
International Journal on Software Tools for Technology Transfer (2023) 25:145–165
https://doi.org/10.1007/s10009-023-00695-1

GENERAL

Special Issue: TACAS 2021

SyReNN: A tool for analyzing deep neural networks

Matthew Sotoudeh1 · Zhe Tao1 · Aditya V. Thakur1

Accepted: 13 January 2023 / Published online: 15 February 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Deep Neural Networks (DNNs) are rapidly gaining popularity in a variety of important domains. Unfortunately, modern
DNNs have been shown to be vulnerable to a variety of attacks and buggy behavior. This has motivated recent work in
formally analyzing the properties of such DNNs. This paper introduces SyReNN, a tool for understanding and analyzing a
DNN by computing its symbolic representation. The key insight is to decompose the DNN into linear functions. Our tool is
designed for analyses using low-dimensional subsets of the input space, a unique design point in the space of DNN analysis
tools. We describe the tool and the underlying theory, then evaluate its use and performance on three case studies: computing
Integrated Gradients, visualizing a DNN’s decision boundaries, and repairing buggy DNNs.

Keywords Deep neural networks · Symbolic representation · Integrated gradients · Repair

1 Introduction

Deep Neural Networks (DNNs) [1] have become the state-
of-the-art in a variety of applications including image recog-
nition [2,3] and natural language processing [4]. Moreover,
they are increasingly used in safety- and security-critical
applications such as autonomous vehicles [5] and medical
diagnosis [6–9]. These advances have been accelerated by
improved hardware and algorithms.

DNNs (Sect. 2) are programs that compute a vector-valued
function, i.e., from R

n to R
m . They are loop-free programs

written as a concatenation of alternating linear and non-linear
layers. The coefficients of the linear layers are learned from
data via gradient descent during a training process.A number
of different non-linear layers (called activation functions) are
commonly used, including the rectified linear and maximum
pooling functions.

M. Sotoudeh and Z. Tao have contributed equally.

B Matthew Sotoudeh
masotoudeh@ucdavis.edu

Zhe Tao
zhetao@ucdavis.edu

Aditya V. Thakur
avthakur@ucdavis.edu

1 University of California, Davis, CA 95616, USA

Owing to the variety of application domains and deploy-
ment constraints, DNNs come in many different sizes.
For instance, large image-recognition and natural-language
processing models are trained and deployed using cloud
resources [3,4], medium-size models could be trained in
the cloud but deployed on hardware with limited resources
[5], and finally small models could be trained and deployed
directly on edge devices [10–14]. There has also been a recent
push to compress trained models to reduce their size [15].
Such smaller models play an especially important role in
privacy-critical applications, such as wake word detection
for voice assistants, because they allow sensitive user data to
stay on the user’s own device instead of needing to be sent
to a remote computer for processing.

AlthoughDNNsare very popular, they are not perfect.One
particularly concerning development is that modern DNNs
have been shown to be extremely vulnerable to adversarial
examples, inputs that are intentionally manipulated to appear
unmodified to humans but becomemisclassified by the DNN
[16–19]. Similarly, fooling examples are inputs that look like
random noise to humans, but are classified with high con-
fidence by DNNs [20]. Mistakes made by DNNs have led
to loss of life [21,22] and wrongful arrests [23,24]. For this
reason, it is important to develop techniques for analyzing,
understanding, and repairing DNNs.

This paper introduces SyReNN, a tool for understanding
and analyzing DNNs. SyReNN implements state-of-the-art

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-023-00695-1&domain=pdf
http://orcid.org/0000-0003-2060-1009
http://orcid.org/0000-0002-4047-699X
http://orcid.org/0000-0003-3166-1517

146 M. Sotoudeh et al.

algorithms for computing precise symbolic representations
of piecewise-linear DNNs (Sect. 3). Given a bounded poly-
tope subset of the input space of a DNN, SyReNN computes
a symbolic representation that decomposes the behavior of
the DNN on that infinite subspace into finitely many linear
functions. SyReNN implements the one-dimensional analy-
sis algorithm of Sotoudeh and Thakur [25] and extends it to
the two-dimensional setting as described in Sect. 4.

Key insights. There are two key insights enabling this
approach, initially identified in Sotoudeh and Thakur [25].
First, most popular DNN architectures today are piecewise-
linear, meaning they can be precisely decomposed into
finitely many linear functions. This allows us to reduce
their analysis to equivalent questions in linear algebra, one
of the most well-understood fields of modern mathematics.
Second, many applications only require analyzing the behav-
ior of the DNN on a low-dimensional subset of the input
space. Whereas prior work has attempted to give up pre-
cision for efficiency while analyzing high-dimensional input
regions [26–28], our work has focused on algorithms that are
both efficient and precisewhile analyzing lower-dimensional
regions (Sect. 4).

Use cases. We demonstrate the utility of SyReNN on three
main applications, each highlighting the key advantage
of SyReNN; viz., the ability to provide precise informa-
tion about the DNN by restricting the analysis to a low-
dimensional subset of its input space.

The first application is in visualizing the decision bound-
aries of a DNN. With SyReNN, we can precisely plot the
decision boundaries for a two-dimensional subset of the input
space. The two-dimensional nature of the plot makes it ideal
for a human designer to look at to understand the behavior of
the DNN. The precise nature of the information provided by
SyReNN ensures that the plot shows the true behavior on the
infinite set of points. Figure1a shows one such 2-dimensional
plot for the ACAS Xu network ([5]), which determines what
action an aircraft (ownship) should take to avoid a collision

with an intruder. Notably, this is not the result of plotting
the behavior of the DNN on a finite sampling of the inputs
— such an approach would likely miss key behavior of the
DNN, whereas our approach guarantees to find the exact
decision boundaries. The network takes 5 inputs correspond-
ing to the velocity and position of the aircraft; the plot shows
the behavior of the DNN for a 2-dimensional subspace of
the input space. From this plot, one can already see interest-
ing and potentially dangerous behavior of the network: there
is a region behind the plane where an intruder on the left
may cause the network to recommend performing aweak left
towards the intruder; there are small regions in which the net-
work recommends strong right (or strong left) which should
be weak right (or weak left). For safety-critical applications,
such as aircraft collision avoidance, such precise visualiza-
tion can be invaluable to a developer. Visualization of the
ACAS Xu network is described in detail in Sect. 8.1. Sec-
tion8.2 describes the visualization of decision boundaries of
image recognition networks. For instance, Fig. 1b shows the
visualization of the decision boundaries of an MNIST hand-
written digit recognitionDNN.The corners of the triangle are
three different drawings of the number 5, while points inte-
rior to the triangle correspond to interpolations between those
images. The different colors show exactly where the network
begins tomisclassify fives as a variety of other digits, helping
human designers better understand, and eventually improve,
the behavior of the DNN.

The second application of SyReNN is the provable repair
of DNNs (Sect. 8.3). DNN repair deals with the increasingly
important problem of correcting DNN behavior to satisfy a
given specification of a DNN after it has been trained. In con-
trast to heuristic approaches, e.g., based on gradient descent,
provable repair guarantees that the repaired DNN does in
fact satisfy the repair specification. Prior work can repair the
behavior of the DNN for a finite set of input points [29,30].
With SyReNN one can extend these techniques to repair the

Fig. 1 Precise visualization of
decision boundaries computed
using SyReNN for the a ACAS
Xu network and b MNIST digit
recognition network. This is not
a plot interpolating between
finitely-many sampled points,
instead SyReNN was used to
quickly and precisely compute
the exact decision boundaries

123

SyReNN: A tool for analyzing deep neural networks 147

behavior for an infinite set of points (represented as a 2D
polytope).

The last application of SyReNN is the precise computation
of Integrated Gradients (IG) [31], a state-of-the-art measure
used to determine which input dimensions, e.g., pixels for
an image-recognition network, were most important in the
final classification produced by the network (Sect. 8.4). IG is
defined in terms of the DNN’s behavior on the line connect-
ing the all-zero input and the input in question. Without the
precise and efficient low-dimensional analysis of SyReNN,
all prior work had only been approximating the IG.

Tool design. The SyReNN tool is designed to be easy to
use and extend, as well as efficient (Sect. 7). The core of
SyReNN iswritten as a highly-optimized, parallelC++ server
using Intel TBB for parallelization [32] and Eigen for matrix
operations [33]. CPU-based SyReNN uses Intel MKL-DNN
for DNN evaluation while GPU-based SyReNN uses Nvidia
cuDNN and cuBLAS for DNN evaluation as well as a mix of
Intel TBB and Nvidia CUDA for symbolic representation
computation. A user-friendly Python front-end interfaces
with the PyTorch deep learning framework [34].

Contributions. The contributions of this paper are:

– A definition of symbolic representation of DNNs
(Sect. 3).

– Efficient algorithms for computing symbolic representa-
tions for DNNs over low-dimensional input subspaces on
CPU (Sect. 4) and GPU (Sect. 5).

– Ageneralizationof the algorithm to arbitrary-dimensional
input subspaces (Sect. 6).

– A design of a usable and well-engineered tool imple-
menting these ideas called SyReNN (Sect. 7).

– Three applications of SyReNN (Sect. 8).

Section 2 presents preliminaries about DNNs; Sect. 9
presents related work; Sect. 10 concludes. SyReNN is avail-
able on GitHub at https://github.com/95616ARG/SyReNN_
GPU.

2 Preliminaries

We now formally define the notion of DNN we will use in
this paper.

Definition 1 A Deep Neural Network (DNN) is a function
f : R

n → R
m which can be written f = fn ◦ fn−1 · · · ◦ f1

for a sequence of layer functions f1, f2, …, fn .

Our work is primarily concerned with the popular class
of piecewise-linear DNNs, defined below. In this definition
and the rest of this paper, we will use the term “polytope” to

mean a convex and bounded polytope, i.e., a bounded, finite
intersection of linear constraints.

Definition 2 A function f : R
n → R

m is piecewise-linear
(PWL) if its input domain R

n can be partitioned into finitely
many possibly-unbounded polytopes X1, X2, . . . , Xk such
that f�Xi is linear for every Xi .

The most common activation function used today is the
ReLU function, a PWL activation function defined below.

Definition 3 The rectified linear function (ReLU) is a func-
tion ReLU : R

n → R
m defined component-wise by

ReLU(�v)i :=
{
0 if vi < 0

vi otherwise,

whereReLU(�v)i is the i th component of the vectorReLU(�v)

and vi is the i th component of the vector �v.
To show that ReLU is PWL, we must partition its input

domain R
n so that, in each partition, ReLU is linear. In this

case, we can use the orthants ofR
n as our partitioning: within

each orthant, the signs of the components do not change
hence ReLU is the linear map that just zeros out the neg-
ative components.

Although we focus on ReLU due to its popularity and
expository power, SyReNN works with a number of other
popular PWL layers including MaxPool, Leaky ReLU, Hard
Tanh, Fully-Connected, and Convolutional layers, as defined
in [1]. PWL layers have become exceedingly common. In
fact, nearly all of the state-of-the-art image recognition mod-
els bundled with PyTorch [35] are PWL.

Example 1 The DNN f : R
1 → R

1 defined by

f (x) := [
1 −1 −1

]
ReLU

⎛
⎝

⎡
⎣ 1 −1

1 0
−1 0

⎤
⎦ [

x
1

]⎞
⎠

can be broken into layers f = f3 ◦ f2 ◦ f1 where

f1(x) :=
⎡
⎣ 1 −1

1 0
−1 0

⎤
⎦[

x
1

]
, f2 = ReLU, and

f3(�v) = [
1 −1 −1

] �v.

The DNN’s input–output behavior on the domain [−1, 2] is
shown in Fig. 2.

3 A symbolic representation of DNNs

We formalize the symbolic representation according to the
following definition:

123

https://github.com/95616ARG/SyReNN_GPU
https://github.com/95616ARG/SyReNN_GPU

148 M. Sotoudeh et al.

−1 0 1 2

−1

−0.5

0

Input x

O
ut
pu

t
y

Fig. 2 Input–output behavior of the DNN from Example 1

Definition 4 Given a PWL function f : R
n → R

m and a
bounded convex polytope X ⊆ R

n , we define the symbolic
representation of f on X , written f̂�X , to be a finite set of

polytopes f̂�X = {P1, . . . , Pn}, such that:

1. The set {P1, P2, . . . , Pn} partitions X , except possibly for
overlapping boundaries.

2. Each Pi is a bounded convex polytope.
3. Within each Pi , the function f�Pi is linear.

Notably, if f is a DNN using only PWL layers, then f
is PWL and so we can define f̂�X . This symbolic repre-
sentation allows one to reduce questions about the DNN
f to questions about finitely many linear functions. For
example, because linear functions are convex, to verify that
∀�x ∈ X . f (�x) ∈ Y for some polytope Y , it suffices to verify
∀Pi ∈ f̂�X . ∀�v ∈ Vert(Pi). f (�v) ∈ Y , where Vert(Pi)
is the (finite) set of vertices for the bounded convex poly-
tope Pi ; thus, here both of the quantifiers are over finite sets.
The symbolic representation described above can be seen
as a generalization of the ExactLine representation [25],
which considered only one-dimensional restriction domains
of interest. ExactLine is now included in SyReNN as an opti-
mization for the case of one-dimensional input polytopes.

Example 2 Consider again the DNN f : R
1 → R

1 given by

f (x) := [
1 −1 −1

]
ReLU

⎛
⎝

⎡
⎣ 1 −1

1 0
−1 0

⎤
⎦ [

x
1

]⎞
⎠

and the region of interest X = [−1, 2]. The input–output
behavior of f on X is shown in Fig. 2. From this, we can see
that

f̂�X = {[−1, 0], [0, 1], [1, 2]}.

Within each of these partitions, the input–output behavior is
linear, which for R

1 → R
1 we can see visually as just a line

segment. As this set fully partitions X , then, this is a valid
f̂�X .

4 Computing the symbolic representation
on 2D regions

This section presents an efficient algorithm for computing
f̂�X for a DNN f composed of PWL layers. To retain both
scalability and precision, in this section we will require
the input region X be two-dimensional. This design choice
is relatively unexplored in the neural-network analysis lit-
erature (most analyses strike a balance between precision
and scalability, ignoring dimensionality). We show that, for
two-dimensional X , we can use an efficient polytope rep-
resentation to produce an algorithm that demonstrates good
best-case and in-practice efficiency while retaining full pre-
cision. This algorithm represents a direct generalization of
the approach of [25].

Algorithm 1: Computing f̂�X for a function f using the
ExtendPWL(·, ·). Assumes f can be decomposed into
the sequence of piecewise-linear maps (layers) of the
form f = fn ◦ fn−1 ◦ · · · ◦ f1.
Input: f , X
Output:̂f�X

1 s ← {X} // Holds ̂fi ◦ · · · ◦ f1�X after ith iteration.

2 for i ∈ 1, · · · n do
3 if fi is linear then
4 s ← s // Linear layers do not impact linear regions

5 else
6 s ← ExtendPWL(fi , s) // PWL layers handled by Algorithm 2

7 return s

The difficulties our algorithm addresses arise from three
areas. First, when computing f̂�X theremay be exponentially
many such partitions on all of R

n but only a small number
of them may intersect with X . Consequently, the algorithm
needs to be able to find those partitions that intersect with
X efficiently without explicitly listing all of the partitions
on R

n . Second, it is often more convenient to specify the
partitioning via hyperplanes separating the partitions than
by explicit polytopes. For example, for the one-dimensional
ReLU function we may simply state that the point x = 0
separates the two partitions, because ReLU is linear both in
the region x ≤ 0 and x ≥ 0. Finally, neural networks are
typically composed of sequences of linear and piecewise-
linear layers, where the partitioning imposed by each layer
individually may be well-understood but their composition
is more complex. For example, identifying the linear parti-
tions of y = ReLU(4 · ReLU(−3x − 1) + 2) is non-trivial,
even though we know the linear partitions of each composed
function individually.

Our algorithm only requires the user to specify the hyper-
planes defining the partitioning for the activation function
used in each layer, and the current implementation comes
with common PWL activation functions built-in. For exam-

123

SyReNN: A tool for analyzing deep neural networks 149

ple, if a ReLU layer is used for an n-dimensional input
vector, then the hyperplanes would be defined by the equa-
tions x1 = 0, x2 = 0, . . . , xn = 0. SyReNN computes the
symbolic representation for a single layer at a time, compos-
ing themsequentially to compute the symbolic representation
across the entire network.

To allow such compositions of layers, instead of directly
computing f̂�X , we will define another primitive, denoted by
the operator ⊗ and sometimes referred to as ExtendPWL,
such that

ExtendPWL(h, ĝ�X) = h ⊗ ĝ�X = ĥ ◦ g�X . (1)

Consider f = fn ◦ fn−1 ◦ · · · ◦ f1, and let I : x �→ x be
the identity map. I is linear across its entire input space, and,
thus, Î�X = {X}. By the definition of ExtendPWL(f1, ·),
we have f1 ⊗ Î�X = ̂(f1 ◦ I)�X = f̂1�X , where the final
equality holds by the definition of the identity map I . We can
then iteratively apply this procedure to inductively compute

̂(fi ◦ · · · ◦ f1)�X from ̂(fi−1 ◦ · · · ◦ f1)�X like so:

fi ⊗ ̂(fi−1 ◦ · · · ◦ f1)�X = ̂(fi ◦ fi−1 ◦ · · · ◦ f1)�X

until we have computed ̂(fn ◦ fn−1 ◦ · · · ◦ f1)�X = f̂�X ,
which is the required symbolic representation. Notably, lin-
ear functions do not change linear partitions, hence if f is
linear then f ⊗ ĝ�X = f̂ ◦ g�X = ĝ�X . This process is for-
malized in Algorithm 1.

4.1 Algorithm for EXTENDPWL

Algorithm 2 presents an algorithm for computing
ExtendPWL for arbitrary PWL functions, where
ExtendPWL(h, ĝ�X) = h ⊗ ĝ�X = ĥ ◦ g�X .

Geometric intuition for the algorithm. Consider the ReLU
function (Definition 3). It can be shown that, within any
orthant (i.e., when the signs of all coefficients are held con-
stant), ReLU(�x) is equivalent to some linear function, in
particular the element-wise product of �x with a vector that
zeroes out the negative-signed components. However, for our
algorithm, all we need to know is that the linear partitions of
ReLU (in this case the orthants) are separated by hyperplanes
x1 = 0, x2 = 0, . . . , xn = 0.

Given a two-dimensional polytope X , the execution of the
algorithm for f = ReLU can be visualized as follows. We
pick some vertex v of X , and begin traversing the boundary of
the polytope in counter-clockwise order. If we hit an orthant
boundary (corresponding to some hyperplane xi = 0), it
implies that the behavior of the function behaves differently
at the points of the polytope to one side of the boundary from
those at the other side of the boundary. Thus, we partition

X into X1 and X2, where X1 lies to one side of the hyper-
plane and X2 lies to the other side. We recursively apply this
procedure to X1 and X2 until the resulting polytopes all lie
on exactly one side of every hyperplane (orthant boundary).
But lying on exactly one side of every hyperplane (orthant
boundary) implies each polytope lies entirely within a linear
partition of the function (a single orthant), hence the appli-
cation of the function on that polytope is linear, and hence
we have our partitioning.

Functions used in algorithms. Given a two-dimensional
polytope X , Vert(X) returns a list of its vertices in counter-
clockwise order, repeating the initial vertex at the end. Given
a set of points S, ConvexHull((S)) represents their con-
vex hull (the smallest polytope containing every point in S).
Given a scalar value x , Sign((x)) computes the sign of
that value (i.e., −1 if x < 0, +1 if x > 0, and 0 if x = 0).
Given an n-dimensional polytope P , Facets(P) is the set of
n − 1-dimensional facets that make up the boundary of P .

Algorithm description. The key insight of the algorithm is to
recursively partition the polytopes until such a partition lies
entirely within a linear region of the function f . Algorithm 2
begins by constructing a queue containing the polytopes of
ĝ�X . Each iteration either removes a polytope from the queue
that lies entirely in one linear region (placing it in Y), or splits
(partitions) some polytope into two smaller polytopes that get
put back into the queue. When we pop a polytope P from
the queue, Line 6 iterates over all hyperplanes Nk · x = bk
defining the piecewise-linear partitioning of f , looking for
any for which some vertex Vi lies on the positive side of the
hyperplane and another vertex Vj lies on the negative side
of the hyperplane. If none exist (Line 7), by convexity we
are guaranteed that the entire polytope lies entirely on one
side with respect to every hyperplane, meaning it lies entirely
within a linear partition of f . Thus, we can add it to Y and
continue. If two such vertices are found (starting Line 10), we
then call SplitPlane() (Algorithm 3) to actually partition
the polytope on opposite sides of the hyperplane, adding both
to our worklist.SplitPlane() works by finding “extreme”
i and j indices such that Vi is the last vertex in a counter-
clockwise traversal to lie on the same side of the hyperplane
as V1 and Vj is the last vertex lying on the opposite side of
the hyperplane, then solving for the new vertex where that
edge intersects the hyperplane.

In the best case, each partition is in a single orthant. Then,
the algorithm never calls SplitPlane() at all — it merely
iterates over all of the n input partitions, checks their v

vertices, and appends to the resulting set (for a best-case
complexity of O(nv)). In the worst case, it splits each poly-
tope in the queue on each hyperplane, resulting in exponential
time complexity. As we will show in Sect. 8, this exponen-
tial worst-case behavior is not encountered in practice, thus
making SyReNN a practical tool for DNN analysis.

123

150 M. Sotoudeh et al.

Example of the algorithm. Consider the polytope shown
in Fig. 3a with vertices {v1, v2, v3}, and suppose our acti-
vation function has two piecewise-linear regions separated
by the vertical line (1D hyperplane) Nx + b = 0 shown.

Algorithm 2: Ordered EXTENDPWL for computing
f ⊗ ĝ�X for two-dimensional X . f is a PWL function
such that the hyperplanes N1 · x = b1 through Nm · x =
bm impose a partitioning of the space where f is equiv-
alent to some linear function within any partition. This
is a specialization of Algorithm 5 for two-dimensional
X , a discussion of differences is available in Section 6.
Input: ĝ�X = {P1, . . . , Pn }, hyperplanes Nk · x = bk for k ∈ [1,m].
Output: ̂f ◦ g�X

1 W ← ConstructQueue(̂g�X)

2 Y ← ∅ // Polytopes that lie entirely in one linear region.

3 while W not empty do
4 P ← Pop(W)

5 V ← Vert(P)
6 K ← {(Nk , bk) | ∃Vi , Vj ∈ V : Sign(Nk · g(Vi) − bk) > 0 ∧

Sign(Nk · g(Vj) − bk) < 0}
7 if K = ∅ then
8 Y ← Y ∪ {P}
9 continue

10 N , b ← any element from K
11 for V ′ ∈ SplitPlane(V , g, N , b) do
12 W ← Push(W,ConvexHull(V ′))

13 return Y

Because this hyperplane has some of the vertices of the
polytope on one side and some on the other, we will use
it as the N , b hyperplane on Line 10. Then SplitPlane is
called. We will assume the vertices are ordered so that the
extremal vertices found starting at Line 1 are Vi = v1 and
v j = v3. SplitPlane will then add new vertices pi = v4
(shown in Fig. 3b) where the edge v1 → v2 intersects the
hyperplane, as well as p j = v5 where the edge v3 → v1
intersects the hyperplane. Separating all of the vertices on the
left of the hyperplane from those on the right, we find that this
has partitioned the original polytope into two sub-polytopes,
each on exactly one side of the hyperplane, as desired. If
there were more intersecting hyperplanes, we would then
recurse on each of the newly-generated polytopes to further
subdivide them by the other hyperplanes.

Proofs of correctness. The two theorems below formally
argue for correctness of Algorithm 3 and Algorithm 2. They
are a special case of the arguments in Sect. 6.

Theorem 1 Algorithm 3 correctly splits a 2D polytope
ConvexHull(V) by the hyperplane Nx = b.

Proof The intuition was described earlier in this section. For-
mally, Algorithm 3 is the special case of Algorithm 6 for
k = 2. See Theorem 4 for the proof of its correctness.

Algorithm 3: SplitPlane(V , g, N , b)
Input: V , the vertices of the polytope in the input space of g. A

function g. N and b define the hyperplane N · x = b to
split on.

Output: {P1, P2}, two sets of vertices whose convex hulls form a
partitioning of V such that each lies on only one side of
the N · x = b hyperplane.

1 i ← argmaxi {Sign(N · g(Vi) − b) = Sign(N · g(V1) − b)}
2 j ← argmax j {Sign(N · g(Vj) − b) �= Sign(N · g(Vi) − b)}
3 pi ← Vi + b−N ·g(Vi)

N ·(g(Vi+1)−g(Vi))
(Vi+1 − Vi)

4 p j ← Vj + b−N ·g(Vj)

N ·(g(Vj+1)−g(Vj))
(Vj+1 − Vj)

5 A ← {pi , p j } ∪ {v ∈ V | Sign(N · v − b) = Sign(N · Vi − b)}
6 B ← {pi , p j } ∪ {v ∈ V | Sign(N · v − b) = Sign(N · Vj − b)}
7 return {A, B}

This special-casing relies on one key observation, which
is that, in Algorithm 6 for k = 2, exactly two of the facets
(edges) will cross the hyperplane. To see why, first consider
the restriction of the hyperplane Nx = b to the polytope
ConvexHull(V). Notice that, assuming the hyperplane
actually crosses ConvexHull(V) (i.e., does not contain it
entirely), then this restriction will correspond to a line cross-
ing a polytope. But, if this line crossed three distinct edges,
then it would have at least three distinct intersection points
with the polytope. But these three points must make a line,
meaning one of those points must be between the other two,
meaning one of those edges must have points that can be
written as a convex combination of those on the other two
edges, i.e., one of the edges must be on the interior of the
polytope, a contradiction. ��
Theorem 2 Algorithm 2 correctly computes f ⊗ ĝ�X .

Fig. 3 Diagrams demonstrating
the 2D ExtendPWL algorithm

v1

v2

v3

(a) Before extending

v1

v4

v2

v3
v5

(b) After extending

123

SyReNN: A tool for analyzing deep neural networks 151

Proof The intuition was described earlier in this section. For
a formal correctness proof, see the proof of the general-
ized Theorem 5, from which this claim follows as a special
case. The only difference in the algorithms is that we call the
2D-specialized SplitPlane instead of SplitHyperPlane[2]. ��

4.2 Representing Polytopes

We close this section with a discussion of implementation
concerns when representing the polytopes that make up the
partitioning of f̂�X . In standard computational geometry,
polytopes can be represented in two equivalent forms:

1. The half-space or H-representation, which encodes the
polytope as an intersection of finitely many half-spaces.
(Each half-space being defined by a linear inequalityax ≤
b.)

2. The vertex or V-representation, which encodes the poly-
tope as a set of finitely many points; the polytope is then
taken to be the convex hull of the points (i.e., smallest
convex shape containing all of the points).

Certain operations are more efficient when using one rep-
resentation compared to the other. For example, finding the
intersection of two polytopes in an H-representation can be
done in linear time by conjoining their representative linear
constraints, but the same is not possible in V-representation.
On the other hand, checking if a polytope in V-representation
is empty is as simple as checking whether it has any vertices
at all, while the same query for a polytope inH-representation
requires solving a considerably more expensive linear pro-
gramming problem.

There are three main operations on polytopes we need
perform in our algorithms: (i) identifying which hyperplanes
a polytope intersects, (ii) splitting a polytope with a hyper-
plane, and (iii) applying a linear map to all points in the
polytope. In general, the first and third are significantly more
efficient in a V-representation, while the second is oftenmore
efficient in an H-representation. In particular, (i) is linear
time on aV-representation but requires solving a complicated
linear programming problem on an H-representation. Simi-
larly, unless the linear map happens to be invertible, which
almost never happens for DNN weight matrices which are
usually learned and between different-dimensional spaces,
(iii) is only as expensive as a matrix multiplication on a
V-representation, but requires a doubly-exponential variable
elimination algorithm such as Fourier-Motzkin [36] for poly-
topes in the H-representation.

While it is true in general that splitting a V-representation
polytope with a hyperplane is difficult, when restricted to
two-dimensional polytopes, it is actually efficient in a V-
representation, as demonstrated by Algorithm 3, helping to
motivate our use of the V-representation in our algorithm.

Our algorithm shows how to do polytope splitting efficiently
for two-dimensional polytopes embedded inany dimensional
space, i.e., even though the polytopes are two-dimensional,
they (and their vertices) live in a much higher-dimensional
space.

Furthermore, even though it is easy to split an H-
representation polytope, determining when such a split leads
to a non-empty polytope requires solving a relatively expen-
siveLPproblem.This is exacerbatedby the fact that, although
the polytopes in question are two-dimensional, they liewithin
a much higher-dimensional space. This means that the corre-
sponding LP problem will have thousands of variables, even
if the actual polytope it describes has atmost two dimensions.
This significantly increases overhead in the H-representation
approach, a problemneatly avoidedby specifying the vertices
directly in the V-representation.

Comparing performance. To better quantify the perfor-
mance characteristics of both representations for our partic-
ular application area, we evaluated two different operations
in the H-representation and compare to our results using the
V-representation in Sect. 8.

First, we used an off-the-shelf Fourier-Motzkin imple-
mentation [37] to transform a single two-dimensional input
polytope through the first layer of the ACAS Xu network
as evaluated in Sect. 8.1, except using the H-representation.
Transforming even this single polytope requires over 0.1 sec-
onds on modern hardware. Such transformation operations
would have to be performed at least once for each of the
approximately 30,000 linear regions identified by SyReNN
in Sect. 8.1 and Table 1, leading to almost an hour of solv-
ing time compared to 0.1 seconds for the entire run with
SyReNN using a V-representation.

Alternatively, a different way to implement SyReNNwith
H-representation polytopes but avoiding the expensive pro-
jection step would be to perform the entire analysis in a space
with as many dimensions as DNN nodes. This would avoid
projection, but still relies on an LP solver to determine which
linear regions, i.e., assignment of activated nodes, are feasi-
ble. We performed a similar experiment, using the Gurobi
LP solver [38] to identify a linear region of the DNN by
iteratively asking the LP solver if there exists an input that
causes the i th DNN node to be activated. If so, we modify
the LP to assert it is activated and continue to the (i + 1)th
node. Otherwise, we assert it is not activated and again con-
tinue to the (i + 1)th node. Even with a state-of-the-art LP
solver, Gurobi solving time for even a single linear region of
the network is over 0.3 seconds, which is larger than it takes
our V-representation SyReNN to identify over 30,000 linear
regions.

While it is likely that optimizations may reduce the run-
time for an H-representation based approach, it is unlikely
to make up the four-orders-of-magnitude difference in run-

123

152 M. Sotoudeh et al.

time demonstrated by these experiments. Furthermore, such
approaches require the use of complicated polytope projec-
tion and feasibility solvers, compared to the relatively simple
SplitPlane algorithm used by SyReNN.

Numerical precision. Furthermore, the two polytope repre-
sentations have different resiliency to floating-point opera-
tions. In particular, H-representations for polytopes inR

n are
notoriously difficult to achieve high-precision with, because
the error introduced from using floating point numbers gets
arbitrarily large as one goes in a particular direction along
any hyperplane facet. Ideally, we would like the hyper-
plane to be most accurate in the region of the polytope
itself, which corresponds to choosing the magnitude of the
normvector correctly.Unfortunately, to our knowledge, there
is no efficient algorithm for computing the ideal floating
point H-representation of a polytope, although libraries such
as APRON [39] are able to provide reasonable results for
low-dimensional spaces. However, because neural networks
utilize extremely high-dimensional spaces (often hundreds
or thousands of dimensions) and we wish to iteratively apply
our analysis, we have found that errors from using floating-
point H-representations can quickly multiply and compound
to become infeasible. By contrast, floating-point inaccura-
cies in aV-representation are directly interpretable as slightly
misplacing the vertices of the polytope; no “localization”
process is necessary to penalize inaccuracies close to the
polytope more than those far away from it.

Another difference is in the space complexity of the
representation. In general, H-representations can be more
space-efficient for common shapes than V-representations.
However, when the polytope lies in a low-dimensional sub-
space of a larger space, the V-representation is usually
significantly more efficient.

Thus, V-representations are a good choice for low-
dimensionality polytopes embedded in high-dimensional
space, which is exactly what we need for analyzing neu-
ral networks with two-dimensional restriction domains of
interest. This is why we designed our algorithms to rely
on Vert(X), so that they could be directly computed
on a V-representation. Importantly, our algorithm operates
entirelywithin theV-representation:we never need to convert
between them. This is particularly nice when the polytope
lies in a two-dimensional subspace, as storing the vertices in
counter-clockwise order allows us to recover the edges from
the vertices.Meanwhile, converting to a fullH-representation
would likely incur significant overhead due to the very high-
dimensional space the polytope is embedded in.

5 Batched EXTENDPWL Algorithm

This section presents Batched ExtendPWL algorithm for
computing f ⊗ ĝ�X for two-dimensional X . f is a PWL func-
tion such that the hyperplanes impose a partitioning of the
space where f is equivalent to some linear function within
any partition. The algorithm is presented in Algorithm 4.
The batched nature of the algorithm allows it to exploit GPU-
style parallelism. In this algorithm,we introduce the notion of
edges of polytopes (1-dimensional faces).Edges(P) returns
the set of edges of the polytope P . The algorithm begins by
initializing the result Y with ĝ�X (Line 1). Each of the fol-
lowing iterations over all k ∈ [1,m] hyperplanes (Line 2-10)
splits each polytope in Y by the kth hyperplane and adds
the resulting partitions back to Y . This ensures that, after
the kth iteration, none of the polytopes in Y cross the first k
hyperplanes. During iteration k, the algorithm first collects
all vertices (Line 3) and edges (Line 6) of all polytopes in
Y as V and E , respectively. The algorithm then computes
a map S from any vertex v ∈ V to its sign regarding the
working hyperplane k (Line 5). With the sign map S, the
algorithm then identifies edges that cross the kth hyperplane
(Line 6) as E×. CrossPlane checks if the two endpoints
of edge e has different signs. Then the algorithm computes a
map from each such edge e in E× to its intersection vertex
with the hyperplane k as I by interpolation (Line 7). The
algorithm then collects polytopes p in Y that intersect with
the kth hyperplane as P× (Line 8), splits each of them using
SplitPlane (presented later) and collects all partitions as PΔ

(Line 9). The kth iteration ends by replacing intersected poly-
topes in Y with their partitions regarding the hyperplane k.

The procedure SplitPlane (Line 12–29) splits the polytope
p into two halves, one on either side of the kth hyperplane,
using the sign map S and intersection map I. It begins by
initializing the sets pos and neg to contain edges of polytope
pwhich lie on the positive andnegative side of the hyperplane
k, with empty sets (Line 13), as well as the set V×, which
will contain the vertices lying on the kth hyperplane itself
(shared by both partitions), with empty set (Line 14). The
procedure then iterates over edges of polytope k (Line 15-
26). The iteration for edge e begins by checking if it crosses
the hyperplane k (Line 16). If so, the procedure first adds the
intersection vertex I(e) to V× (Line 17). Then the procedure
splits the intersected edge e by the intersection vertex I(e) as
new edges (e.u,I(e)) and (e.v,I(e)) (Line 18), where e.u
and e.v are two endpoints of edge e. For each new edge e′,
the procedure adds e′ to the pos set if it is on the positive side
of the hyperplane k (Line 19-20), otherwise to the neg set
(Line 21-22). If the iterating edge e does not cross hyperplane
k, then the procedure adds e to the pos set if it is on the
positive side of the hyperplane k (Line 23-24), otherwise to
the neg set (Line 25-26). After the iterations, the procedure
ends by adding the convex hull of intersected vertices V× to

123

SyReNN: A tool for analyzing deep neural networks 153

Algorithm 4: Batched EXTENDPWL for computing
f ⊗ ĝ�X for two-dimensional X . f is a PWL function
such that the hyperplanes N1 · x = b1 through Nm ·
x = bm impose a partitioning of the space where f is
equivalent to some linear function within any partition.
Input: ĝ�X = {P1, . . . , Pn }.
Output: ̂f ◦ g�X

/* Interatively split ĝ�X by hyperplanes */

1 Y ← ĝ�X

2 for k ∈ [1,m] do
3 V ← ⋃

Pi ∈Y Vert(Pi)

4 E ← ⋃
Pi ∈Y Edges(Pi)

�5 S ← {
v �→ Sign(Nk · g(v) − bk) | v ∈ V

}
// Sign map for vertices.

�6 E× ← {
e | e ∈ E, CrossPlane(e,S)

}
// Intersected edges.

�7 I ← {
e �→ Interp(e, Nk , bk) | e ∈ E×}

// Intersection vertex map.

�8 P× ← {
p | p ∈ Y , Edges(p) ∩ E× �= ∅}

// Intersected polytopes.

�9 PΔ ← ⋃
p∈P× SplitPlane(p,S,I)

10 Y ← (Y\P×) ∪ PΔ

11 return Y

12 def SplitPlane(p,S,I):
13 pos, neg ← ∅, ∅ // Edges lie in the positive/negative side.

14 V× ← ∅ // Intersection vertices on the face.

15 for e ∈ Edges(P) do
16 if CrossPlane(e,S) then
17 V× ← V× ∪ I(e)
18 for e′ ∈ {(e.u,I(e)), (e.v,I(e))} do
19 if OnPosSide(e,S) then
20 pos ← pos ∪ e′
21 else
22 neg ← neg ∪ e′

23 else if OnPosSide(e,S) then
24 pos ← pos ∪ e′
25 else
26 neg ← neg ∪ e′

27 pos ← pos ∪ ConvexHull(V×)

28 neg ← neg ∪ ConvexHull(V×)

29 return {FaceHull(pos), FaceHull(neg)}

both pos and neg (Line 27-28), and returns the set of face
hulls of pos and neg (Line 29).

Theorem 3 Algorithm 4 correctly computes f ⊗ ĝ�X .

Proof It suffices to show that the algorithm correctly par-
titions each input polytope P such that the signs within a
partition are constant. Notably, because of convexity, it suf-
fices to show that the signs of the vertices of each partition
are constant.

In iteration k, Algorithm 4 splits all polytopes which
cross the hyperplane k and maintains the invariant that each
SplitPlane splits an intersected polytope into two new ones
such that the signs within each partition regarding hyper-
planes [1, k] are constant. This invariant ensures that the
algorithm is correct. ��

Algorithm 4 is optimized to utilize GPU. Specifically,
lines marked by � (Line 5-8) can be parallelized on GPU and
lines marked by � (Line 9) can be parallelized on CPU. Thus,
one would expect that this algorithm when executed using a
GPU would perform significantly better than the same algo-
rithm on a CPU; we empirically confirm this in Sect. 8.2.

Furthermore, we also see that this Batched ExtendPWL
algorithm when executed using a GPU outperforms the
Ordered ExtendPWL algorithm (2) on a CPU. Two major
overheads when using GPU are data movement and kernel
launches. To avoid redundant data movement between GPU
memory and CPU memory, we maintain vertices as a matrix
onGPUmemory and only access it fromGPU.We alsomain-
tain the endpoints of all edges in a contiguous GPUmemory.
There are only two floating-point computations; viz., com-
puting the signs of vertices and the intersection vertices of the
intersected edges. To avoid redundant launches of the GPU
kernel, we perform these computations in batches, and cache
the results in maps for later use (Line 5 and 7).

6 Extending to higher-dimensional regions

The 2D algorithm described in Sect. 4.1 can be seen as imple-
menting the recursive case of a more general, n-dimensional
version of the algorithm that recurses on each of the (n− 1)-
dimensional facets. In 2D, we trace the edges (1D faces) and
use the 1D algorithm from [25] to subdivide them based on
intersections with the hyperplanes defining the function.

In this section, we will describe the more general n-
dimensional recursive algorithm. This generalized algorithm
is given in Algorithm 5 and Algorithm 6.

Algorithm 5: f ⊗ ĝ�X for n-dimensional X . The hyper-
planes N1 · x = b1 through Nm · x = bm are such that f
is equivalent to some linear function within any partition
imposed by these hyperplanes.
Input: ĝ�X = {P1, . . . , Pn }, hyperplanes Nk · x = bk for k ∈ [1,m].
Output: ̂f ◦ g�X

1 W ← ConstructQueue(̂g�X)

2 Y ← ∅ // Polytopes that lie entirely in one linear region.

3 while W not empty do
4 P ← Pop(W)

5 V ← Vert(P)
6 K ← {(Nk , bk) | ∃Vi , Vj ∈ V : Sign(Nk · g(Vi) − bk) > 0 ∧

Sign(Nk · g(Vj) − bk) < 0}
7 if K = ∅ then
8 Y ← Y ∪ {P}
9 continue

10 N , b ← any element from K
11 for V ′ ∈ SplitHyperPlane[n](P, g, N , b) do
12 W ← Push(W,ConvexHull(V ′))

13 return Y

The overall operation of Algorithm 5 is identical to that
of Algorithm 2, as we repeatedly split the input polytopes
by the hyperplanes until each resulting partition lies in
exactly one linear region, i.e., on exactly one side of each
hyperplane. The key difference is that now the polytopes
are no longer 2D, hence, we can no longer use the 2D-

123

154 M. Sotoudeh et al.

optimized SplitPlane() and instead call the more general
SplitHyperPlane[k](P, g, N , b) defined in Algorithm 6.

The rest of the changes occur in Algorithm 6. The goal
of this algorithm is to take a polytope P and split it into (at
most) two polytopes P1 and P2, such that each Pi lies entirely
on one side of the hyperplane defined by Nx ≤ b.

In the one-dimensional base case, this is relatively simple,
aswe can directly compute the pointm atwhich the line inter-
polating between the endpoints s, e of the one-dimensional
polytope (line segment) P crosses the hyperplane.

In the n-dimensional recursive case, we recurse on each
facet of P . We then partition each of those facets into sub-
facets F1, F2 such that each sub-facet lies on entirely one side
of the hyperplane. We collect all of the sub-facets that lie on
one side into the set l and those that lie on the other side into
the set g. Then B collects the vertices that lie on the border,
i.e., ConvexHull(B) = P ∩ {x | Nx = b}. Now, consider
the surfaces of our desired partitions P1 and P2. Every point
on the surface of P1 is either a point on the surface of P
that lies on one side of the hyperplane (i.e., in one of the l
facets), or it is a point on the intersection ConvexHull(B).
Therefore, FaceHull(l) gives a satisfying P1 and FaceHull(u)

a satisfying P2.
We have experimented with such approaches, but found

that the overhead of keeping track of all (n− k)-dimensional
faces (commonly known as the face poset or combinatorial
structure [40] of a polytope) was too large in higher dimen-
sions. The two-dimensional algorithm addresses this concern
by storing the combinatorial structure implicitly, represent-
ing 2Dpolytopes by their vertices in counter-clockwise order,
from which edges correspond exactly to sequential vertices.
To our knowledge, such a compact representation allowing
arbitrary (n−k)-dimensional faces to be read off is not known
for higher-dimensional polytopes.

Theorem 4 Algorithm 6 correctly splits a polytope
ConvexHull(V) by the hyperplane Nx = b.

Proof In the k = 1 case, we have two options:

– If both endpoints are on the same side of the hyperplane,
then the splitting is just the polytope (line segment) itself,
so we return {P} correctly.

– Otherwise, we wish to split the line segment P defined
by s + α(e − s) by the intersecting, non-parallel line
defined by Nx = b. This intersection point can be com-
puted algebraically to be the point m as shown, leaving
the two partition segments ConvexHull({s,m}) and
ConvexHull({m, e}) returned.

Next, the recursive case. Notice that the algorithm only
ever partitions polytopes (never adding new points outside
the input polytope), so FaceHull(l) ∪ FaceHull(u) ⊆ P .

Algorithm 6: SplitHyperPlane[k](P, g, N , b)
Input: P , the polytope in the input space of g. A function g. The dimensionality k of

the polytope P . N and b define the hyperplane N · x = b to split on.
Output: {P1, P2}, two polytopes forming a partitioning of P such that each lies on

only one side of the N · x = b hyperplane.
1 if k = 1 then

/* Base case */
2 s, e ← Vert(P)

3 if (Ng(s) − b) (Ng(e) − b) < 0 then
4 m ← s + b−N ·g(s)

N ·(g(e)−g(s)) (e − s)

5 return {ConvexHull({s,m}),ConvexHull({m, e})}
6 return {P}
/* Recursive case */

7 l, u ← ∅,∅
8 B ← ∅
9 for F ∈ Facets(P) do

10 for S ∈ SplitHyperPlane[k − 1](F, g, N , b) do
11 B ← B ∪ {v ∈ Vert(S) | Nv = b}
12 if OnPosSide(S, N , b) then
13 u ← u ∪ {S}
14 else
15 l ← l ∪ {S}

16 l ← l ∪ {ConvexHull(B)}
17 u ← u ∪ {ConvexHull(B)}
18 return {FaceHull(l),FaceHull(u)} \ {∅}

Therefore, it suffices to show that the facets in l form the
surface of L = P ∩ {x | Nx ≤ b} and the facets in u form
the surface of U = P ∩ {x | Nx ≥ b}. We will argue for l
here, u is analogous.

Consider any point x on the surface of L . Either (i) x is
also on the surface of P , or (ii) x is interior to P , and thus
must be on the facet P ∩ {x | Nx = b}.

Case (i) implies x will be on some facet F of P , and thus x
will be in the sub-facet Fl of F intersectedwith the lower-half
L . This facet is included in l by line 13.

Case (ii) implies x will be on P ∩ {x | Nx = b}. Notice
that this is a single facet, hence its vertices will all be adjacent
to other facets. Hence, each of the verticeswill be added to set
B on line 11. So these points will be in ConvexHull(B),
and thus in l as of line 16.

Therefore, all of the surface points are accounted for in the
facet sets and therefore the returned polytopes are supersets
of the desired P1, P2. We already saw that they are also
subsets, hence they are the desired partitions P1 and P2. ��
Theorem 5 Algorithm 5 correctly computes f ⊗ ĝ�X .

Proof It suffices to show that the algorithm correctly par-
titions each input polytope P such that the signs within a
partition are constant. Notably, because of convexity, it suf-
fices to show that the signs of the vertices of each partition
are constant.

We maintain two invariants every time we process some
polytopes from the queue. The first is that the corresponding
polytopewill only be added to Y if the signs of all vertices are
constant (or zero). The second is that at each step,wepartition
the polytope into two new ones (using SplitPlane) such

123

SyReNN: A tool for analyzing deep neural networks 155

that fewer sign switches happen in each than the original
polytope. This follows from the correctness of the SplitPlane
algorithm.

The first invariant ensures that, if it halts, the algorithm
is correct. The second ensures that it will halt, as there are
finitely many dimensions to consider. ��

7 SyReNN tool

This section provides more details about the design and
implementation of our tool, SyReNN (Symbolic Represen-
tations of Neural Networks), which computes f̂�X , where
f is a DNN using only piecewise-linear layers and X is a
union of one- or two-dimensional polytopes. The tool is avail-
able under theMIT license at https://github.com/95616ARG/
SyReNN_GPU.

Input and output format. SyReNN supports reading DNNs
from two standard formats: ERAN (a textual format used
by the ERAN project [41]) as well as ONNX (an industry-
standard format supporting a wide variety of different
models) [42]. Internally, the input DNN is described as
an instance of the Network class, which is itself a list
of sequential Layers. A number of layer types are pro-
vided by SyReNN, including FullyConnectedLayer,
ConvolutionalLayer, and ReLULayer. To support
more complicated DNN architectures, we have implemented
a ConcatLayer, which represents a concatenation of the
output of two different layers. The input region of interest,
X , is defined as a polytope described by a list of its ver-
tices in counter-clockwise order. The output of the tool is the
symbolic representation f̂�X .

Overall architecture. We designed SyReNN in a client–
server architecture using gRPC [43] and protocol buffers
[44] as a standard method of communication between the
two. This architecture allows the bulk of the heavy com-
putation to be done in efficient C++ code, while allowing
user-friendly interfaces in a variety of languages. It also
allows practitioners to run the server remotely on amore pow-
erful machine if necessary. The C++ server implementation
uses the Intel TBB library for parallelization. Our front-end
library pysyrenn is written in Python. The entire project
can be built using the Bazel build system.

Server architecture. The major algorithms are implemented
as a gRPC server written in C++. When a connection is first
made, the server initializes the state with an empty DNN
f (x) = x . During the session, three operations are per-
mitted: (i) append a layer g so that the current session’s
DNN is updated from f0 to f1(x) := g(f0(x)), (ii) com-
pute f̂�X for a one-dimensional X , or (iii) compute f̂�X for
a two-dimensional X . We have separate methods for one-

and two-dimensional X , because the one-dimensional case
has specific optimizations for controlling memory usage.
The SegmentedLine and UPolytope types are used to
represent one- and two-dimensional partitions of X , respec-
tively. When operation (i) is performed, a new instance of
the LayerTransformer class is initialized with the rel-
evant parameters and added to a running vector of the
current layers. When operation (ii) is performed, a new
queue of SegmentedLines is constructed, correspond-
ing to X , and the before-allocated LayerTransformers
are applied sequentially to compute f̂�X . In this case,
extra control is provided to automatically gauge memory
usage and pause computation for portions of X until more
memory is made available. Finally, when operation (iii) is
performed, a new instance of UPolytope is initialized
with the vertices of X and the LayerTransformers are
again applied sequentially to compute f̂�X . In this case,
SyReNN can optimize the memory layout of UPolytopes
and LayerTransformers for GPU as well as perform the
GPU-based algorithm if the client asks for it.

Client architecture. Our Python client exposes an interface
for definingDNNs similar to the popular Sequential-Network
Keras API [45]. Objects represent individual layers in the
network, and they can be combined sequentially into a
Network instance. The key addition of our library is that
this Network exposes methods for computing f̂�X given a
V-representation description of X . To do this, it invokes the
server and passes a layer-by-layer description of f followed
by the polytope X , then parses the response f̂�X .

Extending to support different layer types. Different layer
types are supported by sub-classing the
LayerTransformer class. Instances of this class expose
a method for computing ExtendPWL(h, ·) for the corre-
sponding layer h. To simplify implementation, two sub-
classes of LayerTransformer are provided: one for
linear layers (such as fully-connected and convolutional lay-
ers), and one for piecewise-linear layers. For linear layers,
all that needs to be provided is a method computing the layer
function itself. For piecewise-linear layers, twomethods need
to be provided: (i) computing the layer function itself, and
(ii) describing the hyperplanes which separate the linear
regions. The base class then directly implements Algorithm 2
for that layer. At least one CPU and one GPU implementa-
tion should be provided. This architecture makes supporting
new layers a straight-forward process.

Float safety. Like Reluplex [46], SyReNN uses floating-
point arithmetic to compute f̂�X efficiently. Unfortunately,
this means that in some cases its results will not be entirely
precisewhen compared to a real-valued ormultiple-precision
version of the algorithm. If a perfectly precise solution is
required, the server code can be modified to use multiple-
precision rationals instead of floats. Alternatively, a confir-

123

https://github.com/95616ARG/SyReNN_GPU
https://github.com/95616ARG/SyReNN_GPU

156 M. Sotoudeh et al.

Fig. 4 Visualization of decision
boundaries for the ACAS Xu
network using three different
approaches. Using SyReNN
(left) quickly produces the exact
decision boundaries. Using
abstract interpretation-based
tools like DeepPoly (middle and
right) is slower and produces
only imprecise approximations
of the decision boundaries. k
gives the number of partitions
used by the DeepPoly algorithm,
impacting the coarseness of the
resulting approximation

(a) SyReNN (b) DeepPoly[k = 252] (c) DeepPoly[k = 1002]

Legend: Clear-of-Conflict, Weak Right, Strong Right, Strong Left, Weak Left.

mation pass can be run using multiple-precision numbers
after the initial float computation to confirm the accuracy
of its results. The use of over-approximations may also be
explored for ensuring correctness with floating-point eval-
uation, like in DeepPoly [27]. Unfortunately, our algorithm
does not directly lift to using such approximations, since they
may blow the originally-2D region into a higher-dimensional
(but very “flat”) over-approximate polytope, preventing us
from applying the 2D algorithm for the next layer.

Usage examples.The tool user will begin by loading amodel
from disk, like

from pysyrenn import Network
network = Network. from_file ("model. eran")

We can use this network to compute the network on finite
input points like so

import numpy as np
in_1 = np. array ([1. , −1., 0.5])
in_2 = np. array ([2. , −1.5, 2.5])
out_1 , out_2 = network .compute([in_1 , in_2])

Or we can compute the behavior of the network on all points
between in_1 and in_2 like so:

syrenn_endpoints = network . exactline (in_1 , in_2 ,
compute_preimages=True,
include_post=False)

Here, syrenn_endpoints is a Numpy array where each ele-
ment is an endpoint between in_1 and in_2, defining the
partitioning f̂�X . The include_post option allows us to avoid
re-computing the DNN on those endpoints, if its output is
important:

pre , post = network . exactline (in_1 , in_2 ,
compute_preimages=True,
include_post=True)

is equivalent to . . .
pre = network . exactline (in_1 , in_2 ,

compute_preimages=True,
include_post=False)

post = network .compute(pre)

Meanwhile, compute_preimages controlswhether the preim-
ages will be relative (a ratio between 0 and 1) or absolute (a
point between in_1 and in_2).

Similarly, given the vertices of a 2D polytope, we can
compute the f̂�X like so

in_3 = np. array ([4. , 1. , 2.])
polytope = [in_1 , in_2 , in_3]
syrenn = network . transform_plane(polytope ,

compute_preimages=True,
include_post=False)

The resulting variable syrennwill be a list of partitions,which
each partition being an array of its vertices.

8 Applications of SyReNN

This section presents the use of SyReNN in four example
case studies.

8.1 Visualization of decision boundaries for ACAS Xu
networks

Our first major task is visualizing the decision boundaries
of a DNN on infinitely many input points. Figure4 shows
a visualization of an ACAS Xu DNN [5] which takes as
input the position of an airplane and an approaching attacker,
then produces as output one of five advisories instructing the
plane, such as “clear of conflict” or to move “weak left.”
Every point in the diagram represents the relative position of
the approaching plane, while the color indicates the advisory.

One approach to such visualizations is to simply sam-
ple finitely many points and extrapolate the behavior on the
entire domain from those finitely many points. However, this
approach is imprecise and risks missing vital information
because there is no way to know the correct sampling den-
sity to use to identify all important features.

Another approach is to use a tool such as DeepPoly [27]
to over-approximate the output range of the DNN. How-

123

SyReNN: A tool for analyzing deep neural networks 157

Table 1 Comparing the performance of DNN visualization using
SyReNNversus DeepPoly for the ACASXu network [5]. f̂�X size is the
number of partitions in the symbolic representation. SyReNN time is
the time taken to compute f̂�X using SyReNN. DeepPoly[k] time is the

time taken to computeDeepPoly for approximating decision boundaries
with k partitions. Each scenario represents a different two-dimensional
slice of the input space; within each slice, the heading of the intruder
relative to the ownship along with the speed of each involved plane is
fixed

Scenario f̂�X size SyReNN time (secs) DeepPoly time (secs)

k = 252 k = 552 k = 1002

Head-on, slow 33200 0.09 26.7 127.9 421.7

Head-on, fast 30769 0.09 25.2 119.7 394.1

Perpendicular, slow 37251 0.12 26.7 127.0 418.9

Perpendicular, fast 33931 0.09 24.9 118.3 389.7

Opposite, slow 36743 0.10 27.8 132.4 436.9

Opposite, fast 38965 0.11 27.1 129.1 425.1

-Perpendicular, slow 36037 0.09 27.4 130.5 430.0

-Perpendicular, fast 33208 0.09 25.1 119.9 394.6

ever, becauseDeepPoly is a coarse over-approximation, there
may be regions of the input space for which it cannot state
with confidence the decision made by the network. In fact,
the approximations used by DeepPoly are extremely coarse.
A naïve application of DeepPoly to this problem results
in it being unable to make claims about any of the input
space of interest. In order to utilize it, we must partition the
space and run DeepPoly within each partition, which sig-
nificantly slows down the analysis. Even when using 252

partitions, Fig. 4b shows that most of the interesting region
is still unclassifiable with DeepPoly (shown in white). Only
with 1002 partitions can DeepPoly effectively approximate
the decision boundaries, although it is still quite imprecise.

By contrast, SyReNN can be used to exactly determine the
decision boundaries on any 2D polytope subset of the input
space, which can then be plotted. This is shown in Fig. 4a.
Furthermore, as shown in Table 1, the approach using
SyReNN is significantly faster than that usingDeepPoly, even
as we get the precise answer instead of an approximation.
Such visualizations can be particularly helpful in identifying
issues to be fixed using techniques such as those in Sect. 8.3.

Implementation. The helper class PlanesClassifier
is provided by our Python client library. It takes as input a
DNN f and an input region X , then computes the decision
boundaries of f on X .

The MNIST and CIFAR-10 DNNs used are from the
ERAN project [41], and more details about the models are
available on the ERAN repository. For example, the MNIST
3 × 100 model has three layers and 210 nodes, while the
MNIST 9×200 model has nine layers with 1610 nodes. The
ACAS Xu networks have 300 nodes each [46].

Performance evaluation. Timing comparisons are given
in Table 1. We see that SyReNN is quite performant, and
the time taken to compute the exact SyReNN is negligible

Table 2 Pretrained MNIST and CIFAR-10 models used to evaluate
the performance of DNNvisualization using different implementations.
f̂�X is the number of partitions in the symbolic representation. #Neurons
is the number of neurons. #Split is the number (in millons) of calls to
SplitPlane in batched ExtendPWL Algorithm 4

Model #Neurons f̂�X #Split

MNIST 3 × 100 210 7,852 0.5M

9 × 200 1,610 460,236 227M

6 × 500 3,000 665,990 607M

ConvSmall 3,604 430,502 530M

CIFAR-10 4 × 100 410 37,682 4M

9 × 200 1,810 1,523,301 814M

6 × 500 3,000 295,888 248M

even comparing with the coarsest approximation fromDeep-
Poly using 252 partitions. Experiments were performed on
an Intel Core i9-9960X with 32 cores at 4.4GHz and 128GB
of memory.

8.2 Visualization of decision boundaries for image
recognition networks

This section compares the performance of the ordered
ExtendPWL (Algorithm 2) implemented on CPU against
the batched ExtendPWL (Algorithm 4) implemented on
both CPU and GPU, in visualization tasks for larger image
recognition networks including MNIST and CIFAR-10.
Table 2 shows the pretrained models we used from ERAN
[41]. All models only use the ReLU activation function. The
models labeled withm×n are fully-connected feed-forward
neural networks withm layers in total, n neurons at each hid-
den layer. MNIST ConvSmall is a four-layer convolutional
network with 3,604 neurons. The input plane we chose to

123

158 M. Sotoudeh et al.

visualize for all MNIST networks or all CIFAR-10 networks
are the same respectively. TheMNIST networks take as input
a 28 × 28 image of a handwritten digit embedded in a 784-
dimensional input space, and predict the digit. TheCIFAR-10
DNNs take as input a 32 × 32 color image embedded in a
3,072-dimensional input space, and predict one of ten labels
including “airplane”, “bird”, “dog”, etc. Figure5 visualizes
the decision boundaries of four MNIST networks over the
same input plane (which correspond to the first four rows
in Table 3). The diagrams present the classified input planes
computed using SyReNN in its two-dimensional subspace.
Every point inside the triangle formed by the three input
images represents an image interpolated from the three ver-
tex images, while the color indicates the classification.

Performance evaluation. All experiments were performed
on an Intel Core i9-9960X with 32 cores at 4.4GHz with
128GB of memory and Titan RTXwith 24GB of GPUmem-
ory.

Table 3 shows the total time taken to compute SyReNN
using different implementations of ExtendPWL. The
Ordered-CPU column uses the Ordered ExtendPWL algo-
rithm (Algorithm 2) on a CPU; the Batched-CPU and
Batched-GPU columns use the Batched ExtendPWL algo-
rithm (Algorithm 4) on a CPU and a GPU, respectively. All
three implementations exploitmulti-threading onCPU; addi-
tionally Batched-GPU exploits CUDA on GPU.

For all but the smallest two networks (MNIST 3 × 100
and CIFAR-10 4×100), Batched-GPU is significantly faster

Fig. 5 Visualization of decision
boundaries for the MNIST
networks

Table 3 Total time for
computing f̂�X of X using
SyReNN for image recognition
networks. The parenthesized
number is speed up comparing
to Ordered-CPU

Model SyReNN time (sec)

Ordered-CPU Batched-CPU Batched-GPU

MNIST 3 × 100 0.03 0.05 (0.60x) 0.07 (0.43x)

9 × 200 5.40 2.12 (2.55x) 1.76 (3.07x)

6 × 500 78.27 122.86 (0.64x) 3.70 (21.15x)

ConvSmall 9.12 94.69 (0.10x) 4.04 (2.26x)

CIFAR-10 4 × 100 0.13 0.20 (0.65x) 0.17 (0.76x)

9 × 200 25.28 43.12 (0.59x) 4.70 (5.37x)

6 × 500 19.60 41.04 (0.48x) 1.92 (10.20x)

123

SyReNN: A tool for analyzing deep neural networks 159

Table 4 Total time spent in
ExtendPWL when computing
f̂�X of X using SyReNN for
image recognition networks.
The parenthesized number is
speed up comparing to
Ordered-CPU

Model ExtendPWL time (sec)

Ordered-CPU Batched-CPU Batched-GPU

MNIST 3 × 100 0.02 0.05 (0.40x) 0.07 (0.29x)

9 × 200 3.12 1.90 (1.64x) 1.76 (1.77x)

6 × 500 10.80 63.47 (0.17x) 3.70 (2.92x)

ConvSmall 7.80 93.61 (0.08x) 3.99 (1.95x)

CIFAR-10 4 × 100 0.10 0.18 (0.56x) 0.17 (0.59x)

9 × 200 17.43 35.83 (0.49x) 4.70 (3.71x)

6 × 500 2.30 26.43 (0.09x) 1.92 (1.20x)

than Ordered-CPU. For those two small networks the total
SyReNN time is negligible; the slowdown of Batched-GPU
could be attributed to the overhead of using the GPU (e.g.,
kernel launch time).

Except for MNIST 9 × 200 network, Ordered-CPU out-
performs Batched-CPU. Batched-CPU and Ordered-CPU
should have the same performance in computing linear
layers. Thus, one can infer that the slowdown of Batched-
CPU can be attributed to the poor performance of Batched
ExtendPWL (Algorithm 4) compared to that of Ordered
ExtendPWL (Algorithm 2). Specifically, the implemen-
tation of Ordered ExtendPWL uses pipeline parallelism,
which is better suited for the CPU. In contrast, the batched
parallelism inBatched ExtendPWL is ill suited for theCPU.
Consequently, we see that the Batched-GPU is significantly
faster than Batched-CPU.

Table 4 shows the time spent in ExtendPWL when com-
puting SyReNN. TheOrdered-CPU column uses theOrdered
ExtendPWL algorithm (Algorithm 2) on a CPU; the
Batched-CPU and Batched-GPU columns use the Batched
ExtendPWL algorithm (Algorithm 4) on a CPU and a GPU,
respectively. For all but the smallest two networks (MNIST
3 × 100 and CIFAR-10 4 × 100), Batched-GPU is signifi-
cantly faster than Ordered-CPU. Thus, we can conclude that
the speedup of SyReNNwhen usingBatched-GPUcompared
toOrdered-CPU (as seen in Table 3) cannot only be attributed
to the fact that the computation of the linear layers is signifi-
cantly faster on aGPUowing to fastermatrixmultiplications;
the use of the Batched ExtendPWL plays an important role
in achieving the speedup.

8.3 Provable repair of DNNs

We have so far seen how SyReNN can be used to analyze
trained DNNs and better understand their behavior. A natural
next step is to repair DNNs to remove buggy behavior. In this
section, we briefly describe Provable Repair of DNNs [30],
and show how SyReNN forms a key component of Provable
Polytope Repair of DNNs.

Fig. 6 Natural adversarial
example [47]

Traditional methods for fixing DNNs involve simply re-
training the DNN while focusing on the identified-buggy
points. However, this approach has a number of issues. First,
it does not provide any guarantees that a repair will be found.
This is exacerbated by the many hyperparameters involved
with DNN re-training, so the user must try many combina-
tions hoping that oneworks. Second, even if a repair is found,
it does not provide any guarantee that this is the smallest
repair — indeed, DNNs often over-correct, forgetting things
they learned earlier, causing drawdown, or a degradation of
accuracy on the original dataset after re-training. Finally, re-
training operates inherently on finitely many input points at a
time, whereas we often want to guarantee a DNN’s behavior
on infinitely many inputs, as described below.

Pointwise Repair. The simplest setting for repair is what we
call pointwise repair. In the image recognition case, point-
wise repair consists of correcting the DNN so it assigns the
correct classification to every one of a set of finitely many
input images. For example, [47] describes a dataset of Natu-
ral Adversarial Examples, i.e., challenging images that many
state-of-the-art image recognition models fail to correctly
classify. An example of such an image is given in Fig. 6. We
can use provable pointwise repair to find a minimal modi-
fication to a given DNN that causes it to correctly classify
those images.

The key theory behind pointwise DNN repair we will use
was developed in [30]. In that work, we consider the satisfi-
ability problem corresponding to the single-layer pointwise
DNN repair. In essence, we can describe the DNN’s output
as an equation in terms of the input points and the weights
of the DNN. We then want to solve these equations for the
weights that produce the desired outputs on the given inputs.
The key source of non-linearity is that, even if the input is

123

160 M. Sotoudeh et al.

fixed, changing aweight in theDNNcan changewhich nodes
are activated or inactivated, i.e., more generally, which linear
region each of the intermediate vectors in the DNN’s evalu-
ation falls into.

To address this, [30] introduced a new DNN architecture
called Decoupled DNNs (DDNNs), where there are two sets
of weights: the activation weights and the value weights.
The former have sole control over which nodes are activated,
while the latter have sole control over what the nodes out-
put if they are activated. Once the weights are decoupled in
this manner, we see that changing the value weights alone
will never change which nodes are activated or inactivated,
and this turns out to be enough to make the single-layer
repair problem linear (thus solvable in polynomial time)
for DDNNs. This is summarized by the following theorem,
reproduced from [30]:

Theorem 6 Let N be a DDNN with layers (W (a,i),W (v,i),

σ (i)) and fix an index j . Then, for any �v, N (�v) varies linearly
as a function of W (v, j).

Fortunately, there is a simple, syntactic procedure to con-
vert any DNN into an equivalent DDNN. Thus, we can take
the user-provided DNN, convert it to a DDNN, and then
repair the DDNN as a linear programming problem using
off-the-shelf solvers such as Gurobi [38].

Polytope Repair. A more challenging setting for repair is
polytope repair. For this, we consider an image classifier that
has been trained to correctly recognize digits in clear images,
andwant tomodify this classifier so it also correctly classifies
foggy variants of those images (Fig. 7). The key is that we
want to ensure it works no matter the level of fog corruption
applied. In pixel space, a single image forms a point and the
set of all foggy variants of that image forms a line segment,
with each point on the line segment corresponding to the
imagewith some percent of fog applied.We can use provable
polytope repair to find a minimal modification to a given
DNN that causes it to classify all of the points on those lines
correctly.

The key result we need for polytope repair of DDNNswas
presented in [30]:

Theorem 7 Let N be a PWL DNN with layers (W (i), σ (i))

and define aDDNN M with layers (W (i),W (v,i), σ (i)). Then,
within any linear region of the DNN N, the DDNN M is also
linear.

Fig. 7 Fog-corrupted digit [48]

This theorem states that modifications to the value weights
in a DDNN do not change the partitioning of the SyReNN
for the DDNN. Recall further that, by definition, the DDNN
behaves linearly within each SyReNN partition, and due to
properties of linear maps, we can say that the entire partition
satisfies some linear constraint if and only if its finitely many
vertex points do. Thus, as these partitions do not change dur-
ing repair for a DDNN, provable polytope repair reduces to
provable pointwise repair on the finitely many vertices of the
linear regions.The key is that onemust compute those vertex
points, but this is exactly what SyReNN allows us to do.

Case Studies. Here we report on three case studies from
[30]. In the first, Provable Repair was used to repair an
image-recognition network that struggled to classify a set of
challenging images. In the second, Provable Repair was used
to repair a digit-recognition network that struggled to clas-
sify images with varying amounts of fog applied. Finally, the
third uses Provable Repair to enforce a safety specification
on the ACAS Xu DNN seen in Sect. 8.1.

Implementation. TheDNNRepair code is available as a sep-
arate Python library called PRDNN that interfaces with our
Python client. It takes as input a DNN f and pairs of input
region, output label Xi ,Yi , then computes a new DNN f ′
which maps all points in each Xi into Yi .

Baseline.We compared against a baseline using fine-tuning,
i.e., re-training the DNN with the buggy inputs until they are
all correctly classified. We discuss a variety of alternative
repairmethods inSect. 9; to our knowledge, almost none have
publicly-available implementations, none support the guar-
antees of time complexity and completeness that PRDNN
does, and none support provable polytope repair.

Empirical results. Results for the challenging-images task
are summarized in Table 5. Results for the foggy-digits task
are summarized in Table 6. Drawdown is the drop in accuracy
on the original dataset, while generalization is the increase
in accuracy on points that are misclassified by the buggy
network in a similar way to those repaired on.

For the aircraft collision-avoidance task, Provable Poly-
tope Repair succeeded in under 22 seconds, with zero draw-

Table 5 Summary of experimental results for task 1.D:Drawdown (%),
T: Time, BD: Best Drawdown, PR: Provable Repair, FT: Fine-Tuning
baseline

Points PR (BD) FT[1] FT[2]

D T D T D T

100 3.6 1m39.0 s 10.2 4m31.8 s 8.2 9m24.0 s

200 1.1 2m50.8 s 9.6 12m19.5 s 9.6 26m35.0 s

400 5.1 4m45.3 s 13.8 34m2.6 s 11.1 1h9m26.8 s

752 5.3 8m28.1 s 15.4 1h22m18.7 s 13.4 2h33m8.2 s

123

SyReNN: A tool for analyzing deep neural networks 161

Table 6 Summary of experimental results for task 2. D: Drawdown
(%), G: Generalization (%), T: Time, PR: provable repair, FT: fine-
tuning baseline. ∗ means fine-tuning diverged and timed out after 1000

epochs, the results shown are from the last iteration of fine-tuning before
the timeout

Lines Points PR (Layer 2) PR (Layer 3) FT[1] FT[2]

D G T D G T D G T D G T

10 1730 1.3 30.7 2m 5.7 32.1 2 s 56.0 4.2 0.4 s 8.3 27.5 0.6 s

25 4314 1.8 35.5 3m 5.5 38.3 4 s 36.5 22.4 1 s 3.8 51.0 0.4 s

50 8354 2.6 38.3 4m 5.9 44.5 8 s 85.2∗ −8.2∗ 30m∗ 4.7 55.8 0.8 s

100 16024 2.4 42.9 11m 5.9 46.0 18s 31.4 37.7 3 s 3.2 60.0 2 s

down and 95% generalization. Meanwhile, the fine-tuning
baseline timed out after over 1 hour, and had negative effi-
cacy; while the original network misclassified only 3 points
in the sampled repair set, the FT-repaired network misclas-
sified 181 points; 12% drawdown; and 96% generalization.

8.4 Integrated gradients

Acommonproblem in thefieldof explainablemachine learn-
ing is understanding why a DNN made the prediction it did.
For example, given an image classified by a DNN as a ‘cat,’
why did the DNN decide it was a cat instead of, say, a dog?
Were there particular pixels which were particularly impor-
tant in deciding this? Integrated Gradients (IG) [31] is the
state-of-the-art method for computing such model attribu-
tions.

Definition 5 Given a DNN f , the integrated gradients along
dimension i for input x and baseline x ′ is defined to be:

IGi (x)
de f= (xi − x ′

i)×
∫ 1

α=0

∂ f (x ′ + α × (x − x ′))
∂xi

dα. (2)

The computed value IGi (x) determines relatively how
important the i th input (e.g., pixel) was to the classification.

However, exactly computing this integral requires a sym-
bolic, closed form for the gradient of the network. Until [25],
it was not known how to compute such a closed-form and so
IGs were always only approximated using a sampling-based
approach. Unfortunately, because it was unknown how to
compute the true value, there was no way for practitioners
to determine how accurate their approximations were. This
is particularly concerning in fairness applications where an
accurate attribution is exceedingly important.

In [25], it was recognized that, when X = ConvexHull
({x, x ′}), f̂�X can be used to exactly compute IGi (x). This is

because within each partition of f̂�X the gradient of the net-
work is constant because it behaves as a linear function, and
hence the integral can be written as the weighted sum of such
finitely many gradients. Using our symbolic representation,

the exact IG can thus be computed as follows:

∑
ConvexHull({yi ,y′

i })∈ ̂f�ConvexHull({x,x ′})

(y′
i − yi)

×∂ f (0.5 × (yi + y′
i))

∂xi
(3)

Where here yi , y′
i are the endpoints of the segment with yi

closer to x and y′
i closest to x ′.

Implementation. The helper class IntegratedGradien
tsHelper is provided by our Python client library. It takes
as input a DNN f and a set of (x, x ′) input-baseline pairs
and then computes IG for each pair.

Empirical results. In [25] SyReNN was used to show
conclusively that existing sampling-based methods were
insufficient to adequately approximate the true IG. This real-
ization led to changes in the official IG implementation to use
themore-precise trapezoidal samplingmethodwe argued for.

Timing numbers. In those experiments, we used SyReNN to
compute f̂�X for three different DNNs f , namely the small,
medium, and large convolutional models from [41]. For each
DNN, we ran SyReNN on 100 one-dimensional lines. The
100 calls to SyReNNcompleted in 20.8 s for the smallmodel,
183.3 for the medium model, and 615.5 for the big model.
Tests were performed on an Intel Core i7-7820X CPU at
3.60GHz with 32GB of memory.

9 Related work

SyReNN Primitive. The related problem of exact reach set
analysis for DNNs was investigated in [49]. However, the
authors use an algorithm that appears to suggest explicitly
enumerating all exponentially-many (2n) possible signs at
each ReLU layer. By contrast, our algorithm adapts to the
actual input polytopes, efficiently restricting its consideration
to activations that are actually possible. Furthermore, they
focus on the particular problem of reach set analysis for full-
dimensional subsets of the DNN’s input domain, whereas

123

162 M. Sotoudeh et al.

the key focus of SyReNN is enabling analyses such as IG,
visualization, and repair that rely on precise and efficient
analysis of low-dimensional subsets of the input domain.
These differences in focus become clear in the evaluation,
where the approach of [49] takes multiple minutes to iden-
tify 1250 linear regions, while SyReNN identifies tens of
thousands of lower-dimensional linear regions in less than a
second (Sect. 8). Newer algorithms and representations [50]
may further improve the performance of higher-dimensional
exact analysis in the future, however we expect techniques
specialized to the low-dimensional case to continue to be sig-
nificantly faster.1 Thus, the choice of which approach to use
is mostly driven by application domain constraints, e.g., the
applications in Sect. 8 were inherently low-dimensional.

Hanin and Rolnick [51] prove theoretical properties about

the cardinality of f̂�X forReLUnetworks, showing that
∣∣∣̂ f�X ∣∣∣

is expected to grow polynomially with the number of nodes
in the network for randomly-initialized networks.

Thrun [52] and Bastani et al. [53] extract symbolic rules
meant to approximate DNNs, which can approximate the
symbolic representation f̂�X .

DNN Visualization and Understanding. Integrated Gradients
was first proposed by [31], however they used a Riemann
sum approximation instead of computing it exactly. The one-
dimensional version of SyReNN [25] was the first approach
able to exactly compute IG.

The ERAN [41] tool and underlying DeepPoly [27]
domain were designed to verify the non-existence of adver-
sarial examples.Breutel et al. [54] give an iterative refinement
algorithm for an overapproximation of the weakest precondi-
tion as apolytopewhere the requiredoutput is also apolytope.

Scheibler et al. [55] verify the safety of amachine-learning
controller using the SMT-solver iSAT3, but support small
unrolling depths and basic safety properties. Zhu et al. [56]
use a synthesis procedure to generate a safe deterministic
program that can enforce safety conditions by monitoring
the deployedDNN and preventing potentially unsafe actions.
The presence of adversarial and fooling inputs for DNNs as
well as applications of DNNs in safety-critical systems has
led to efforts to verify and certify DNNs [27,28,46,57–62].
Approximate reachability analysis for neural networks safely
overapproximates the set of possible outputs [28,49,50,61,
63–65].

Given polytopes in the output space, Yang et al. [66] com-
pute the exact set of corresponding input polytopes. Their
technique is restricted to DNNs with ReLU but supports
polytopes in arbitrary-dimensional subspaces. They utilize
the facet-vertex incidence matrix (FVIM), which is a com-
pact representation of convex polytopes.

1 As noted in [25], this technically requires a slight strengthening of the
definition of f̂�X which is satisfied by our algorithms as defined above.

Provable Repair. Prior work in the area of network repair
focuses on enforcing constraints on the network during train-
ing. DiffAI [67] is an approach to train neural networks that
are certifiably robust to adversarial perturbations. DL2 [68]
allows for training and querying neural networks with logical
constraints.

The layer-wise repair process described in [29] is most
similar to the one described in this paper. The key advantage
of our approach is the use of Decoupled DNNs. Decoupled
DNNs allow for both guaranteed polytope repair as well
as guaranteed polynomial-time pointwise repair, neither of
which is guaranteed by any other system that we are aware
of. Furthermore, to our knowledge, the repair system in [29]
is not publicly available for comparison. In theory, any point-
wise repair algorithm (such as the one in [29]) could be used
along with Decoupled DNNs in order to enable polytope
repair.

10 Conclusion

We presented SyReNN, a tool for understanding and ana-
lyzing DNNs. Given a piecewise-linear network and a low-
dimensional polytope subspace of the input space, SyReNN
computes a symbolic representation that decomposes the
behavior of the DNN into finitely many linear functions. We
showed how to efficiently compute this representation, and
presented the design of the corresponding tool.We illustrated
the utility of SyReNN on three application domains: visual-
izing the behavior of DNNs, repairing DNNs, and computing
exact IG.

In contrast to prior work, SyReNN explores a unique point
in the design space of DNN analysis tools. Instead of trading
off precision of the analysis for efficiency, SyReNN focuses
on analyzing DNN behavior on low-dimensional subspaces
of the domain, for which we can provide both efficiency and
precision.

Acknowledgements We thank the reviewers for their comments, which
greatly improved the quality of the paper. Matthew Sotoudeh is sup-
ported by NSF grant DGE-1656518. This work is supported in part by
NSF grant CCF-2048123 and DOE Award DE-SC0022285.

References

1. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT
Press (2016), http://www.deeplearningbook.org

2. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.:
Rethinking the Inception Architecture for Computer Vision. In:
2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. pp.
2818–2826. IEEE Computer Society (2016). https://doi.org/10.
1109/CVPR.2016.308

3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet Classifi-
cation with Deep Convolutional Neural Networks. In: Bartlett,

123

http://www.deeplearningbook.org
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308

SyReNN: A tool for analyzing deep neural networks 163

P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems
25: 26th Annual Conference on Neural Information Process-
ing Systems 2012. Proceedings of a meeting held December
3-6, 2012, Lake Tahoe, Nevada, United States. pp. 1106–1114
(2012), http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks

4. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding.
In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the
2019Conference of theNorthAmericanChapter of theAssociation
for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers). pp. 4171–4186. Association
for Computational Linguistics (2019). https://doi.org/10.18653/
v1/n19-1423

5. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural net-
work compression for aircraft collision avoidance systems. CoRR
arXiv:1810.04240 (2018)

6. Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A.,
Do,B.T.,Way,G.P., Ferrero, E.,Agapow, P.M., Zietz,M.,Hoffman,
M.M.,Xie,W., Rosen,G.L., Lengerich, B.J., Israeli, J., Lanchantin,
J., Woloszynek, S., Carpenter, A.E., Shrikumar, A., Xu, J., Cofer,
E.M., Lavender, C.A., Turaga, S.C., Alexandari, A.M., Lu, Z., Har-
ris, D.J., DeCaprio, D., Qi, Y., Kundaje, A., Peng, Y., Wiley, L.K.,
Segler, M.H.S., Boca, S.M., Swamidass, S.J., Huang, A., Gitter,
A., Greene, C.S.: Opportunities and obstacles for deep learning
in biology and medicine. J Royal Soc Interf 15(141), 20170387
(2018). https://doi.org/10.1098/rsif.2017.0387

7. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learn-
ing for healthcare: review, opportunities and challenges. Briefings
Bioinform. 19(6), 1236–1246 (2018). https://doi.org/10.1093/bib/
bbx044

8. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L.H., Aerts,
H.J.: Artificial Intelligence in Radiology. Nature Reviews Cancer
p. 1 (2018)

9. Mendelson, E.B.: Artificial intelligence in breast imaging: poten-
tials and limitations. Am. J. Roentgenol. 212(2), 293–299 (2019)

10. Sharma, H., Park, J., Mahajan, D., Amaro, E., Kim, J.K., Shao,
C., Mishra, A., Esmaeilzadeh, H.: From High-Level Deep Neu-
ral Models to FPGAS. In: 49th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2016, Taipei, Taiwan,
October 15-19, 2016. pp. 17:1–17:12. IEEE Computer Society
(2016). https://doi.org/10.1109/MICRO.2016.7783720

11. Chen, J., Ran, X.: Deep learning with edge computing: a review.
Proc. IEEE 107(8), 1655–1674 (2019). https://doi.org/10.1109/
JPROC.2019.2921977

12. Gopinath, S., Ghanathe, N., Seshadri, V., Sharma, R.: Compil-
ing kb-Sized Machine Learning Models to Tiny IOT Devices.
In: McKinley, K.S., Fisher, K. (eds.) Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26,
2019. pp. 79–95. ACM (2019). https://doi.org/10.1145/3314221.
3314597

13. Kumar, A., Seshadri, V., Sharma, R.: Shiftry: RNN inference in 2kb
of RAM. Proc. ACM Program. Lang. 4(OOPSLA), 182:1-182:30
(2020). https://doi.org/10.1145/3428250

14. Kusupati, A., Singh, M., Bhatia, K., Kumar, A., Jain, P., Varma,
M.: Fastgrnn: A Fast, Accurate, Stable and Tiny Kilobyte Sized
Gated Recurrent Neural Network. In: Bengio, S., Wallach, H.M.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada. pp. 9031–
9042 (2018)

15. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing
Deep Neural Network with Pruning, Trained Quantization and
Huffman Coding. In: Bengio, Y., LeCun, Y. (eds.) 4th Interna-
tional Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings
(2016), arxiv:1510.00149

16. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I.J., Fergus, R.: Intriguing Properties of Neural
Networks. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Con-
ference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings (2014),
arxiv:1312.6199

17. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and Har-
nessing Adversarial Examples. In: Bengio, Y., LeCun, Y. (eds.)
3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings (2015), arxiv:1412.6572

18. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: Deepfool: A Sim-
ple and Accurate Method to Fool Deep Neural Networks. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 2574–
2582. IEEE Computer Society (2016). https://doi.org/10.1109/
CVPR.2016.282

19. Carlini, N., Wagner, D.A.: Audio Adversarial Examples: Targeted
attacks on speech-to-text. In: 2018 IEEE Security and Privacy
Workshops, SP Workshops 2018, San Francisco, CA, USA, May
24, 2018. pp. 1–7. IEEE Computer Society (2018). https://doi.org/
10.1109/SPW.2018.00009

20. Nguyen, A.M., Yosinski, J., Clune, J.: Deep Neural Networks are
Easily Fooled: High Confidence Predictions for Unrecognizable
Images. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015.
pp. 427–436. IEEE Computer Society (2015). https://doi.org/10.
1109/CVPR.2015.7298640

21. Lee, D.: US opens investigation into Tesla after fatal crash. BBC.
https://www.bbc.co.uk/news/technology-36680043 (Jul 2016),
accessed: 2020-06-06

22. Gonzales, R.: Feds say self-driving Uber SUV did not recognize
jaywalking pedestrian in fatal crash. NPR https://www.npr.org/
2019/11/07/777438412/feds-say-self-driving-uber-suv-did-not-
recognize-jaywalking-pedestrian-in-fatal- (Nov 2019), accessed:
2020-06-06

23. Hern, A.: Facebook Translates Good Morning into Attack them,
Leading to Arrest. https://www.theguardian.com/technology/
2017/oct/24/facebook-palestine-israel-translates-good-morning-
attack-them-arrest (Jun 2017), Accessed: 2020-06-06

24. Hill, K.: Wrongfully Accused by an Algorithm. New York
Times. https://www.nytimes.com/2020/06/24/technology/facial-
recognition-arrest.html (Jun 2020), accessed: 2020-06-06

25. Sotoudeh, M., Thakur, A.V.: Computing Linear Restrictions
of Neural Networks. In: Wallach, H.M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R.
(eds.) Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada. pp. 14132–14143 (2019), http://papers.nips.cc/paper/
9562-computing-linear-restrictions-of-neural-networks

26. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast
and Effective Robustness Certification. In: Bengio, S., Wallach,
H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R.
(eds.) Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. pp.
10825–10836 (2018), http://papers.nips.cc/paper/8278-fast-and-
effective-robustness-certification

123

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://arxiv.org/abs/1810.04240
https://doi.org/10.1098/rsif.2017.0387
https://doi.org/10.1093/bib/bbx044
https://doi.org/10.1093/bib/bbx044
https://doi.org/10.1109/MICRO.2016.7783720
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1145/3314221.3314597
https://doi.org/10.1145/3314221.3314597
https://doi.org/10.1145/3428250
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/SPW.2018.00009
https://doi.org/10.1109/SPW.2018.00009
https://doi.org/10.1109/CVPR.2015.7298640
https://doi.org/10.1109/CVPR.2015.7298640
https://www.bbc.co.uk/news/technology-36680043
https://www.npr.org/2019/11/07/777438412/feds-say-self-driving-uber-suv-did-not-recognize-jaywalking-pedestrian-in-fatal-
https://www.npr.org/2019/11/07/777438412/feds-say-self-driving-uber-suv-did-not-recognize-jaywalking-pedestrian-in-fatal-
https://www.npr.org/2019/11/07/777438412/feds-say-self-driving-uber-suv-did-not-recognize-jaywalking-pedestrian-in-fatal-
https://www.theguardian.com/technology/2017/oct/24/facebook-palestine-israel-translates-good-morning-attack-them-arrest
https://www.theguardian.com/technology/2017/oct/24/facebook-palestine-israel-translates-good-morning-attack-them-arrest
https://www.theguardian.com/technology/2017/oct/24/facebook-palestine-israel-translates-good-morning-attack-them-arrest
https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html
https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html
http://papers.nips.cc/paper/9562-computing-linear-restrictions-of-neural-networks
http://papers.nips.cc/paper/9562-computing-linear-restrictions-of-neural-networks
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification

164 M. Sotoudeh et al.

27. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract
domain for certifying neural networks. Proc. ACMProgram. Lang.
3(POPL), 41:1-41:30 (2019). https://doi.org/10.1145/3290354

28. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaud-
huri, S., Vechev, M.T.: AI2: Safety and Robustness Certification of
Neural Networks with Abstract Interpretation. In: 2018 IEEE Sym-
posium on Security and Privacy, SP 2018, Proceedings, 21-23May
2018, San Francisco, California, USA. pp. 3–18. IEEE Computer
Society (2018). https://doi.org/10.1109/SP.2018.00058

29. Goldberger, B., Katz, G., Adi, Y., Keshet, J.: Minimal Modifica-
tions of Deep Neural Networks Using Verification. In: Albert, E.,
Kovács, L. (eds.) LPAR 2020: 23rd International Conference on
Logic for Programming, Artificial Intelligence andReasoning, Ali-
cante, Spain, May 22-27, 2020. EPiC Series in Computing, vol. 73,
pp. 260–278. EasyChair (2020). https://doi.org/10.29007/699q

30. Sotoudeh, M., Thakur, A.V.: Provable Repair of Deep Neural Net-
works. In: 42nd ACM SIGPLAN International Conference on
ProgrammingLanguageDesign and Implementation (PLDI).ACM
(2021)

31. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic Attribution for
Deep Networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of
the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017. Proceedings
of Machine Learning Research, vol. 70, pp. 3319–3328. PMLR
(2017), http://proceedings.mlr.press/v70/sundararajan17a.html

32. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for
Multi-Core Processor Parallelism.O’ReillyMedia Inc, Sebastopol,
California (2007)

33. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.
org (2010)

34. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmai-
son, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In: Wallach, H.M., Larochelle, H., Beygelzimer, A.,
d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neu-
ral Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada. pp. 8024–8035
(2019), http://papers.nips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library

35. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,
Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differ-
entiation in PyTorch (2017)

36. Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer Science
& Business Media, New York (2012)

37. Gläßle, T.: C++11 fourier motzkin elimination utilities. https://
github.com/coldfix/cfme (2016)

38. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual
(2022), https://www.gurobi.com

39. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract
Domains for Static Analysis. In: Bouajjani, A., Maler, O. (eds.)
Computer Aided Verification, 21st International Conference, CAV
2009, Grenoble, France, June 26 - July 2, 2009. Proceedings. Lec-
ture Notes in Computer Science, vol. 5643, pp. 661–667. Springer
(2009). https://doi.org/10.1007/978-3-642-02658-4_52

40. Fukuda, K., et al.: Frequently AskedQuestions in Polyhedral Com-
putation. ETH, Zurich, Switzerland (2004)

41. ETH robustness analyzer for neural networks (ERAN). https://
github.com/eth-sri/eran (2019), Accessed: 2019-05-01

42. ONNX: Open neural network exchange. https://onnx.ai/ (2020)
43. Google: grpc: A high-performance, open source universal RPC

framework. https://grpc.io/ (2020)
44. Google: Protocol buffers - google’s data interchange format.

https://developers.google.com/protocol-buffers/ (2020)

45. Chollet, F., et al.: Keras. https://keras.io (2015)
46. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.:

Reluplex: An Efficient SMT Solver for Verifying Deep Neural
Networks. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided
Verification - 29th International Conference, CAV 2017, Heidel-
berg, Germany, July 24-28, 2017, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 10426, pp. 97–117. Springer
(2017). https://doi.org/10.1007/978-3-319-63387-9_5

47. Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., Song, D.: Natu-
ral Adversarial Examples. arXiv preprint arXiv:1907.07174 (2019)

48. Mu, N., Gilmer, J.: MNIST-C: A robustness benchmark for com-
puter vision. CoRR arXiv:1906.02337 (2019)

49. Xiang, W., Tran, H., Johnson, T.T.: Reachable set computation and
safety verification for neural networks with relu activations. CoRR
arXiv:1712.08163 (2017)

50. Tran, H., Lopez, D.M., Musau, P., Yang, X., Nguyen, L.V., Xiang,
W., Johnson, T.T.: Star-Based Reachability Analysis of Deep Neu-
ral Networks. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.)
Formal Methods - The Next 30 Years - Third World Congress, FM
2019, Porto, Portugal, October 7-11, 2019, Proceedings. Lecture
Notes in Computer Science, vol. 11800, pp. 670–686. Springer
(2019). https://doi.org/10.1007/978-3-030-30942-8_39

51. Hanin, B., Rolnick, D.: Complexity of Linear Regions in Deep
Networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings
of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA. Proceedings
of Machine Learning Research, vol. 97, pp. 2596–2604. PMLR
(2019), http://proceedings.mlr.press/v97/hanin19a.html

52. Thrun, S.: Extracting Rules from Artifical Neural Networks with
Distributed Representations. In: Tesauro, G., Touretzky, D.S.,
Leen, T.K. (eds.) Advances in Neural Information Processing Sys-
tems 7, [NIPS Conference, Denver, Colorado, USA, 1994]. pp.
505–512. MIT Press (1994)

53. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable Reinforce-
ment Learning Via Policy Extraction. In: Bengio, S., Wallach,
H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Gar-
nett, R. (eds.) Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. pp. 2499–2509 (2018), http://papers.nips.cc/paper/7516-
verifiable-reinforcement-learning-via-policy-extraction

54. Breutel, S., Maire, F., Hayward, R.: Extracting Interface Asser-
tions from Neural Networks in Polyhedral Format. In: ESANN
2003, 11th European Symposium on Artificial Neural Net-
works, Bruges, Belgium, April 23-25, 2003, Proceedings. pp.
463–468 (2003), https://www.elen.ucl.ac.be/Proceedings/esann/
esannpdf/es2003-72.pdf

55. Scheibler, K., Winterer, L., Wimmer, R., Becker, B.: Towards Veri-
fication ofArtificialNeuralNetworks. In:Heinkel, U., Kriesten,D.,
Rößler, M. (eds.) Methoden und Beschreibungssprachen zur Mod-
ellierung und Verifikation von Schaltungen und Systemen,MBMV
2015, Chemnitz, Germany, March 3-4, 2015. pp. 30–40. Sächsis-
che Landesbibliothek (2015)

56. Zhu, H., Xiong, Z., Magill, S., Jagannathan, S.: An Induc-
tive Synthesis Framework for Verifiable Reinforcement Learning.
In: McKinley, K.S., Fisher, K. (eds.) Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-
26, 2019. pp. 686–701. ACM (2019). https://doi.org/10.1145/
3314221.3314638

57. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori,
A.V., Criminisi, A.: Measuring Neural Net Robustness With Con-
straints. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon,
I., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing
Systems 2016, December 5-10, 2016, Barcelona, Spain. pp. 2613–

123

https://doi.org/10.1145/3290354
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.29007/699q
http://proceedings.mlr.press/v70/sundararajan17a.html
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
https://github.com/coldfix/cfme
https://github.com/coldfix/cfme
https://www.gurobi.com
https://doi.org/10.1007/978-3-642-02658-4_52
https://github.com/eth-sri/eran
https://github.com/eth-sri/eran
https://onnx.ai/
https://grpc.io/
https://developers.google.com/protocol-buffers/
https://keras.io
https://doi.org/10.1007/978-3-319-63387-9_5
http://arxiv.org/abs/1907.07174
http://arxiv.org/abs/1906.02337
http://arxiv.org/abs/1712.08163
https://doi.org/10.1007/978-3-030-30942-8_39
http://proceedings.mlr.press/v97/hanin19a.html
http://papers.nips.cc/paper/7516-verifiable-reinforcement-learning-via-policy-extraction
http://papers.nips.cc/paper/7516-verifiable-reinforcement-learning-via-policy-extraction
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2003-72.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2003-72.pdf
https://doi.org/10.1145/3314221.3314638
https://doi.org/10.1145/3314221.3314638

SyReNN: A tool for analyzing deep neural networks 165

2621 (2016), http://papers.nips.cc/paper/6339-measuring-neural-
net-robustness-with-constraints

58. Ehlers, R.: FormalVerification of Piece-Wise Linear Feed-Forward
Neural Networks. In: D’Souza, D., Kumar, K.N. (eds.) Automated
Technology for Verification andAnalysis - 15th International Sym-
posium, ATVA 2017, Pune, India, October 3-6, 2017, Proceedings.
Lecture Notes in Computer Science, vol. 10482, pp. 269–286.
Springer (2017). https://doi.org/10.1007/978-3-319-68167-2_19

59. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety Verifica-
tion of Deep neural Networks. In: Majumdar, R., Kuncak, V. (eds.)
ComputerAidedVerification - 29th International Conference, CAV
2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 10426, pp. 3–29. Springer
(2017). https://doi.org/10.1007/978-3-319-63387-9_1

60. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda,
P.K.: A Unified View of Piecewise Linear Neural Network
Verification. In: Bengio, S., Wallach, H.M., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada. pp. 4795–
4804 (2018), http://papers.nips.cc/paper/7728-a-unified-view-of-
piecewise-linear-neural-network-verification

61. Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C., Daniel, L.,
Boning, D.S., Dhillon, I.S.: Towards Fast Computation of Certi-
fied Robustness for Relu Networks. In: Dy, J.G., Krause, A. (eds.)
Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018. Proceedings of Machine Learning Research,
vol. 80, pp. 5273–5282. PMLR (2018), http://proceedings.mlr.
press/v80/weng18a.html

62. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization
andAbstraction: a SynergisticApproach forAnalyzingNeuralNet-
workRobustness. In:McKinley,K.S., Fisher, K. (eds.) Proceedings
of the 40th ACM SIGPLAN Conference on Programming Lan-
guageDesign and Implementation, PLDI 2019, Phoenix,AZ,USA,
June 22-26, 2019. pp. 731–744. ACM (2019). https://doi.org/10.
1145/3314221.3314614

63. Xiang, W., Tran, H., Rosenfeld, J.A., Johnson, T.T.: Reachable
Set Estimation and Safety Verification for Piecewise Linear Sys-
tems with Neural Network Controllers. In: 2018 Annual American
Control Conference, ACC 2018, Milwaukee, WI, USA, June 27-
29, 2018. pp. 1574–1579. IEEE (2018). https://doi.org/10.23919/
ACC.2018.8431048

64. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output Range
Analysis for Deep Feedforward Neural Networks. In: Dutle, A.,
Muñoz, C.A., Narkawicz, A. (eds.) NASA Formal Methods - 10th
International Symposium, NFM 2018, Newport News, VA, USA,
April 17-19, 2018, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 10811, pp. 121–138. Springer (2018). https://doi.org/10.
1007/978-3-319-77935-5_9

65. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal Secu-
rity Analysis of Neural Networks Using Symbolic Intervals. In:
Enck, W., Felt, A.P. (eds.) 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018. pp. 1599–1614. USENIX Association (2018), https://www.
usenix.org/conference/usenixsecurity18/presentation/wang-shiqi

66. Yang, X., Johnson, T.T., Tran, H., Yamaguchi, T., Hoxha, B.,
Prokhorov, D.V.: Reachability Analysis of Deep Relu Neural Net-
works using Facet-Vertex Incidence. In: HSCC ’21: 24th ACM
International Conference on Hybrid Systems: Computation and
Control, Nashville, Tennessee, May 19-21, 2021. pp. 18:1–18:7.
ACM (2021). https://doi.org/10.1145/3447928.3456650

67. Mirman, M., Gehr, T., Vechev, M.T.: Differentiable Abstract Inter-
pretation for Provably Robust Neural Networks. In: Dy, J.G.,
Krause, A. (eds.) Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine
Learning Research, vol. 80, pp. 3575–3583. PMLR (2018), http://
proceedings.mlr.press/v80/mirman18b.html

68. Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang,
C., Vechev, M.T.: DL2: Training and Querying Neural Networks
withLogic. In:Chaudhuri,K., Salakhutdinov,R. (eds.) Proceedings
of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA. Proceedings
of Machine Learning Research, vol. 97, pp. 1931–1941. PMLR
(2019), http://proceedings.mlr.press/v97/fischer19a.html

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://papers.nips.cc/paper/6339-measuring-neural-net-robustness-with-constraints
http://papers.nips.cc/paper/6339-measuring-neural-net-robustness-with-constraints
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-63387-9_1
http://papers.nips.cc/paper/7728-a-unified-view-of-piecewise-linear-neural-network-verification
http://papers.nips.cc/paper/7728-a-unified-view-of-piecewise-linear-neural-network-verification
http://proceedings.mlr.press/v80/weng18a.html
http://proceedings.mlr.press/v80/weng18a.html
https://doi.org/10.1145/3314221.3314614
https://doi.org/10.1145/3314221.3314614
https://doi.org/10.23919/ACC.2018.8431048
https://doi.org/10.23919/ACC.2018.8431048
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://doi.org/10.1145/3447928.3456650
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v97/fischer19a.html

	SyReNN: A tool for analyzing deep neural networks
	Abstract
	1 Introduction
	2 Preliminaries
	3 A symbolic representation of DNNs
	4 Computing the symbolic representation on 2D regions
	4.1 Algorithm for ExtendPWL
	4.2 Representing Polytopes

	5 Batched ExtendPWL Algorithm
	6 Extending to higher-dimensional regions
	7 SyReNN tool
	8 Applications of SyReNN
	8.1 Visualization of decision boundaries for ACAS Xu networks
	8.2 Visualization of decision boundaries for image recognition networks
	8.3 Provable repair of DNNs
	8.4 Integrated gradients

	9 Related work
	10 Conclusion
	Acknowledgements
	References

