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Abstract
In this paper, we present the envisioned style and scope of the new topic “Explanation Paradigms Leveraging Analytic
Intuition” (ExPLAIn) with the International Journal on Software Tools for Technology Transfer (STTT). Intention behind
this new topic is to (1) explicitly address all aspects and issues that arise when trying to, if possible, reveal and then confirm
hidden properties of black-box systems, or (2) to enforce vital properties by embedding them into appropriate system contexts.
Machine-learned systems, such as Deep Neural Networks, are particularly challenging black-box systems, and there is a wealth
of formal methods for analysis and verification waiting to be adapted and applied. The selection of papers of this first Special
Section of ExPLAIn, most of which were co-authored by editorial board members, is an illustrative example of the style and
scope envisioned: In addition to methodological papers on verification, explanation, and their scalability, case studies, tool
papers, literature reviews, and position papers are also welcome.

Keywords Formal methods · Explanation · (Deep) Neural Networks · Deep learning · Rigorous analysis · Decision trees ·
Random forests · Robustness · Reliability · Verification · (Statistical) model checking · Testing · Competition

1 Introduction

Today’s decision-making is increasingly aided by computers,
be it in medicine, the stock market, or when we follow recom-
mendations provided by various platforms. Few people ques-
tion the automatic support systems and ask for explanations.
In the majority of cases, this might be harmless, in particular
when the damage caused by wrong results remains moderate.
The situation changes, however, when critical decisions with
a potential for disaster are delegated to potentially unsafe
systems.

This situation is, of course, not novel. The adoption of soft-
ware systems into safety-critical domains has been a topic for
decades, and there is a wealth of methods and tools for test-
ing, verifying, and explaining software to ensure its safety,

e.g., for industrial critical systems [1, 7, 36]. Recent ad-
vancements in computer science, in particular in the realm
of machine learning, force us to radically rethink the possible
and the desirable: How can we exploit the huge new potential
and what price are we prepared to pay.

We are only at the very beginning of understanding the
power and impact of “Ecorithms” as presented by Leslie
Valiant [43]. They provide a new computational paradigm
based on learning from observation/examples (rather than
conceptual design), which Valiant therefore characterizes as
“theoryless”. The power of ecorithms, which largely escape
human control, becomes particular apparent with today’s
large language models. Valiant recognized the importance
of ecorithms very early on. In fact, he conjectured already
a decade ago that they may even serve as a new paradigm
for explaining the process of evolution and, in particular, its
short timeframe.

It is a major challenge to establish a bridge between the
“theoryless” and the “theoryful” [43], i.e., the (traditional)
computational paradigm we are used to, trust, and feel com-
fortable with. On the other hand, this bridge is essential to
responsibly include ecorithms in safety-critical solutions for,
e.g., automotive driving.

There exists a wealth of methods and tools for dealing with
theoryful algorithms and applications that the formal meth-
ods community has established in recent decades. ExPLAIn
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invites contributions that exploit and adapt this wealth to
achieve a synergy between the theoryless and the theoryful
that justifies the responsible use of corresponding solutions
also for safety-critical systems.

The remainder of this paper aims at indicating what cor-
responding contributions might look like.

2 Challenges for the responsible use of
machine learning

Perhaps no field of computer science exemplifies the trend
of evolving software systems more than artificial intelligence
and, in particular, machine learning. Driven by the abundance
of data and the influx of strong computing hardware, machine
learning has risen to an immense level of prominence in the
realm of computer science during recent decades. From lan-
guage processing [9] and computer vision [14, 41] to play-
ing complex games [40] and self-driving cars [37], machine
learning has found success in domains where it is almost im-
possible to succeed with traditional, handwritten programs.
Moreover, machine learning promises not only solutions to
previously hard problems, but also to achieve them without
the need for direct human input. Today, even incredibly hard
problems can be solved automatically by machine learning
systems, replacing hard human work and intuition with large
datasets and computing power.

However, as much as the success stories of deep learning
motivate its increasing adoption in real life, the metaphor-
ical coins’ flipside is equally hard to overcome. While the
dream of automated, high-performance software is incred-
ibly appealing, it necessarily comes with substantial draw-
backs concerning the safety and reliability of the systems
at hand. Unlike traditional, handwritten programs, machine
learning systems are not the result of human consideration,
but rather of a training process where the system is con-
fronted with a large number of examples. While machine
learning systems are typically able to perform correctly in
situations that were contained in these examples, their be-
havior in novel, unseen situations is largely uncontrolled.
Moreover, biases in datasets might lead to disastrous conse-
quences even if situations have been encountered before.

Issues prominently arise with respect to both algorithmic
fairness [11, 29], where machine learning systems reinforce
existing social biases, and safety concerns [3, 44], where
machine learning systems are not yet reliable enough to be
trusted with safety-critical tasks, a well-known example be-
ing car crashes involving self-driving cars [25]. For machine
learning systems to be widely employed in everyday applica-
tions, this status quo needs to change. Systems that operate
on a scale that impacts human lives in any meaningful way
should be reliable, fair, safe, comprehensible, and trustwor-
thy to the people that it affects.

We need to ensure the responsible use of machine
learning in real-world applications.

Safety concerns in machine learning are conceptually
reminiscent of the situation originally encountered by the
formal methods community. The field of formal methods set
out to verify and explain complex software and hardware sys-
tems using mathematically rigorous methods that ensure the
reliability of such systems, even in extremely safety-critical
domains. As an example, formal methods-based automated
approaches to software/system verification aim at provable
correctness, which is particularly important in the context of
industrial critical systems.

In both areas (machine learning and formal methods),
system understanding aims at explaining the properties of an
unfeasible (black box) system in a feasible (white box) form.
In some way, the results of formal methods are often those
that are currently lacking from the status quo of machine
learning research.

A major challenge is to adapt and tailor the existing ap-
proaches and ideas from formal methods to the new domain
of machine learning. Bridging this gap is by no means triv-
ial. Machine learning systems come with a distinct profile
for verification and explanation tasks that are specifically
tailored to this profile.

This leads us to a core challenge of machine learning,
relating to systems that are rigorously verified and whose
inner workings are explainable to the involved stakeholders.

How can formal methods help to enable the respon-
sible use of machine learning?

3 Challenges in formal methods

Since its inception, the field of formal methods has played
a critical role in the adoption of software systems into criti-
cal domains. From program analysis to model checking and
automata learning, formal methods offer avenues to prevent
critical system errors in a reliable, mathematically rigorous
manner.

Precisely this rigor and reliability of formal methods have
facilitated their adoption in a variety of safety-critical indus-
trial domains, spanning a wide range from aerospace applica-
tions to healthcare systems. As put by Edmund Clarke [10]:

The use of formal methods does not a priori guarantee
correctness. However, they can greatly increase our
understanding of a system by revealing inconsistencies,
ambiguities, and incompleteness that might otherwise
go undetected

Despite this, formal methods often face a natural road-
block. Many of the objects considered by formal methods
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are, by nature, too complex to rigorously verify and/or ex-
plain. For example, many variants of model checking and
program verification are known to be theoretically hard or
even undecidable [6, 39]. Thus, scaling the formal methods
approach to industrial scope systems poses a critical chal-
lenge.

Machine learning, on the other hand, strives to find effi-
cient solutions in complex domains and provides numerous
approximate, but efficient algorithms that use probabilistic
approaches to ensure scalability. Thus, while machine learn-
ing approaches are scalable, they miss the rigor and reliabil-
ity that are core to formal methods. However, to profit from
formal methods in machine learning, their different profiles
need to be aligned.

The core challenge here can be formulated as such:

How can machine learning methods and formal
methods solve large-scale problems in tandem to
ensure mathematical rigor and precision in a scal-
able fashion?

4 Goals of ExPLAIn

As outlined in the previous sections, the fields of formal
methods and machine learning can benefit greatly t from
synergistic approaches despite, or perhaps because of, their
drastically different profiles.

The track “Explanation Paradigms Leveraging Analytic
Intuition”, or “ExPLAIn” for short, seeks to connect these
fields and give an avenue for researchers to present work that
concerns the explanation, verification, and more generally,
safety and the responsible use of complex software systems,
with an emphasis on systems with a black-box character.
Machine learned systems, such as Deep Neural Networks,
are particularly challenging black-box systems, and there
is a wealth of formal methods for analysis and verification
waiting to be adapted and applied.

ExPLAIn therefore addresses researchers with back-
ground in machine learning, general artificial intelligence,
or formal methods with an interest to investigate the inter-
face between these domains, which have recently been iden-
tified as particular views on neurosymblic AI, where formal
methods take the role of an extended version of symbolic
AI [20, 31].

The selection of papers of this initial Special Section of
ExPLAIn, most of which were co-authored by editorial board
members, is an illustrative example for the style and scope
envisioned. They fall into five categories:

• Approaches leveraging formal methods to verify machine
learning systems in an analytically rigorous way.
• Approaches leveraging formal methods to test machine

learning systems in a structural way yielding either proba-
bilistic guarantees or guarantees on behavior coverage.

• Approaches leveraging formal methods to explain opaque
machine learning systems by transforming them into
white-box systems that are semantically equivalent.
• Approaches incorporating probabilistic techniques from

machine learning in formal methods while maintaining
precision or statistically bounding the error arising from
the use of probabilistic methods.
• Approaches using techniques from machine learning as

heuristics in formal methods to achieve domain-specific
scalability.

ExPLAIn is, however, not restricted to these categories: In
addition to methodological papers, case studies, tool papers,
literature reviews, industrial experiences, and position papers
are also welcome.

5 ExPLAIn’s first edition

5.1 Explaining machine learning systems

Explaining machine learning systems means rendering the
inner workings of a machine learning system understandable
to an end user. This task is very unrestrictive: In principle,
any approach that either explains a machine learning system
(model explanations) or its decisions (outcome explanation)
in any fashion that is comprehensible to a human is desirable.

Most often, this entails distilling the complex and opaque
machine learning system into an equivalent simple, easy-to-
comprehend system. There exist two flavors of this: Post-
hoc explanations that transform already existing machine
learning systems into more comprehensible forms, and “self-
explaining” machine learning models that are trained such
that they are by virtue of their construction more comprehen-
sible. Especially interesting in this regard are decision trees
as both expressive and structurally comprehensible models
and therefore a perfect fit for the profile of a surrogate, ex-
planation model. The following papers use decision trees to
achieve explainable machine learning systems.

Decision trees and SVMs In their paper “Analytically
Explainable Controllers: Decision Trees and Support Vector
Machines Join Forces” [21], the authors seek to combine de-
cision trees [12] and support vector machines [34] to achieve
“self-explaining” controllers for hybrid systems, i.e., systems
where discrete and continuous variables interact.

Structurally, decision trees are commonly accepted as
comprehensible machine learning models [2], provided that
they are not prohibitively large and each individual predicate
occurring in the tree is comprehensible. The challenge, then,
is to find predicates that are both descriptive enough for a
small decision tree to perform well and simple enough to be
individually comprehensible.
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As the authors argue, the linear predicates that are cus-
tomary in most decision tree implementations are insuffi-
cient to achieve this goal. Instead, as domains become more
complex, more advanced, non-linear predicates are required.
The authors use support vector machines (SVMs) [34] to
find good separators of the data points and use these SVMs
as predicates in a decision tree. By introducing a non-linear
transform into the process (akin to the kernel trick that is
common to SVMs), the authors attain non-linear predicates,
allowing for much more expressive predicates. In their ex-
periments, the authors show that this allows the construction
of small, easy-to-understand decision trees.

The following papers concern post-hoc explanations of
various machine learning systems, ranging from random
forests to neural networks:

Aggregating random forests Random forests consist of
multiple decision trees that work in an ensemble, making
decisions by a majority vote [13]. As noted before, decision
trees are widely accepted as structurally explainable machine
learning systems. Random forests, however, feature a mul-
titude of trees that are evaluated in parallel. This parallel
structure is much harder for humans to follow and there-
fore poses a challenge with regards to explainability. In the
paper “Algebraic Aggregation of Random Forests: Towards
Explainability and Rapid Evaluation” [17], the authors trans-
form each tree in a random forest into a semantically equiv-
alent algebraic decision diagram (ADD) [5] and leverage
their algebraic properties to merge the trees into one singu-
lar ADD that faithfully captures the semantics of the entire
forest. Structurally, the resulting ADD is equivalent to a sin-
gle decision structure and uses only predicates from each
singular tree, making it a comprehensible model.

Moreover, using the algebraic properties of ADDs, the
authors also show how this ADD can be used to explain sin-
gular outcomes and characterize inputs belonging to a given
class. The authors also introduce infeasible path reductions
by removing redundant predicates and paths in an ADD that
no input can satisfy. They also show experimentally that the
resulting ADDs can be quite small and explainable.

Aggregating random forests - a webtool Building on
this approach, the paper “Forest GUMP: A Tool for Verifi-
cation and Explanation” [33] presents Forest GUMP (short
for: General, Unifying Merge Process), a web-based tool im-
plementing the algebraic aggregation of random forests as
described in [17]. The paper includes in-depth, practical de-
scriptions of the tool and illustrates its interaction with the
user. Moreover, the paper includes an experimental evalua-
tion of the approach, showing that by removing semantically
infeasible paths from ADDs, the resulting structures can be
much more concise. In a more theoretical aspect, the paper
also shows how pre-/post-condition verification of random

forests can be implemented using its aggregating technology.
Further, the paper also provides a method to decide whether
two random forests are identical and to provide evidence in
case they are not.

Transforming neural networks to decision trees Neu-
ral networks are one of the hallmark models of modern ma-
chine learning. Responsible for many of machine learning’s
largest success stories in the recent decade [9, 16, 45], neural
networks are also infamous for their opaque, black-box na-
ture. The reason for this lies in their complex structure, con-
sisting of both highly parallel and non-linear operations that
quickly exceed human capabilities. In their paper “Towards
Rigorous Understanding of Neural Networks via Semantics-
preserving Transformations” [38], they propose a novel
method combining ideas from ADDs and symbolic execution
[24] to transform ReLU neural networks into semantically
equivalent decision tree-like structures called Typed Affine
Decision Structures (TADSs). Much like ADDs, TADSs sup-
port a variety of algebraic operations, including scalar mul-
tiplication, addition, subtraction, and equality checks. The
authors show how these algebraic properties can be used to
elegantly answer many interesting questions regarding neu-
ral network verification and decide the full equivalence or
approximate equivalence of two neural networks.

5.2 Verification

Program verification has a long history in computer science.
In many safety-critical domains, software engineers are re-
quired to prove that the systems they provide adhere to certain
safety restrictions, i.e., proving that certain safety properties
always hold or that certain unsafe states are never reached.
This applies perhaps even more so to the infamously hard-to-
comprehend machine learning systems. Only if a black-box
system can be proven to be safe is it fit for use in safety-critical
domains.

The following papers present advances in the field of neu-
ral network verification.

Verification of neural networks competition As neural
network verification advances, the field widens. At present,
a multitude of different neural network verifiers exist, each
employing different approaches and techniques. The Verifi-
cation of Neural Networks Competition (VNN-COMP) aims
to evaluate these solvers on a suite of benchmarks consisting
of neural networks trained on practical problems. After the
first three iterations of this competition, its organizers give an
overview over its results and the current status quo in neural
network verification in their paper “First Three Years of the
International Verification of Neural Networks Competition
(VNN-COMP)” [8]. They discuss the goals and results of this
competition and the possible next steps to further develop the
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competition setting. Further, they discuss the winning entries
of this challenge, identify trends in modern neural network
verification, and examine the year-to-year development in
the field.

Property directed verification of recurrent neural net-
works Recurrent neural networks operate on time series,
taking one input after another, usually maintaining some sort
of memory of the previously seen inputs. Verifying a recur-
rent neural network end-to-end with standard methods would
involve verifying the unrolled network, which is usually pro-
hibitively large. The authors of the paper “Analysis of Recur-
rent Neural Networks via Property-Directed Verification of
Surrogate Models” [23] propose a property-directed method
that is specifically tailored to the verification of recurrent
neural networks. They do so by using automata learning to
iteratively refine an automaton that represents the classifi-
cation behavior of the neural network under consideration.
At each step, they use the intermediate automaton to at-
tain potential candidates for safety violations and use these
candidates to either disprove the safety property under con-
sideration or refine the intermediate automaton.

Neural network verification with TADS While Typed
Affine Decision Structures (TADSs) are introduced as white-
box models for the precise explanation of neural networks,
the paper “The Power of Typed Affine Decision Structures:
A Case Study” [35] discusses their application to the verifi-
cation of local properties of neural networks. To this end, the
authors extend TADSs by preconditions, allowing TADSs to
focus only on a specific input region that is characterized by
a precondition, and the argmax function, which is typically
used in neural network classifiers. The authors show that,
in principle, TADSs can be used to verify neural networks
in a very conceptually simple fashion, but they suffer from
scalability issues. To remedy this, the authors propose the
usage of the popular dimensionality reduction method PCA
to achieve easier scalability and prove that it can be safely
used to prove local properties of neural networks.

Safe and robust decision making under uncertainty
One of the premier avenues of machine learning is the task
of making decisions in uncertain scenarios. The idea of un-
certain systems and unknown scenarios is very applicable
to real-world applications, where processes are usually not
fully understood and involve some measure of randomness.
Making decisions in an uncertain world is a challenging and
important question.

This uncertainty about the world can come in two flavors:
Aleatoric uncertainty, which is based on an actual random,
uncertain process in a given system, and epistemic uncer-
tainty, which is not inherent to the system but arises from
a lack of knowledge about the existing processes. Epistemic

uncertainty can be reduced by gathering additional informa-
tion about a given system; Aleatoric uncertainty is a nat-
ural constant of a given system and cannot be reduced. In
real-world applications, this is an important distinction, and
adequately treating uncertainty is critical.

In their paper “Decision-making under uncertainty: be-
yond probabilities. Challenges and Perspectices” [4], the au-
thors give an introductory overview of the field of decision
making under uncertainty with a special focus on the dif-
ferent ways in which aleatoric and epistemic uncertainty are
mathematically formalized. Furthermore, the authors intro-
duce robust reinforcement learning [32], which seeks to not
only make good decisions, but decisions that are in some
respect safe, and bayesian reinforcement learning [15, 26],
which provides a natural mechanism for the modeling of epis-
temic uncertainty in bayesian prior distributions. Lastly, the
authors present current challenges in the field and motivate
their importance.

5.3 Structured testing

Much like in traditional software engineering, verification is
usually quite costly. In domains where safety is not as crit-
ical, testing therefore becomes much more attractive. The
following papers present different methods for the structured
testing of machine learning systems, involving either cover-
age criteria, guaranteeing that the behavior of a given system
is aptly covered, or statistical methods that can guarantee
correctness up to a given probability.

Neural network testing coverage In traditional pro-
gramming, there exist clear notion of test coverage, indicating
whether a given test suite covers the potential behaviors of a
program sufficiently enough to inspire trust in the program
[30]. In neural network testing, similar coverage methods are
in use. Typical examples include covering potential activa-
tion patterns or ensuring that all neurons in a network are cov-
ered [28]. DNNCov, an integrated framework for the testing
neural network models, aims to provide users with coverage
information about a given neural network and training set. An
introduction to the tool and the coverage metrics it supports
is given in the paper “An Overview of Structural Coverage
Metrics for Testing Neural Networks” [42]. Moreover, the
authors discuss existing coverage metrics and use DNNCov
to examine their practical implications, namely, whether a
higher coverage implies a higher probability of finding po-
tential errors, revealing that existing coverage metrics might
be insufficient to aptly cover neural networks.

Statistical model checking for deep reinforcement
learning Reinforcement learning (RL) entails agents
learning by themselves in an unfamiliar world, both explor-
ing the world and learning to act within it [22]. As a result,
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verifying RL agents requires verifying the agents behavior
in context of the environment in which it acts, leading to
complex verification tasks. A light-weight, approximate al-
ternative to the verification of RL agents is Deep Statistical
Model Checking (DSMC), as proposed in the paper “An-
alyzing Neural Network Behavior through Deep Statistical
Model Checking” [18]. As the authors show, an RL agent
acting on a markov decision process, the standard formula-
tion of an environment in RL, can be modeled as a Markov
chain, motivating the use of probabilistic model checking to
verify its safety [19]. Probabilistic model checking is exact,
yet expensive. The titular statistical model checking provides
a light-weight approximate method for verification based on
simulated runs of the system [27], yielding DSMC, an ef-
ficient, approximate method for verifying safety of neural
network agents in an RL setting. The authors provide an ex-
perimental evaluation on the racetrack benchmark problem,
showing that deep statistical model checking can provide
valuable information about safety-critical behavior.
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