
International Journal on Software Tools for Technology Transfer (2022) 24:821–841

https://doi.org/10.1007/s10009-022-00675-x

GENERAL

Special Issue: TACAS 2020

Analysis of non-Markovian repairable fault trees through rare event
simulation

Carlos E. Budde1 · Pedro R. D’Argenio2,3,4 · Raúl E. Monti5 ·Mariëlle Stoelinga5,6

Accepted: 29 August 2022 / Published online: 4 November 2022

© The Author(s) 2022, corrected publication 2023

Abstract

Dynamic fault trees (DFTs) are widely adopted in industry to assess the dependability of safety-critical equipment. Since

many systems are too large to be studied numerically, DFTs dependability is often analysed using Monte Carlo simulation. A

bottleneck here is that many simulation samples are required in the case of rare events, e.g. in highly reliable systems where

components seldom fail. Rare event simulation (RES) provides techniques to reduce the number of samples in the case of rare

events. In this article, we present a RES technique based on importance splitting to study failures in highly reliable DFTs,

more precisely, on a variant of repairable fault trees (RFT). Whereas RES usually requires meta-information from an expert,

our method is fully automatic. For this, we propose two different methods to derive the so-called importance function. On the

one hand, we propose to cleverly exploit the RFT structure to compositionally construct such function. On the other hand, we

explore different importance functions derived in different ways from the minimal cut sets of the tree, i.e., the minimal units

that determine its failure. We handle RFTs with Markovian and non-Markovian failure and repair distributions—for which

no numerical methods exist—and implement the techniques on a toolchain that includes the RES engine FIG, for which we

also present improvements. We finally show the efficiency of our approach in several case studies.

Keywords Rare event simulation · Fault tree analysis · Statistical model checking · System reliability

The authors are listed in alphabetical order. This work was partially

supported by the EU Grant Agreement 101008233 (MISSION),

ANPCyT PICT-2017-3894 (RAFTSys), and SeCyT project

33620180100354CB (ARES). Funded also by the EU Grant

Agreement 101067199 (ProSVED). Views and opinions expressed are

however those of the author(s) only and do not necessarily reflect

those of the European Union or The European Research Executive

Agency. Neither the European Union nor the granting authority can be

held responsible for them.

B Carlos E. Budde

carlosesteban.budde@unitn.it

Pedro R. D’Argenio

pedro.dargenio@unc.edu.ar

Raúl E. Monti

r.e.monti@utwente.nl

Mariëlle Stoelinga

m.i.a.stoelinga@utwente.nl

1 Department of Information Engineering and Computer

Science, University of Trento, Trento, Italy

2 FAMAF, Universidad Nacional de Córdoba, Córdoba,

Argentina

1 Introduction

Reliability engineering is an important field that provides

methods and tools to assess and mitigate the risks related

to complex systems. Fault tree analysis (FTA) is a promi-

nent technique here. Its application encompasses a large

number of industrial domains that range from automotive

and aerospace system engineering to energy and telecom-

munication systems and protocols. Fault trees. A fault tree

(FT) describes how component failures occur and propagate

through the system, eventually generating system-wide fail-

ures. Technically, an FT is a directed acyclic graph whose

leaves model component failures and whose other nodes

3 CONICET, Córdoba, Argentina

4 Department of Computer Science, Saarland University,

Saarbrücken, Germany

5 Formal Methods and Tools, University of Twente, Enschede,

The Netherlands

6 Department of Software Science, Radboud University,

Nijmegen, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-022-00675-x&domain=pdf

822 C. E. Budde et al.

(called gates) model failure propagation. Using fault trees,

one can compute dependability metrics to quantify how a sys-

tem fares w.r.t. certain performance indicators. Two common

metrics are system reliability—the probability that there are

no system failures during a given mission time—and system

availability—the average percentage of time that a system is

operational. Static fault trees (also known as standard FTs)

contain a few basic gates, likeAND andOR gates. This makes

them easy to design and analyse but also limits their expres-

sivity. Dynamic fault trees (DFTs [26,57]) are a common and

widely applied extension of standard FTs, catering for more

complex dependability patterns, like spare management and

causal dependencies. Such gates make DFTs more difficult

to analyse. In static FTs, it only matters whether or not a

component has failed, so they can be analysed with Boolean

methods, such as binary decision diagrams [38]. Dynamic

fault trees, on the other hand, crucially depend on the fail-

ure order, so Boolean methods are insufficient. Moreover,

and on top of these two classes, repairable fault trees (RFT

[7]) permit components to be repaired after they have failed.

Repairs are not only crucial in fault-tolerant and resilient sys-

tems, they are also an important cost driver. Hence, repairable

fault trees allow one to compare different repair strategies

with respect to various dependability metrics. In this article

we consider repairable fault trees. Fault tree analysis. The

reliability and availability of a fault tree can be computed via

numerical methods, such as probabilistic model checking.

This involves exhaustive explorations of state-based models

such as interactive Markov chains [54]. Since the number

of states (i.e. system configurations) is exponential in the

number of tree elements, analysing large trees remains a

challenge today [1,38]. Moreover, numerical methods are

usually restricted to exponential failure rates and combina-

tions thereof, like Erlang and acyclic phase-type distributions

[54].

Alternatively, fault trees can be analysed using standard

Monte Carlo simulation, which embedded in formal system

modelling is typically called statistical model checking (SMC

[30,52,54]). Here, a large number of simulated system runs

(samples) are produced. Reliability and availability are then

statistically estimated from the resulting sample set. Such

sampling does not involve storing the full state space so,

although the result provided can only be correct with a cer-

tain probability, SMC is much more memory efficient than

numerical techniques. Furthermore, SMC is not restricted to

exponential probability distributions.

However, a known bottleneck of SMC are rare events:

when the event of interest has a low probability, which is

typically the case in highly reliable systems, millions of sam-

ples may be required to observe the event. It is a well-known

limitation of SMC that producing these samples can take an

unacceptably long simulation time.

Rare event simulation. To alleviate this problem, the field of

rare event simulation (RES) provides techniques that reduce

the number of samples required to produce a useful esti-

mate [49]. These techniques can be classically categorised

as importance sampling and importance splitting.

Importance sampling means that the method will tweak

the probabilities in the model, then compute the metric of

interest for the changed system, and finally adjust the analy-

sis results to the original model [33,47]. Unfortunately, this

approach has specific requirements on the stochastic model:

in particular, it is generally applicable to models with expo-

nential probability distributions only.

Importance splitting, deployed in this paper, does not have

this limitation. Importance splitting relies on rare events that

arise as a sequence of less rare intermediate events [3,39].

It exploits this fact by generating more (partial) samples on

paths where such intermediate events are observed.

As a simple example, consider a biased coin whose prob-

ability of heads is p = 1
80

. Suppose we flip it eight times in

a row, and say we are interested in observing at least three

heads. If head comes up at the first flip (H), then we are on a

promising path. We can then clone (split) the current path H ,

generating e.g. 7 copies of it, each clone evolving indepen-

dently from the second flip onwards. Say one clone observes

three heads—the copied H plus two more. Then, this obser-

vation of the rare event (three heads) is counted as 1
7

rather

than as one observation to account for the splitting where

the clone was spawned. Now, if a clone observes a new head

(H H), this is even more promising than H , so the splitting

can be repeated. If we make five copies of the H H clone,

then observing three heads in any of these copies counts as
1

35
= 1

7
· 1

5
. Alternatively, observing tails as second flip (H T)

is less promising than heads. One could then decide not to

split such a path.

This example highlights a key ingredient of importance

splitting: the importance function, which indicates for each

state how promising it is w.r.t. the event of interest. This func-

tion, as well as other parameters such as thresholds [27], are

used to choose e.g. the number of clones spawned when a

simulation run visits certain state. An importance function

for our example could be the number of heads seen thus

far. Another one could be such a number, multiplied by the

number of coin flips yet to come. The goal is to give higher

importance to states from which observing the rare event is

more likely. The efficiency of an importance splitting imple-

mentation increases as the importance function better reflects

such property.

Rare event simulation has been successfully applied in

several domains [5,6,48,59,60,65]. However, a key bottle-

neck is that it critically relies on expert knowledge. In

particular, for importance splitting, finding a good impor-

tance function is a well-known, highly non-trivial task

[36,49].

123

Analysis of non-Markovian... 823

Our contribution: rare event simulation for fault trees. This

article presents an importance splitting method to analyse

RFTs. In particular, we automatically derive the importance

function by exploiting the description of a system as a fault

tree. This is crucial, since the importance function is nor-

mally given manually in an ad hoc fashion by a domain or

RES expert. We use two general approaches to derive the

importance function.

The first approach builds local importance functions for

the (automata-semantics of the) nodes of the tree. Then these

local functions are aggregated into an importance function

for the full tree. Aggregation uses structural induction in the

layered description of the tree, and the way they are aggre-

gated depends strongly on the gate at the top of the subtree

combining the propagation of the fault below it.

The second approach is based on (minimal) cut sets. Cut

sets are sets of basic events such that, if all elements in any

cut set fail, the tree fails—we note that cut sets are defined for

static fault trees; we conservatively extend these to dynamic

fault trees. Thus, the more elements in a cut set that have

failed, the higher its importance. Since a fault tree usually

has multiple cut sets, we take the maximum importance over

all cut sets. We also explore some variants of this idea, where

we also normalise the cut sets by their maximum weights, or

prune them based on their cardinality or failure probability.

Using such importance functions, we implement impor-

tance splitting methods to run RES analyses. We use a variety

of RES algorithms to estimate system unreliability and

unavailability. Our approach converges to precise estimations

in increasingly reliable systems at much faster pace than stan-

dard Monte Carlo. This method has four advantages over ear-

lier analysis methods for RFTs—which we overview in the

related work section 7—namely: (1) we are able to estimate

both the system reliability and availability; (2) we can handle

arbitrary failure and repair distributions; (3) we can handle

rare events; and (4) we can do it in a fully automatic fashion.

We implemented our theory in a full-stack toolchain that

is also presented here. Within this toolchain, and in addition

to the new importance function generation techniques, we

introduce the language Kepler as an extension of Galileo

[55,56] to describe repairable fault trees in textual format.

We also changed the RES engine on the core of the fig

statistical model checker [11] by resampling time values at

the moment of splitting. This requires considering algorithms

specifically tailored to generate conditional pseudorandom

variates. We show how this modification provides significant

improvements to the performance of the tool.

With this toolchain, we computed confidence intervals

for the unreliability and unavailability of several case stud-

ies. Our case studies are RFTs whose failure and repair

times are governed by arbitrary continuous probability den-

sity functions (PDFs). Each case study was analysed for a

fixed runtime budget and in increasingly resilient configura-

tions. In all cases, our approach could estimate the narrowest

intervals for the most resilient configurations.

Summarising, the contributions reported in this work are:

1. two methods to automatically generate importance func-

tions, one based recursively on the structure of the RFT,

and the other on its collection of minimal cut sets;

2. a toolchain including the previous methods that, given the

input RFT, estimates the required dependability metric

through RES in a fully automated fashion;

3. an improvement of the fig statistical model checker thor-

ough resampling of the clocks at the moment of splitting;

4. the textual language Kepler to describe RFT having fail-

ure and repair time with arbitrary distributions; and

5. an extensive validation of the techniques and tools in a

variety of case studies.

Paper outline. This article is structured as follows. In Sec.

2, we discuss the concepts related to fault trees which are

fundamental to our contribution, while in Sec. 3 we recall

the basics of RES and the importance splitting techniques.

Sec. 4 focuses on our fundamental contributions, namely,

the techniques for automatically deriving importance func-

tions and the technique for improving the engine of fig.

Sec. 5 describes the toolchain with particular attention on

the language Kepler and its translation to IOSA, the input

language of fig. Using the toolchain, we performed an exten-

sive experimental evaluation that we present in Sec. 6. We

overview related work in Sec. 7 and conclude our contribu-

tions in Sec. 8.

We remark that this article merges and extends the contri-

butions reported in [12,19].

2 Fault tree analysis

2.1 Syntax

A fault tree ‘△’ is a directed acyclic graph that models how

component failures propagate and eventually cause the full

system to fail. We consider repairable fault trees (RFTs),

where the occurrence time of failures and repairs is governed

by arbitrary probability distributions.

Basic elements. The leaves of the tree, called basic events or

basic elements (BEs), model the failure behaviour of compo-

nents. Thus, a BE b is equipped with a failure distribution Fb

that governs the probability for b to fail before time t , and

a repair distribution Rb that governs its repair time. Some

BEs are used as spare components. The spare basic elements

(SBEs) replace a primary component when it fails. SBEs are

also equipped with a dormancy distribution Db , since spares

fail less often when dormant, i.e. not in use. Only if an SBE

becomes active, its failure distribution is given by Fb.

Gates. Non-leave nodes are called intermediate events and

are labelled with gates, that describe how combinations of

123

824 C. E. Budde et al.

Fig. 1 Fault tree gates and the

repair box

(a) (b) (c) (d) (e) (f)

(g)

lower failures propagate to upper levels. Fig. 1 shows their

syntax. Their meaning is as follows. The AND gate fails if all

its children fail, the OR gate fails if at least one of its children

fails, and the VOTk gate fails if k of its m children fail (with

1 ≤ k ≤ m). The latter is called the voting or k out of m

gate. Note that VOT1 is equivalent to an OR gate, and VOTm

is equivalent to an AND. If any of these gates is in a fail state,

it becomes repaired if the condition that produces the failure

is falsified. Thus, for instance, a failing AND is repaired if at

least one of its failing children is repaired.

Note that the three gates we presented so far react only

based on changes in the combination of the inputs provided

by their children. These are called static gatesand are already

present in Static Fault Trees. In contrast, the following gates

are called dynamic gates and react to the change of state

of their children taking into account also other aspects like

timing and dependence.

The priority-and gate (PAND) is an AND gate that only

fails if its children fail orderly from left to right (though

adjacent children may also fail simultaneously). PAND gates

express failures that can only happen in a particular order,

e.g. a general electric failure can only happen if first the

circuit breaker fails and then a short circuit occurs. A failing

PAND gate gets repaired whenever its right-most failed child

becomes repaired [45,46].

SPARE gates have one primary child and one or more

spare children: spares replace the primary when it fails. A

SPARE gate fails if the primary (or current active) child fails

and it does not succeed to find an operational spare child. It

becomes repaired whenever the primary child is repaired or

an operational spare child becomes available.

The FDEP gate has a trigger child and several dependent

children: all dependent children become unavailable when

the trigger fails. Note that the dependent children do not nec-

essarily fail as a cause of the failure of the trigger child and

that they become available again as soon as the trigger child

is repaired. FDEPs can model, for instance, network elements

that become unavailable if their connecting bus fails.

Repair boxes. An RBOX determines which basic element is

repaired next according to a given policy. Thus all its inputs

are BEs or SBEs. Unlike gates, an RBOX has no output since

it does not propagate failures.

Top-level event. A full-system failure occurs if the top event

(i.e. the root node) of the tree fails.

Example. The repairable fault tree in Fig. 2 models a railway-

signal system, which fails if its high voltage and relay

cabinets fail [31,53]. Thus, the top event is an AND gate

with children HVcab (a BE) and Rcab. The latter is a SPARE

gate with primary P and spare S. All BEs are managed by one

RBOX with repair priority HVcab > P > S.

Notation. The nodes of a tree △ are given by the set

nodes(△) = {0, 1, . . . , n − 1}.

We let v,w range over nodes(△). A function

type△ : nodes(△) →

{

BE, SBE,AND,OR,VOTk,

PAND, SPARE, FDEP, RBOX

}

yields the type of each node in the tree. A function

chil△ : nodes(△) → nodes(△)∗

returns the ordered list of children of a node. If clear from

context, we omit the superscript △ from function names.

2.2 Semantics

Following [45] we give semantics to RFT as Input/Output

Stochastic Automata (IOSA), so that we can handle arbitrary

probability distributions. Each state in the IOSA represents

a system configuration, indicating which components are

operational and which have failed. Transitions among states

describe how the configuration changes when failures or

repairs occur.

More precisely, a state of the IOSA derived from an RFT

is a tuple x = (x0, . . . , xn−1) ∈ S ⊆ Nn , where S is the state

space and xv denotes the state of node v in △. The possible

values for xv depend on the type of v. The output zv ∈ {0, 1}

of node v indicates whether it is operational (zv=0) or failed

(zv=1) and is calculated as follows:

Fig. 2 Tiny RFT

123

Analysis of non-Markovian... 825

– BEs (white circles in Fig. 1) have a binary state: xv = 0 if

BE v is operational and xv = 1 if it is failed. The output

of a BE is its state: zv = xv .

– SBEs (gray circles in Fig. 1e) have two additional states:

xv = 2, 3 if a dormant SBE v is respectively operational

or failed. Here zv = xv mod 2.

– ANDs have a binary state. The AND gate v fails iff all

children fail: xv = minw∈chil(v) zw. An AND gate outputs

its internal state: zv = xv .

– OR gates are analogous toAND gates, but fail iff any child

fail, i.e. zv = xv = maxw∈chil(v) zw for OR gate v.

– VOT gates also have a binary state: a VOTk gate fails

whenever 1 ≤ k ≤ m children fail, thus zv = xv = 1 if

k ≤
∑

w∈chil(v) zw , and zv = xv = 0 otherwise.

– PAND gates admit multiple states to represent the failure

order of the children. For PAND v with two children we

let xv equal: 0 if both children are operational; 1 if the left

child failed, but the right one has not; 2 if the right child

failed, but the left one has not; 3 if both children have

failed, the right one first; 4 if both children have failed,

otherwise. The output of PAND gate v is zv = 1 if xv = 4

and zv = 0 otherwise.PANDgates with more children are

handled by exploiting the fact that PAND(w1, w2, w3) =

PAND(PAND(w1, w2),w3).

– SPARE gate v leftmost child is its primary BE. All other

(spare) inputs are SBEs. SBEs can be shared among several

SPARE gates. When the primary of v fails, it is replaced

with an available SBE. An SBE is unavailable if it is failed

or if it is replacing the primary BE of another SPARE. The

output of v is zv = 1 if its primary is failed and no spare

is available. Else zv = 0.

– An FDEP gate has no output. Its leftmost input is the trig-

ger. We consider non-destructive FDEPs [8]: if the trigger

fails, the output of all other inputs is set to 1, without

affecting the internal state. Since this can be modelled

by a suitable combination of OR gates [45], we omit the

details.

For example, the RFT from Fig. 2 starts with all elements

operational, so the initial state is x
0 = (0, 0, 2, 0, 0). If

then P fails, xP and zP are set to 1 (failed) and S becomes

xS = 0 (active and operational spare), so the state changes

to x
1 = (0, 1, 0, 0, 0). The traces of the IOSA are given by

x
0
x

1 · · · x
n ∈ S∗, where a change from x

j to x
j+1 corre-

sponds to transitions triggered in the IOSA.

Dynamic fault trees may exhibit nondeterministic behaviour

as a consequence of underspecified failure behaviour [23,37].

This can happen e.g. when two SPAREs have a single shared

SBE: if all elements are failed and the SBE is repaired first,

the failure behaviour depends on which SPARE gets the SBE.

Monte Carlo simulation, however, requires fully stochastic

models and cannot cope with nondeterminism. To overcome

this problem, we deploy the theory from [24,45]. If a fault

(a)

(b)

Fig. 3 Fault trees & minimal cut sets

tree adheres to some mild syntactic conditions, then its IOSA

semantics is weakly deterministic, meaning that all reso-

lutions of the nondeterministic choices lead to the same

probability value. In particular, we require that (1) each BE

is connected to at most one SPARE gate, and that (2) BEs and

SBEs connected to SPAREs are not connected to FDEPs. In

addition to this, some semantic decisions have been fixed.

Notably, the semantics of PAND, which normally has some

ambiguity and has rarely been discussed in the context of

repairs, is here fully specified. Besides, policies should be

provided for RBOX and spare assignments.

2.3 Minimal cut sets

Cut sets are a well known qualitative technique in FTA for

static FTs. A cut set is a set of basic elements (BEs and SBEs)

whose joint failure will cause a top-level event. A minimal

cut set (MCS) is a cut set of which no subset is a cut set. These

concepts can be lifted to dynamic fault trees (and RFTs)

in general, but this requires introducing an order to capture

temporal dependencies, plus several other subtleties [37,54].

Nevertheless, RFTs as defined above rule out several issues

raised by cut sets in DFTs, such as event simultaneity [37].

Furthermore, for FT analysis related to MCS, we exclude

order dependence by considering RFTs without PAND gates.

For an illustration, Fig. 3b lists all minimal cut sets of

the tree △ from Fig. 3a. We use the notation: M (△) for the

123

826 C. E. Budde et al.

Fig. 4 Replacing SPAREs with ANDs may loose MCSs

family of all minimal cut sets of the FT △; M<N (△) for

the subset of M (△) that excludes cut sets with N or more

BEs (called pruning of order N); M>λ(△) for the subset of

M (△) that excludes cut sets where the product of the failure

rate of the BEs is ≤ λ ∈ R>0. The latter is only defined when

all BEs and SBEs in the RFT have exponential failure and

dormancy distributions. To obtain M
> 1

4
(△) in Fig. 3b, we

make this the case with failure rates: 1
4

for BE1 and BE7, 6
20

for BE2, 2
3

for {BEi }
6
i=3, and 1

2
for BE8 and SBE9.

Cut set pruning as in M<N (△) and M>λ(△) is a standard

way to speed up FT analyses [57]. The goal is to ignore the

most unlikely (and hard to compute) cut sets: pruning of order

N assumes that the top-level event will most likely occur by

cut sets with less than N BEs; pruning by rate ≤ λ assumes

that the top-level event will occur first by cut sets where BEs

have higher rates and thus fail faster. Choosing such N and λ

to prune irrelevant MCS of a given tree depends on its struc-

ture and the BEs failure, dormancy, or repair distributions.

An RFT without PAND or SPARE gates can be translated

into a static FT in such a way that they have exactly the same

set of MCSs (notice that RBOXs have no effect on minimal

cut sets). Obtaining the MCSs from static FT can be easily

done, e.g. by translating it into an FT in disjunctive normal

form and taking the minimal clauses as the minimal cut sets.

For this work, we also opt to translate SPARE gates into AND

gates. However, this translation does not preserve all MCSs,

yielding, on the translated FT, a subset of the MCSs of the

original RFT. For example, the RFT on the left of Fig. 4 has

three MCSs. In particular, since SBE cannot be operational

in both SPARE gates at the same time, {BE1, BE3} is one of

these MCSs. However, this set is not an MCS in the FT on

the right side of Fig. 4, which replaces the SPARE gates with

AND gates.

2.4 Dependability metrics

An important use of fault trees is to compute relevant depend-

ability metrics. Let X t denote the random variable that

represents the state of the top event at time t [22]. Two pop-

ular metrics are:

– system reliability: the probability of observing no top

event failure before some mission time T > 0, viz.

RELT = Prob
(

∀t∈[0,T] . X t = 0
)

;

– system availability: the proportion oftime that the system

remains operational in the long run, viz.

AVA = lim
t→∞

Prob (X t = 0) .

System unreliability and unavailability are the complements

of these metrics, i.e. UNRELT = 1 − RELT and UNAVA =

1 − AVA.

3 Stochastic simulation for fault trees

Standard Monte Carlo simulation (SMC). Monte Carlo sim-

ulation takes random samples from stochastic models to

estimate a (dependability) metric of interest. For instance, to

estimate the unreliability of a tree △we sample N indepen-

dent traces from its IOSA semantics. An unbiased statistical

estimator for p = UNRELT is the proportion of traces

observing a top-level event, that is, p̂N = 1
N

∑N
j=1 X j

where X j = 1 if the j -th trace exhibits a top-level failure

before time T and X j = 0 otherwise. The statistical error

of p̂ is typically quantified with two numbers δ and ε s.t.

p̂ ∈ [p − ε, p + ε] with probability δ. The interval p̂ ± ε

is called a confidence interval (CI) with coefficient δ and

precision 2ε.

Such procedures scale linearly with the number of tree

nodes and cater for arbitrary PDFs, i.e. not restricted to

exponential ones. However, they encounter a bottleneck to

estimate rare events: if p ≈ 0, very few traces observe

X j = 1. Therefore, the variance of estimators like p̂becomes

huge, and CIs become too wide, easily degenerating to the

trivial interval [0, 1]. Increasing the number of traces alle-

viates this problem, but even standard confidence interval

settings—where ε is relative to p—require sampling an unac-

ceptably large number of traces [49]. Rare event simulation

techniques solve this specific problem.

Rare Event Simulation (RES). RES techniques [49] increase

the number of traces that observe the rare event, e.g. a

top-level event in an RFT. Two prominent classes of RES

techniques are importance sampling, which adjusts the PDF

of failures and repairs, and importance splitting (ISPLIT)

[43], which samples more (partial) traces from states that

are closer to the rare event. We focus on ISPLIT due to its

flexibility with respect to the probability distributions.

ISPLIT can be efficiently deployed as long as the rare

event γ , here defined as the set of states characterising the

rare event, can be described as a nested sequence of less-

rare events γ = γM (γM−1 (· · · (γ0 = S . This

123

Analysis of non-Markovian... 827

(a) (b)

Fig. 5 Importance splitting algorithms fixed effort & RESTART

decomposition allows ISPLIT to study the conditional prob-

abilities pk = Prob(γk+1 | γk) separately, to then compute

p = Prob(γ) =
∏M-1

k=0 Prob(γk+1 | γk). Moreover, ISPLIT

requires all conditional probabilities pk to be much greater

than p, so that estimating each pk can be done efficiently

with SMC.

The key idea behind ISPLIT is to define the events γk via

a so called importance function I : S → N that assigns an

importance to each state s ∈ S . The higher the importance of

a state, the closer it is to the rare event γM . Event γk collects

all states with importance at least ℓk , for certain sequence

of threshold levels 0 = ℓ0 < ℓ1 < · · · < ℓM . Formally:

γk = {s ∈ S | I (s) ≥ ℓk}.

To exploit the importance function I in the simulation pro-

cedure, ISPLIT samples more (partial) traces from states with

higher importance. Two well-known methods are deployed

and compared in this paper: RESTART and Fixed Effort.

Fixed Effort (FE) [27] samples a predefined amount of traces

in each region Sk = γk\γk+1 = {s ∈ S | ℓk+1 > I(s) ≥ ℓk}

for 0 ≤ k < M . Thus, starting at γ0 it first estimates the

proportion of traces that reach γ1, i.e. the probability p0 =

Prob(γ1 | γ0) = Prob(S0). Next, from the states that reached

γ1 new traces are generated to estimate p1 = Prob(S1), and

so on until pM . Fixed Effort thus requires that (i) each trace

has a clearly defined end, so that estimations of each pk fin-

ish with probability 1, and (i i) all rare events reside in the

uppermost region SM = {s ∈ S | I (s) ≥ γM }.

Example. Fig. 5a shows Fixed Effort estimating the probabil-

ity to visit states labelled ✔ before others labelled ✘. States

✔ have importance >13, and thresholds ℓ1 = 4 and ℓ2 = 10

partition the state space in regions {Si }
2
i=0 s.t. all ✔ ∈ S2.

The effort is 5 simulations per region, for all regions: we

call this algorithm FE5. In region S0, 2 simulations made

it from the initial state to threshold ℓ1, i.e. they reached

some state with importance 4 before visiting a state ✘. In

S1, starting from these two states, 3 simulations reached ℓ2.

Finally, 2 out of 5 simulations visited states ✔ in S2. Thus,

the estimated rare event probability of this run of FE 5 is

p̂ =
∏2

i=1 p̂i = 2
5

3
5

2
5

= 9.6 × 10−2.

RESTART (RST) [62,63] is another RES algorithm, which

starts one trace in γ0 and monitors the importance of the states

visited. If the trace up-crosses threshold ℓ1, the first state

visited in S1 is saved and the trace is cloned, aka split—

see Fig. 5b. This mechanism rewards traces that get closer

to the rare event. Each clone then evolves independently,

and if one up-crosses threshold ℓ2 the splitting mechanism

is repeated. Instead, if a state with importance below ℓ1 is

visited, the trace is truncated (✗ in Fig. 5b). This penalises

traces that move away from the rare event. To avoid truncating

all traces, the one that spawned the clones in region Sk can

go below importance ℓk . To deploy an unbiased estimator for

p, RESTART measures how much split was required to visit

a rare state [62]. In particular, RESTART does not need the

rare event to be defined as γM [58], and it was devised for

steady-state analysis [63] (e.g. to estimate UNAVA) although

it can also be used for transient studies as depicted in Fig. 5b

[59].

4 Importance splitting for FTA

The effectiveness of ISPLIT crucially relies on the impor-

tance function I , as well as the threshold levels ℓ1, . . . , ℓM

[43]. Traditionally, these are given by domain and/or RES

experts, thus requiring considerable expert knowledge. To

alleviate this requirement, we focus on techniques that are

able to obtain importance functions and splitting thresholds

automatically. In particular, we introduce a first technique

that derives I from the structure of the given RFT, and a sec-

ond technique that defines I based on the MCSs of the RFT.

We also discuss methods to select the threshold levels ℓk and

an improvement on fig based on resampling time values at

the moment of splitting simulation runs.

4.1 Compositional importance functions for fault
trees

The core idea behind importance splitting is that states that

are more likely to lead to the rare event should have a higher

importance. To achieve this, the key lies in defining an impor-

tance function I and thresholds ℓk that are sensitive to both

the state space S and the transition probabilities of the sys-

tem. For us, S ⊆ Nn are all possible states of an RFT. Its

top event fails when certain nodes fail in certain order, and

remains failed until certain repairs occur. To exploit this for

ISPLIT, the structure of the tree must be embedded into I .

The strong dependence of the importance function I on

the structure of the tree is easy to see in the following exam-

ple. Take the RFT △from Fig. 2 and let its current state x

be s.t. P is failed and HVcab and S are operational. If the

next event is a repair of P, then the new state x
′ (where all

basic elements are operational) is farther from a failure of

the top event. Hence, a good importance function should sat-

123

828 C. E. Budde et al.

isfy I (x) > I
(

x
′
)

. Oppositely, if the next event had been

a failure of S leading to state x
′′, then one would want that

I (x) < I
(

x
′′
)

. The key observation is that these inequalities

depend on the structure of △as well as on the failures/repairs

of basic elements.

In view of the above, any attempt to define an impor-

tance function for an arbitrary fault tree △must put its (gate)

structure in the forefront. In Table 1 we introduce a com-

positional heuristic for this, which defines local importance

functions distinguished per node type. The importance func-

tion associated to node v is Iv : Nn → N. We define the

global importance function of the tree (ISTR) as the local

importance function of the top event node of △.

Thus, Iv is defined in Table 1 via structural induction in

the fault tree. It is defined so that it assigns to a failed node

v its highest importance value. Functions with this property

deploy the most efficient ISPLIT implementations [43], and

some RES algorithms (e.g. Fixed Effort) require this property

[27].

In the following we explain our definition of Iv . If v is a

failed BE or SBE, then its importance is 1; else it is 0. This

matches the output of the node, thus Iv(x) = zv . Intuitively,

this reflects how failures of basic elements are positively cor-

related to top event failures. The importance ofAND,OR, and

VOTk gates depends exclusively on their input. The impor-

tance of anAND is the sum of the importance of their children,

and scaled by a normalisation factor (explained below). This

reflects that AND gates fail when all their children fail, and

each failure of a child brings anAND closer to its own failure,

hence increasing its importance. Instead, since OR gates fail

as soon as a single child fails, their importance is the max-

imum importance among its children. The importance of a

VOTk gate is the sum of the k (out of m) children with highest

importance value.

Omitting normalisation may yield an undesirable impor-

tance function. To understand why, suppose a binary AND

gate v with children l and r , and define Inaive
v (x) = Il(x) +

Ir (x). Suppose that Il takes it highest value in maxI
l = 2

while Ir in maxI
r = 6 and assume that states x and x

′ are s.t.

Il(x) = 1, Ir (x) = 0, Il(x
′) = 0, Ir (x

′) = 3. This means

that in both states one child of v is “good-as-new” and the

other is “half-failed” and hence the system is equally close

to fail in both cases. Hence we expect Inaive
v (x) = Inaive

v (x′)

when actually Inaive
v (x) = 1 6= 3 = Inaive

v (x′). Instead, Iv

operates with
Il (x)

maxI
l

and
Ir (x)

maxI
r

, which can be interpreted as the

“percentage of failure” of the children of v. To make these

numbers integers we scale them by lcmv , the least common

multiple of their max importance values. In our case lcmv = 6

and hence Iv(x) = Iv(x
′) = 3. Similar problems arise with

all gates, hence normalisation is applied in all cases.

SPARE gates with m children—including its primary—

behave similarly to AND gates: every failed child brings the

gate closer to failure, as reflected in the left operand of the

max in Table 1. However, SPAREs fail when their primaries

fail and no SBEs are available (as opposed to failed, e.g.

possibly being used by another SPARE). This means that the

gate could fail despite some children being operational. To

account for this we exploit the gate output: multiplying zv

by m we give the gate its maximum value when it fails,

even when this happens due to unavailable—but possibly

operational—SBEs.

For a PAND gate v we have to carefully look at the states.

If the left child l fails first, then the right child r contributes

positively to the failure of the PAND and hence the impor-

tance function of the node v. If instead the right child has

failed before the left child, then the PAND gate will not fail

and hence we let it contribute negatively to the importance

function of v. Thus, we multiply
Ir (x)

max I
r

(the normalized

importance function of the right child) by −1 in the later

case, i.e. when state xv /∈ {1, 4}. Instead, the left child always

contributes positively. Finally, the max operation is twofold:

on the one hand, zv · 2 ensures that the importance value

remains at its maximum while failing (PANDs remain failed

even after the left child is repaired); on the other, it ensures

that the smallest possible value while operational is 0 (since

importance values cannot be negative.)

4.2 Importance functions based onminimal cut sets

In the previous section we introduced a compositional tech-

nique to derive the importance function. The key concept is

that, in general, importance should reflect proximity to the

rare event. This means that the importance of a gate should

increase as the gate approaches its own failure. Note that

the type of a gate defines how, as its children fail, the gate

approaches its own failure. Following the structure of the

RFT, its importance function is determined by the impor-

tance of its top-level gate.

In this section we follow a different approach based on

the set of minimal cut sets. Recall that the joint failure of

all basic elements in a MCS determines the failure of the

top event. Thus, by counting how many BEs have failed in a

MCS, we have an idea of the proximity to the occurrence of

the top-level event. This suggests the following importance

function: given a state of the RFT, its importance is defined

by the maximum number of failed BEs in any MCS.

Formally, let △∗ be the FT rewrite of the original RFT

△ as described in Sec. 2.3—i.e. replacing SPARE and FDEP

gates resp. for AND and OR—and let M (△∗) be the set of all

its minimal cut sets. Then, the importance function described

above is given by function IMCS in Table 2.

We further consider pruned variants of IMCS that discards

cut sets based on their cardinality (IMCS-P) or, if BE failures

are exponentially distributed, based on the product of the

123

Analysis of non-Markovian... 829

Table 1 Compositional

(“structural”) importance

function for RFTs

type(v) Iv(x)

BE, SBE zv

AND lcmv ·
∑

w∈chil(v)
Iw(x)

maxI
w

OR lcmv · max
w∈chil(v)

{

Iw(x)

maxI
w

}

VOTk lcmv · max
W⊆chil(v),|W |=k

{

∑

w∈W
Iw(x)

maxI
w

}

SPARE lcmv · max
(

∑

w∈chil(v)
Iw(x)

maxI
w

, zv · m
)

PAND lcmv · max
(

Il (x)

maxI
l

+ ord
Ir (x)

maxI
r

, zv · 2
)

where ord = 1 if xv ∈ {1, 4} and ord = −1 otherwise

with maxI
v = maxx∈S Iv(x) and lcmv = lcm

{

maxI
w

∣

∣w ∈ chil(v)
}

Table 2 Importance functions for automatic RES in fault trees

Name Expression Description

IMCS(x) = max
MCS∈M (△∗)

{

∑

v∈MCS

zb

}

For each MCS of the tree, IMCS counts the number of BEs that

have failed in the current state x. (Recall that a basic element b

in x has failed if zb = xb = 1.) The importance IMCS(x) of the

current state of the tree is the maximum among these counts.

IMCS-P(x) = max
MCS∈M<N (△∗)

{

∑

v∈MCS

zb

}

IMCS-P operates similarly to function IMCS above, but here the

maximum ranges over a pruned set of MCS, discarding cut sets

with N or more BEs.

IMCS-PR(x) = max
MCS∈M>λ(△∗)

{

∑

v∈MCS

zb

}

Similar to IMCS-P but using the failure rates for pruning, IMCS-PR

considers only MCS where the product of the failure rate of all

BEs is greater than λ. Applicable only to FTs whose failure and

dormancy distributions are Markovian.

IMCSN(x) = max
MCS∈M (△∗)

{

lcm ·
∑

v∈MCS

zb

|MCS|

}

IMCSN is a normalised version of IMCS. The normalisation fol-

lows a similar procedure to Sec. 4.1, where lcm is the least

common multiple of the cardinality of every MCS in M (△∗).

failure rates of theBEs in the cut set (IMCS-PR). The only differ-

ence between these functions and IMCS is the range of the max

operator, which reflects the pruning of some minimal cut sets.

A concept already discussed in Sec. 4.1 is importance

normalisation. We also experiment with it here: in Table 2,

IMCSN stands for the normalised version if IMCS. By divid-

ing each summation by its maximum possible value, namely

|MCS|, we compute the percentage of failure introduced by

MCS in the current state. The scaling factor lcm ensures that

the resulting value is an integer as required by our tooling

framework. Finally, although omitted in Table 2, we further

define the functions IMCSN-P and IMCSN-PR as the normalised

versions of the functions IMCS-P and IMCS-PR, respectively.

4.3 Automatic importance splitting for FTA

The techniques to provide importance functions introduced

in the previous subsections are based on the the distribution

of operational/failed basic elements in the fault tree, being

it through the structure of the tree or the contribution to its

minimal cut sets. This follows the core idea of importance

splitting: the more failed BEs/SBEs (in the right order), the

closer a tree is to its top event failure.

However, the ISPLIT strategy is to run more simulations

from those states that have a higher probability to lead to

rare states. This is only partially reflected by whether basic

element b is failed. Probabilities lie also in the failure, repair

and dormancy distributions (Fb, Rb, Db). These distributions

govern the transitions among states x ∈ S , and can be

exploited for importance splitting.

Thus, after determining the importance function, we run

“pilot simulations” on the importance-labelled states of the

tree. Running simulations exercises the fail and repair distri-

butions of BEs and SBEs, imprinting this information in the

thresholds ℓk . Several algorithms can do such selection of

thresholds. They operate sequentially, starting from the ini-

tial state—a fully operational tree—which has importance

i0 = 0. For instance, Expected Success [13] runs N finite-life

123

830 C. E. Budde et al.

simulations. If K < N
2

simulations reach the next smallest

importance i1 > i0, then the first threshold will be ℓ1 = i1.

Next, N simulations start from states with importance i1, to

determine whether the next importance i2 should be chosen

as threshold ℓ2, and so on.

Expected Success also computes the effort per splitting

region Sk = {x ∈ S | ℓk+1 > I(x) ≥ ℓk}. For Fixed Effort,

“effort” is the base number of simulations to run in region

Sk . For RESTART, it is the number of clones spawned when

threshold ℓk+1 is up-crossed. In general, if K out of N pilot

simulations make it from ℓk−1 to ℓk , then the k-th effort is
⌈

N
K

⌉

. This is chosen so that, during RES estimations, one

simulation makes it from threshold ℓk−1 to ℓk on average.

Thus, using the method from [14,15] based on any of

our importance functions, we compute (automatically) the

thresholds and their effort for the given RFT. This is all the

meta-information required to apply importance splitting RES

[14,27,28].

4.4 Sampling conditional variables

The engine of the simulation tool fig is based on stan-

dard discrete-event simulation [42]: time advances in discrete

steps until the first occurrence of an event and, at this moment,

the occurrence time of the newly enabled events are sampled.

Thus, once the occurrence time of an event is fixed, it remains

unaltered until it actually occurs. This has negative implica-

tions on the ISPLIT method. Since each time a simulation

run up-crosses a threshold, the current state is cloned and

hence the occurrence time of all active (i.e. enabled but yet

to occur) events are also copied on the splitting simulation

runs. This means that there exists some dependence among

the splitting runs with the consequent adverse impact on the

variance of the parameter calculated during simulation.

To improve the convergence of RESTART and FE, it is

therefore convenient that at each splitting point the occur-

rence time of every active event is resampled conditioned to

the time elapsed since it became active. For this, we have

implemented two different methods in fig, one based on

the inverse transform method and the other using a rejection

technique [42].

If the random variable X that determines the occurrence

of an event has a cumulative distribution function (CDF) F

whose inverse F−1 can be written in a closed form, then

we use the inverse-transform method as described in the fol-

lowing. Let t be the value that we want to sample from X

conditioned to the fact that te units of time have passed. Then

P(X ≤ t | X > te) =
F(t) − F(te)

1 − F(te)
.

More precisely, we are interested on sampling the remaining

time tr such that t = te + tr . Hence, we are interested in the

random variable Y = X − te with CDF Fte such that:

Fte (tr) = P(X ≤ te + tr | X > te) =
F(te + tr) − F(te)

1 − F(te)
.

Following the inverse-transform method, a (pseudo) random

value for Y can be obtained by generating a value u ∼ u[0, 1]

taking tr = F−1
te

(u) = F−1(u + (1 − u) · F(te)) − te.

Oppositely, for the case in which F−1 cannot be written in

a closed formula (e.g. log-normal and gamma distributions),

we use the rejection method. The method is simple:

1. generate t ∼ X , and

2. if t > te output t , otherwise repeat from 1.

However, as te increases, the likelihood of repeating the loop

increases as well, which could turn the algorithm inefficient.

In fact, if N is the number of repetitions until successfully

choosing t , then E(N) = 1
1−F(te)

. In view of this, we only

run the algorithm if F(te) ≤ 0.75, in which case E(N) ≤ 4.

Otherwise we simply keep the previously sampled value.

5 Toolchain

Figure 6 outlines the complete toolchain implemented to

deploy the theory described above. To model the input

RFT, we introduce the new Kepler textual format, which

extends the Galileo textual format [21,55,56] which is a

widespread syntax to describe fault trees [9,25,44]. Kepler

follows the syntax of Galileo adding support for repairs and

non-Markovian distributions. We present Kepler in Sec. 5.1

and give its complete grammar in Appendix A.

The toolchain is structured as follows. The Kepler speci-

fication file is given as input to a Python converter script that

produces three outputs: the IOSA specification that encodes

the semantics of the tree, the property queries for unreliability

or unavailability synthesised for the tree, and our compo-

sitional importance functions in terms of variables of the

IOSA semantic model. This information is dumped into a

single text file and fed to fig, a statistical model checker

specialised in importance splitting RES. fig interprets this

importance function, deploying it into its internal model rep-

resentation, which results in a global function for the whole

tree. fig can then use ISPLIT algorithms such as RESTART

and Fixed Effort via the automatic methods described above.

The result are confidence intervals that estimate the reliability

or availability of the RFT.

5.1 The Kepler language

Standard Galileo supports three PDF families, namely

exponential, Weibull, and log-normal. Kepler extends

123

Analysis of non-Markovian... 831

Fig. 6 Toolchain: from fault tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";

2 "Gate2" spare "BE_C" "BE_D";

3 "BE_C" fail~rayleigh(6.0E-2);

4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1 Spare with independent dormancy PDF

Galileo with arbitrary failure distributions—we introduce its

full syntax in Code 5 on page 20. The current definition of

Kepler supports a particular set of distributions but it can be

straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a

node in the tree by its name, type, some extra characteristics

and the names of its children. When declaring a (spare) basic

element, we use the keyword fail to precede the definition

of its failure distribution, repair for the repair distribution

and dorm for its dormant failure distribution. The presence

of a dormancy failure distribution is the only distinguishable

factor between the definition of a BE and the definition of a

SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)

with a primary basic element (BE_C) and a spare one (BE_D).

Their respective failure PDFs are Rayleigh (σ = 0.06) and

exponential (λ = 0.00111). Notice that, unlike Galileo, we

allow the dormancy PDF of an SBE to be independent of its

failure PDF. Thus we define the dormancy of BE_D as an

Erlang(k = 3, λ = 9).

Furthermore, Kepler supports the use of (multiple) repair

boxes with the keywords rbox. The first parameter after

rbox defines the policy for serving the queue of failed

BEs and SBEs. Currently, only non-preemptive priority poli-

cies are provided through the keyword prio. Other policies

are proposed in [45]. For example, in Code 2, all BEs are

repairable, with repair time uniformly distributed. Line 6 of

the code defines the RBOX of the system, which handles one

repair at a time with the priority given by the order of the

list. Thus, for instance, if BE_E and BE_F fail while BE_G

is being repaired, BE_E will be chosen next.

5.2 CompilingKepler to IOSA

We developed a Python textual converter that takes as input

an RFT modelled in Kepler. The converter automatically

produces 3 outputs:

1 toplevel "Gate3";

2 "Gate3" and "BE_E" "BE_F" "BE_G";

3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);

4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);

5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);

6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2 Simple Kepler tree with a repair box

1. The IOSA model of the input RFT,

2. A property specification for evaluating the unreliability

or unavailability of the tree, and

3. The importance functions for the tree.

The translation of a Kepler model to a IOSA specification

follows the semantics of RFTs defined in [45,46]. As an

example, Code 3 shows the IOSA module corresponding to

the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but

includes primitives to handle stochastic timing. In IOSA,

systems are modelled as a set of interacting processes which

communicate by synchronising equally named transitions.

Transitions are split into input and output. Output transitions

are generative while input are reactive and only take place

by synchronising with output transitions of other modules.

IOSA presents a discrete-event continuous-time semantics.

All clock variables in a IOSA model count down at the same

rate and can be set to values sampled from their associ-

ated probability distribution. An example of setting clock

BE_E_rc is seen at the end of line 10 in Code 3. When a

clock variable expires (i.e. reaches zero), it may enable an

output transition. We indicate this by preceding the clock

name with the symbol@ in the guard of a transition—see, for

example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded as

variants of PCTL [32] and CSL [2]. To do so, the script auto-

matically identifies the state characterisation of the top-level

event. This state condition depends solely on the semantic

model of the top-level gate. For instance, Code 4 shows the

unavailability property generated for the RFT of Code 2.

Here,Gate3_count == 3 characterises the failing of the

top-level AND gate with 3 children.

Finally, all importance functions are calculated following

Tables 1 and 2. We recall that IMCS and IMCSN are only

available for models without PANDs.

123

832 C. E. Budde et al.

1 module BE_BE_E

2 BE_E_fc : clock;

3 BE_E_rc : clock;

4 BE_E_broken : [0..2] init 0;

5

6 [BE_E_fl!] BE_E_broken==0 @ BE_E_fc

7 -> (BE_E_broken’=1);

8 [BE_E_r??] BE_E_broken==1

9 -> (BE_E_broken’=2)

10 & (BE_E_rc’=uniform(8,24));

11 [BE_E_up!] BE_E_broken==2 @ BE_E_rc

12 -> (BE_E_broken’=0)

13 & (BE_E_fc’=exponential(6.0E-5));

14 endmodule

Code 3 IOSA model of BE_E from Code 2

1 properties

2 S(Gate3_count == 3)

3 endproperties

Code 4 Unavailability property query for Code 2

5.3 fig: RES to estimate rare dependability metrics

The fig tool was devised to study temporal logic queries of

IOSA models [10], described either in their native syntax or in

the JANI model exchange format [16]. Using RES embedded

in statistical model checking,fig computes CIs that estimate

the value with which a model satisfies (1) transient and (2)

steady-state properties. An example of (1) is the probability

of observing a system failure before a given mission time

T , i.e. the unreliability value UNRELT . An example of (2)

is the proportion of time that a repairable system remains

inoperative, i.e. the unavailability value UNAVA.

fig was designed for automatic RES, implementing the

algorithms from [14,15] to derive an importance function

from the system model. For this, fig uses the property query

to identify the states of relevant IOSA modules that represent

the rare event. However, in FTA the relevant information is

in the structure of the tree, not in the query, so this strategy

fails to produce useful importance functions.

fig can also take a composition function as input, to

aggregate the local importance functions of the system mod-

ules that are relevant for the rare event. We exploit this feature

with our Kepler to IOSA compiler, thus instructing fig how

to implement the importance functions from Sects. 4.1 and

4.2. Note nonetheless that those functions depend at least on

the state of BEs and SBEs or, in the general case, on the output

z of all nodes v in Table 1 for which z appears in Iv . So fig

offers an option to build local importance functions for those

nodes, namely {BE, SBE, PAND, SPARE}, which are the base

cases of the global importance function for the whole tree.

Thus from an FT model and via our toolchain, fig can

build the thresholds required to perform ISPLIT using several

heuristics, and then run diverse RES algorithms to estimate

rare event properties—see e.g. [11,13,17].

6 Experimental evaluation

To demonstrate the effectiveness of our theory we used this

toolchain to compute the unreliability and unavailability of

27 highly-resilient repairable non-Markovian DFTs. These

models come from seven literature case studies, that we

enriched with RBOX elements and non-Markovian failure,

dormancy, and repair stochastic distributions.

6.1 General setup

We estimated the UNAVA or UNREL103 of each tree in

increasingly resilient configurations. Thus we show how

Crude Monte Carlo (CMC) loses efficiency in comparison

to our automatic implementations of RES, with an efficiency

gap that increases as the dependability metrics become rarer.

Moreover, we compare the quality of the RES algorithms

that result from three different importance functions, namely:

the compositional function from Sec. 4.1 defined recursively

in the structure of the tree △, denoted structural (ISTR); func-

tion IMCS from Sec. 4.2 that works on the set of minimal cut

sets of △; and its normalised variant IMCSN. We did not con-

sider the pruned variants of IMCS, which [12] reported as less

promising.

To compare the efficiency of these functions empirically,

we passed them as composition functions to fig for differ-

ent types of ISPLIT algorithms (engines in fig terminology)

and heuristics for thresholds selection. We tested the engines:

Fixed Effort [27] with different effort values, i.e. different

amounts of partial runs performed in each Sk region; stan-

dard RESTART [62], for different values of splitting per

threshold; and RESTART with prolonged retrials of level

2 [61], RESTART-P2, also for different values of splitting

per threshold. For each engine we experimented three meth-

ods to build thresholds: a modified Sequential Monte Carlo

algorithm [15] using global splitting 2 (for the RESTART

variants) or global effort 8 (Fixed Effort); the same with val-

ues 5 and 16 resp.; the Expected Success algorithm [13], that

computes splitting/effort values independently for each Sk

region.

All these configurations result in nine ISPLIT variants:

FEm for m = 8, 16, es and RSTn , RST2n for n = 2, 5, es.

If one of the importance functions ISTR, IMCS, IMCSN shows

better efficiency than the rest to analyse all case studies, in

one or more of these ISPLIT variants without showing worse

performance in the rest, then we conclude that it is (for our

practices) a higher-quality function for RES.

More precisely, we define an instance y as a combination

of an algorithm algo (i.e. an ISPLIT variant using one of

the three functions), an RFT, and a dependability metric. An

RFT is identified by a case study (CS) and a parameter (p),

where larger values of the parameter of the RFT CSp indicate

smaller dependability values pCSp . Running algo for a fixed

123

Analysis of non-Markovian... 833

simulation time, instance y estimates the value py
def

= pCSp . We

fix the confidence coefficient δ = 0.95, so this experiment

produces a confidence interval (CI) p̂y that has a certain width

‖ p̂y‖ ∈ [0, 1]. The performance of algo can be measured by

that width: the smaller ‖ p̂y‖, the more efficient the algorithm

that achieved it.

This is a direct and standard approach to quantify effi-

ciency: measure the confidence interval width for a fixed

simulation budget. There are, however, two more dimensions

to consider. First, the simulation budget may not suffice to

observe rare events in certain cases, e.g. when using CMC

on an instance with very low dependability value py. In such

cases the fig tool reports a null estimate p̂y = [0, 0], which

is an indication of poor performance. Second, the simulation

of random events depends on the RNG—and its seed—used

by fig, so different runs yield CIs of different width. This

is another indicator: the less variability observed for these

widths, the better the algorithm—inasmuch the CI is narrow,

i.e. relative to the first dimension mentioned.

We use these three dimensions to assess the performance

of an algo: its capability to converge, the expected CI width

achieved, and the variability of these widths. For this we

repeated 10 times the estimation of p̂y for each instance y,

measuring: (i) how many times it yielded not-null estimates;

(ii) what was the average width ‖ p̂y‖; and (iii) what was the

standard deviation of those widths.

We performed 10 repetitions to ensure statistical signifi-

cance: in the bar plots that we present in Sec. 6.3, a 95% CI

for a bar is narrower than the whiskers and, in the hardest

configuration of every CS, the whiskers of algorithms under

comparison never overlap.

Case studies. Our seven parametric case studies are:

1. the synthetic model DSPAREp [12], with p ∈ {3, 4, 5}

shared SBEs and 1 RBOX;

2. the synthetic modelVOTp [12], with p ∈ {1, . . . , 4} shared

BEs and 1 RBOX;

3. FTPPp [26], where we study one triad with p ∈ {4, 5, 6}

shared SBEs, using one RBOX for the processors and

another for the network elements;

4. HECSp [57], with 2 memory interfaces, 4 RBOX (one per

subsystem), p ∈ {1, . . . , 5} shared spare processors, and

2p parallel buses;

5. RCp [30], with one RBOX and p ∈ {3, . . . , 6} SPAREs;

6. HVCp [31], with one RBOX and p ∈ {2, . . . , 4} shared

SBEs;

7. RWCp ∈ {4, . . . , 7} [53], which is a non-trivial combi-

nation of RCp and HVCp via VOT and OR gates that

maintains both independent RBOX elements.

In total we have 27 RFTs with PDFs that include exponential,

Erlang, uniform, Rayleigh, Weibull, normal, and log-normal

distributions. All details of these case studies can be found in

the artifact accompanying this work, where we provide the

fault trees written in the Kepler syntax, as well as their IOSA

translations [18].

Transient vs. steady-state. From the nine ISPLIT variants,

only the three based on standard RESTART (RSTn) could

be used to estimate both types of properties. Fixed Effort

(FEm) was not used for steady-state properties as this requires

regeneration theory [27], which is not always feasible with

non-Markovian models. Conversely, RESTART-P2 (RST2n)

was not used for transient properties because there is no cur-

rent support for this combination of engine and property in

fig.

Hardware. Our experiments ran in a PBS-administered clus-

ter running Linux CenOS 7 (kernel 3.10.0-957), whose nodes

have CPUs Intel® Xeon® E5-2680 v4@2.40 GHz (14 cores,

35M cache), each with 384 GB of DDR4 RAM @1600 MHz.

6.2 Experimental results: scatter plots

We start by presenting scatter plots, that offer a high-level

overview of our general results, later refined into bar plots.

Fig. 7 compares all runs of CMC against all RES runs

that used RESTART. We arrange the plots in a 3 × 3 matrix,

where a row indicates a way to select thresholds, and a

column indicates an importance function. For instance, the

upper-left scatter plot of Fig. 7 compares CMC against

RESTART using the ISTR function and thresholds built with

Sequential Monte Carlo for global splitting 2. Instead, the

lower-right scatter plot compares CMC to RESTART using

the IMCSN function and the Expected Success algorithm.

In each scatter plot, a mark at (x, y) coordinates corre-

sponds to an instance whose CI width was x for RESTART

and y for CMC. Thus, a mark above the solid diagonal line

means that RESTART built a narrower CI than CMC in the

same simulation time. Dotted diagonal lines indicate 10×

narrower CIs (note that the axes are in logarithmic scale). A

mark on the upper- or right-most bars labelled ∅ respectively

indicates that none of the 10 CMC or RESTART experiments

managed to build a CI (e.g. CMC for VOT4).

These x, y values are the robust average of the correspond-

ing 10 +10 runs, computed via Z-scorem=2 to remove outliers

[34]. Mark styles differentiate the case studies and properties,

e.g. compare unavailability for the four VOTp case studies,

while represent unreliability for RWCp.

Fig. 7 shows that in general and as expected, RESTART

performs at least as well as CMC to estimate the depend-

ability metrics, with an efficiency gap that increases as the

RFT gains on resilience. However, this relative gain concerns

UNAVA studies, which are the first-row models in the leg-

end of Fig. 7, that have an A superscript and blue-tainted

colour marks. For UNREL1000 RESTART fails to surpass

CMC significantly: we will show next that Fixed Effort is a

much better ISPLIT algorithm in these cases.

123

834 C. E. Budde et al.

Fig. 7 CI precision of CMC vs.

RESTART. A column of plots

indicates the importance

function used for

experimentation with

RESTART: structural (ISTR),

minimal cut sets (IMCS), or

normalised MCS (IMCSN). A

row indicates the

thresholds-building method used

with that function: sequential

Monte Carlo with global

splitting 2 or 5, or Expected

Success (es). Darker marks in a

scatter plot correspond to

UNAVA experiments, for the

case studies VOT, RC, RWC,

HECS, represented with an A

superscript in the legend of the

plots (VOTA . . .). Lighter marks

correspond to UNREL103

experiments, for the case studies

DSPARE, HVC, RWC, FTPP,

HECS, represented with an R

superscript (DSPARER . . .). A

mark above the solid diagonal

line means that RESTART built

a narrower CI than CMC in the

same simulation time. Dotted

diagonal lines indicate 10×
narrower CIs. Both axes are in

logarithmic scale.

When comparing importance functions, Fig. 7 shows a

tendency that favours ISTR, evidenced in (each row of) plots

by the higher mass of marks above the diagonal that occur

on the column corresponding to ISTR. Nevertheless, there are

two outliers in this trend that we discuss here.

First, RESTART with ISTR and Expected Success failed

to build any CI for UNAVA of the RFT VOT3 (mark on the

right-most bar of the bottom-left scatter plot). Studying the

output logs of fig it was found that Expected Success failed

in the selection of a threshold at importance value 44 (out of

70). Although fig has recovery heuristics for such situations,

the result for this case was the selection of a splitting value =

2234. This is in contrast to the values observed for all other

experiments, that seldom go over 200 and never over 400.

Therefore, an oversampling occurred in the Sk region built

above such threshold, which produced a bottleneck that could

not be overcome in the 30 min of runtime allowed for this

experiment, producing the lack of results.

Second, RESTART with ISTR and Sequential Monte Carlo

for global splitting 5 failed to build any CI for HVC7 when

studying UNREL1000. This is less surprising given the lower

efficiency of RESTART to study unreliability in our experi-

ments, and the nature of this case study that we discuss next

when analysing Fixed Effort. Still we studied the output logs

of fig, and in this case found an undersampling caused by

thresholds set too far apart by Sequential Monte Carlo. This

is a known issue for this algorithm, that uses a single splitting

value for all thresholds.

Thus, both outliers have roots on a combination of the

algorithms to build thresholds, and their current implementa-

tion in fig. The better performance of RESTART with ISTR,

for the rest of the instances when compared to the columns

of IMCS and IMCSN, tilt the scale in favour of the structural

function ISTR defined in Sec. 4.1.

Figure 8 shows our experimental results for RESTART-P2,

which essentially delays the truncation of simulation retri-

als for 2 threshold levels. In comparison RESTART can be

defined as RESTART-P0, which truncates a retrial as soon

as it visits a state whose importance is below the level of

creation of the retrial. Empirical and theoretical studies have

shown RESTART-P1 and RESTART-P2 to be more efficient

than RESTART in the analysis of queueing systems [17,61].

123

Analysis of non-Markovian... 835

Fig. 8 CI precision of CMC vs.

RESTART-P2 . A column of

plots indicates the importance

function used for

experimentation with

RESTART-P2: structural (ISTR),

minimal cut sets (IMCS), or

normalised MCS (IMCSN). A

row indicates the

thresholds-building method used

with that function: sequential

Monte Carlo with global

splitting 2 or 5, or Expected

Success (es). These are UNAVA

experiments on the

parameterised case studies VOT,

RC, RWC, HECS. A mark

above the solid diagonal line

means that RESTART-P2 built a

narrower CI than CMC in the

same simulation time. Dotted

diagonal lines indicate 10×
narrower CIs. Both axes are in

logarithmic scale.

Here we experiment with the latter, within the current capa-

bilities of fig (UNAVA properties only), to further validate

our previous discussion for ISTR.

For that function, Fig. 8 shows a similar trend than Fig. 7,

with the following difference. When thresholds are selected

with Sequential Monte Carlo for global splitting 2 (upper-left

scatter plots in the figures), RESTART-P2 managed to build

narrower CIs than RESTART, most notably for the RWCp

case studies. The opposite effect is observed (but to a lower

degree) when thresholds are selected with the Expected Suc-

cess algorithm.

However interesting, this does not change the fact that for

any row of scatter plots, those produced with the ISTR func-

tion in Fig. 8 generally produced the narrower CIs. Also,

being more sensitive than RESTART to the choice of thresh-

olds via Expected Success, RESTART-P2 puts in evidence

that IMCS can result in ISPLIT algorithms that perform worse

than CMC, e.g. the lower-central scatter plot of Fig. 8. Thus,

all in all these results increase the evidence in favour of ISTR

as the most efficient of the three importance functions tested,

at least for steady-state analysis.

Finally, Fig. 9 shows our experimental results when using

Fixed Effort to study UNREL1000. Something that jumps to

sight is the high number of failures of the algorithm for all

importance functions, but exclusively for the HVCp case

studies (plus some RWCp), and paradoxically for the less

rare instances of those models.

To understand this we study the structure of these RFTs,

whose smallest instance (HVC4) require 6 basic elements to

fail in order to trigger a top event. This is not too favourable

for ISPLIT, specially considering the fast repair times (uni-

formly distributed in [0.15, 0.45]) with respect to failure

times (Erlang(3, 0.25) and Rayleigh(1.999)). Still this did

not stop RESTART to at least match the performance of

CMC.

In general, the issue with Fixed Effort is that it is more

structured, and thus more brittle than RESTART (and CMC),

as shown here. By conditioning the success of the whole run

on the chained success on every Sk region, a single failed

step produces a 0 estimate and starts all estimations anew.

This can be very efficient—see e.g. the CIs ≈ 100× nar-

rower than CMC for HECS5—as it avoids to waste effort

in unpromissing simulations. In HVC however, where repair

123

836 C. E. Budde et al.

Fig. 9 CI precision of CMC vs.

Fixed Effort. A column of plots

indicates the importance

function used for

experimentation with Fixed

Effort: structural (ISTR),

minimal cut sets (IMCS), or

normalised MCS (IMCSN). A

row indicates the

thresholds-building method used

with that function: sequential

Monte Carlo with global effort 8

or 16, or Expected Success (es).

These are UNREL1000

experiments on the

parameterised case studies

DSPARE, HVC, RWC, FTPP,

HECS. A mark above the solid

diagonal line means that Fixed

Effort built a narrower CI than

CMC in the same simulation

time. Dotted diagonal lines

indicate 10× narrower CIs. Both

axes are in logarithmic scale.

times are extremely faster than failures, such reset condition

happens almost always before the top event of the tree. This

does not affect RESTART and CMC so badly, which con-

tinue simulations as before. But for Fixed Effort and given

the short runtimes allowed for the smallest instances—HVC4

and HVC5 are truncated after 90 and 300 s respectively—it

results in null estimates as observed in Fig. 9. This is related

to the fact that none of our importance functions considers

time—the value of IOSA clocks—as a factor for splitting.

We touch upon this subject in the conclusions.

For the rest of the cases, where redundancy (rather than

fail vs. repair time) is the root factor for resilience, Fig. 9

shows an excellent performance of Fixed Effort to estimate

unreliability. The dominance of ISTR is not as clear here as

it is for UNAVA studies via RESTART and RESTART-P2;

however, neither of the other two functions is clearly superior.

Consider e.g. DSPAREp, where ISTR shows consistent better

results than IMCS and IMCSN; and also the best-performance

cases, namely HECSp, where all functions perform similarly

for the different ways of choosing thresholds.

Therefore, our general observations remain favourable for

ISTR, as the importance function that produces the most effi-

cient ISPLIT implementations in general scenarios.

6.3 Experimental results: bar plots

Unlike the scatter plots in Figs. 7 to 9, the bar plots in this

section show the variance of the CI widths produced by

each algorithm. These are plotted as whiskers on top of the

bars, where the height of a bar indicates the width of the

CI achieved by the corresponding instance. Numbers in the

range [0, 10] at the base of the bars tell how many of the

10 experimental repetitions managed to build a not-null CI.

The label “pp ≈ µ ± σ 2” at the right of each plot shows the

robust mean and variance estimated for the corresponding

dependability metric, computed from the complete series of

runs (190 independent experiments per case study).

Steady-state studies for RC. Fig. 10 shows the widths of the

CIs produced for unavailability estimation on the RCp case

studies. The plots illustrate how ISTR performs better than

both IMCS and IMCSN in every one of the ISPLIT variants

tested. This difference between the RES implementations

123

Analysis of non-Markovian... 837

Fig. 10 CI widths for U N AV A studies of RCp. The height of the bars

indicates the width of (the robust mean of) the CI width, achieved with

10 runs of Crude Monte Carlo (CMC), RESTART with global splitting

2 (RES-2), …, or RESTART-P2 with Expected Success (RES2-ES).

Lower is better. The whiskers on top of the bars indicate the standard

deviation of these widths. The bars are clustered per importance function

used with RESTART and RESTART-P2: ISTR, IMCS, and IMCSN. The

plots show experiments on RC3 (top plot) through RC6 (bottom plot)

resulting from ISTR and the other functions increases for

lower values of the steady-state property, and the variance

of these results remains among the lowest of all cases. More-

over, here ISTR is the only function with which all RESTART

algorithms maintain or increase the efficiency gap that sets

them apart from CMC.

Transient studies for DSPARE. Fig. 11 shows the widths of

the CIs produced for unreliability estimation on the case

studies DSPAREp. Once again we see ISTR outperforming

the other two functions in general, with an efficiency gap

and accuracy that increases as the event becomes more rare.

However and as discussed in Sec. 6.2, in this case this only

happens with Fixed Effort variants, since RESTART fails to

perform better than CMC. Yet the difference between the

Fixed Effort implementations and the rest (specially with the

ISTR function) is remarkable, and in particular Fixed Effort is

the only algorithm capable of producing consistently useful

CIs (i.e. that exclude 0).

Fig. 11 CI widths for U N RE L1000 studies of DSPAREp. The height

of the bars indicates the width of (the robust mean of) the CI width,

achieved with 10 runs of Crude Monte Carlo (CMC), RESTART with

global splitting 2 (RES-2), …, or Fixed Effort with Expected Success

(FE-ES). Lower is better. The whiskers on top of the bars indicate the

standard deviation of these widths. The bars are clustered per importance

function used with RESTART and Fixed Effort: ISTR, IMCS, and IMCSN.

The plots show experiments on RC3 (top plot) through RC6 (bottom

plot)

7 Relatedwork

Most work on DFT analysis assumes discrete [4,57] or

exponentially distributed [23,40] components failure. Fur-

thermore, components repair is seldom studied in conjunc-

tion with dynamic gates [4,7,40,44,54]. In this work we

addressed repairable DFTs, whose failure and repair times

can follow arbitrary PDFs. More in detail, RFTs were first

formally introduced as stochastic Petri nets in [7,20]. Our

work stands on [45,46], which reviews [20] in the context

of stochastic automata with arbitrary PDFs. In particular

we also address non-Markovian continuous distributions: in

Sec. 6 we experimented with exponential, Erlang, uniform,

Rayleigh, Weibull, normal, and log-normal PDFs. Further-

more and for the first time (with the exclusion of [12,19]

on which this work stands), we consider the application of

[20,45] to study rare events.

Much effort in RES has been dedicated to study highly

reliable systems, deploying either importance splitting or

sampling. Typically, importance sampling can be used when

the system takes a particular shape. For instance, a common

assumption is that all failure (and repair) times are exponen-

tially distributed with parameters λi , for some λ ∈ R and

i ∈ N>0. In these cases, a favourable change of measure can

be computed analytically [29,33,47,48,53,65].

123

838 C. E. Budde et al.

In contrast, when events occur at times following less-

structured or even arbitrary distributions, importance split-

ting is more easily applicable. As long as a full system

failure can be broken down into several smaller failures, an

importance splitting method can be devised. Of course, its

efficiency relies heavily on the choice of importance function.

This choice is typically done ad hoc for the model under study

[43,58,60]. In that sense [14,15,35,36] are among the first to

attempt a heuristic derivation of all parameters required to

implement splitting, for which they exploit formal specifica-

tions of the model and property query.

Here we extended [10,14,15] in two different ways. One

is the natural way in which we use the structure of the fault

tree to define composition operands. With these operands

we aggregate the automatically-computed local importance

functions of the tree nodes. This aggregation results in an

importance function for the whole model, that we present in

Table 1 as the “structural” function ISTR.

The other extension relates to [58,59], where [58] ini-

tially defined a “state variable” (an importance function for

the RESTART algorithm) S(x) = maxi {ci (x)}, where ci (x)

is the number of components of type i that are failed in

state x. Even though this is defined for a specific system,

in essence and viewing the system as a fault tree, S(x)

counts the maximum number of failed components in any

MCS. This was generalised in [59] using cut set analysis to

define an importance function which, in our setting, is given

by 8(x) = min|MCS| −
(

min|MCS| −
∑

b∈MCS zb

)

, where in

turn min|MCS| =
(

minMCS∈M (△) |MCS|
)

. Unlike S(x), 8(x)

does not require all cut sets to have the same cardinality. How-

ever, both functions are hindered when the branches of the

fault tree have different failure probabilities.

In [19] it was proposed to alleviate that issue via cut set

pruning and importance normalisation, but the former strat-

egy proved inefficient in the general case. Thus here we chose

to experiment with the original and normalised variants of

this function, i.e. IMCS and IMCSN in Table 2.

8 Conclusions

We have presented a theory to deploy automatic impor-

tance splitting (ISPLIT) for fault tree analysis of repairable

dynamic fault trees (RFTs). This Rare Event Simulation

approach supports arbitrary probability distributions of com-

ponents failure and repair. The core of our theory lies on the

general definition of importance functions. Thus, we provide

the importance function ISTR, which is defined structurally

on the given tree △, and a family of importance functions,

including IMCS and IMCSN, derived from the collection of

minimal cut sets of △.

From such functions we have implemented ISPLIT algo-

rithms and used them to estimate the unreliability and

unavailability of highly-resilient RFTs. Setting itself apart

from classical approaches, that define importance functions

ad hoc using expert knowledge, our theory computes all

metadata required for RES from the model and metric specifi-

cations. From this basis, we have shown how diverse ISPLIT

algorithms can be automatically implemented from ISTR,

IMCS, or IMCSN. Our experimentation shows that these algo-

rithms can converge to narrower confidence intervals than

crude Monte Carlo simulation (CMC).

The efficiency gap observed between CMC and the auto-

matic ISPLIT implementations—i.e. how narrow are the CIs

achieved for a fixed simulation budget—depends on a num-

ber of factors. These include the type of property, the specific

RES algorithm, the relation between the fail and repair times

of the BEs and SBEs of the tree, and (to a lesser degree) also

the heuristic chosen to select thresholds. Nevertheless and

in all cases, implementations with the structural importance

function proved to be at least as performant as with those

based on minimal cut sets, and in many cases consistently

better, most prominently with RESTART variants for RES.

Another main advantage of ISTR over IMCS and its vari-

ants is that the former is linear in the size of the tree, and its

bottom-up computation from the tree structure (regardless of

whether it is a proper tree or not) is likewise linear in the tree

size. In contrast, IMCS and its variants are worse-case expo-

nential in the size of the tree. This has not been a problem

for the relatively small RFTs considered here, but in indus-

trial applications with thousands of BEs this could quickly

become a limiting factor. Moreover, importance functions

are constantly evaluated during rare event simulation, so the

computation overhead (see e.g. [64]) could easily tilt the scale

against IMCS even in the cases where the exponential explo-

sion is not observed.

Besides theoretical contributions and to provide an empir-

ical basis to our studies, we have presented a toolchain

that demonstrates our automatic RES applications. With the

aim to improve a former toolchain we have also introduced

Kepler, a textual format to represent RFTs, and changed

the ISPLIT engine of fig to include conditional sampling.

This modification increases trace independence during split-

ting and had a positive impact on the performance of the

importance splitting methods in figwith respect to previous

versions. All the experimental results here presented can be

inspected and reproduced with the software artifact that we

have made publicly available to that end [18].

There are several paths open for future development. First

and foremost, we are looking into new ways to define the

importance function, e.g. to cover more general categories

of FTs such as fault maintenance trees [51]. In addition,

we have defined ISTR, IMCS, and IMCSN based on the tree

structure alone. It would be interesting to further include

stochastic information in this phase, and not only after-

wards during the thresholds-selection phase. Finally, we are

123

Analysis of non-Markovian... 839

investigating enhancements in IOSA and our toolchain, to

exploit the ratio between fail and dormancy PDFs of SBEs in

warm SPARE gates.

Acknowledgements The authors thank Marco Biagi, for the many

discussions that lead to the first implementation of the structural

importance function in fig. Thanks extend also to José and Manuel

Villén-Altamirano, for fruitful discussions that helped to better under-

stand the application scope of this approach.

Funding Open access funding provided by Università degli Studi di

Trento within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

A Kepler grammar for repairable DFTs

Kepler is a textual, human-readable syntax to describe Fault

Trees with dynamic gates (PAND, SPARE, FDEP), repairs

(RBOX), and general continuous distributions. Although a

subset of such distributions is currently described, the exten-

sion to others is direct. We refer to these extended fault trees

as RFTs.

The first line in a Kepler description of an RFT declares

which is the top-level gate. Each subsequent line is either

empty or it defines a node in the RFT. Each node can be

described either with our newly introduced syntax, or by

using the legacy Galileo syntax.

In Code 5 we describe the full Kepler syntax in stan-

dard BNF notation. Grammar symbols are capitalised words

between carets, e.g. <THIS>. In particular, the entry point

of the syntax is the production rule <TOPLEVEL>. The

horizontal line ‘|’ separates options. Other characters in

the production rules are either literals or terminal symbols.

Notice that our definition includes a formalisation of the

legacy Galileo standard syntax.

Code 5 Kepler grammar for RFTs

1 <TOPLEVEL> ::= toplevel <NAME> ; <KEPLER>

2

3 // Kepler syntax

4

5 <KEPLER> ::= <GATE>

6 | <BE>

7 | <SBE>

8 | <GALILEO>

9 | <KEPLER> <KEPLER>

10 <GATE> ::= <NAME> or <NAMES> ;

11 | <NAME> and <NAMES> ;

12 | <NAME> <VOT> <NAMES> ;

13 | <NAME> pand <NAMES> ;

14 | <NAME> fdep <NAMES> ;

15 | <NAME> spare <NAMES> ;

16 | <NAME> rbox <RMODE> <NAMES> ;

17 <BE> ::= <NAME> <FAIL> ;

18 | <NAME> <FAIL> <REP> ;

19 <SBE> ::= <NAME> <DORM> <FAIL> ;

20 | <NAME> <DORM> <FAIL> <REP> ;

21 <RMODE> ::= prio | fcfs | rand

22 <FAIL> ::= fail ~ <DIST>

23 <REP> ::= repair ~ <DIST>

24 <DORM> ::= dorm ~ <DIST>

25

26 // Galileo

27

28 <GALILEO> ::= <GGATE>

29 | <GBE>

30 | <GALILEO> <GALILEO>

31 <GGATE> ::= <NAME> seq <NAMES> ;

32 | <NAME> csp <NAMES> ;

33 | <NAME> wsp <NAMES> ;

34 | <NAME> hsp <NAMES> ;

35 <GBE> ::= <NAME> <GFAIL> ;

36 | <NAME> <GFAIL> <GDORM> ;

37 | <NAME> <GDORM> <GFAIL> ;

38 <GFAIL> ::= lambda = <PREAL>

39 | prob = <PROB>

40 | res = <PROB>

41 | rate = <PREAL> shape = <PREAL>

42 | mean = <REAL> stddev = <PREAL>

43 <GDORM> ::= dorm = <PROB>

44

45 // Basic

46

47 <NAMES> ::= <NAME> | <NAME> <NAMES>

48 <NAME> ::= " <ALNUM> "

49 <VOT> ::= <NAT>of<NAT>

50 <DIST> ::= exponential (<PREAL>)

51 | erlang (<NAT>, <PREAL>)

52 | uniform (<REAL> , <REAL>)

53 | normal (<REAL> , <PREAL>)

54 | lognormal (<REAL> , <PREAL>)

55 | gamma (<PREAL> , <PREAL>)

56 | weibull (<PREAL> , <PREAL>)

57 | rayleigh (<PREAL>)

58 <PROB> ::= 0 | 1 | 0.<NAT>

59 <REAL> ::= <SGN><PREAL>

60 <INT> ::= <SGN><NAT>

61 <PREAL> ::= <NAT>

62 | <NAT>.<NAT>

63 | <NAT>e<INT>

64 <NAT> ::= <NUM>

65 | <NUM><NAT>

66 <ALNUM> ::= <ALPHA>

67 | <NUM>

68 | <NUM><ALNUM>

69 | <ALPHA><ALNUM>

70 <ALPHA> ::= A | B | ... | Z

71 | a | b | ... | z | _

72 <NUM> ::= 0 | 1 | ... | 9

73 <SGN> ::= | + | -

References

1. Abate, A., Budde, C.E., Cauchi, N., Hoque, K.A., Stoelinga, M.:

Assessment of maintenance policies for smart buildings: applica-

tion of formal methods to fault maintenance trees. PHM Society

European Conference 4(1) (2018). https://www.phmpapers.org/

index.php/phme/article/view/385

2. Baier, C., Katoen, J., Hermanns, H.: Approximate symbolic model

checking of continuous-time Markov chains. In: CONCUR 1999,

pp. 146–161 (1999). https://doi.org/10.1007/3-540-48320-9_12

3. Bayes, A.J.: Statistical techniques for simulation models. Aust.

Comput. J. 2(4), 180–184 (1970)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.phmpapers.org/index.php/phme/article/view/385
https://www.phmpapers.org/index.php/phme/article/view/385
https://doi.org/10.1007/3-540-48320-9_12

840 C. E. Budde et al.

4. Beccuti, M., Codetta-Raiteri, D., Franceschinis, G., Haddad, S.:

Non deterministic repairable fault trees for computing optimal

repair strategy. In: VALUETOOLS 2008 (2010). https://doi.org/

10.4108/ICST.VALUETOOLS2008.4411

5. Blanchet, J., Mandjes, M.: Rare event simulation for queues.

In: Rubino and Tuffin [50], pp. 87–124. https://doi.org/10.1002/

9780470745403.ch5

6. Blom, H.A.P., Bakker, G.J.B., Krystul, J.: Rare event estimation for

a large-scale stochastic hybrid system with air traffic application.

In: Rubino and Tuffin [50], pp. 193–214. https://doi.org/10.1002/

9780470745403.ch9

7. Bobbio, A., Codetta-Raiteri, D.: Parametric fault trees with

dynamic gates and repair boxes. In: RAMS, pp. 459–465. IEEE

(2004). https://doi.org/10.1109/RAMS.2004.1285491

8. Boudali, H., Crouzen, P., Haverkort, B.R., Kuntz, M., Stoelinga,

M.: Architectural dependability evaluation with Arcade. In:

DSN’08, pp. 512–521. IEEE Computer Society (2008). https://

doi.org/10.1109/DSN.2008.4630122

9. Boudali, H., Dugan, J.B.: A new Bayesian network approach to

solve dynamic fault trees. In: RAMS 2005, pp. 451–456. IEEE

(2005). https://doi.org/10.1109/RAMS.2005.1408404

10. Budde, C.E.: Automation of importance splitting techniques for

rare event simulation. Ph.D. thesis, FAMAF, Universidad Nacional

de Córdoba, Córdoba, Argentina (2017). https://famaf.biblio.unc.

edu.ar/cgi-bin/koha/opac-detail.pl?biblionumber=18143

11. Budde, C.E.: FIG: the finite improbability generator. In: TACAS,

LNCS, vol. 12078, pp. 483–491. Springer (2020). https://doi.org/

10.1007/978-3-030-45190-5_27

12. Budde, C.E., Biagi, M., Monti, R.E., D’Argenio, P.R., Stoelinga,

M.: Rare event simulation for non-markovian repairable fault trees.

In: TACAS, LNCS, vol. 12078, pp. 463–482. Springer (2020).

https://doi.org/10.1007/978-3-030-45190-5_26

13. Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Automated compo-

sitional importance splitting. Sci. Comput. Program. 174, 90–108

(2019). https://doi.org/10.1016/j.scico.2019.01.006

14. Budde, C.E., D’Argenio, P.R., Hermanns, H.: Rare event simulation

with fully automated importance splitting. In: EPEW 2015, LNCS,

vol. 9272, pp. 275–290. Springer (2015). https://doi.org/10.1007/

978-3-319-23267-6_18

15. Budde, C.E., D’Argenio, P.R., Monti, R.E.: Compositional con-

struction of importance functions in fully automated importance

splitting. In: VALUETOOLS 2016, pp. 30–37 (2017). https://doi.

org/10.4108/eai.25-10-2016.2266501

16. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges,

S., Turrini, A.: JANI: quantitative model and tool interaction. In:

TACAS, LNCS, vol. 10206, pp. 151–168. Springer (2017). https://

doi.org/10.1007/978-3-662-54580-5_9

17. Budde, C.E., Hartmanns, A.: Replicating RESTART with pro-

longed retrials: an experimental report. In: TACAS, LNCS, vol.

12652, pp. 373–380. Springer (2021). https://doi.org/10.1007/978-

3-030-72013-1_21

18. Budde, C.E., Monti, R.E., D’Argenio, P.R.: Analysis of

non-markovian repairable fault trees through rare event sim-

ulation. https://figshare.com/articles/software/Analysis_of_

non-Markovian_repairable_fault_trees_through_rare_event_

simulation_experimental_reproduction_package_/16907143

(2021). https://doi.org/10.6084/m9.figshare.16907143

19. Budde, C.E., Stoelinga, M.: Automated rare event simulation for

fault tree analysis via minimal cut sets. In: MMB, LNCS, vol.

12040, pp. 259–277. Springer (2020). https://doi.org/10.1007/978-

3-030-43024-5_16

20. Codetta-Raiteri, D., Iacono, M., Franceschinis, G., Vittorini, V.:

Repairable fault tree for the automatic evaluation of repair policies.

In: DSN, pp. 659–668. IEEE Computer Society (2004). https://doi.

org/10.1109/DSN.2004.1311936

21. Coppit, D., Sullivan, K.J.: Galileo: A tool built from mass-market

applications. In: Proceedings of the 2000 International Conference

on Software Engineering 2000, pp. 750–753. IEEE (2000)

22. Coppit, D., Sullivan, K.J., Dugan, J.B.: Formal semantics of mod-

els for computational engineering: a case study on dynamic fault

trees. In: ISSRE 2000, pp. 270–282 (2000). https://doi.org/10.

1109/ISSRE.2000.885878

23. Crouzen, P., Boudali, H., Stoelinga, M.: Dynamic fault tree analysis

using input/output interactive Markov chains. In: DSN 2007, pp.

708–717. IEEE Computer Society (2007). https://doi.org/10.1109/

DSN.2007.37

24. D’Argenio, P.R., Monti, R.E.: Input/Output Stochastic Automata

with Urgency: Confluence and weak determinism. In: ICTAC,

LNCS, vol. 11187, pp. 132–152. Springer (2018). https://doi.org/

10.1007/978-3-030-02508-3_8

25. Distefano, S., Puliafito, A.: Dependability modeling and analysis

in dynamic systems. In: 2007 IEEE International Parallel and Dis-

tributed Processing Symposium, pp. 1–8 (2007). https://doi.org/

10.1109/IPDPS.2007.370601

26. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence

dependencies. In: ARMS 1990, pp. 286–293. IEEE (1990). https://

doi.org/10.1109/ARMS.1990.67971

27. Garvels, M.J.J.: The splitting method in rare event simulation.

Ph.D. thesis, Department of Computer Science, University of

Twente, Enschede, The Netherlands (2000). http://eprints.eemcs.

utwente.nl/14291/

28. Garvels, M.J.J., van Ommeren, J.K.C.W., Kroese, D.P.: On

the importance function in splitting simulation. Eur. Trans.

Telecommun. 13(4), 363–371 (2002). https://doi.org/10.1002/ett.

4460130408

29. Goyal, A., Shahabuddin, P., Heidelberger, P., Nicola, V.F., Glynn,

P.W.: A unified framework for simulating Markovian models of

highly dependable systems. IEEE Trans. Comput. 41(1), 36–51

(1992). https://doi.org/10.1109/12.123381

30. Guck, D., Katoen, J.P., Stoelinga, M., Luiten, T., Romijn, J.: Smart

railroad maintenance engineering with stochastic model checking.

In: Railways 2014, Civil-Comp Proceedings. Civil-Comp Press

(2014). https://doi.org/10.4203/ccp.104.299

31. Guck, D., Spel, J., Stoelinga, M.: DFTCalc: Reliability centered

maintenance via fault tree analysis (tool paper). In: ICFEM 2015,

LNCS, vol. 9407, pp. 304–311. Springer (2015). https://doi.org/

10.1007/978-3-319-25423-4_19

32. Hansson, H., Jonsson, B.: A logic for reasoning about time and

reliability. Form. Asp. Comput. 6(5), 512–535 (1994). https://doi.

org/10.1007/BF01211866

33. Heidelberger, P.: Fast simulation of rare events in queueing and

reliability models. ACM Trans. Model. Comput. Simul. 5(1), 43–

85 (1995). https://doi.org/10.1145/203091.203094

34. Iglewicz, B., Hoaglin, D.: How to detect and handle outliers. ASQC

basic references in quality control. ASQC Quality Press (1993)

35. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for sta-

tistical model checking rare properties. In: CAV 2013, LNCS, vol.

8044, pp. 576–591. Springer (2013). https://doi.org/10.1007/978-

3-642-39799-8_38

36. Jégourel, C., Legay, A., Sedwards, S., Traonouez, L.M.: Distributed

verification of rare properties using importance splitting observers.

In: AVoCS 2015, ECEASST, vol. 72 (2015). https://doi.org/10.

14279/tuj.eceasst.72.1024

37. Junges, S., Guck, D., Katoen, J., Stoelinga, M.: Uncovering

dynamic fault trees. In: DSN 2016, pp. 299–310. IEEE Computer

Society (2016). https://doi.org/10.1109/DSN.2016.35

38. Junges, S., Guck, D., Katoen, J.P., Rensink, A., Stoelinga, M.:

Fault trees on a diet. In: SETTA 2015, LNCS, vol. 9409, pp. 3–18.

Springer (2015). https://doi.org/10.1007/978-3-319-25942-0_1

39. Kahn, H., Harris, T.E.: Estimation of particle transmission by ran-

dom sampling. Natl. Bur. Stand. Appl. Math. Ser. 12, 27–30 (1951)

123

https://doi.org/10.4108/ICST.VALUETOOLS2008.4411
https://doi.org/10.4108/ICST.VALUETOOLS2008.4411
https://doi.org/10.1002/9780470745403.ch5
https://doi.org/10.1002/9780470745403.ch5
https://doi.org/10.1002/9780470745403.ch9
https://doi.org/10.1002/9780470745403.ch9
https://doi.org/10.1109/RAMS.2004.1285491
https://doi.org/10.1109/DSN.2008.4630122
https://doi.org/10.1109/DSN.2008.4630122
https://doi.org/10.1109/RAMS.2005.1408404
https://famaf.biblio.unc.edu.ar/cgi-bin/koha/opac-detail.pl?biblionumber=18143
https://famaf.biblio.unc.edu.ar/cgi-bin/koha/opac-detail.pl?biblionumber=18143
https://doi.org/10.1007/978-3-030-45190-5_27
https://doi.org/10.1007/978-3-030-45190-5_27
https://doi.org/10.1007/978-3-030-45190-5_26
https://doi.org/10.1016/j.scico.2019.01.006
https://doi.org/10.1007/978-3-319-23267-6_18
https://doi.org/10.1007/978-3-319-23267-6_18
https://doi.org/10.4108/eai.25-10-2016.2266501
https://doi.org/10.4108/eai.25-10-2016.2266501
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-030-72013-1_21
https://doi.org/10.1007/978-3-030-72013-1_21
https://figshare.com/articles/software/Analysis_of_non-Markovian_repairable_fault_trees_through_rare_event_simulation_experimental_reproduction_package_/16907143
https://figshare.com/articles/software/Analysis_of_non-Markovian_repairable_fault_trees_through_rare_event_simulation_experimental_reproduction_package_/16907143
https://figshare.com/articles/software/Analysis_of_non-Markovian_repairable_fault_trees_through_rare_event_simulation_experimental_reproduction_package_/16907143
https://doi.org/10.6084/m9.figshare.16907143
https://doi.org/10.1007/978-3-030-43024-5_16
https://doi.org/10.1007/978-3-030-43024-5_16
https://doi.org/10.1109/DSN.2004.1311936
https://doi.org/10.1109/DSN.2004.1311936
https://doi.org/10.1109/ISSRE.2000.885878
https://doi.org/10.1109/ISSRE.2000.885878
https://doi.org/10.1109/DSN.2007.37
https://doi.org/10.1109/DSN.2007.37
https://doi.org/10.1007/978-3-030-02508-3_8
https://doi.org/10.1007/978-3-030-02508-3_8
https://doi.org/10.1109/IPDPS.2007.370601
https://doi.org/10.1109/IPDPS.2007.370601
https://doi.org/10.1109/ARMS.1990.67971
https://doi.org/10.1109/ARMS.1990.67971
http://eprints.eemcs.utwente.nl/14291/
http://eprints.eemcs.utwente.nl/14291/
https://doi.org/10.1002/ett.4460130408
https://doi.org/10.1002/ett.4460130408
https://doi.org/10.1109/12.123381
https://doi.org/10.4203/ccp.104.299
https://doi.org/10.1007/978-3-319-25423-4_19
https://doi.org/10.1007/978-3-319-25423-4_19
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/BF01211866
https://doi.org/10.1145/203091.203094
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.14279/tuj.eceasst.72.1024
https://doi.org/10.14279/tuj.eceasst.72.1024
https://doi.org/10.1109/DSN.2016.35
https://doi.org/10.1007/978-3-319-25942-0_1

Analysis of non-Markovian... 841

40. Katoen, J.P., Stoelinga, M.: Boosting fault tree analysis by formal

methods, LNCS, vol. 10500, pp. 368–389. Springer (2017). https://

doi.org/10.1007/978-3-319-68270-9_19

41. Kwiatkowska, M., Norman, G., Parker, D.: Prism: Probabilistic

symbolic model checker. In: International Conference on Mod-

elling Techniques and Tools for Computer Performance Evaluation,

pp. 200–204. Springer (2002)

42. Law, A.M.: Simulation modeling and analysis. McGraw-Hill

(2014)

43. L’Ecuyer, P., Le Gland, F., Lezaud, P., Tuffin, B.: Splitting tech-

niques. In: Rubino and Tuffin [50], pp. 39–61. https://doi.org/10.

1002/9780470745403.ch3

44. Liu, Y., Wu, Y., Kalbarczyk, Z.: Smart maintenance via dynamic

fault tree analysis: a case study on Singapore MRT system. In:

DSN 2017, pp. 511–518. IEEE Computer Society (2017). https://

doi.org/10.1109/DSN.2017.50

45. Monti, R.E.: Stochastic automata for fault tolerant concurrent sys-

tems. Ph.D. thesis, FAMAF, Universidad Nacional de Córdoba,

Córdoba, Argentina (2018)

46. Monti, R.E., Budde, C.E., D’Argenio, P.R.: A compositional

semantics for repairable fault trees with general distributions. In:

LPAR, EPiC Series in Computing, vol. 73, pp. 354–372. EasyChair

(2020). https://doi.org/10.29007/p16v

47. Nicola, V.F., Shahabuddin, P., Nakayama, M.K.: Techniques for

fast simulation of models of highly dependable systems. IEEE

Trans. Reliab. 50(3), 246–264 (2001). https://doi.org/10.1109/24.

974122

48. Ridder, A.: Importance sampling simulations of Markovian reli-

ability systems using cross-entropy. Ann. Oper. Res. 134(1),

119–136 (2005). https://doi.org/10.1007/s10479-005-5727-9

49. Rubino, G., Tuffin, B.: Introduction to rare event simulation. In:

Rare event simulation using Monte Carlo methods [50], pp. 1–13.

https://doi.org/10.1002/9780470745403.ch1

50. Rubino, G., Tuffin, B. (eds.): Rare event simulation using Monte

Carlo methods. Wiley (2009)

51. Ruijters, E., Guck, D., Drolenga, P., Peters, M., Stoelinga, M.:

Maintenance analysis and optimization via statistical model check-

ing. In: QEST 2016, LNCS, vol. 9826, pp. 331–347. Springer

(2016). https://doi.org/10.1007/978-3-319-43425-4_22

52. Ruijters, E., Guck, D., van Noort, M., Stoelinga, M.: Reliability-

centered maintenance of the electrically insulated railway joint via

fault tree analysis: a practical experience report. In: DSN 2016, pp.

662–669. IEEE Computer Society (2016). https://doi.org/10.1109/

DSN.2016.67

53. Ruijters, E., Reijsbergen, D., de Boer, P.T., Stoelinga, M.: Rare

event simulation for dynamic fault trees. Reliab. Eng. Syst. Saf.

186, 220–231 (2019). https://doi.org/10.1016/j.ress.2019.02.004

54. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-

of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15–16,

29–62 (2015). https://doi.org/10.1016/j.cosrev.2015.03.001

55. Sullivan, K., Dugan, J., Coppit, D.: The Galileo fault tree analysis

tool. In: 29th Annual International Symposium on Fault-Tolerant

Computing (Cat. No.99CB36352), pp. 232–235. IEEE (1999).

https://doi.org/10.1109/FTCS.1999.781056

56. Sullivan, K.J., Dugan, J.B.: Galileo user’s manual & design

overview. https://www.cse.msu.edu/~cse870/Materials/

FaultTolerant/manual-galileo.htm (1998). V2.1-alpha

57. Vesely, W., Stamatelatos, M., Dugan, J., Fragola, J., Minarick, J.,

Railsback, J.: Fault tree handbook with aerospace applications.

NASA Office of Safety and Mission Assurance (2002). Version

1.1

58. Villén-Altamirano, J.: RESTART method for the case where rare

events can occur in retrials from any threshold. Int. J. Electron.

Commun. 52(3), 183–189 (1998)

59. Villén-Altamirano, J.: Importance functions for RESTART simu-

lation of highly-dependable systems. Simulation 83(12), 821–828

(2007). https://doi.org/10.1177/0037549707081257

60. Villén-Altamirano, J.: RESTART vs splitting: a comparative study.

Perform. Eval. 121–122, 38–47 (2018). https://doi.org/10.1016/j.

peva.2018.02.002

61. Villén-Altamirano, J.: An improved variant of the rare event sim-

ulation method RESTART using prolonged retrials. Oper. Res.

Perspect. 6, 100–108 (2019). https://doi.org/10.1016/j.orp.2019.

100108

62. Villén-Altamirano, M., Martínez-Marrón, A., Gamo, J.,

Fernández-Cuesta, F.: Enhancement of the accelerated simu-

lation method RESTART by considering multiple thresholds.

In: Proc. 14th Int. Teletraffic Congress, Teletraffic Science and

Engineering, vol. 1, pp. 797–810. Elsevier (1994). https://doi.org/

10.1016/B978-0-444-82031-0.50084-6

63. Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: a method

for accelerating rare event simulations. In: Queueing, Performance

and Control in ATM (ITC-13), pp. 71–76. Elsevier (1991)

64. Villén-Altamirano, M., Villén-Altamirano, J.: Analysis of restart

simulation: Theoretical basis and sensitivity study. Eur. Trans.

Telecommun. 13(4), 373–385 (2002). https://doi.org/10.1002/ett.

4460130409

65. Xiao, G., Li, Z., Li, T.: Dependability estimation for non-Markov

consecutive-k-out-of-n: F repairable systems by fast simulation.

Reliab. Eng. Syst. Saf. 92(3), 293–299 (2007). https://doi.org/10.

1016/j.ress.2006.04.004

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-68270-9_19
https://doi.org/10.1007/978-3-319-68270-9_19
https://doi.org/10.1002/9780470745403.ch3
https://doi.org/10.1002/9780470745403.ch3
https://doi.org/10.1109/DSN.2017.50
https://doi.org/10.1109/DSN.2017.50
https://doi.org/10.29007/p16v
https://doi.org/10.1109/24.974122
https://doi.org/10.1109/24.974122
https://doi.org/10.1007/s10479-005-5727-9
https://doi.org/10.1002/9780470745403.ch1
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1109/DSN.2016.67
https://doi.org/10.1109/DSN.2016.67
https://doi.org/10.1016/j.ress.2019.02.004
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1109/FTCS.1999.781056
https://www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm
https://www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm
https://doi.org/10.1177/0037549707081257
https://doi.org/10.1016/j.peva.2018.02.002
https://doi.org/10.1016/j.peva.2018.02.002
https://doi.org/10.1016/j.orp.2019.100108
https://doi.org/10.1016/j.orp.2019.100108
https://doi.org/10.1016/B978-0-444-82031-0.50084-6
https://doi.org/10.1016/B978-0-444-82031-0.50084-6
https://doi.org/10.1002/ett.4460130409
https://doi.org/10.1002/ett.4460130409
https://doi.org/10.1016/j.ress.2006.04.004
https://doi.org/10.1016/j.ress.2006.04.004

	Analysis of non-Markovian repairable fault trees through rare event simulation
	Abstract
	1 Introduction
	2 Fault tree analysis
	2.1 Syntax
	2.2 Semantics
	2.3 Minimal cut sets
	2.4 Dependability metrics

	3 Stochastic simulation for fault trees
	4 Importance splitting for FTA
	4.1 Compositional importance functions for fault trees
	4.2 Importance functions based on minimal cut sets
	4.3 Automatic importance splitting for FTA
	4.4 Sampling conditional variables

	5 Toolchain
	5.1 The Kepler language
	5.2 Compiling Kepler to IOSA
	5.3 FIG: RES to estimate rare dependability metrics

	6 Experimental evaluation
	6.1 General setup
	6.2 Experimental results: scatter plots
	6.3 Experimental results: bar plots

	7 Related work
	8 Conclusions
	Acknowledgements
	A Kepler grammar for repairable DFTs
	References

