traces 𝑡, we
denote by −→𝑅 the function defined by

−→

𝑅 𝑋 = {𝑡 | (𝑋, 𝑡) ∈ 𝑅}.

Given a set of pairs, it defines a function that, given an
argument 𝑋 , yields a set containing all 𝑡 such that (𝑋, 𝑡) ∈ 𝑅,
thus grouping all side effects per unknown. First, the set 𝑉
of traces 𝑟 reaching program node 𝑢 in the context 𝑐 are
determined for which 𝑏 is valid. Only these traces will be
extended and propagated.

The relation 𝐻 collects pairs of unknowns [𝑢̄′, 𝑐] and ex-
tensions of traces 𝑟 ∈ 𝑉 for which the jump target value 𝑏𝑣
of 𝑏 was set by a setjmp inside the current function invo-
cation with context 𝑐. Each such extended trace is obtained
by appending one step where the value of retv is updated
with the value provided by 𝑥. According to the semantics of
C, we enforce that this value is necessarily different from 0.

The relation 𝑂, on the other hand, collects the correspond-
ing set of pairs of unknowns [𝑢̄′, 𝑐′] and extensions of traces
𝑟 ∈ 𝑉 for which the jump target value 〈𝑢̄′, 𝑡′〉 of 𝑏 was set by a
setjmp outside the current function invocation with context
𝑐. In contrast to the traces in 𝐻, each trace 𝑡 from 𝑉 that

Springer

J. Erhard et al.

jumps outside the current function invocation is extended by
two steps: the first step takes care of the assignment of the
value of 𝑥 to retv resulting in some state 𝜎′. To signify
the irregular exit of the current function func 𝑢, i.e., via an
interprocedural longjmp, this state 𝜎′ is associated with an
artificial extra return node ret′func𝑢. We remark that while
such nodes may appear in traces, there are no corresponding
unknowns in this constraint system. The second step then re-
moves from 𝜎′ all local variables from functions that are no
longer on the call stack after the longjmp is performed. For
this second step, let 𝑏𝑣 = 〈𝑢̄, 𝑡′〉 denote the jump buffer value.
The function remove_locals(𝜎′, 𝑡′) removes any bindings of
local variables from 𝜎′ that are not locals of a function from
calls(𝑡′), i.e., the set of functions on the stack when the jump
buffer value 𝑏𝑣 was created.

The contributions as specified by 𝐻 and 𝑂 are then side-
effected, whereas the empty set of traces is contributed to
[𝑣, 𝑐], indicating that the successor program point cannot be
reached via this edge.

Function calls If the action 𝑎 has the form x = f(a1,

..., a𝑘), then

�𝑒, 𝑐�𝜂 = let 𝑆 = {([st 𝑓 , 𝑡′], 𝑡′) |
𝑡 ∈ 𝜂 [𝑢, 𝑐], 𝑡′ = enter𝑒 (𝑡)} in

let 𝑇 ′ = {𝑟 ′ | 𝑡 ∈ 𝜂 [𝑢, 𝑐], 𝑟 ∈ 𝜂 [ret 𝑓 , enter𝑒 (𝑡)],
𝑟 ′ = combine𝑥,𝑣 𝑡 𝑟} in
(

−→

𝑆 ,𝑇 ′)

The set of traces reaching the start of the called function 𝑓

is determined by extending each trace 𝑡 reaching [𝑢, 𝑐] via
enter𝑒 (𝑡). The transformation enter𝑒 (𝑡) extends the trace 𝑡 by
assigning the values of the arguments 𝑎𝑖 to the corresponding
formal parameters and initializes the local variables of 𝑓 . In
case any of the formal parameters is of type jump buffer,
its value is set to err, as jump buffers may only be set via
setjmp. Each resulting trace 𝑡′ is then side effected to the
start node of 𝑓 st 𝑓 in context 𝑡′. The contribution to the
program node 𝑣 in the current context is then determined
via combine𝑥,𝑣 𝑡 𝑟 , where 𝑟 is obtained from the return node
ret 𝑓 of 𝑓 in the context 𝑓 was entered with. The function
combine𝑥,𝑣 𝑡 𝑟 then extends the trace 𝑟 with a configuration
(𝑣, 𝜎′′), where the new state 𝜎′′ is obtained from the last state
𝜎 in 𝑟 by assigning the value of retv to 𝑥 and then removing
the local variables of 𝑓 . Thus the function combine𝑥,𝑣 𝑡 𝑟 is
defined by

combine𝑥,𝑣 𝑡 𝑟 = let (𝑢, 𝜎) = last(𝑟) in
let 𝜎′ = 𝜎 ⊕ {𝑥 ↦→ �retv�𝜎} in
let 𝜎′′ = remove_locals(𝜎′, 𝑡) in
𝑟 � (𝑣, 𝜎′′)

Guard If the action 𝑎 is a guard with the conditional ex-
pression 𝑔, then

�𝑒, 𝑐�𝜂 = let 𝑇 = 𝜂 [𝑢, 𝑐] in
let 𝑇 ′ = {𝑡 � (𝑣, 𝜎) | 𝑡 ∈ 𝑇, last(𝑡) = (𝑢, 𝜎),�𝑔�𝜎 ≠ 0} in
(∅,𝑇 ′)

For each trace 𝑡 that reaches the program point 𝑢 in context
𝑐 and its last state 𝜎, it is checked whether 𝑔 evaluates to
a nonzero value. In this case the trace is extended by one
configuration with an unchanged state 𝜎. The set 𝑇 ′ of all
such traces is the contribution to the next program point.

4 longjmp with stack-unwinding

The trace-based semantics provided so far closely resem-
bles the semantics of C with setjmp and longjmp. We
will now present an alternative trace-based semantics where
longjmps are localized to jumps within function bodies only.
To achieve this, stack-unwinding is introduced. The alterna-
tive semantics is again formalized as the least solution of a
constraint system. This constraint system C′ then will form
the basis of our analysis. The constraints of C′ agree with the
constraints of C, except for the edges (𝑢, 𝑎, 𝑣) where the ac-
tion 𝑎 is a longjmp or a function call. For that modification,
the constraint system C is extended with further unknowns of
the form [ret′𝑓 , 𝑐], where ret′𝑓 represents the artificial node
of a function 𝑓 signifying irregular returns, and 𝑐 ∈ T is
the context in which the function 𝑓 has been reached. For
these new unknowns, the mapping 𝜂 now contains sets of
pairs (𝑏𝑣, 𝑡), where 𝑏𝑣 is a jump buffer value, and 𝑡 is a trace
propagated from a longjmp to 𝑏𝑣.

Example 2
Consider the example program given in Fig. 3 with setjmp/
longjmp, together with the traces reaching the program point
after the setjmp with an irregular return via longjmp. The
trace reaching that program point in the least solution of
C
′ contains a step for unwinding each function from the

stack, whereas the unwinding is done in one step in the
corresponding trace in the least solution of C.

For longjmps and function calls, the new constraints
for edges (𝑢, 𝑎, 𝑣) in context 𝑐 are defined in the follow-
ing, whereas the right-hand sides of other constraints remain
unchanged.

Springer

When long jumps fall short

Fig. 3 Example code using setjmp/longjmp, together with traces
𝑡 and 𝑡 ′ contained in the least solutions of C and C′, respectively,
reaching program point 14. There a node with number 𝑛 indicates the
program point at the start of line 𝑛. An edge label indicates the action

that led to the sink configuration. The trace 𝑡 directly returns from 𝑔 to
the target node, whereas the trace 𝑡 ′ performs the unwinding of function
calls 𝑓 and 𝑔 in separate steps.

longjmp If the action 𝑎 is given by longjmp(b,x), then

�𝑒, 𝑐�𝜂 = let 𝑉 = {𝑡 | 𝑡 ∈ 𝜂 [𝑢, 𝑐], valid(𝑏, 𝑡)} in
let 𝐻 = {([𝑢̄′, 𝑐], (𝑟 � (𝑢̄′, 𝜎′)) |
𝑟 ∈ 𝑉, last(𝑟) = (𝑢, 𝜎),

𝜎′ = 𝜎 ⊕ {retv ↦→ �(𝑥 == 0) ? 1 : 𝑥�𝜎},

〈𝑢̄′, 𝑡′〉 = �𝑏�𝜎, here𝑢,𝑐 〈𝑢̄′, 𝑡′〉}
in
let 𝑂 = {([ret′func𝑢, 𝑐], (𝑏𝑣, 𝑟 � (ret′func𝑢, 𝜎

′
))) |

𝑟 ∈ 𝑉, last(𝑟) = (𝑢, 𝜎),

𝜎′ = 𝜎 ⊕ {retv ↦→ �(𝑥 == 0) ? 1 : 𝑥�𝜎},

𝑏𝑣 = �𝑏�𝜎,¬here𝑢,𝑐𝑏𝑣}

in
(

−−−−−→

𝐻 ∪𝑂, ∅)

In case the jump buffer value to be jumped to is local, the
definition has not changed, i.e., the relation 𝐻 is defined as
before.

A difference occurs for traces for which the jump buffer
𝑏 has a value 𝑏𝑣 outside the current function invocation. In
this case, it is prolonged by one step (instead of two before)
by a configuration (ret′func𝑢, 𝜎

′
), where the node ret′func𝑢

signifies the irregular return from the current function, and
𝜎′ is obtained by updating the value of the variable retv.
The pair of 𝑏𝑣 and the extended trace then is side-effected to
the unknown [ret′func𝑢, 𝑐]. As in the previous semantics, the
empty set of traces is contributed to [𝑣, 𝑐], indicating that the
successor program point cannot be reached via this edge.

Function calls If the action 𝑎 has the form x = f(a1,

..., a𝑘), then

�𝑒, 𝑐�𝜂 = let 𝑆 = {([st 𝑓 , 𝑡′], 𝑡′) |
𝑡 ∈ 𝜂 [𝑢, 𝑐], 𝑡′ = enter𝑒 (𝑡)}

in
let 𝑇 ′ = {𝑟 ′ | 𝑡 ∈ 𝜂 [𝑢, 𝑐], 𝑟 ∈ 𝜂 [ret 𝑓 , enter𝑒 (𝑡)],
𝑟 ′ = combine𝑥,𝑣 𝑡 𝑟}

in
let 𝐻 = {([𝑢̄′, 𝑐], 𝑟 ′) | 𝑡 ∈ 𝜂 [𝑢, 𝑐],
(〈𝑢̄′, 𝑡′〉, 𝑟) ∈ 𝜂 [ret′𝑓 , enter𝑒 (𝑡)],
𝑟 ′ = combineretv,𝑢̄′ 𝑡 𝑟, here𝑢,𝑐 〈𝑢̄′, 𝑡′〉}

in
let 𝑂 = {([ret′func𝑢, 𝑐], (〈𝑢̄

′, 𝑡′〉, 𝑟 ′)) | 𝑡 ∈ 𝜂 [𝑢, 𝑐],

(〈𝑢̄′, 𝑡′〉, 𝑟) ∈ 𝜂 [ret′𝑓 , enter𝑒 (𝑡)],
𝑟 ′ = combineretv,ret′func𝑢

𝑡 𝑟,¬here𝑢,𝑐 〈𝑢̄′, 𝑡′〉}
in
(

−−−−−−−−−→

𝑆 ∪ 𝐻 ∪𝑂,𝑇 ′)

The side-effecting of start states to the start points of the
called functions and regular returns from the call are han-
dled as before. Now, additionally, irregular returns of the
called function must be handled. There are two kinds of ir-
regular returns: those with a target inside the current function
invocation and those with a target outside. The first kind of
returns is collected in 𝐻, whereas 𝑂 collects the second kind.

In 𝐻, for each trace 𝑡 reaching 𝑢 in context 𝑐, each tuple
(𝑏𝑣, 𝑟) from the unknown [ret′𝑓 , enter𝑒 (𝑡)] is considered. Let
𝑏𝑣 = 〈𝑢̄′, 𝑡′〉. Via the predicate here𝑢,𝑐 〈𝑢̄′, 𝑡′〉, it is ensured
that only the traces with a target in the current function invo-
cation are considered. For such a pair (𝑏𝑣, 𝑟), the trace 𝑟 is
extended via combineretv,𝑢̄′ by one step with a configuration

Springer

J. Erhard et al.

(𝑢̄′, 𝜎′), where the local state 𝜎′ results from the previous
local state by assigning the value of retv to 𝑥; moreover,
all locals that are not on the stack in the current function in-
vocation are removed. The resulting trace is then is put into
relation with the unknown [𝑢̄′, 𝑐].

In 𝑂, for each trace 𝑡 reaching the program point 𝑢 in the
context 𝑐, those tuples (〈𝑢̄′, 𝑡′〉, 𝑟) in [ret′𝑓 , enter𝑒 (𝑡)] are
considered for which the target 〈𝑢̄′, 𝑡′〉 is not in the current
function invocation. Each such trace 𝑟 is extended via the
call combineretv,ret′func𝑢

𝑡 𝑟 , which appends a configuration
(ret′func𝑢, 𝜎

′′
) to 𝑟 , where 𝜎′′ is obtained from the last state

of 𝑟 by removing the local variables of the functions that are
not on the stack at the current function invocation in 𝑡. The
resulting trace is then related to the unknown [ret′func𝑢, 𝑐],
where the returns via longjmp of the current function and
context are collected. From the sets 𝑆, 𝐻 and 𝑂, the side-
effects for the edge are generated.

5 Equivalence of C and C′

Intuitively, the traces in the semantics formalized by C′
can be obtained from the traces from C by elaborating the
longjmps from nested function calls into a sequence of ir-
regular function returns followed by a function-local jump
to some start node 𝑢̄ of a setjmp1 edge. Conversely, traces
of C can be obtained from traces of C′ by collapsing these
sequences into two steps, where the first updates the value of
retv, and the second performs the interprocedural jump to
the same start 𝑢̄.

To formalize this bijection between traces, we define a
function 𝑖(𝑡)that, given a trace 𝑡 from C, returns the corre-
sponding trace in C′ reflecting the same program execution.
Recall that certain subtraces are used to construct jump buffer
values. Therefore 𝑖(𝑡) is defined via mutual recursion with a
function 𝑗 (𝜎) transforming program states:

𝑖(𝑠𝑡main, 𝜎) = (𝑠𝑡main, 𝑗 (𝜎))
𝑖(𝑡 � (𝑣, 𝜎)) = 𝑖(𝑡) � (𝑣, 𝑗 (𝜎)) if 𝑣 ∉ B
𝑖(𝑡 � (ret′𝑔0

, 𝜎0) � (𝑢̄, 𝜎)) =
𝑖(𝑡) � (ret′𝑔0

, 𝑗 (𝜎0)) �

(ret′𝑔1
, 𝑗 (𝜎1)) � . . . � (ret′𝑔𝑟 , 𝑗 (𝜎𝑟)) �

(𝑢̄, 𝑗 (𝜎))

where 𝑔0, . . . , 𝑔𝑟 is the sequence of functions to be returned
from to arrive at the function invocation of the jump target
𝑢̄, and for 𝑘 ≥ 0, 𝜎𝑘+1 is obtained from 𝜎𝑘 by removing the
locals of 𝑔𝑘 . The mapping 𝑗 (𝜎) is given by

𝑗 (𝜎) = 𝜎 ⊕ {𝑥 ↦→ 〈𝑢̄, 𝑖(𝑡)〉 | 𝜎(𝑥) = 〈𝑢̄, 𝑡〉, 𝑥 ∈ V}

When lifting the mapping 𝑖 between traces of C and C′
to a mapping between least solutions of the two constraint
systems, we must take into account that the set of unknowns
may differ in two ways:

• C has unknowns [𝑢, 𝑐] for context traces 𝑐, whereas the
corresponding unknowns of C′ are [𝑢, 𝑖(𝑐)]; moreover,

• C′ uses the set 𝐴 of auxiliary unknowns [ret′𝑓 , 𝑐], 𝑓 ∈
Funs, 𝑐 a context trace of C′.

When establishing a correspondence, we concentrate on the
values of unknowns [𝑢, 𝑐] with 𝑢 different from ret′𝑓 . Let 𝜂
be an assignment of sets of traces to the unknowns of C. Then
we define the mapping 𝐼 (𝜂) for the nonauxiliary unknowns
of C′ by

𝐼 (𝜂) [𝑢, 𝑖(𝑐)] = {𝑖(𝑡) | 𝑡 ∈ 𝜂 [𝑢, 𝑐]}.

Proposition 1
Let 𝜂 be the least solution of C, and let 𝜂′ be the least solution
of C′. Then

1. for all unknowns [𝑢, 𝑐′] of C′ that are not in 𝐴,

𝜂′ [𝑢, 𝑐′] � 𝐼 (𝜂) [𝑢, 𝑐′];

2. For any (〈𝑢̄′, 𝑖(𝑡′)〉, 𝑟 ′) ∈ 𝜂′ [ret′𝑔, 𝑖(𝑐)], the following
holds:
(a) There is at least one occurrence of a node 𝑢

in 𝑟 ′ such that there is an edge of the form
(𝑢,longjmp(𝑏, 𝑥), 𝑣) ∈ E. We denote the last such
𝑢 in 𝑟 ′ as 𝑢0 and denote the prefix of 𝑟 up to that last
occurrence of 𝑢0 as 𝑟 ′0.

(b) 𝑟 ′0 ∈ 𝜂′ [𝑢0, context(𝑟 ′0)], and valid(𝑏, 𝑟 ′0), and for
(𝑢0, 𝜎0) = last(𝑟 ′0), it holds that �𝑏�𝜎0 = 〈𝑢̄′, 𝑖(𝑡′)〉
and func 𝑢0 ≠ func 𝑢̄′.

(c) Let for some 𝑛 ∈ N+, 𝑔𝑛, . . . , 𝑔0 be the sequence of
functions to be returned from in 𝑟 ′0 to arrive at the
function invocation at the jump target 𝑢̄′. For some
𝑛0, 1 ≤ 𝑛0 ≤ 𝑛, it holds that 𝑟 ′ = 𝑠𝑛0 , where 𝑠𝑚 for
0 ≤ 𝑚 ≤ 𝑛0 is defined as follows:

𝑠0 = 𝑟 ′0 � (ret′func 𝑢0
, 𝜎1)

𝑠𝑚+1 = 𝑠𝑚 � (ret′𝑔𝑚+1 , 𝜎𝑚+1)

where 𝜎1 = 𝜎0 ⊕ {retv ↦→ �(𝑥 == 0 ? 1 : 𝑥)�𝜎0}, and
𝜎𝑚+1 is obtained from 𝜎 by removing the locals of
function 𝑔𝑚. It holds that 𝑔0 = func 𝑢0 and 𝑔 = 𝑔𝑛0 .

Proof
We proceed by fixed-point induction on C′. Let 𝜂′𝑘 be the
𝑘 th iterate of the constraint system C′ for 𝑘 ∈ N. For 𝑘 = 0,
𝜂′𝑘 [𝑢, 𝑐] = ∅ for all 𝑢, 𝑐. Therefore claims 1 and 2 hold for
𝜂′0. Now assume that the claims hold for 𝜂𝑘 , and we show
that the claims hold for 𝜂𝑘+1. Here we only elaborate on the
side effects performed by function calls for irregular returns.
Let 𝑒 be an edge 𝑒 = (𝑢, 𝑎, 𝑣), where the action is a function
call 𝑥 = 𝑓 (𝑎1, . . . , 𝑎𝑘), and let 𝑖(𝑐) be some concrete context.
For claim 2, we have to consider the side effects collected
in the set 𝑂 of the right-hand side. The right-hand side may

Springer

When long jumps fall short

cause some jump buffer value and trace (〈𝑢̄′, 𝑡′〉, 𝑟 ′) to be
side-effected to [ret′func𝑢, 𝑖(𝑐)], i.e.,

(〈𝑢̄′, 𝑡′〉, 𝑟 ′) ∈ (�(𝑢, 𝑎, 𝑣), 𝑖(𝑐)�𝜂′𝑘)1 [ret′func𝑢, 𝑖(𝑐)] .

Such a side effect is only performed under the condition that
the following holds for some 𝑡:

𝑡 ∈ 𝜂′𝑘 [𝑢, 𝑖(𝑐)] ∧ (〈𝑢̄′, 𝑡′〉, 𝑟) ∈ 𝜂′𝑘 [ret′𝑓 , enter𝑒 (𝑡)]∧
𝑟 ′ = combineretv,ret′func𝑢

𝑡 𝑟 ∧ ¬here𝑢,𝑖 (𝑐) 〈𝑢̄′, 𝑡′〉.

According to the induction hypothesis (claim 2a), there is
a prefix 𝑟 ′0 of 𝑟 such that the last node 𝑢0 in 𝑟 ′0 is the start
of a longjmp edge. As 𝑟 ′ prolongs the trace 𝑟 by one step
with ret′func𝑢 as the node, claim 2a also holds for 𝑟 ′ with the
same 𝑟 ′0. By induction hypothesis (claim 2b) there is some 𝑐0
such that 𝑟 ′0 ∈ 𝜂′𝑘 [𝑢0, 𝑖(𝑐0)], and there is some 𝑟0 ∈ 𝜂 [𝑢0, 𝑐0]

with 𝑖(𝑟0) = 𝑟 ′0 and valid(𝑏, 𝑟0). As 𝑟 ′0 is also contained in
𝜂′𝑘+1 [𝑢0, 𝑖(𝑐0)], claim 2b holds.

For 𝑟 and 𝑟 ′0, let 𝑛, 𝑛0, and 𝑔𝑛, . . . , 𝑔0 be as described in
2c with 𝑓 = 𝑔𝑛0 and 𝑟 = 𝑠𝑛0 , given by induction hypothesis.
By construction, at the current edge 𝑒, the function 𝑔𝑛0 is
called, and func 𝑢 is on the stack in 𝑟 . As ¬here𝑢,𝑖 (𝑐) 〈𝑢̄′, 𝑡′〉
holds, the target of the jump is not in the current function
invocation, and func 𝑢 needs to be popped from the stack to
perform the longjmp in 𝑟 ′0. Therefore claim 2c holds for 𝑟 ′

for 𝑛0 + 1, and 𝑔𝑛0+1 = func 𝑢.
For claim 1, we only consider the side effects for propa-

gating irregular returns into the current function invocation.
The right-hand side �(𝑢, 𝑎, 𝑣), 𝑖(𝑐)� may cause a trace 𝑟 ′ to
be side-effected to [𝑢̄′, 𝑖(𝑐)], i.e.,

𝑟 ′ ∈ (�(𝑢, 𝑎, 𝑣), 𝑖(𝑐)�𝜂′𝑘)1 [𝑢̄
′, 𝑖(𝑐)] .

Such a side-effect is only performed under the condition that
there is some 𝑡 such that

𝑡 ∈ 𝜂′𝑘 [𝑢, 𝑖(𝑐)] ∧ (〈𝑢̄′, 𝑡′〉, 𝑟 ′′) ∈ 𝜂′𝑘 [ret′𝑓 , enter𝑒 (𝑡)]∧
𝑟 ′ = combineretv,𝑢̄′ 𝑡 𝑟 ′′ ∧ here𝑢,𝑖 (𝑐) 〈𝑢̄′, 𝑡′〉.

From the induction hypothesis it follows that for 𝑟 ′′, there
are 𝑟 ′0, 𝑛, 𝑛0, and 𝑔𝑛, . . . , 𝑔0 as described in claims 1 and
2 with 𝑟 ′ = 𝑠𝑛0 . As the target of the jump is local to the
function containing 𝑢, there are no further functions to return
from besides 𝑔0, . . . , 𝑔𝑛0 , and therefore 𝑟 ′′ = 𝑠𝑛 and 𝑛0 = 𝑛.
According to the induction hypothesis (claims 2b and 1),
there are 𝑟0 and 𝑐0 such that 𝑖(𝑟0) = 𝑟 ′0, and 𝑟0 ∈ 𝜂 [𝑢0, 𝑐0]

with valid(𝑏, 𝑟0). Let us now consider the constraint in C
with the right-hand side �𝑒0, 𝑐0�𝜂. As 𝜂 is a solution of C,
and all side-effects of the constraint are thus accounted for,
we have

𝑟0 � (ret′func𝑢0
, 𝜎′0) � (𝑢̄

′, 𝜎′′0) ∈ 𝜂 [𝑢̄′, context(𝑡)],

where 𝜎′0 = 𝜎0 ⊕ {retv ↦→ �(𝑥 == 0) ? 1 : 𝑥�𝜎0}, with
last(𝑟0) = (𝑢0, 𝜎0), 𝜎′′0 = remove_locals(𝜎′0, 𝑡), and 〈𝑢̄′, 𝑡〉 =

�𝑏�𝜎0. As 𝑟 ′0 = 𝑖(𝑟0), it follows that last(𝑟 ′0) = (𝑢0, 𝑗 (𝜎0)).
According to 2b, �𝑏� (𝑗 (𝜎0)) = 〈𝑢̄′, 𝑡′〉. It follows that
𝑖(𝑡) = 𝑡′ and context(𝑡) = 𝑐.

The sequence of functions to be returned from to arrive
at the active invocation of the function containing target 𝑢̄′

is exactly 𝑔0, . . . , 𝑔𝑛. It thus follows that

𝑖(𝑟0 � (ret′𝑔0 , 𝜎
′

0) � (𝑢̄
′, 𝜎′′0)) =

𝑖(𝑟0) � (ret′𝑔0
, 𝑗 (𝜎′0)) � (ret′𝑔1

, 𝑗 (𝜎′1)) � · · ·�

(ret′𝑔𝑛 , 𝑗 (𝜎′𝑘)) � (𝑢̄
′, 𝑗 (𝜎′′0)) ∈ 𝐼 (𝜂) [𝑢̄′, 𝑖(𝑐)],

where 𝜎𝑘+1 is obtained from 𝜎𝑘 by removing the locals
of the function 𝑔𝑘 from 𝜎𝑘 . From 𝑟 ′ = 𝑠𝑛 � (𝑢̄

′, 𝑗 (𝜎′′0)) =
𝑖(𝑟0 � (ret′func𝑢0

, 𝜎′0) � (𝑢̄
′, 𝜎′′0)) it follows that

𝑟 ′ ∈ 𝐼 (𝜂) [𝑢̄′, 𝑖(𝑐)] . �

Proposition 2
Let 𝜂′ be the least solution of C′. Then the mapping 𝜂 defined
by

𝜂 [𝑢, 𝑐] = {𝑡 | 𝑖(𝑡) ∈ 𝜂′ [𝑢, 𝑖(𝑐)]}

is a solution of C.

Proof
Let 𝜂′ be the least solution of C′, and let 𝜂 be defined as in
Proposition 2. It suffices to verify that the mapping 𝜂 sat-
isfies all constraints of C. Here we only elaborate on the
constraints for longjmps. For longjmps, it must be verified
that the adapted constraints introduced by C′ simulate the
single constraint for a longjmp in C by means of the auxil-
iaries. For an edge 𝑒 = (𝑢,longjmp(𝑏, 𝑥), 𝑣) in some context
𝑐, consider the set of side effects yielded by the right-hand
side �𝑒, 𝑐�𝜂 in C for the mapping 𝜂. This set is of the form
−−−−−→

𝐻 ∪𝑂, where 𝐻 and 𝑂 collect all jump targets inside and
outside to the current invocation, respectively.

Local jumps Let ([𝑢′, 𝑐], (𝑟 � (𝑢′, 𝜎′))) ∈ 𝐻. By the def-
inition of 𝐻,

𝑟 ∈ 𝜂 [𝑢, 𝑐] ∧ valid(𝑏, 𝑟) ∧ last(𝑟) = (𝑢, 𝜎) ∧

𝜎′ = 𝜎 ⊕ {retv ↦→ �(𝑥 == 0) ? 1 : 𝑥�𝜎} ∧

〈𝑢̄′, 𝑡′〉 = �𝑏�𝜎 ∧ here𝑢,𝑐 〈𝑢̄′, 𝑡′〉.

By the definition of 𝜂 and the mapping 𝑖 it follows that

𝑖(𝑟) ∈ 𝜂′ [𝑢, 𝑖(𝑐)] ∧ last(𝑖(𝑟)) = (𝑢, 𝑗 (𝜎)) ∧
〈𝑢̄′, 𝑖(𝑡′)〉 = �𝑏� (𝑗 (𝜎)) ∧ here𝑢,𝑖 (𝑐) 〈𝑢̄′, 𝑖(𝑡′)〉.

Additionally, the property valid(𝑏, 𝑖(𝑟)) is preserved from
valid(𝑏, 𝑟). We observe that

𝑗 (𝜎′) = 𝑗 (𝜎 ⊕ {retv ↦→ �(𝑥 == 0) ? 1 : 𝑥�𝜎})

= 𝑗 (𝜎) ⊕ {retv ↦→ �(𝑥 == 0) ? 1 : 𝑥� (𝑗 (𝜎))}.

Springer

J. Erhard et al.

Thus the value (𝑖(𝑟)� (𝑢′, 𝑗 (𝜎′))) is contained in 𝜂′ [𝑢′, 𝑖(𝑐)].
Accordingly, (𝑟 � (𝑢′, 𝜎′)) ∈ 𝜂[𝑢′, 𝑐], implying that every
side effect in 𝐻 is accounted for by 𝜂.

Nonlocal jumps Now consider the contributions that are
collected in the set 𝑂 of jumps outside the current func-
tion invocation. Assume that ([𝑢̄′, 𝑐′], 𝑟 ′) ∈ 𝑂 with 𝑟 ′ =
𝑟� (ret′func𝑢, 𝜎

′
)� (𝑢̄′, 𝜎′′). Then, according to the definition

of 𝑂,

𝑟 ∈ 𝜂 [𝑢, 𝑐] ∧ valid(𝑏, 𝑟) ∧ last(𝑟) = (𝑢, 𝜎) ∧

𝜎′ = 𝜎 ⊕ {retv ↦→ �(𝑥 == 0) ? 1 : 𝑥�𝜎} ∧

〈𝑢̄′, 𝑡′〉 = �𝑏�𝜎 ∧ 𝜎′′ = remove_locals(𝜎′, 𝑡′) ∧

𝑐′ = context(𝑡′) ∧ ¬here𝑢,𝑐 〈𝑢̄′, 𝑡′〉.

(1)

We verify that the constraints in C′ realizing the longjmp
and the function calls occurring in 𝑖(𝑟) for which the callee
is to be popped from the stack extend and propagate 𝑖(𝑟)
appropriately to the target location. The right-hand side for
the constraint for the longjmp is given by �(𝑢, 𝑎, 𝑣), 𝑖(𝑐)�.
We set 𝑢0 = 𝑢 and 𝑐0 = 𝑖(𝑐). The constraints for the function
calls are identified by the function call nodes 𝑢𝑘 , 𝑢𝑘−1, . . . , 𝑢1
occurring in the trace 𝑖(𝑟) after the prefix 𝑖(𝑡′) for which
the callee neither returned regularly nor via longjmp. For
𝑚 ∈ {1, . . . , 𝑘}, we refer to the trace that is the prefix of 𝑖(𝑟)
up to the last occurrence of 𝑢𝑚 as 𝑡𝑚. The right-hand sides
of the constraints corresponding to the function call at 𝑢𝑚
are identified via the edge 𝑒𝑚 = (𝑢𝑚, 𝑎𝑚, 𝑣𝑚) ∈ E and the
context 𝑐𝑚 of the trace 𝑡𝑚. We remark that 𝑡𝑚 ∈ 𝜂′ [𝑢𝑚, 𝑐𝑚]
and 𝑐𝑘 = context(𝑖(𝑡′)) = 𝑖(context(𝑡′)) = 𝑖(𝑐′).

Now, for 𝑚 ∈ {0, . . . , 𝑘 − 1}, we prove that

(〈𝑢′, 𝑖(𝑡′)〉, 𝑟𝑚) ∈ 𝜂′ [ret′func 𝑢𝑚 , 𝑐𝑚],

where 𝑟0 = 𝑖(𝑟) � (ret′func 𝑢0
, 𝜎′0), 𝑟𝑚+1 = 𝑟𝑚 � (ret′func 𝑢𝑚+1 ,

𝜎′𝑚+1), with 𝜎′0 = 𝑗 (𝜎′), and 𝜎′𝑚+1 =
combineretv,ret′func 𝑢𝑚+1

𝑡𝑚+1 𝑟𝑚 with 𝑚 ∈ {0, . . . , 𝑘 − 2}.

Base case Consider 𝑚 = 0. From Eq. (1) it follows by the
definitions of 𝜂 and 𝑖 and from valid(𝑏, 𝑟) that

𝑖(𝑟) ∈ 𝜂′ [𝑢, 𝑖(𝑐)] ∧ valid(𝑏, 𝑖(𝑟)) ∧ last(𝑖(𝑟)) = (𝑢, 𝑗 (𝜎))

∧〈𝑢̄′, 𝑖(𝑡′)〉 = �𝑏� 𝑗 (𝜎) ∧ ¬here𝑢,𝑖 (𝑐) 〈𝑢̄′, 𝑖(𝑡′)〉.

Therefore, due to the side effect made by the right-hand side
�(𝑢,longjmp(𝑏, 𝑥), 𝑣), 𝑖(𝑐)�𝜂′, we have that

(〈𝑢̄′, 𝑖(𝑡′)〉, 𝑖(𝑟) � (ret′func𝑢, 𝑗 (𝜎′))) ∈ 𝜂′ [ret′func𝑢, 𝑖(𝑐)] .

Induction step Assume that the statement holds for 𝑚 ∈
{0, . . . , 𝑘 − 2}. By construction, 𝑐𝑚 = enter𝑒𝑚+1 (𝑡𝑚+1). To-
gether with the induction hypothesis, we thus have that
(〈𝑢̄′, 𝑖(𝑡′)〉, 𝑟𝑚) ∈ 𝜂′ [ret′func𝑢𝑚 , enter𝑒𝑚+1 (𝑡𝑚+1)]. Further, it

holds that ¬here𝑢𝑚+1 ,𝑐𝑚+1 〈𝑢̄′, 𝑡′〉, as 𝑢̄′ is not contained in the
function func 𝑢𝑚+1. Thus the constraint with the right-hand
side �𝑒𝑚+1, 𝑐𝑚+1�𝜂′ requires that

(〈𝑢̄′, 𝑡′〉, 𝑟𝑚+1) ∈ 𝜂′ [ret′func𝑢𝑚+1 , 𝑐𝑚+1]

with 𝑟 ′ = combineretv,ret′func𝑢
𝑡𝑚+1 𝑟𝑚. This concludes the

proof by induction.
It remains to show that the constraint for the function

call at 𝑢𝑘 in context 𝑐𝑘 extends the trace appropriately and
propagates it to the unknown [𝑢̄′, 𝑐𝑘]. From the statement
proven by induction and with enter𝑒𝑘 𝑡𝑘 = 𝑐𝑘−1 it follows
that

(〈𝑢̄′, 𝑖(𝑡′)〉, 𝑟𝑘−1) ∈ 𝜂′ [ret′𝑢𝑘−1
, enter𝑒𝑘 𝑡𝑘] .

We observe that by construction of 𝑢𝑘 and 𝑐𝑘 the predicate
here𝑢𝑘 ,𝑐𝑘 〈𝑢̄′, 𝑖(𝑡′)〉 holds. The constraint with right-hand
side �𝑒𝑘 , 𝑐𝑘�𝜂′ then requires that 𝑟𝑘 ∈ 𝜂′ [𝑢̄′, 𝑐𝑘], where
𝑟𝑘 = combineretv,𝑢̄′ 𝑡𝑘 𝑟𝑘−1. From 𝑖(𝑐′) = 𝑐𝑘 and 𝑖(𝑟 ′) = 𝑟𝑘
and by construction of 𝜂 it follows that 𝑖(𝑟 ′) ∈ 𝜂′ [𝑢̄′, 𝑖(𝑐′)],
and therefore 𝑟 ′ ∈ 𝜂 [𝑢̄′, 𝑐′]. �

Theorem 1
Let 𝜂 and 𝜂′ be the least solutions of C and C′, respectively.
Then

𝜂′ [𝑢, 𝑐′] = 𝐼 (𝜂) [𝑢, 𝑐′]

for all unknowns [𝑢, 𝑐′] of C′ that are not in 𝐴.

Proof
Follows from Propositions 1 and 2. We calculate for 𝑐′ = 𝑖(𝑐):

𝜂′ [𝑢, 𝑖(𝑐)] � 𝐼 (𝜂) [𝑢, 𝑖(𝑐)]

= {𝑖(𝑡) | 𝑡 ∈ 𝜂 [𝑢, 𝑐]}

� {𝑖(𝑡) | 𝑡 ∈ {𝑡 | 𝑖(𝑡) ∈ 𝜂′ [𝑢, 𝑖(𝑐)]}}

= 𝜂′ [𝑢, 𝑖(𝑐)],

from which the equality follows. �

6 Indeterminate local variables

The preceding definitions of the concrete semantics have
ignored the possibility of encountering poisoned variables,
i.e., nonvolatile variables that have been modified between a
setjmp and a corresponding call to longjmp. To restrict the
semantics such that traces containing accesses to poisonous
variables are not prolonged, we adapt the semantics of trans-
fer functions �𝑒, 𝑐� in our constraint systems to a semantics
�𝑒, 𝑐�′ as follows:

�𝑒, 𝑐�′ 𝜂 = let 𝑇 = 𝜂 [𝑢, 𝑐] in
let 𝑇 ′ = {𝑡 | 𝑡 ∈ 𝑇,¬∃𝑣 ∈ V,

𝑣 ∈ read_vars(𝑒, 𝑡) ∧ 𝑣 ∈ poisonous(𝑡)} in
�𝑒, 𝑐� (𝜂 ⊕ [𝑢, 𝑐] ↦→ 𝑇 ′)

Springer

When long jumps fall short

where read_vars(𝑒, 𝑡) yields the set of program variables
that are read at edge 𝑒 for trace 𝑡, and the set poisonous(t)
yields the set of nonvolatile local variables that were writ-
ten in 𝑡 between a longjmp and the corresponding setjmp
where the buffer was set and have not been overwritten
since. The function poisonous may be defined inductively
on traces. The set 𝑇 ′ is the set of traces reaching [𝑢, 𝑐] such
that no read of a poisoned variable occurs in the step. Al-
together, �𝑒, 𝑐�′ then behaves like the original �𝑒, 𝑐�, but
the latter now receives the set 𝑇 ′ as the new value for the
unknown [𝑢, 𝑐].

7 Base analysis

In the following, we build on the least solution of the con-
straint system C′ as our reference semantics for our analy-
sis. These therefore are also formalized using side-effecting
constraint systems over a set of unknowns X taking values.
Instead of sets of traces, however, the unknowns now take
abstract values from some complete lattice D. We assume
that there is a monotonic mapping 𝛾 from D to sets of traces
with the understanding that 𝛾 𝑑 provides the set of all well-
formed traces described by 𝑑. In particular, 𝛾� should be
the set of all traces, and 𝛾⊥ should be the empty set.

For context-sensitive analysis, the unknowns are pairs of
program points and abstract contexts 𝛽, which we denote
by [𝑢, 𝛽]. Let C be some set of contexts, each of them again
describing a set of concrete contexts, i.e., concrete traces. We
require a concretization function 𝛾C for contexts analogous
to 𝛾 for abstract values. The analysis is relative to some initial
context • ∈ C, in which main is analyzed, and some abstract
value 𝑑0, so that 𝛾C • ⊇ init and 𝛾 𝑑0 ⊇ init. The constraints
of the system have the form

𝜂 [𝑠𝑡𝑚𝑎𝑖𝑛, •] � 𝑑0;
(𝜂, 𝜂 [𝑣, 𝛽]) � �𝑒, 𝛽�♯ 𝜂, 𝑒 = (𝑢, 𝑎, 𝑣) ∈ E .

For simplicity, we assume that D is a nonrelational map-
ping from program variables to abstract values of some
complete lattice. This base analysis provides us with con-
straints for assignments, guards, and function calls. Here
we briefly recall how right-hand sides for function calls of
the base analysis are constructed. For a control-flow edge
𝑒 = (𝑢, 𝑥 = 𝑓 (𝑎1, . . . , 𝑎𝑛), 𝑣) and context 𝛽 ∈ C, the right-
hand side �𝑒, 𝛽�♯ 𝜂 is given by

�𝑒, 𝛽�♯ 𝜂 = let 𝜎 = 𝜂 [𝑢, 𝛽] in
let 〈𝛽′, 𝜎′〉 = enter♯𝑒 𝜎 in
let 𝜎′′ = combine♯𝑥 𝜎 (𝜂 [ret 𝑓 , 𝛽]) in
({[st 𝑓 , 𝛽′] ↦→ 𝜎′}, 𝜎′′)

Here enter♯𝑒 takes the local state of the caller and yields a
pair. The first component 𝛽′ is the calling context for 𝑓 ; its

second component is an abstract entry state for the function
𝑓 obtained by, e.g., removing unreachable locals of the caller
and assigning (abstract) values for the actuals to the formals.
The entry state is then side-effected to the unknown [st 𝑓 , 𝛽]
corresponding to the entry node of 𝑓 in context 𝛽.

The function combine♯𝑥 takes as its first argument the
local state of the caller and as its second argument the state
computed for the endpoint of function 𝑓 in context 𝛽, i.e.,
the value of unknown [ret 𝑓 , 𝛽], and combines these states
into the abstract state after the function call. This entails,
e.g., removing local variables of 𝑓 and assigning the value
of retv to the variable 𝑥 on the left-hand side of the call. We
assume that the following holds for traces 𝑡, 𝑡′ and abstract
states 𝜎, 𝜎′ ∈ D with 𝑡 ∈ 𝛾(𝜎), 𝑡′ ∈ 𝛾(𝜎′):

enter𝑒 𝑡 ∈ 𝛾(enter♯𝑒 𝜎)2,

enter𝑒 𝑡 ∈ 𝛾C(enter♯𝑒 𝜎)1,

combine𝑥,𝑣 𝑡 𝑡′ ∈ 𝛾(combine♯𝑥 𝜎 𝜎′) for all 𝑣 ∈ N ,

where a subscript 𝑛 denotes taking the 𝑛th value of the tuple.
For the analysis of programs with setjmp/longjmp, we now
enhance the base analysis by extending the abstract domain
D to express auxiliary information and lifting all right-hand
sides accordingly. New transfer functions corresponding to
setjmp and longjmp are generically assembled from the
abstract effects of assignments, enter♯𝑒 , and combine♯𝑥,𝑣 as
provided by the base analysis.

8 Analysis of Setjmp/Longjmp

For analyzing setjmp/longjmp, we identify three tasks:

P1 Tracking, which targets may legally be jumped to, i.e.,
keeping track of all potential invocations of setjmpwhere
the containing call has not returned yet.

P2 Tracking the values of variables of type jmp_buf.
P3 Using information from P1 and P2, propagating states

from longjmp to setjmp.

To realize items P1 and P2, we first introduce an abstract
domain Dbuf to track values of variables of type jmp_buf.
The domain consists of sets of pairs of barred nodes and
contexts as well as an error value err♯, i.e.,Dbuf = 2B×C∪{err♯ }

ordered by ⊆. For 𝐵 ∈ Dbuf, the set 𝛾 𝐵 of described jump
buffer values consists of err if err♯ ∈ 𝐵, together with all 〈𝑢̄, 𝑡〉
where there is some abstract jump buffer target 〈𝑢̄, 𝛽〉 ∈ 𝐵
such that the context of 𝑡 is described by the abstract context
𝛽, i.e., context 𝑡 ∈ 𝛾C 𝛽.

For P1, we track the set of possibly valid jump targets in
an auxiliary local variable legal, which receives values from
Dbuf. Let 𝛾̄ and 𝛾̄C denote the concretization functions used
by the extended analysis for abstract values and contexts,
respectively. Recall that now abstract program states 𝜎♯ are

Springer

J. Erhard et al.

mappings from program variables as well as the auxiliary
variable legal to abstract values. Then the concretization
𝛾̄ 𝜎♯ of an abstract state 𝜎♯ is given by the set of all traces
𝑡 such that (1) 𝑡 ∈ 𝛾 (𝜎♯), where one ignores the auxiliary
variable legal, and (2) all values of valid jump buffers are
included in 𝛾 (𝜎♯ legal). Similarly, 𝛾̄C is obtained from 𝛾C.

A call to setjmp adds the pair 〈𝑢̄, 𝛽〉 for current node 𝑢

and calling context 𝛽 to the value of legal. The set of le-
gal jump targets is passed to callees, but upon combine, the
set from the caller is restored, as the callee has already re-
turned: any jump targets inside the callee are no longer legal.
The abstract functions enter♯𝑒 and combine♯𝑥 are extended
accordingly.

For realizing P2, the base analysis is assumed to track for
each variable of type jmp_buf a value from Dbuf along the
lines of an off-the-shelf values-of-variables analysis. Care
must be taken that the error value err♯ must be added when
a jump buffer is written by some operation different from
setjmp0. This is taken care of by adapting enter♯𝑒 and the
abstract constraints for assignments. For this analysis of val-
ues of jump buffer variables 𝑏, we demand that each ab-
stract jump buffer target 〈𝑢̄′, 𝛽′〉 is preserved if the buffer
𝑏 is not certainly overwritten in the concrete. We further
demand that for all jump buffer variables 𝑏, the functions
enter♯𝑒 and combine♯𝑥 maintain their jump buffer values for
any call edge 𝑒 and int variable 𝑥: The transfer function
for 𝑒 = (𝑢,x=setjmp0(b), 𝑣) in context 𝛽 adds the value
{〈𝑢̄, 𝛽〉} to the values of b and legal and sets the variable x

to 0:

�𝑒, 𝛽�♯ 𝜂 = let 𝜎 = 𝜂 [𝑢, 𝛽] in
let 𝐵 = �&𝑏�♯ 𝜎 in
let 𝜎′ = 𝜎 ⊕ {𝑥 ↦→ �0�♯ , legal ↦→ 𝜎 legal ∪ 〈𝑢̄, 𝛽〉} in(
∅,
⊔

& 𝑗∈𝐵 (𝜎
′
⊕ { 𝑗 ↦→ {〈𝑢̄, 𝛽〉}})

)

Here �&𝑏�♯ 𝜎 provides us with a set 𝐵 of addresses of jump
buffers returned by the abstract evaluation of the jump buffer
expression 𝑏.

The right-hand side for setjmp1 in calling context 𝛽 takes
its argument from some unknown [𝑢̄, 𝛽] where all states
from arriving longjmps have been collected via side effects.
Recall that the return value of longjmp is tracked via the
return variable retv. The constraint for setjmp1 then is the
same as that for the assignment x=retv.

Now we can give the right-hand sides of the enhanced
analysis to accomplish P3. For function calls, the single re-
turn node ret 𝑓 is complemented with a secondary node ret′𝑓
as introduced by the concrete semantics for function 𝑓 to
be exited via a longjmp in 𝑓 itself or in transitively called
functions. The abstract values at unknowns for ret′𝑓 consist
of sets of pairs of current jump target and abstract state.

Longjmps Assume that 𝑒 = (𝑢,longjmp(b,x), 𝑣). Then

�𝑒, 𝛽�♯ 𝜂 = let 𝜎 = 𝜂 [𝑢, 𝛽] in
let 𝑇 = �𝑏�♯ 𝜎 in
let 𝐿 = 𝑇 ∩ (𝜎 legal) in
let 𝜎′ = �retv = (x==0 ? 1 : x)�♯ 𝜎 in
let 𝜌h = {[𝑢̄′, 𝛽] ↦→ 𝜎′ | 〈𝑢̄′, 𝛽′〉 ∈ 𝐿 ∧ here#

𝑢,𝛽 〈𝑢̄
′, 𝛽′〉} in

let 𝜌o = {[ret′func𝑢, 𝛽] ↦→ {(𝑏𝑣, 𝜎′) | 𝑏𝑣 ∈ 𝐿}} in
(𝜌h ∪ 𝜌o,⊥)

where the predicate here#
𝑢,𝛽 is an abstract version of the

predicate here𝑢,𝑐 in the concrete semantics. Accordingly, it
is defined by

here#
𝑢,𝛽 〈𝑢̄

′, 𝛽′〉 := (func 𝑢 = func 𝑢̄′) ∧ (𝛽 = 𝛽′).

The predicate checks if its argument is a jump target that is
local to the current function and calling context.

Thus the right-hand side for a longjmp first evaluates
the expression 𝑏 to a set of jump targets. A warning may
be emitted if it cannot be excluded that the jump buffer has
the error value. To be able to warn about jumps to invalid
jump targets, i.e., where the enclosing function may already
have returned, our overapproximation of legal jump targets
is not sufficient. This may be remedied by introducing path-
and context-sensitivity in the values of legal, as discussed
later. Then the return state 𝜎′ is prepared. The dedicated
variable retv for the return values of function calls also re-
ceives the values returned by the call to setjmp. Care is
taken to set the value of retv to 1 should x be 0. If the
analysis cannot exclude 0 for x, an appropriate warning is
issued (omitted for clarity). For those jump targets 〈𝑢̄′, 𝛽′〉

within the given function and abstract calling context, a side
effect to the unknown [𝑢̄′, 𝛽′] for arriving via longjmp is
produced. For all jump targets including those outside the
current function and abstract calling context, a side effect
to the unknown [ret′func𝑢, 𝛽] for returning from the current
function via longjmp is produced. We remark that one could
restrict this mapping to abstract jump targets only for which
the concretization does not intersect with the concretiza-
tion of jump targets in the current function and context. The
contribution to the control-flow successor of the longjmp

statement is ⊥, as the call to longjmp does not return.

Function calls For the right-hand sides corresponding
to function calls, on top of accounting for a normal re-
turn in the manner introduced in Sect. 7, potentially oc-
curring longjmps must be handled. These may occur in the
function itself or within some nested function call. Again,
a case distinction is required on whether the jump target
may occur within the current function and context. Let

Springer

When long jumps fall short

𝑒 = (𝑢, 𝑥 = 𝑓 (𝑎1, . . . , 𝑎𝑛), 𝑣) with func 𝑢 = 𝑔. Then

�𝑒, 𝛽�♯ 𝜂 = let 𝜎 = 𝜂 [𝑢, 𝛽] in
let 〈𝛽, 𝜎′〉 = enter♯𝑒 𝜎 in
let 𝜎′′ = combine♯𝑥 𝜎 (𝜂 [ret 𝑓 , 𝛽]) in
let 𝐽 = {(𝑏𝑣, combine♯retv 𝜎 𝜎′) | (𝑏𝑣, 𝜎′) ∈ 𝜂 [ret′𝑓 , 𝛽]} in
let 𝜌h = {[𝑢̄′, 𝛽] ↦→ 𝜎𝑢̄′ ,𝛽 | here#

𝑢,𝛽 〈𝑢̄
′, 𝛽′〉 ∧

𝜎𝑢̄′ ,𝛽 =
⊔
{𝜎′ | (〈𝑢̄′, 𝛽′〉, 𝜎′) ∈ 𝐽} in

let 𝜌o = {[ret′𝑔, 𝛽] ↦→ 𝐽} in
({[st 𝑓 , 𝛽] ↦→ 𝜎′} ∪ 𝜌h ∪ 𝜌o, 𝜎′′)

The right-hand side now accesses the unknown [ret′𝑓 , 𝛽]

accounting for leaving 𝑓 via longjmp. The value of this
unknown is a set of pairs of jump targets and local states.
Recall that in these local states 𝜎′, the value supplied as the
second argument to the call of longjmp has been written
to the variable retv. This value is preserved by the call to
combine♯retv. The resulting set of pairs of jump targets and
local states of the current function 𝑔 is collected in 𝐽. Those
local states for jump targets 〈𝑢̄′, 𝛽〉 in 𝐽 that are inside the cur-
rent function and context are side-effected to the unknowns
[𝑢̄′, 𝛽]. The pairs of targets and values from 𝐽 are propagated
to the dedicated unknown [ret′𝑔, 𝛽] for longjmping out of 𝑔.

The analysis thus performs a stack-unwinding as intro-
duced in the concrete semantics given by the constraint sys-
tem C′ to account for all effects of function calls further up
the stack prior to a call to longjmp. Notably, this includes
modifications to local variables that have become visible to
other functions and may have been modified by them.

Example 3
Assuming that the context for the call to bar in main in Fig. 1
is 𝛽bar, the set of legal jump targets is set to 𝐿 = {〈𝑢̄14, 𝛽bar〉}

by the setjmp in line 14. 𝐿 is passed to the call to foo in
context 𝛽foo. At the call of longjmp in line 8, the abstract
value for errorhandler is {〈𝑢̄14, 𝛽bar〉}. As it contains only
elements in 𝐿, all jump targets are legal. The analysis then
assigns the abstract value for err to retv, resulting in some
abstract state 𝜎′. As the jump target is not inside the current
function, the value {𝑝} with 𝑝 = (〈𝑢̄14, 𝛽bar〉, 𝜎

′
) is side-

effected to the special return unknown [ret′foo, 𝛽foo], and
any code after the longjmp is marked as dead (although,
here, there is none). Now consider the call to foo in line
21 of function bar. For leaving foo via longjmp, the value
of [ret′foo, 𝛽foo] is accessed. As the jump target in 𝑝 is in
the current function and context, the state 𝜎′′ obtained by
combining 𝜎′ with the local state at line 21 is side-effected
to unknown [𝑢̄14, 𝛽bar]. This state, modified by the effect of
the assignment x = retv, accounts for returning to line 14
via longjmp from foo. For the call to longjmp in line 30, on
the other hand, the jump target is illegal, and an appropriate
warning is produced.

We formalize the soundness of the proposed extended
analysis with respect to the trace semantics C′ given in
Sect. 3. We refer to the constraint system of the analysis as
C

#. Since the unknowns between the concrete and abstract
constraint system differ, we establish a relationship between
assignments of unknowns of the concrete and abstract con-
straint system by means of the following definition.

Definition 1
Let 𝜂′ be a mapping for the concrete constraint system C′,
and let 𝜂♯ be a mapping for the abstract constraint system.
We say that 𝜂′ is described by 𝜂♯ iff for every function 𝑓 ,
concrete context 𝑐, and abstract context 𝛽 with 𝑐 ∈ 𝛾̄C 𝛽 ∩
𝛾̄ (𝜂♯ [st 𝑓 , 𝛽]), it follows that

𝜂′ [𝑣, 𝑐] � 𝛾̄ (𝜂♯ [𝑣, 𝛽])

for all program points 𝑣 of 𝑓 , including the extra nodes in B
and ret′𝑓 .

Theorem 2
Let 𝜂 be the least solution of C′, and let 𝜂♯ be a solution of
C
♯. Then 𝜂 is described by 𝜂♯.

The proof of this theorem is by fixpoint induction on the
constraint system C′, where the key ingredient is that the set
init of concrete initial states is contained in 𝛾̄C •∩ 𝛾̄ 𝑑0, i.e., is
described both by the abstract calling context • for the initial
call to main and the initial abstract state 𝑑0 for [stmain, •],
and that this relationship is preserved by each right-hand side
of C′ and C♯.

Proposition 3
Let 𝑒 = (𝑢, 𝑎, 𝑣) be a control-flow edge of the program, and let
𝑐 be a concrete context with 𝑐 ∈ 𝛾̄C 𝛽. Assume that (𝜌,𝑇) =
�𝑒, 𝑐�𝜂′ and (𝜌♯, 𝜎♯) = �𝑒, 𝛽�♯ 𝜂♯, where 𝜂′ is described by
𝛾̄ 𝜂♯. Then 𝑇 ⊆ 𝛾̄ 𝜎♯. Moreover, for 𝜌, 𝜌♯, we have:

1. If 𝑎 is the call 𝑥 = 𝑓 (𝑎1, . . . , 𝑎𝑘), then
(a) 𝜌 [𝑢̄′, 𝑐] ⊆ 𝛾̄ (𝜌♯ [𝑢̄′, 𝛽]) for all 𝑢̄′ ∈ B occurring in

the current function func 𝑢;
(b) 𝜌 [ret′func𝑢, 𝑐] ⊆ 𝛾̄ (𝜌♯ [ret′func𝑢, 𝛽]);
(c) 𝜌 [st 𝑓 , enter𝑒 𝑡] ⊆ 𝛾̄ (𝜌♯ [st 𝑓 , (enter♯𝑒 (𝜂♯ [𝑢, 𝛽]))1]),

where 𝑡 ∈ 𝜂′ [𝑢, 𝑐].
2. If 𝑎 equals longjmp(𝑏, 𝑥), then

(a) 𝜌 [𝑢̄′, 𝑐] ⊆ 𝛾̄ (𝜌♯ [𝑢̄′, 𝛽]) for all 𝑢̄′ ∈ B occurring in
the current function func 𝑢;

(b) 𝜌 [ret′func𝑢, 𝑐] ⊆ 𝛾̄ (𝜌♯ [ret′func𝑢, 𝛽]).

Our analysis handles correct usages of setjmp/longjmp,
detects dead code following a call to longjmp (H), and warns
if the second argument to longjmp may be 0 (G). It detects
invocations of longjmp for buffers that have not been cor-
rectly set by setjmp by means of tracking the abstract error

Springer

J. Erhard et al.

value err♯ (A). To warn about jumps into functions that have
already returned, the abstract value of the auxiliary variable
legal in our implementation is tracked context- and path-
sensitively (B) (a similar technique has, e.g., been applied
to keep sets of held mutexes apart [26]). To detect when
longjmp is called from a different thread than setjmp (C),
an analysis of thread ids is required as, e.g., provided in [24].

To achieve (E), the values-of-variables analysis tracks
whether the value of a variable of type jmp_buf was set
via an invocation of setjmp or not. To achieve (F), first,
the concrete semantics must be extended to deal with vari-
ably sized objects on the stack. Then it suffices to collect for
each setjmp the set of scopes defining variably sized ob-
jects and then track for each longjmp and each call, possibly
terminated by means of a longjmp, the set of scopes that
have potentially been left. Our current implementation does
not perform this detailed analysis, but instead warns when
setjmps happen in scopes defining variably sized objects.

9 Detecting indeterminate local variables

It remains to detect whether nonvolatile local variables have
been modified since the call to setjmp (D). We take a three-
pronged approach by combing three different taint analyses
(𝑇intra, 𝑇inter, and 𝑇poison). Inside the function that performs
the call to setjmp, 𝑇intra tracks the set of potentially mod-
ified nonvolatile locals of automatic storage duration jump
target-sensitively. For a called function 𝑓 , 𝑇inter tracks the set
of those passed to and potentially modified by 𝑓 , indepen-
dently of jump targets. This is justified since few local vari-
ables are usually passed to called functions. 𝑇inter employs an
interprocedural taint-analysis, which we do not detail here.
Lastly, 𝑇poison tracks variables that have Indeterminate Value
after a longjmp (these variables are said to be poisonous)
and warns upon access to such variables.

LetVf the set of nonvolatile local variables of automatic
storage duration occurring in a function f. For the intrapro-
cedural jump target-sensitive analysis 𝑇intra, we employ an
extra domainDtaint = B→ 2Vf , consisting of mappings from
barred nodes to sets of local variables that potentially have
been written since the corresponding jump target was set.
The ordering on Dtaint is given by ⊆ lifted to partial maps,
i.e., 𝜇1 ⊆ 𝜇2 iff 𝜇1 𝑎 ⊆ 𝜇2 𝑎 whenever 𝜇1 𝑎 is defined. Func-
tions are entered with the empty partial mapping. When a
setjmp is encountered at [𝑢, 𝛼], the binding 𝑢̄ ↦→ ∅ is added
to the mapping. Whenever a relevant local is modified, it is
added to each set in the mapping. For each function call,
𝑇inter yields a set of relevant locals possibly modified during
the call, which is added to each set in the mapping.

𝑇poison maintains for every program point and context, a
set of possibly poisonous variables 𝑃. Consider a longjmp
at program point 𝑢 in context 𝛼, and assume that 𝑇intra has

determined for [𝑢, 𝛼] the mapping 𝜇. For every barred node
𝑢̄ 𝑗 within the current function where 𝜇 is defined, 𝑃 ad-
ditionally receives the set 𝜇 𝑢̄ 𝑗 . Function calls are treated
similarly. Starting from the jump targets, the set 𝑃 of possi-
bly poisonous variables is propagated. Whenever a variable
in 𝑃 is definitely assigned to, it is removed from 𝑃, as the
indeterminate value is overwritten. If a variable in 𝑃 may
be accessed, then the analyzer warns that an indeterminate
value may be read.

Example 4
After the setjmp in line 14 of bar in Fig. 1, the map
from barred nodes to potentially written local variables is
set to {𝑢̄14 ↦→ ∅}. In line 20, the nonvolatile local variable
logpath is modified, resulting in {𝑢̄14 ↦→ {logpath}}. Af-
ter foo is left via longjmp, the set of poisonous variables is
{logpath}. Since logpath is not overwritten before being
accessed on line 17, a warning is produced.

We have thus enhanced the analysis with taint analysis to
not only remain sound in the presence of setjmp/longjmp,
but also to flag all possible issues (A)–(H), thus enabling
developers to use setjmp/longjmp without fear of falling
short.

10 Implementation and evaluation

We have implemented the analysis within the analysis frame-
work Goblint2 for multithreaded C. Our implementation
supports C without the restrictions made for the formaliza-
tion. In particular, recursion, dynamic memory allocation.
and dynamic function calls are supported. We leveraged ex-
isting domains and the support for path-sensitivity (in the
return values of calls to setjmp). No changes to solvers
were necessary. The implementation itself performs all anal-
yses jointly. We evaluated it in two ways: First, we extracted
challenging usages of setjmp/longjmp from real-world
programs and crafted 45 litmus tests for semantic issues
of setjmp/longjmp and verified that the analyzer passes
these. These may serve as sanity checks for future analyzers.

From the set of litmus tests, 37 programs, together with
expected verdicts, were submitted as tasks for the software
verification competition SV-COMP 2024 [3]. Some litmus
tests could not be used as SV-COMP tasks, as they contained
types of faults not supported by the SV-COMP rules. On
the submitted tasks, Goblint achieved the highest score
among the participating tools at SV-COMP 2024. Nine par-
ticipating tools yielded unsound verdicts on at least some
of these tasks, and nine further tools could not solve any of
them.

2 https://goblint.in.tum.de and https://github.com/goblint/analyzer.

Springer

https://goblint.in.tum.de
https://github.com/goblint/analyzer

When long jumps fall short

The libpng3 is a C library heavily using setjmp/

longjmp. Several bugs in uses of this library have been
reported.4 To check real-world applicability, we analyzed
the pngtest program,5 which comes with that library. The
analysis takes 76 minutes on a machine with an Intel Xeon
8260 CPU, where it uses one processor core. The number of
warnings for setjmp/longjmp related issues is reasonable:
Two warnings about accesses to a single distinct poisonous
variables are reported, as well as one warning about jump-
ing to an unknown jump buffer, one warning about jumping
to a jump buffer with a value not set by setjmp, and two
warnings about jumping to potentially invalid targets. Man-
ual inspection reveals most of the warnings to be spurious:
Goblint’s loss of precision here is due to libpng’s heavy
usage of dynamically allocated memory objects with structs
containing jump buffers, pointers to jump buffers, etc. To
get rid of the spurious warnings, a more sophisticated heap
analysis would be required. The warnings about accesses to
the poisonous variable row_buf, however, are indicative of
Undefined Behavior. We could not observe any misbehavior
of the binary compiled with Gcc, because the address of
this pointer variable escapes to an external function prevent-
ing assignment to a register. It is, however, dangerous to rely
on such incidental properties to ensure program safety. The
clobbering does manifest when making a natural change to
the program using single-row read and write functions.6 In
fact, this usage pattern has resulted in a memory leak in an
older version of ImageMagick [18]. That bug, when in-
jected into pngtest, is correctly detected by Goblint. For
a less heap-intensive benchmark, we considered the excep-
tions library proposed by Roberts [19]. The use of the library
can result in Undefined Behavior if nonvolatile variables are
updated between the try-clause and the catch-clause as these
macros are translated into setjmp/longjmp.7 Goblint
detects cases where the client code elicits Undefined Behav-
ior, whereas Gcc 12 and Clang 14 (with -O2) clobber
such variables – without issuing warnings. We also evalu-
ated the performance penalty of enabling this analysis on
the SV-COMP 2022 benchmarks and observed a slowdown
of 17%. This can be remedied though by a preanalysis that
only enables this analysis for programs where longjmp is
statically called or referenced via pointer. Our implementa-
tion, the litmus tests, and the larger programs are publicly
available.8

3 http://www.libpng.org/pub/png/libpng.html.
4 e.g., in ImageMagick commits 75fc6 and e88c1. Also, [18].
5 Around 7000 logical lines of live code.
6 https://github.com/glennrp/libpng/issues/496.
7 https://github.com/cs50/spl/issues/24.
8 https://github.com/goblint/bench/tree/longjmp/setjmp.

11 Related work

Feng et al. [9] give a Hoare-style framework for the verifi-
cation of assembly code including support for stack-based
control abstractions such as setjmp/longjmp. We aim for
automatic techniques. Nonlocal control flow has also been
considered for an analysis of Python code [10] (elaborated
on by Monat [16]) and in particular to handle generators. The
analysis does not rely on side-effecting constraint systems.
Instead, it iterates over the syntax and account for nonlocal
flow, which, unlike in our setting, also includes break and
continue in loops by partitioning according to flow tokens.
States associated with some of these tokens are incorporated
into the current flow when the respective program point is
encountered. Like in our setting, targets in which execution
is to be resumed need to be tracked. The challenges, though,
are different as control-flow for generators is more structured:
Upon a call to next, execution resumes at the beginning of
the generator or its last call to yield. Upon calling yield in
the generator, control is returned to the caller of next, and ex-
ecution continues at that program point. It is not immediately
obvious how to craft iteration over the syntax for dealing with
setjmp/longjmp: A call to longjmp may transfer control
to program points that are not static control-flow successors
of any of the calls containing longjmps.

The analysis of exceptions in languages such as Java or
C++ is also closely related; see, e.g., Chang and Choi [5] for
a recent comprehensive survey. As our approach intertwines
the analysis of nonlocal control flow with other analyses,
e.g., of points-to information, it is most closely related to the
class of Combined Exceptional Control Flow Analyses iden-
tified in the survey. However, analyzing setjmp/longjmp
poses challenges not faced when analyzing C++ or Java pro-
grams where nonlocal control flow is well structured. Wilson
[28] provides an account of handling setjmp/longjmp in
a context-sensitive summary-based pointer analysis: His ap-
proach introduces a second function summary accounting
for leaving the function via longjmp. Unlike our approach,
he does not track values of jump buffers and assumes that a
longjmp may jump to any setjmp further up the callstack.
The analysis only endeavors to compute sound pointer in-
formation in the presence of correct usages of setjmp and
does not detect possible misuses of the feature, as ours does.
Other work [11] claims to use a similar technique to Wilson
but does not elaborate on details.

12 Conclusions and future work

We have provided a novel technique for lifting static anal-
ysis to support setjmp/longjmp. Dynamic control-flow is
dealt with by side effects in transfer functions. We formal-
ized the behavior of setjmp/longjmp in a subset of C in

Springer

http://www.libpng.org/pub/png/libpng.html
https://github.com/ImageMagick/ImageMagick/commit/75fc6
https://github.com/ImageMagick/ImageMagick/commit/e88c1
https://github.com/glennrp/libpng/issues/496
https://github.com/cs50/spl/issues/24
https://github.com/goblint/bench/tree/longjmp/setjmp

J. Erhard et al.

concrete semantics, where interprocedural longjmps are ei-
ther performed directly or via stack-unwinding. The equiv-
alence relationship between these two concrete semantics
was given. Based on the second formulation of the concrete
semantics, we discussed how to analyze programs contain-
ing correct usages of setjmp/longjmp and how to detect
potentially incorrect usages. We have enhanced the static
analyzer Goblint with the technique and evaluated it on
challenging litmus tests and on real-world programs. In the
future, tackling further “dark corners” of C that have also
not seen widespread support from static analyzers, such as
implementations of coroutines in C, may provide new and
interesting challenges for crafting analyzers capturing more
real-world aspects of programming.

Acknowledgements We thank Benjamin Bott for implementing an
earlier prototype. This work was supported in part by Deutsche
Forschungsgemeinschaft (DFG) – 378803395/2428 ConVeY, the Es-
tonian Centre of Excellence in IT, funded by the European Regional
Development Fund, and the Shota Rustaveli National Science Founda-
tion of Georgia under the project FR-21-7973.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Apinis, K., Seidl, H., Vojdani, V.: side-effecting constraint systems:
a Swiss army knife for program analysis. In: Jhala, R., Igarashi, A.
(eds.) Programming Languages and Systems - 10th Asian Sympo-
sium, APLAS 2012, Proceedings, Kyoto, Japan, December 11-13,
2012, Lecture Notes in Computer Science, vol. 7705, pp. 157–172.
Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-35182-
2_12

2. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,
A., Rival, X.: Static analysis and verification of aerospace software
by abstract interpretation. Found. Trends Program. Lang. 2(2–3),
71–190 (2015). https://doi.org/10.1561/2500000002

3. Beyer, D.: State of the art in software verification and witness
validation: SV-COMP 2024. In: Finkbeiner, B., Kovács, L. (eds.)
Tools and Algorithms for the Construction and Analysis of Sys-
tems – 30th International Conference, TACAS 2024, Held as Part
of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2024, Proceedings, Part III, Luxembourg City, Lux-
embourg, April 6–11, 2024. Lecture Notes in Computer Science,
vol. 14572, pp. 299–329. Springer, Berlin (2024). https://doi.org/
10.1007/978-3-031-57256-2_15

4. Blazy, S., Bühler, D., Yakobowski, B.: Structuring abstract inter-
preters through state and value abstractions. In: Bouajjani, A., Mon-
niaux, D. (eds.) Verification, Model Checking, and Abstract Inter-
pretation – 18th International Conference, VMCAI 2017, Proceed-
ings, Paris, France, January 15–17, 2017. Lecture Notes in Com-
puter Science, vol. 10145, pp. 112–130. Springer, Berlin (2017).
https://doi.org/10.1007/978-3-319-52234-0_7

5. Chang, B., Choi, K.: A review on exception analysis. Inf. Softw.
Technol. 77, 1–16 (2016). https://doi.org/10.1016/j.infsof.2016.05.
003

6. Christakis, M., Bird, C.: What developers want and need from pro-
gram analysis: an empirical study. In: Lo, D., Apel, S., Khurshid,
S. (eds.) Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2016, Singa-
pore, September 3–7, 2016, pp. 332–343. ACM, New York (2016).
https://doi.org/10.1145/2970276.2970347

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approx-
imation of fixpoints. In: Graham, R.M., Harrison, M.A., Sethi,
R. (eds.) Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, Los Angeles, California,
USA, pp. 238–252. ACM, New York (1977). https://doi.org/10.
1145/512950.512973

8. Erhard, J., Schinabeck, J.F., Schwarz, M., Seidl, H.: When to stop
going down the rabbit hole: taming context-sensitivity on the fly.
In: Monat, R., Rubio-González, C. (eds.) Proceedings of the 13th
ACM SIGPLAN International Workshop on the State of the Art
in Program Analysis, SOAP 2024, Copenhagen, Denmark. ACM,
New York (2024). To appear

9. Feng, X., Shao, Z., Vaynberg, A., Xiang, S., Ni, Z.: Modular ver-
ification of assembly code with stack-based control abstractions.
In: Schwartzbach, M.I., Ball, T. (eds.) Proceedings of the ACM
SIGPLAN 2006 Conference on Programming Language Design
and Implementation, Ottawa, Ontario, Canada, June 11–14, 2006,
pp. 401–414. ACM, New York (2006). https://doi.org/10.1145/
1133981.1134028

10. Fromherz, A., Ouadjaout, A., Miné, A.: Static value analysis of
python programs by abstract interpretation. In: Dutle, A., Muñoz,
C.A., Narkawicz, A. (eds.) NASA Formal Methods - 10th Interna-
tional Symposium, NFM 2018, Newport News, VA, USA, April
17–19, 2018. Proceedings, Lecture Notes in Computer Science,
vol. 10811, pp. 185–202. Springer, Berlin (2018). https://doi.org/
10.1007/978-3-319-77935-5_14

11. Hind, M., Pioli, A.: Evaluating the effectiveness of pointer alias
analyses. Sci. Comput. Program. 39(1), 31–55 (2001). https://doi.
org/10.1016/S0167-6423(00)00014-9

12. Leroy, X.: The CompCert C verified compiler – documentation
and user’s manual – version 3.12 (2022). Tech. rep

13. Livshits, B., Sridharan, M., Smaragdakis, Y., Lhoták, O., Amaral,
J.N., Chang, B.E., Guyer, S.Z., Khedker, U.P., Møller, A., Var-
doulakis, D.: In defense of soundiness: a manifesto. Commun.
ACM 58(2), 44–46 (2015). https://doi.org/10.1145/2644805

14. MITRE: CVE-2018-14876. (2018). https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2018-14876. [accessed 09-March-
2023]

15. MITRE: CVE-2013-1441. (2013). https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2013-1441. [Accessed 09-March-2023]

16. Monat, R.: Static type and value analysis by abstract interpre-
tation of Python programs with native C libraries. (analyse sta-
tique, de type et de valeur, par interprétation abstraite, de pro-
grammes Python utilisant des librairies C). Ph.D. thesis, Sorbonne
University, Paris, France (2021) https://tel.archives-ouvertes.fr/tel-
03533030

17. Monat, R., Milanese, M., Parolini, F., Boillot, J., Ouadjaout, A.,
Miné, A.: Mopsa-c: improved verification for C programs, simple
validation of correctness witnesses (competition contribution). In:

Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-35182-2_12
https://doi.org/10.1007/978-3-642-35182-2_12
https://doi.org/10.1561/2500000002
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-319-52234-0_7
https://doi.org/10.1016/j.infsof.2016.05.003
https://doi.org/10.1016/j.infsof.2016.05.003
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/1133981.1134028
https://doi.org/10.1145/1133981.1134028
https://doi.org/10.1007/978-3-319-77935-5_14
https://doi.org/10.1007/978-3-319-77935-5_14
https://doi.org/10.1016/S0167-6423(00)00014-9
https://doi.org/10.1016/S0167-6423(00)00014-9
https://doi.org/10.1145/2644805
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14876
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14876
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1441
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1441
https://tel.archives-ouvertes.fr/tel-03533030
https://tel.archives-ouvertes.fr/tel-03533030

When long jumps fall short

Finkbeiner, B., Kovács, L. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems - 30th International Conference,
TACAS 2024, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2024, Proceedings, Part
III, Luxembourg City, Luxembourg, April 6–11, 2024. Lecture
Notes in Computer Science, vol. 14572, pp. 387–392. Springer,
Berlin (2024). https://doi.org/10.1007/978-3-031-57256-2_26

18. Patrakov, A.: Dangers of setjmp()/longjmp() (2009). https://
patrakov.blogspot.com/2009/07/dangers-of-setjmplongjmp.html.
Online; accessed 09-March-2023

19. Roberts, E.S.: Implementing exceptions in C. Tech. Rep. 40, Digital
Equipment Corporation, Systems Research Center (1989)

20. Saan, S., Erhard, J., Schwarz, M., Bozhilov, S., Holter, K., Tilscher,
S., Vojdani, V., Seidl, H.: Goblint: abstract interpretation for
memory safety and termination (competition contribution). In:
Finkbeiner, B., Kovács, L. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems – 30th International Confer-
ence, TACAS 2024, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2024, Proceedings,
Part III, Luxembourg City, Luxembourg, April 6-11, 2024. Lecture
Notes in Computer Science, vol. 14572, pp. 381–386. Springer,
Berlin (2024). https://doi.org/10.1007/978-3-031-57256-2_25

21. Schubert, P.D., Hermann, B., Bodden, E.: Phasar: an inter-
procedural static analysis framework for C/C++. In: Vojnar, T.,
Zhang, L. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems – 25th International Conference, TACAS
2019, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2019, Proceedings, Part II,
Prague, Czech Republic, April 6–11, 2019. Lecture Notes in Com-
puter Science, vol. 11428, pp. 393–410. Springer, Berlin (2019).
https://doi.org/10.1007/978-3-030-17465-1_22

22. Schwarz, M., Saan, S., Seidl, H., Apinis, K., Erhard, J., Vojdani,
V.: Improving thread-modular abstract interpretation. In: Dragoi,
C., Mukherjee, S., Namjoshi, K.S. (eds.) Static Analysis – 28th
International Symposium, SAS 2021, Proceedings, Chicago, IL,

USA, October 17–19, 2021. Lecture Notes in Computer Science,
vol. 12913, pp. 359–383. Springer, Berlin (2021). https://doi.org/
10.1007/978-3-030-88806-0_18

23. Schwarz, M., Erhard, J., Vojdani, V., Saan, S., Seidl, H.: When
long jumps fall short: control-flow tracking and misuse detection
for non-local jumps in C. In: Ferrara, P., Hadarean, L. (eds.) Pro-
ceedings of the 12th ACM SIGPLAN International Workshop on
the State of the Art in Program Analysis, SOAP 2023, Orlando, FL,
USA, 17 June 2023, pp. 20–26. ACM, New York (2023). https://
doi.org/10.1145/3589250.3596140

24. Schwarz, M., Saan, S., Seidl, H., Erhard, J., Vojdani, V.: Clus-
tered relational thread-modular abstract interpretation with local
traces. In: Wies, T. (ed.) Programming Languages and Systems –
32nd European Symposium on Programming, ESOP 2023, Held as
Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2023, Proceedings, Paris, France, April 22–27,
2023. Lecture Notes in Computer Science, vol. 13990, pp. 28–58.
Springer, Berlin (2023). https://doi.org/10.1007/978-3-031-30044-
8_2

25. Seidl, H., Vene, V., Müller-Olm, M.: Global invariants for analysing
multi-threaded applications. In: Proceedings – Estonian Academy
of Sciences Physics Mathematics, vol. 52, pp. 413–436. Estonian
Academy Publishers (2003)

26. Vojdani, V., Vene, V.: Goblint: path-sensitive data race analysis.
Ann. Univ. Sci. Budapest., Sect. Comput. 30, 141–155 (2009)

27. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.:
Static race detection for device drivers: the Goblint approach. In:
Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, pp. 391–402. ACM,
New York (2016)

28. Wilson, R.P.: Efficient, context-sensitive pointer analysis for C
programs. Ph.D. thesis, Stanford University (1997)

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer

https://doi.org/10.1007/978-3-031-57256-2_26
https://patrakov.blogspot.com/2009/07/dangers-of-setjmplongjmp.html
https://patrakov.blogspot.com/2009/07/dangers-of-setjmplongjmp.html
https://doi.org/10.1007/978-3-031-57256-2_25
https://doi.org/10.1007/978-3-030-17465-1_22
https://doi.org/10.1007/978-3-030-88806-0_18
https://doi.org/10.1007/978-3-030-88806-0_18
https://doi.org/10.1145/3589250.3596140
https://doi.org/10.1145/3589250.3596140
https://doi.org/10.1007/978-3-031-30044-8_2
https://doi.org/10.1007/978-3-031-30044-8_2

	When long jumps fall short: control-flow tracking and misuse detection for nonlocal jumps in C
	Abstract
	Introduction
	Setjmp/Longjmp in C
	Language and semantics
	Assignment
	setjmp
	longjmp
	Function calls
	Guard

	longjmp with stack-unwinding
	longjmp
	Function calls

	Equivalence of C and C′
	Local jumps
	Nonlocal jumps
	Base case
	Induction step

	Indeterminate local variables
	Base analysis
	Analysis of Setjmp/Longjmp
	Longjmps
	Function calls

	Detecting indeterminate local variables
	Implementation and evaluation
	Related work
	Conclusions and future work
	References

