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Abstract
The use of propositional logic and systems of linear inequalities over reals is a common means to model software for formal
verification. Craig interpolants constitute a central building block in this setting for over-approximating reachable states,
e.g. as candidates for inductive loop invariants. Interpolants for a linear system can be efficiently computed from a Simplex
refutation by applying the Farkas’ lemma. However, these interpolants do not always suit the verification task—in the worst
case, they can even prevent the verification algorithm from converging. This work introduces the decomposed interpolants,
a fundamental extension of the Farkas interpolants, obtained by identifying and separating independent components from
the interpolant structure, using methods from linear algebra. We also present an efficient polynomial algorithm to compute
decomposed interpolants and analyse its properties.We experimentally show that the use of decomposed interpolants in model
checking results in immediate convergence on instances where state-of-the-art approaches diverge. Moreover, since being
based on the efficient Simplex method, the approach is very competitive in general.

Keywords Model checking · Satisfiability modulo theory · Linear real arithmetic · Craig interpolation

1 Introduction

The goal of software verification is to prove specified system
properties. To perform verification using automated tools,
first, the system needs to be transformed into a representation
more suitable for rigorous analysis than source or machine
code. In this work, we study a representation in propositional
logic together with a system of linear inequalities. It allows
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for employing techniques and tools from the area of logic,
such as SAT and SMT solvers [7,15] and Craig interpola-
tion [12].

In this paper, we focus on safety properties [29]. In partic-
ular, we aim at proving facts about parts of the programs and
generalizing them. Such generalizations serve as a basis for
inductive invariants—formulas representing loops in the pro-
gram, which make the verification difficult—for guiding the
search for a correctness proof in approaches such as IC3 [9]
and k-induction [41], both known to scale to the verification
of highly complex systems.

Finding good proofs and generalizing them is hard.
A widely used approach, satisfiability modulo theories
(SMT) [7,15], models a system with fragments of first-order
logic. Solvers for SMT combine a resolution-based variant of
the DPLL-algorithm [13,14,42] for propositional logic with
decision procedures for first-order theories. The SMT-LIB
initiative [6] offers currently 55 different first-order fractions
called SMT-LIB logics. What is common to these logics is
that their solving requires typically only a handful of algo-
rithms. Arguably, the two most important algorithms are a
congruence closure algorithm for deciding quantifier-free
equality with uninterpreted functions [32], and a Simplex-
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based procedure for linear arithmetic over real or rational
numbers [18].

Generalizing proofs to inductive invariants is commonly
done by Craig interpolation [12]. Here, the system of for-
mulas is split into two parts, say, A and B, resulting in an
interpolation problem (A, B). The proof of unsatisfiability
for A∧ B is used to extract an interpolant I , a formula that is
defined over the common symbols of A and B, is implied by
A, and is unsatisfiable with B. We perceive the interpolant as
a generalization of A with respect to B. Several interpolants
can be computed for a given interpolation problem, and not
all of them are useful for proving safety. This phenomenon
gives rise to employing a portfolio [22] of interpolation algo-
rithms that is then applied in the hopes of aiding to find the
safety proof with the help of different interpolants.

The approaches to interpolation based on Farkas’ lemma
construct a linear-real-arithmetic (LRA) interpolant by sum-
ming all inequalities appearing in A into a single inequality.
We call the resulting interpolant the Farkas interpolant.
While a single inequality is desirable in some cases, it pre-
vents IC3-style algorithms from converging in others [37].
We show how methods from linear algebra can be applied
on a Farkas interpolant to obtain decomposed interpolants
that do not consist of a single inequality and guarantee the
convergence of themodel-checking algorithm for some cases
where Farkas interpolants fail. A major advantage of decom-
posed interpolants is that they can still be computed from
Farkas coefficients produced by Simplex-based decision
procedures, allowing us to re-use the highly tuned imple-
mentations present in many state-of-the-art SMT solvers.

Intuitively,while computing the decomposed interpolants,
we do not directly sum the inequalities in A, but, instead, we
split the sum into sub-sums. The result is an interpolant that is
a conjunction of oftenmore than one component of theFarkas
interpolant. This allows us not only to solve the convergence
problemobserved in somemodel-checking examples but also
to gain more control over the strength of LRA interpolants.
In summary, the contributions of this paper are:

1. a new Farkas-lemma-based interpolation algorithm for
LRA conflicts, which guarantees to decompose a Farkas
interpolant to more than one inequality if such decompo-
sition exists;

2. establishing properties regarding logical strength of inter-
polants produced by our algorithm with respect to the
original Farkas interpolants,

3. implementation of our new interpolation algorithm in
OpenSMT, our SMT solver, and integration of our
approach with the model checker sally [26],

4. a set of extensive experiments on a large set of model-
checking benchmarks where we evaluate (1) the effect
of replacing a traditional interpolation engine with our
interpolation algorithm, and (2) the performance of

Fig. 1 Motivating example x = 0 ;
y = 0 ;
while (∗ ) {

x = x + y ;
y = y + 1 ;

}
assert ( x >= 0) ;

the portfolio of interpolation techniques available in
OpenSMT and MathSAT and the contribution of decom-
position techniques to the performance of each portfolio.

This article is an extended version of a conference publica-
tion that appeared in [8]. With respect to the aforementioned
points, the contribution of this paper over [8] includes:

– Our previous algorithm, presented in [8], relied on a
heuristic and did not provide a guarantee to discover a
decomposition if one exists. The algorithm presented in
this paper provides the guarantee.

– We present complexity analysis of the proposed algo-
rithm.

– We present new results of the experiments reflecting the
use of the new version of the algorithm and the progress
of the SMT solvers used.

– We provide a detailed comparison with a related
approach [11].

The structure of the paper is as follows. In Sec. 2, we
motivate the investigation of decomposed interpolants on
a concrete model-checking problem where our approach
guarantees immediate convergence, but Farkas interpolation
diverges. In Sec. 3, we review the related work. In Sec. 4, we
define the notation used in the paper, and in Sec. 5 and 6, we
detail our main theoretical contribution. We provide experi-
mental results in Sec. 7 and finally conclude in Sec. 8.

2 Motivation

To motivate our work, consider the code in Fig. 1.1

In this code, the “∗” character represents a non-
deterministic choice (e.g. user input); thus, the body of the
while loop can be executed any number of times. The assert
statement captures the property of the program that variable
“x” should always be nonnegative after exiting the while
loop.

This code can be modelled as a transition system S =
(I , T ,Err) given in Eq. (1); here, I and Err are predicates
that capture the initial and error states, respectively, and T is

1 This example was first brought to our attention by Prof. Arie
Gurfinkel. A similar example appears in [10,37].
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the transition relation. The symbols x, y are real variables,
and x ′, y′ are their next-state versions.

S =
⎧
⎨

⎩

I := (x = 0) ∧ (y = 0),
T := (x ′ = x + y) ∧ (y′ = y + 1),
Err := (x < 0)

(1)

The aforementioned example is one variant from a family
of similar transition systems that are known not to converge
in straightforward implementations of IC3-based algorithms
using LRA interpolation. To prove the safety of the transition
system (I , T ,Err), we search for a safe inductive invariant,
i.e. a predicate R that satisfies (1) I (X) → R(X), (2) R(X)∧
T (X , X ′) → R(X ′), and (3) R(X) ∧ Err(X) → ⊥.

We demonstrate the problem that occurs in model check-
ing when using Farkas interpolants on a simplified run of a
model checker for our example. After checking that the ini-
tial state satisfies the property P := x ≥ 0 (the negation of
Err), the inductiveness of P is checked. The inductive check
is reduced to a satisfiability check of a formula representing
the questionwhether it is possible to reach a¬P-state (a state
where ¬P holds) by one step from any P-state:

x ≥ 0 ∧ x ′ = x + y ∧ y′ = y + 1 ∧ x ′ < 0.

This formula is satisfiable, and a generalized counter-
example to induction (CTI) is extracted. In our case, the CTI
is x + y < 0.2 This means that if we make one step from a
P-state that additionally satisfies x + y < 0, we end up in a
¬P-state. Therefore, we have to check whether this CTI is
consistent with the initial states. This is again encoded as a
satisfiability check of a formula

x = 0 ∧ y = 0 ∧ x + y < 0.

This formula is unsatisfiable, and we can extract an inter-
polant to obtain a generalized reason why this CTI is not
consistent with the initial states (not reachable in 0 steps in
our system). The interpolant is computed for the partitioning
(x = 0 ∧ y = 0, x + y < 0). The Farkas interpolant for this
partitioning is x + y ≥ 0, and we denote it as L1. Interpola-
tion properties guarantee that L1 is valid in all initial states.
Moreover, P is inductive relative to L1, formally

x ≥ 0 ∧ x + y ≥ 0 ∧ x ′ = x + y ∧ y′ = y + 1

�⇒ x ′ ≥ 0.

Thismeans that bymaking one step from a P-state that is also
an L1-state we always end up in a P-state again. However,
nowwe need to show that L1 holds in all reachable states.We

2 The exact procedure for obtaining the CTI is not important for the
current discussion.

check whether L1 is inductive (even relative to P). Similarly
as before, we encode this as a satisfiability check of a formula

x + y ≥ 0 ∧ x ≥ 0 ∧x ′ = x + y

∧y′ = y + 1 ∧ x ′ + y′ < 0.

Again, this formula is satisfiable, and a generalized CTI is
x + 2y < −1. This CTI is refuted as inconsistent with the
initial states similarly to the first one. The formula

x = 0 ∧ y = 0 ∧ x + 2y < −1

is unsatisfiable, and Farkas interpolant generalizing the refu-
tation is L2 := x + 2y ≥ 0. Similarly as before, it can be
easily checked that L1 is inductive relative to L2, but L2

is not inductive (not even relative to P and L1). The CTI
is x + 3y < −1, and it is refuted by a Farkas interpolant
L3 := x +3y ≥ 0. L2 is now inductive relative to L3, but L3

is not inductive, etc. The model checker diverges, since for
Ln a CTI x + ny < −1 is discovered and a new obligation
to show inductiveness of Ln+1 is generated.

However, let us get back to the first interpolation query
(x = 0 ∧ y = 0, x + y < 0). Farkas interpolation, which
always computes an interpolant in the form of a single
inequality, is not the only option. It is possible to compute an
interpolant that is a conjunction of inequalities. In our case,
L := x ≥ 0 ∧ y ≥ 0 is also an interpolant. This interpolant
L is stronger than the Farkas interpolant; the property P is
inductive relative to L , and, most importantly, L is inductive:

(x ≥ 0 ∧ y ≥ 0) ∧ x ′ = x + y ∧
∧ y′ = y + 1 �⇒ (x ′ ≥ 0 ∧ y′ ≥ 0)

is a valid formula. Actually, P follows from L , so L rep-
resents the inductive strengthening of P that witnesses the
safety of our system.

In this work, we present an approach that allows the com-
putation of Craig interpolants in LRA in this conjunctive
form.

3 Related work

The possible weakness of Farkas interpolants for use in
model checking was recognized in [37]. The authors demon-
strate that Farkas interpolation does not satisfy the condition
needed for proving convergence of a model-checking algo-
rithm pd- kind [26]. Indeed, the model checker sally [26],
which implements PD-KIND, diverges on our example from
Sec. 2 if Farkas interpolation is used in its underlying interpo-
lation engine. To resolve this problem, [37] introduces a new
interpolation procedure that guarantees the convergence of a
special sequence of interpolation problems often occurring
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in model-checking problems. However, this interpolation
algorithm is based on a decision procedure called conflict
resolution [28], which is not as efficient as the Simplex-
based decision procedure used by most state-of-the-art SMT
solvers. In contrast, we show how the original Simplex-based
decision procedure using Farkas coefficients can bemodified
to produce interpolants not restricted to the single-inequality
form, while additionally obtaining strength guarantees with
respect to the original Farkas interpolants.

The reasoning engine Spacer [27] is also known to be
affected by this weakness of Farkas interpolants. The verifi-
cation framework SeaHorn [20], which relies on Spacer,
uses additional invariants obtained from abstract interpreta-
tion to avoid the divergence.

The interpolation in linear real arithmetic (LRA) itself
has received a significant amount of attention recently. The
work on LRA interpolation dates back to 1997 [33]. A com-
pact set of rules for deriving LRA interpolants from the
proof of unsatisfiability in an inference system was pre-
sented in [31]. The interpolants in these works were the
Farkas interpolants.Currentmethods usually computeFarkas
interpolants from explanations of unsatisfiability extracted
directly from the Simplex-based decision procedure inside
the SMT solver [18]. Recently in [4], we presented a way of
computing an infinite family of interpolants between a pri-
mal and a dual interpolant with variable strength. However,
those interpolants are still restricted to single inequalities.

The first discussion on how to obtain interpolants in the
form of conjunction of inequalities from Farkas coefficients
is present in [11]. However, their approach is based on a
simple heuristic which does not discover the possibility for
decompositions in some cases where our approach finds
the decomposition easily. Moreover, their focus was on the
interpolation techniques themselves, and they do not discuss
the applications of decomposed interpolants. We provide a
detailed comparison to our approach in Sec. 6.3.

Other works on LRA interpolants include, e.g. [1,36,38].
Both [1] and [38] focus on producing simple overall inter-
polants by attempting to re-use (partial) interpolants from
pure LRA conflicts. Our focus is not on the overall inter-
polant, but on a single LRA conflict. However, in the context
of interpolants from proofs produced by SMT solvers, our
approach also has the potential for re-using components
of interpolants for LRA conflicts across the whole proof.
Beside interpolation algorithms for LRA conflicts, there
exists a large body of work on propositional interpola-
tion [2,16,21,25].

4 Preliminaries

We work in the domain of Satisfiability Modulo Theories
(SMT) [7,15], where satisfiability of formulas is determined

with respect to some background theory. In particular, we
are concerned with the lazy approach to SMT that com-
bines a SAT solver dealing with the propositional structure
of a formula and a theory solver for checking consis-
tency of a conjunction of theory literals. The proof of
unsatisfiability in this approach is basically a propositional
proof that incorporates theory lemmas learned by the theory
solver and propagated to the SAT solver. The proof-based
interpolation algorithm then combines any propositional-
proof-based interpolation algorithmwith theory interpolator.
Theory interpolator provides an interpolant for each theory
conflict—an unsatisfiable conjunction of theory literals.
Linear arithmetic and linear algebra. We use the letters
x, y, z to denote variables and c, k to denote constants. Vec-
tor of n variables is denoted by x = (x1, . . . , xn)ᵀ where
n is usually known from context. x[i] denotes the element
of x at position i , i.e. x[i] = xi . The vector of all zeroes is
denoted as 0, and ei denotes the unit vector with ei[i] = 1
and ei[ j] = 0 for j 
= i . For two vectors x = (x1, . . . , xn)ᵀ

and y = (y1, . . . , yn)ᵀ, we say that x ≤ y iff xi ≤ yi
for each i ∈ {1, . . . , n}. Q denotes the set of rational num-
bers,Qn the n-dimensional vector space of rational numbers
and Qm×n the set of rational matrices with m rows and n
columns. A transpose of matrix M is denoted as Mᵀ. A
kernel (or null space) of a matrix M is the vector space
ker(M) = {x | Mx = 0}. A matrix is said to be in
row echelon form (REF) if all nonzero rows are above all
rows containing only zeros and the leading coefficient (first
nonzero value) of each row is always strictly to the right of
the leading coefficient of the row above. A matrix is said
to be in reduced row echelon form (RREF) if it is in REF,
the leading entry of each nonzero row is 1, and each column
containing the leading entry of some row has zeros every-
where else. REF of a matrix can be obtained by Gaussian
elimination, while RREF can be obtained by Gauss–Jordan
elimination.

We adopt the notation of matrix product for linear arith-
metic. For a linear term l = c1x1+· · ·+cnxn , wewrite cᵀx to
denote l. Without loss of generality, we assume that all linear
inequalities are of the form cᵀx � c with �∈ {≤,<}. By
linear system over variables x, we mean a finite set of linear
inequalities S = {Ci | 1 ≤ i ≤ m}, where each Ci is a lin-
ear inequality over x. Note that from the logical perspective,
each Ci is an atom in the language of the theory of linear
arithmetic; thus, system S can be expressed as a formula
∧m

i=1 Ci and we use these representations interchangeably.
A linear system is satisfiable if there exists an evaluation of
variables that satisfies all inequalities; otherwise, it is unsatis-
fiable. This is the same as the (un)satisfiability of the formula
representing the system.

We extend thematrix notation also to the whole linear sys-
tem. For the sake of simplicity, we use≤ instead of �, even if
the system contains amix of strict and non-strict inequalities.
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The only important difference is that a (weighted) sum of a
linear system (as defined below) results in a strict inequality,
instead of a non-strict one, when at least one strict inequality
is present in the sum with a nonzero coefficient. The theory,
proofs, and algorithm remain valid also in the presence of
strict inequalities. We write Cx ≤ c to denote the linear sys-
tem S where C denotes the matrix of all coefficients of the
system,x are the variables, and c is the vector of the right sides
of the inequalities. With the matrix notation, we can easily
express the sumof (multiples) of inequalities. Given a system
of inequalities Cx ≤ c and a vector of “weights” (multiples)
of the inequalities k ≥ 0, the inequality that is the (weighted)
sum of the system can be expressed as kᵀCx ≤ kᵀc.
Craig interpolation.Given two formulas A(x, y) and B(y, z)
such that A ∧ B is unsatisfiable, a Craig interpolant [12] is
a formula I (y) such that A �⇒ I and I �⇒ ¬B.

The pair of formulas (A, B) is also referred to as an
interpolation problem. In linear arithmetic, the interpolation
problem is a linear system S partitioned into two parts: A and
B.

Oneway to compute a solution to an interpolation problem
in linear arithmetic, used in many modern SMT solvers, is
based on Farkas’ lemma [19,39]. Farkas’ lemma states that
for an unsatisfiable systemof linear inequalities S ≡ Cx ≤ c,
there exist Farkas coefficients k ≥ 0 such that kᵀCx ≤
kᵀc ≡ 0 ≤ −1. In other words, the weighted sum of the
system given by the Farkas coefficients is a contradictory
inequality. If a strict inequality is part of the sum, the result
might also be 0 < 0.

The idea behind the interpolation algorithm based on
Farkas coefficients is simple. Intuitively, given the partition-
ing of the linear system into A and B, we compute only the
weighted sum of A. It is not hard to see that this sum is an
interpolant. It follows from A because a weighted sum of a
linear system with nonnegative weights is always implied by
the system. It is inconsistent with B because its sum with the
weighted sum of B (using Farkas coefficients) is a contradic-
tory inequality by Farkas’ lemma. Finally, it cannot contain
any A-local variables, as can be seen from the following rea-
soning: all variables are eliminated in the weighted sum of
the whole system. Since A-local variables are by definition
absent in B, they must be eliminated already in the weighted
sum of A.

More formally, for an unsatisfiable linear system S :=
Cx ≤ c over n variables, where C ∈ Qm×n, c ∈ Qm , and its
partition to A := CAx ≤ cA and B := CBx ≤ cB, where
CA ∈ Qk×n , CB ∈ Ql×n , cA ∈ Qk , cB ∈ Ql and k + l = m,
there exist Farkas coefficients kᵀ = (kᵀ

A kᵀ
B) such that

(kᵀ
A kᵀ

B)

(
CA

CB

)

= 0, (kᵀ
A kᵀ

B)

(
cA
cB

)

= −1,

and the Farkas interpolant for (A, B) is the inequality

I F := kᵀ
ACAx ≤ kᵀ

AcA. (2)

5 Decomposed Interpolants

In this section, we present our new approach to computing
interpolants in linear arithmetic based on Farkas coefficients.
The definition of Farkas interpolant of Eq. (2) corresponds to
theweighted sum of A-part of the unsatisfiable linear system.
This sum can be decomposed into j sums by decomposing
the vector kA into j vectors

kA =
j∑

i=1

kA,i, with 0 ≤ kA,i ≤ kA for all i, (3)

thus obtaining j inequalities

Ii := kᵀ
A,iCAx ≤ kᵀ

A,icA (4)

If kA,i are such that the left-hand side of the inequalities
Ii contains only shared variables, the decomposition has an
interesting application in interpolation, as illustrated below.

Definition 1 (decomposed interpolants) Given an interpo-
lation instance (A, B), if there exists a sum of the form
Eq. (3) such that the left side of Eq. (4) contains only shared
variables for all 1 ≤ i ≤ j , then the set of inequalities
D = {I1, . . . , I j } is a decomposition.

In that case the formula
∧ j

i=1 Ii is a decomposed inter-
polant (DI) of size j for (A, B).

The decomposed interpolants are proper interpolants, as
stated in the following theorem.

Theorem 1 Let (A, B) be an interpolation problem in lin-
ear arithmetic. If D = {I1, . . . , Ik} is a decomposition, then
I D = I1 ∧ . . . ∧ Ik is an interpolant for (A, B).

Proof Let I D = I1 ∧ . . . ∧ Ik . First, A �⇒ I D since for
all Ii , A �⇒ Ii . This is immediate from the fact that A is
a system of linear inequalities CAx ≤ cA, Ii = (kᵀ

A,iCAx ≤
kᵀ
A,icA) and 0 ≤ kA,i.

Second, I D ∧ B �⇒ ⊥ since I D implies Farkas inter-
polant I F . This holds because kA = ∑

i kA,i and 0 ≤ kA,i.
Third, I D contains only the shared variables by the defi-

nition of decomposition (Definition 1). Therefore, I D is an
interpolant. ��

Each interpolation instance has a DI of size one, a trivial
decomposition, corresponding to the Farkas interpolant of
Eq. (2). However, interpolation problems, in general, can
admit bigger decompositions. In the following, we give a
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concrete example of an instance with decomposition of size
two.

Example 1 Let (A, B) be an interpolation problem in linear
arithmetic with A = (x1 + x2 ≤ 0) ∧ (x1 + x3 ≤ 0) ∧
(−x1 ≤ 0) and B = (−x2 − x3 ≤ −1). The linear systems
corresponding to A and B are

CA =
⎛

⎝
1 1 0
1 0 1

−1 0 0

⎞

⎠ , cA =
⎛

⎝
0
0
0

⎞

⎠

CB = (
0 −1 −1

)
, cB = (−1

)
.

Farkas coefficients are

kᵀ
A = (

1 1 2
)
and kᵀ

B = (
1
)
,

while Farkas interpolant for (A, B) is the inequality I F :=
x2 + x3 ≤ 0. However, if we decompose kA into

kᵀ
A,1 = (

1 0 1
)
and kᵀ

A,2 = (
0 1 1

)
,

we obtain the decomposition {x2 ≤ 0, x3 ≤ 0} producing
the decomposed interpolant I DI := x2 ≤ 0∧ x3 ≤ 0 of size
two.

5.1 Strength-Based Ordering of Decompositions

Decomposition of Farkas coefficients for a single interpo-
lation problem is in general not unique. However, we can
provide some structure to the space of possible interpolants
by ordering interpolants with respect to their logical strength.
To achieve this, we define the coarseness of a decomposition
based on its ability to partition the terms of the interpolant
into finer sums and then prove that coarseness provides us
with a way of measuring the interpolant strength.

Definition 2 Let D1, D2 denote two decompositions of the
same interpolation problem of size m, n, respectively, where
n < m. Let (q1, . . . ,qm) denote the decomposition of Farkas
coefficients corresponding to D1 and let (r1, . . . , rn) denote
the decomposition of Farkas coefficients corresponding to
D2.We say that decomposition D1 is finer than D2 (or equiv-
alently D2 is coarser than D1) and denote this as D1 ≺ D2

when there exists a partitioning P = {p1, . . . , pn} of the
set {q1, . . . ,qm} such that for each i with 1 ≤ i ≤ n,
ri = ∑

q∈pi q.

Interpolants of decompositions ordered by their coarse-
ness can be ordered by logical strength, as stated by the
following lemma:

Lemma 1 Assume D1, D2 are two decompositions of the
same interpolation problem such that D1 ≺ D2. Let I D1 , I D2

be the decomposed interpolants corresponding to D1, D2.
Then, I D1 implies I D2 .

Proof Informally, the implication follows from the fact that
each linear inequality of I D2 is a sum of some inequalities in
I D1 .

Formally, let Ii denote the i-th inequality in I D2 . Then,
Ii = (rᵀ

i CAx ≤ rᵀ
i cA). Since D1 ≺ D2, there is a set

{Ii1 , . . . , Ii j } ⊆ D1 such that for each k with 1 ≤ k ≤ j ,

Iik = (qᵀ
ik
CAx ≤ qᵀ

ik
cA) and ri = ∑ j

k=1 qik .
Since qik ≥ 0, it holds that Ii1 ∧ · · · ∧ Ii j �⇒ Ii . This

means that I D1 implies every conjunct of I D2 . ��
Note that the trivial, single-element decomposition cor-

responding to Farkas interpolant is the greatest element of
this decomposition ordering. Also, for any decomposition of
size more than one, replacing any number of elements by
their sum yields a coarser decomposition.

Finally, we emphasize that it is difficult to argue about the
suitability of a decomposition for a particular purpose based
solely on strength. For example, a user may opt for a coarser
decomposition because summing up just some elements of a
decomposition may result in eliminating a shared variable.

5.2 Strength of the Dual Interpolants

Before we describe the details of the decomposing inter-
polation procedure, we extend the picture of interpolation
strength related to the decomposed interpolants.

Some applications of interpolation can benefit from com-
puting coarser over-approximation (i.e. weaker interpolants).
For example, a weaker function summary can cover more
changes in an upgrade checking scenario [40], and weaker
over-approximations of reachability in a transition system
can converge to fix-point faster [16]. Using the notion of
dual interpolation, decompositions can also be used to com-
pute interpolants weaker than Farkas interpolant (or even its
dual).

Given an interpolation problem (A, B) and an interpola-
tion procedure Itp, we denote the interpolant computed by
Itp for (A, B) as Itp(A, B). Then, Itp′ denotes the dual inter-
polation procedure, which works as follows: Itp′(A, B) =
¬Itp(B, A). The well-known duality theorem for interpola-
tion states that Itp′ is a correct interpolation procedure.

Let us denote the interpolation procedure based on Farkas’
lemma as ItpF and the decomposing interpolation proce-
dure as ItpDI . The relation between ItpF and its dual Itp′

F
has been established in [4], namely that ItpF(A, B) �⇒
Itp′

F(A, B). We have shown in Lemma 1 that a decomposed
interpolant always implies Farkas interpolant computed from
the same Farkas coefficients. Formally, ItpDI(A, B) �⇒
ItpF(A, B). Similar result can be established for the dual
interpolation procedures: as ItpDI(B, A) �⇒ ItpF(B, A),
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it follows that ¬ItpF(B, A) �⇒ ¬ItpDI(B, A) and conse-
quently Itp′

F(A, B) �⇒ Itp′
DI(A, B).

Combining the results on logical strength together, we
obtain a chain of implications:

ItpDI(A, B) �⇒ ItpF(A, B) �⇒ Itp′
F(A, B)

�⇒ Itp′
DI(A, B).

Note that while both ItpF and Itp′
F compute interpolants

as a single inequality and interpolants produced by ItpDI are
conjunctions of inequalities, interpolants produced by Itp′

DI
are disjunctions of inequalities.

In the following section, we describe the details of the
ItpDI interpolation procedure.

6 Finding Decompositions

In this section, we present our approach for finding decom-
positions for linear arithmetic interpolation problems given
their Farkas coefficients.

We focus on the task of finding decomposition of kᵀ
ACAx.

Recall that CA ∈ Ql×n and x is a vector of variables of
length n. Without loss of generality, assume that there are
no B-local variables since columns of CA corresponding to
B-local variables would contain all zeroes by definition in
any case.

Furthermore, without loss of generality, assume the vari-
ables in the inequalities of A are ordered such that all A-local
variables are before the shared ones. Then, let us write

CA = (
L S

)
, xᵀ = (

xLᵀ xSᵀ)
(5)

where xL is the vector of A-local variables of size p, xS the
vector of shared variables of size q, n = p + q, L ∈ Ql×p,
and S ∈ Ql×q . We know that kᵀ

AL = 0 and the goal is to find
kA,i such that

∑
i kA,i = kA and for each i 0 ≤ kA,i ≤ kA

and kᵀ
A,iL = 0.

In the following, we will consider two cases for comput-
ing the decompositions.Wefirst study a common special case
where system A contains rows with no local variables and
give a linear-time algorithm for computing the decomposi-
tions. We then move to the general case where the rows of
A contain local variables and provide a decomposition algo-
rithm based on computing a vector basis for a null space of
a matrix obtained from A.

6.1 Trivial Elements

First, consider a situation where there is a linear inequal-
ity with no local variables. This means there is a row j in
CA (denoted as CA j ) such that all entries in columns corre-
sponding to local variables are 0, i.e. L j = 0ᵀ. Then, {I1, I2}

for kA,1 = kA[ j] × ej and kA,2 = kA − kA,1 is a decom-
position. Intuitively, any linear inequality that contains only
shared variables can form a stand-alone element of a decom-
position. When looking for finest decomposition, we do this
iteratively for all inequalities with no local variables. In the
next part, we show how to look for a non-trivial decomposi-
tion when dealing with local variables.

6.2 Decomposing in the Presence of Local Variables

For this section, assume that L has no zero rows. (We have
shown above how to deal with such rows.) We are going
to search for a non-trivial decomposition starting with the
following observation:

Observation kᵀ
AL = 0. Equivalently, there are no A-local

variables in the Farkas interpolant. It follows that LᵀkA = 0
and kA is in the kernel of Lᵀ.

Let us denote by K = ker(Lᵀ) the kernel of Lᵀ.

Theorem 2 Let v1, . . . , vn be vectors from K such that
∃α1, . . . , αn with αivi ≥ 0 for all i and kA = ∑n

i=1 αivi.
Then, {w1, . . . ,wn} for wi = αivi is a decomposition of

kA and D = {I1, . . . , In} for Ii := wiCAx ≤ cA is a decom-
position, i.e. the formula I D = ∧n

i=1 Ii is a decomposed
interpolant.

Proof The theorem follows from the definition of decom-
position (Def. 1). From the assumptions of the theorem, we
immediately obtain kA = ∑n

i=1 wi and wi ≥ 0. Moreover,
wi ∈ K, since vi ∈ K and wi = αivi. As a consequence,
Lᵀwi = 0 and it follows that there are no A-local variables
in wi

ᵀCAx. ��

Note that Theorem 2 permits redundant components of a
decomposition. Consider vectors w1,w2,w3 ∈ K that are
part of a decomposition in the sense of Theorem 2 and that
w3 = w1 +w2. Then, I1 ∧ I2 �⇒ I3 and I3 is a redundant
conjunct in the corresponding decomposed interpolant.

Good candidates that satisfy most of the assumptions of
Theorem 2 (and avoid redundancies) are bases of the vector
spaceK. If B = {b1, . . . ,bn} is a basis ofK such that kA =
∑n

i=1 αibi with αibi ≥ 0 for all i , then {α1b1, . . . , αnbn} is a
decomposition. Our solution for computing the decomposi-
tion of Farkas coefficientskA is described inAlgorithm1. It is
based on the above idea of computing bases of ker(Lᵀ). First,
after transforming the matrix to the RREF form, we compute
a basis of the kernel using the standard linear-algebra algo-
rithm. The basis is almost what we want, except that some
vectors of this basis can have negative coefficients. In such
a case, our algorithm gradually updates the basis until all
vectors from the basis are nonnegative while preserving all
the necessary properties. Such a basis is used to compute the
desired decomposition. Now, we describe our algorithm in
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input : matrix M , vector v such that v ∈ ker(M) and v > 0
output: {w1, …, wn}, a decomposition of v, such that

wi ∈ ker(M),wi ≥ 0 and
∑

wi = v
1 M ← RREF(M)
2 n ← Nullity(M)
3 if n = 1 then return {v} (b1, . . . ,bn) ← KernelBasis(M)
4 (α1, . . . , αn) ← Coordinates(v, (b1, . . . ,bn))
5 assert αk > 0 for each k = 1, . . . , n
6 while ∃i, j such that bi j < 0 do

7 C ← 1 + −bi jαi
v j

8 bi ← bi + −bi j
v j

v

9 (α1, . . . , αn) ← ( α1
C , . . . , αn

C )

10 assert αk > 0 for each k = 1, . . . , n
11 assert v = ∑n

k=1 αkbk
12 end
13 assert bk ≥ 0 for each k = 1, . . . , n
14 return {α1b1, . . . , αnbn}
Algorithm 1: Algorithm for decomposition of Farkas
coefficients

detail, show its termination and correctness, and discuss its
complexity.

The algorithm runs on the matrix M = Lᵀ and vector v =
kA. At the beginning, the reduced row echelon form (RREF)
of the matrix is computed. (Recall definition of RREF from
Sec. 4.) Importantly, the transformation of a matrix to RREF
preserves its kernel. The dimension of the kernel, known as
nullity, can now be efficiently computed using rank–nullity
theorem, which states that the nullity of a matrix is equal to
the number of its columns minus its rank. For a matrix in
RREF, the rank is simply the number of nonzero rows.

We already know that there is a nonzero vector in the
kernel; therefore, the nullity of the matrix is at least one. If
it is exactly one (line 3), then no non-trivial decomposition
of the vector exists. Intuitively, this means that the Farkas
coefficients represent the unique way (up to positive scalar
multiples) of summing up the inequalities of A-part to elim-
inate the A-local variables. However, if the nullity is greater
than one, it is possible to compute a decomposition of size
equal to the nullity.
Initial basis computation. First, a basis of the kernel of the
matrix in RREF is computed by a standard algorithm (see,
for example, [5]). This algorithm ensures that the coordi-
nates of v, with respect to the basis it computes, are positive
(lines 5, 6). Since this is an important property, we include the
description of the algorithmwith the proof. Given amatrixM
in RREF with m columns, each column is denoted as either
pivot or non-pivot. A pivot column contains the first nonzero
entry for a particular row; non-pivot column does not.We say
that a non-pivot column is free. The number of free columns is
exactly the nullity of thematrix, i.e.n, and thenumber of pivot
columns is m − n. Due to the need to iterate over the pivot
and free columns separately, we introduce additional nota-
tion: we use f ∈ {1, . . . , n} to iterate over the free columns,

p ∈ {1, . . . ,m − n} to iterate over the pivot columns, and
we use mapping functions F : {1, . . . , n} → {1, . . . ,m} and
P : {1, . . . ,m − n} → {1, . . . ,m} to get the original column
indices in M .

Now, for each f ∈ {1, . . . , n} denote as bf the solution
obtained by solving the system Mx = 0 where all variables
corresponding to free columns are set to 0, except for xF( f )

which is set to 1. Note that this uniquely determines the value
of pivot variables since M is in RREF; thus,

xP(p) =
n∑

f =1

−MpF( f )xF( f ),∀p ∈ {1, . . . ,m − n} (6)

Lemma 2 B = {bf | f ∈ {1, . . . , n}} is a basis of ker(M).
Moreover, ∀v ∈ ker(M) : v = ∑n

f =1 vF( f )bf .

Proof Linear independence: For each f ∈ {1, . . . , n}, bf
has 1 at position F( f ), while all other elements of B have 0
at position F( f ). Consequently, bf cannot be expressed as a
linear combination of other elements of B.

Generators: We show that each vector v ∈ ker(M) can
be written as a linear combination of elements of B. More
precisely, we show that v = ∑n

f =1 vF( f )bf .

(a) For each f ∈ {1, . . . , n} : vF( f ) = ∑n
f̂ =1

vF( f̂ )bf̂F( f )

as bf F( f ) = 1 and bf̂F( f ) = 0 for f̂ 
= f .
(b) Fix a pivot index p ∈ {1, . . . ,m−n}. To see that vP(p) =

∑n
f =1 vF( f )bf P(p), note that v and all elements of B are

solutions to the system Mx = 0, so they satisfy Eq. (6).
Instantiating Eq. (6) with bf for f ∈ {1, . . . , n}, we get

bf P(p) =
n∑

f̂=1

−MpF( f̂ )bf F( f̂ ) = −MpF( f ) (7)

since bf F( f̂ ) = 1 when f̂ = f and 0 otherwise. Now,

vP(p) = ∑n
f =1 vF( f )bf P(p) is obtained by instantiating

Eq. (6) with v and then replacing −MpF( f ) by bf P(p)

using Eq. (7).

Combining (a) and (b),wehave shown thatv canbe expressed
as a linear combination of B, which together with the linear
independence of B concludes the proof. ��

A direct consequence of Lemma 2 is that the coordinates
of v ∈ ker(M) with respect to basis B, i.e. the coefficients of
elements ofB in the linear combination expressing v, are pos-
itive if v > 0. These coordinates are denoted as α1, . . . , αn in
Algorithm 1, and we have just shown that using this standard
algorithm for the computation of a kernel’s basis the coor-
dinates are guaranteed to be positive (line 6). However, the
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elements of the basis B are not guaranteed to be nonnegative
vectors.
Ensuring nonnegativity of the basis. The second part of the
algorithm, the loop on lines 7-13, modifies the elements
of the basis. It gradually makes all elements nonnegative,
while at the same time it keeps the coordinates of vector v,
corresponding to the current basis, positive. Given an ele-
ment of the basis bi such that its j-th element is negative,
the algorithm replaces the element bi with a new element

b′
i := bi + −bi j

v j
v. After replacing bi with b′

i, the resulting set
of vectors is still a basis of ker(M).

Lemma 3 The set of vectors B′ = (B \ {bi}) ∪ {b′
i} is a basis

of ker(M).

Proof We show that bi can be expressed as a linear combi-
nation of vectors from B′. This is sufficient to show that B′
consists of linearly independent vectors and that it generates

ker(M). Let us denote the constant
−bi j
v j

as K and note that

K > 0 since v j > 0 and bi j < 0. We first express b′
i as

b′
i = bi + Kv = bi + K

n∑

f =1

α f bf

= bi(1 + Kαi ) + K
∑

f 
=i

α f bf

and now bi can be expressed as a linear combination of ele-
ments of B′:

bi(1 + Kαi ) = b′
i − K

∑

f 
=i

α f bf

bi = b′
i +

∑
f 
=i −Kα f bf

1 + Kαi

��
After this replacement, (at least) one negative value has

been successfully eliminated: as K > 0 and v > 0, it follows
that b′

i > bi and b′
i j = 0.

As the last step, we show that the new coordinates of v
(with respect to the new basis) are still positive.

Lemma 4 Let α′ denote the coordinates of v with respect to
the new basis B′. Then, α′ > 0.

Proof First, consider the result of a linear combination of the
new basis B′ with the old coefficients α:

α1b1 + . . . + αib′
i + . . . + αnbn =

n∑

f=1

α f bf + αi Kv

= v + αi Kv = v(1 + αi K )

Now, set C := 1 + αi K and note that C > 1 since K > 0
and αi > 0. It follows that

v = α1

C
b1 + . . . + αi

C
b′
i + . . . + αn

C
bn

and that α′ = α
C is the vector of coordinates of vwith respect

to the new basis B′. Since α > 0 and C > 0, it follows that
α′ > 0 as required. ��

We have shown that the loop on lines 7-13 preserves the
invariant that the coordinates of v with respect to the cur-
rent basis are all positive (lines 11,12) and that each iteration
decreases the number of negative values of the basis vectors.
As a result, Algorithm 1 terminates and returns a decompo-
sition of the input vector v of size equal to the nullity of the
input matrix M .

We first simulate the run of the algorithm on an example,
then discuss its complexity and finally compare it to other
approaches for computing interpolants as a conjunction of
inequalities.

Example 2 Consider an unsatisfiable system of inequalities
A ∧ B where A = {x1 + x2 ≤ 0,−x1 + x3 ≤ 0, x1 + x4 ≤
0,−x1 + x5 ≤ 0} and B = {−x2 − x3 − x4 − x5 ≤ −1}. The
vector of Farkas coefficients witnessing the unsatisfiability
of A ∧ B is k = (

1 1 1 1 1
)ᵀ

and its restriction to A-part
is kA = (

1 1 1 1
)ᵀ
. The only A-local variable is x1, so the

matrix of A-local coefficients is Lᵀ = (
1 −1 1 −1

)
. We

simulate the run of Algorithm 1 on kA and Lᵀ: since Lᵀ is
already in RREF, nothing changes on line 1. Now, the rank
of Lᵀ is 1 and it has 4 columns, and thus, its nullity is 3
and we can compute a decomposition of kA of size 3. The
first column of Lᵀ is pivot, while the other three columns are
free. The computation of the initial basis of ker(Lᵀ) (line 4)
yields three vectors:

b1 =

⎛

⎜
⎜
⎝

1
1
0
0

⎞

⎟
⎟
⎠ , b2 =

⎛

⎜
⎜
⎝

−1
0
1
0

⎞

⎟
⎟
⎠ , b3 =

⎛

⎜
⎜
⎝

1
0
0
1

⎞

⎟
⎟
⎠ .

The coordinates of kA with respect to this basis are α =(
1 1 1

)ᵀ
. As b21 < 0, we enter the loop on line 6 where the

new vector b′
2 is computed as b′

2 = b2 + kA = (
0 1 2 1

)ᵀ
.

Then, the coordinates are divided by a constant C = 2 to
obtain the new coordinates α = (

1/2 1/2 1/2
)ᵀ
. Since

there are nomorenegative elements in the vectors of the basis,
the decomposition kA = 1/2∗ (

1 1 0 0
)+1/2∗ (

0 1 2 1
)+

1/2∗ (
1 0 0 1

)
is returned. This decomposition results in the

decomposed interpolant

IDec = (x2 + x3 ≤ 0)

∧(x3 + 2x4 + x5 ≤ 0) ∧ (x2 + x5 ≤ 0).
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Complexity of Algorithm 1. Considering the matrix of A-
local coefficients L form inequalities and l A-local variables,
the algorithm runs on matrix M = Lᵀ with m columns and
l rows. When the transformation of M to RREF is done by
Gauss–Jordan elimination, it needs to performO(m2l) arith-
metic operations. After the transformation, the number of
(nonzero) rows is r , which is the rank ofM , andwe know that
r ≤ l.With n denoting the nullity ofM , rank–nullity theorem
implies that r + n = m and consequently that n < m. The
complexity of the computation of an initial basis is O(nm)

sincewe are computing n basis vectors, each of sizem. Deter-
mining the value for every element of each basis vector is
immediate: it is 0 or 1 for positions corresponding to the free
columns, and it is a negated coefficient from RREF(M) for
positions corresponding to the pivot columns, see Eq. (7).
Finally, one iteration of the loop that ensures nonnegativity
of the basis needs just O(m) arithmetic operations and the
termination can be ensured after O(n) iteration. To see this,
note that a basis vector bi can be made nonnegative in one

iteration when the index j is used that maximizes
−bi j
v j

. The
whole loop thus requires O(nm) arithmetic operations. The
complexity of the algorithm is thus dominated by the first
part—computing RREF of the input matrix.

6.3 Comparison with other approaches

Given an unsatisfiable system of inequalities (A, B), Cimatti
et al. [11] recognized two extreme points in the spectrum of
possible interpolants. On one side, there is the Farkas inter-
polant in the form of single inequality obtained as a weighted
sum of inequalities from A with weights given by Farkas
coefficients. On the other side, it is possible to employ quanti-
fier elimination to compute the strongest possible interpolant
for (A, B) which will result in a conjunction of inequalities
(if possible). If all A-local variables are existentially quanti-
fied in A and eliminated, then this is guaranteed to yield an
interpolant. However, as Cimatti et al. note, quantifier elimi-
nation is potentially a very expensive operation.3 Therefore,
they propose modifications to the procedure computing the
interpolant from the proof of unsatisfiability. The observa-
tion they make is that the only purpose of the summation of
inequalities when traversing the proof is to eliminate A-local
variables. If the leaves of the proof do not contain A-local
variables, no summation is needed, and the conjunction of the
inequalities in the leaves is already an interpolant. This corre-
sponds to our notion of trivial elements of the decomposition.
Based on this observation, they proposed a modification to

3 Even when restricted to conjunction of inequalities, as is our case.
For example, in Fourier–Motzkin procedure eliminating one variable
can increase the number of inequalities from m to m2/4 in the worst
case. Thus, eliminating n variables increases the number of inequalities
to 4(m4 )2

n
in the worst case.

0 ≤ −1

1×(−x2 − x3 − x4 − x5 ≤ −1)x2 + x3 + x4 + x5 ≤ 0

1×(−x1 + x5 ≤ 0)x1 + x2 + x3 + x4 ≤ 0

1×(x1 + x4 ≤ 0)x2 + x3 ≤ 0

1×(−x1 + x3 ≤ 0)1×(x1 + x2 ≤ 0)

Fig. 2 Proof of unsatisfiability of the system from Example 2

the proof-based algorithm that performs only the summations
that are necessary for eliminating A-local variables.

Example 3 Consider the unsatisfiable system of inequalities
from Example 2. Figure 2 shows a possible proof of unsatis-
fiability according to the description of [11].

The computation of Farkas interpolant as described by
Eq. (2) can be simulated by replacing the leaves from B with
0 ≤ 0. The resulting Farkas interpolant is

I F = x2 + x3 + x4 + x5 ≤ 0.

Applying the modification from [11] avoids one unnecessary
sum and results in an interpolant

I M = (x2 + x3 ≤ 0) ∧ (x4 + x5 ≤ 0).4

As seen in Example 2, our approach yields interpolant with
three conjuncts

IDec = (x2 + x3 ≤ 0) ∧ (x3 + 2x4 + x5 ≤ 0)

∧(x2 + x5 ≤ 0).

Finally, existentially quantifying x1 in A and eliminating this
quantifier yield interpolant with four conjuncts

IQE =(x2 + x3 ≤ 0) ∧ (x2 + x5 ≤ 0)

∧ (x3 + x4 ≤ 0) ∧ (x4 + x5 ≤ 0).

Note that IQE is the strongest and I F is the weakest inter-
polant in this quadruple, while I M and IDec are incomparable
in terms of logical strength. However, the advantage of our
algorithm is that even though its result depends on the order of
the inequalities (the order of columns of Lᵀ), it guarantees to
find a decomposition of size 3 in our example. If the first and
third inequalities are switched, the decomposed interpolant

4 This is indeed the interpolant computed by MathSAT 5.6.0
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computed by Algorithm 1 is

IDec
′ = (x4 + x3 ≤ 0)

∧(x3 + 2x2 + x5 ≤ 0) ∧ (x4 + x5 ≤ 0)

while if the first and second inequalities are switched, the
computed interpolant is

IDec
′′ = (x2 + x4 + 2x5 ≤ 0)

∧(x3 + x4 ≤ 0) ∧ (x3 + x2 ≤ 0).

On the other hand, the approach of [11] is, in some sense,
even more sensitive to the order of the input inequalities (the
shape of the proof) since the order can influence the size of
the decomposition. If the second and the third inequalities are
switched, then their approach does not detect the opportunity
for decomposition and returns the Farkas interpolant I F . Our
algorithm in this situation returns an interpolant equivalent
to IDec.

7 Experiments

We have implemented the computation of decomposed inter-
polants and their duals using Algorithm 1 in our SMT solver
OpenSMT [23], which already provided a variety of inter-
polation algorithms for propositional logic [24,34], theory
of uninterpreted functions [3] and theory of linear real arith-
metic [4].

We evaluated the effect of decomposed interpolants
in a model-checking scenario using the model checker
sally [26] with Yices [17] for satisfiability queries and
OpenSMT for interpolation queries5. We experimented with
four LRA interpolation algorithms: the original interpola-
tion algorithms based on Farkas’ lemma, (i) ItpF and (ii)
Itp′

F , and the interpolation algorithm computing decom-
posed interpolants, (iii) ItpDI , and (iv) Itp′

DI . OpenSMT
computes interpolants from the proof of unsatisfiability. In
this approach, the interpolants computed for LRA conflicts
are combined based on interpolation rules for propositional
logic and the structure of the proof. In our experiments, we
fixed the propositional part of the interpolation algorithm to
use McMillan’s interpolation rules [30]. We split our analy-
sis of the experiments into two parts. In Sec. 7.1, we analyse
the performance of the model checker using different LRA
interpolation algorithms. We focus specifically on a detailed
comparison of ItpF and ItpDI , i.e. the default algorithm and
our proposed algorithm. In Sec. 7.2, we analyse the perfor-
mance of a portfolio of interpolation algorithms and measure

5 Detailed description of the set-up and specifications of the experi-
ments, together with all the results, can be found at http://verify.inf.usi.
ch/content/decomposed-interpolants

the contribution of our proposed algorithm. For compari-
son, we also run a version of sally usingMathSAT as the
interpolation engine and compare to the contribution of the
decomposing algorithm proposed in [11].

The experiments were run on a large set of benchmarks
consisting of several problem sets related to fault-tolerant
algorithms (azadmanesh, approxagree, om, hacms, misc,
ttesynchro, ttastartup,unifapprox), softwaremodel check-
ing (cav12, ctigar), simple concurrent programs (conc), and
a lock-free hash table (lfht). A benchmark suite of the kind
model checker is also included (lustre). Each benchmark is a
transition systemwith formulas characterizing initial states, a
transition relation and a property that should hold. sally can
finishwith two possible answers (or run out of resources with
no answer): valid means the property holds and an invariant
implying the property has been found; invalid means the
property does not hold and a counterexample leading to a
state where the property does not hold has been found. In
the plots, we denote the answers as + and ◦, respectively.
The benchmarks were run on Linux machines with the Intel
E5-2650 v3 processor (2.3 GHz) and 64GB ofmemory. Each
benchmarkwas restricted to 600 seconds of running time and
to 4GB of memory.

7.1 Comparing individual configurations

Table 1 presents the results of the model checker’s
runs using different interpolation algorithms. The results
are summarized by category with the name of the cate-
gory and the number of corresponding benchmarks in the
first column. The two columns per interpolation algorithm
show the number of benchmarks solved successfully (val-
idated/invalidated) within the resource limits and the total
running time for the solved benchmarks.

The results suggest that ItpF interpolation algorithm
achieves the best result overall. However, there are certain
cases where ItpDI is faring better, for example, the lfht
category. Before we present a more thorough comparison
between these two algorithms, we note that the configuration
using Itp′

DI , which computes the weakest interpolants, per-
forms very poorly compared to the others. Closer inspection
revealed that it did not solve any benchmarks not solvable
by other configurations. It did solve a few benchmarks faster
than others, but the improvementwas negligible. On the other
hand, the overall drop in performance is large. We conclude
that computing very weak interpolants is a bad strategy in
this model-checking scenario.

As mentioned before, the results summarized in Table 1
suggest that ItpF performs better than ItpDI overall. However,
a closer look reveals that the situation is more complicated.
Figure 3 illustrates a direct comparison between these two
algorithms. Each point represents one benchmark, x-axis cor-
responds to the runtime (in seconds) of sally using ItpF as
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Table 1 Performance of sally using different interpolation algorithms of OpenSMT

ItpF Itp′
F ItpDI Itp′

DI
Problem set solved (V/I)

∑
time(s) solved (V/I)

∑
time(s) solved (V/I)

∑
time(s) solved (V/I)

∑
time(s)

approxagree (9) 9 (8/1) 127 9 (8/1) 138 9 (8/1) 106 9 (8/1) 126

azadmanesh (20) 20 (17/3) 418 20 (17/3) 639 20 (17/3) 422 20 (17/3) 1202

cav12 (99) 68 (48/20) 2097 67 (48/19) 2580 66 (48/18) 1441 66 (47/19) 2446

conc (6) 3 (3/0) 20 3 (3/0) 22 5 (5/0) 313 3 (3/0) 21

ctigar (110) 74 (54/20) 3066 70 (50/20) 1919 71 (51/20) 3077 58 (39/19) 1701

hacms (5) 2 (2/0) 332 2 (1/1) 251 1 (1/0) 5 1 (1/0) 5

lfht (27) 17 (17/0) 319 18 (18/0) 448 22 (22/0) 2784 16 (16/0) 26

lustre (790) 773 (437/336) 3530 769 (436/333) 3,180 766 (433/333) 3990 741 (416/325) 2021

misc (10) 8 (7/1) 154 8 (7/1) 127 9 (7/2) 57 9 (7/2) 888

om (9) 9 (7/2) 6 9 (7/2) 4 9 (7/2) 6 9 (7/2) 4

ttastartup (3) 2 (1/1) 325 1 (1/0) 7 1 (1/0) 11 1 (1/0) 15

ttesynchro (6) 6 (3/3) 10 6 (3/3) 11 6 (3/3) 13 6 (3/3) 13

unifapprox (11) 11 (8/3) 71 11 (8/3) 64 11 (8/3) 71 11 (8/3) 448

Total (1105) 1002 (612/390) 10,475 993 (607/386) 9390 996 (611/385) 12,296 950 (573/377) 8916

Bold font emphasizes the best interpolation algorithm for each problem set

Fig. 3 Evaluation of the decomposed interpolants in model checking
scenario: comparison of performance of sally using OpenSMT with
different interpolation procedures, ItpF and ItpDI

the interpolation algorithm in OpenSMT, and y-axis cor-
responds to the runtime of sally using ItpDI . The direct
comparison shows that in some cases, the use of decomposed
interpolants outperforms the original procedure, sometimes
by an order of magnitude. Even though ItpDI solved 6 bench-
marks less than ItpF , it still managed to solve 12 benchmarks
that ItpF was not able to solve within the resource limits.
Moreover, on a common set of non-trivial (runtime at least
10 seconds) solved benchmarks, it improved the performance

bymore than 10% on 45 benchmarks (out of 116 such bench-
marks).

During the evaluation, we realized that a small modifi-
cation in the SMT solver sometimes had a huge effect on
the performance of the model checker. It made previously
unsolved instance easily solvable or the other way around.
To confirm that using ItpDI is indeed better than using ItpF
for particular benchmarks, we ran an additional set of exper-
iments. For each of the 12 benchmarks solved by ItpDI but
not solved by ItpF , we ran the model checker 100 times,
each time with a different random seed for the interpolating
solver. The results are summarized in Table 2. For each of
the two configurations, the table reports how many runs (out
of 100) of the model checker finished successfully within the
resource limits and the average time of the successful runs.
This experiment demonstrates that there are indeed bench-
marks where the decomposition is necessary, while using the
original Farkas algorithm leads to divergence. In other cases,
the use of decomposed interpolants leads to a higher chance
of a successful result and/or better runtime of the model
checker. Note that these benchmarks were picked deliber-
ately to confirm that ItpDI performs better on them than ItpF ,
based on our experiments on the whole benchmark set.

For the final aspect of the direct comparison of ItpF and
ItpDI , we collected statistics from the runs of sally with
ItpDI about howoften ItpDI manages to decompose the vector
of Farkas coefficients, thus returning a different interpolant
than ItpF would. These results are summarized in Table 3.
The column pwd reports the number of benchmarks with at
least a single decomposition (any; with at least one trivial ele-
ment; with at least one non-trivial element). The next column
(“#non-triv. LRA itps”) reports the total number of interpo-
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Table 2 Aggregated results
from 100 runs of the model
checker on selected benchmarks

ItpF ItpDI
benchmark solved avg. time solved avg. time

fib_benc_safe_v1 0 – 100 46.5

fib_benc_safe_v2 0 – 100 0.01

dillig01.c 0 – 100 0.1

dillig03.c 0 – 100 0.1

lifnat.c 17 510 29 471

lfht_2_mini_cleaned.prop1 21 362 57 344

lfht_2_mini_lemma5c 18 257 69 293

lfht_2_mini_lemma5e 0 – 30 347

lfht_2_mini_lemma5f 1 188 39 363

lfht_2_mini_lemma5g 22 284 47 311

DRAGON_12_e2_1618_e2_138 99 25 100 19

mvs_with_timeouts3 73 251 98 64

Table 3 Interpolation
statistics—pwd stands for
“Number of problems with at
least one decomposition”. The
numbers in parentheses denote
“Decompositions with trivial
and with non-trivial elements”
(trivial/non-trivial)

ItpDI
Problem set pwd #non-triv. LRA itps #decomp. itps

approxagree (9) 1 (1/1) 7 7 (4/3)

azadmanesh (20) 0 (0/0) 1818 0 (0/0)

cav12 (99) 40 (30/29) 707,414 6464 (747/5719)

conc (6) 3 (3/3) 39,135 25,603 (4030/21,033)

ctigar (110) 70 (58/69) 4,064,827 1,106,642 (61,371/1,049,904)

hacms (5) 5 (5/5) 424,532 32,331 (3,628/28,703)

lfht (27) 14 (14/14) 786,837 126,568 (5464/121,104)

lustre (790) 327 (96/299) 2,916,829 2,001,503 (9,115/2,001,058)

misc (10) 8 (7/8) 59,266 12,054 (2363/10,024)

om (9) 6 (6/0) 974 380 (380/0)

ttastartup (3) 3 (2/3) 117,303 12,165 (240/11,925)

ttesynchro (6) 4 (4/4) 90 90 (90/69)

unifapprox (11) 1 (1/0) 1 1 (1/0)

lation problems for theory conflict, excluding those without
even theoretical possibility for decomposition. There is no
possibility for decomposition if all inequalities are from one
part of the problem (resulting in trivial interpolants, either �
or ⊥) or there is only a single inequality in the A-part (triv-
ially yielding an interpolant equal to that inequality). The
last column reports the number of successfully decomposed
interpolants (with at least one trivial element;with at least one
non-trivial element). Note that it can happen that a successful
decomposition contains both trivial and non-trivial elements.
We see that at least one decomposition was possible in only
less than half of all the benchmarks. This explains why there
are many points on the diagonal in Fig. 3. On the other hand,
it shows that the test for the possibility of decomposition is
cheap and does not represent a significant overhead. Another
conclusion we can draw is that when the structure of the
benchmark enables decomposition, it can often be discov-
ered in many theory conflicts that appear during the solving.

7.2 Analysis of the portfolio

In this part, we present yet another way to measure the con-
tribution of the decomposed interpolants: the contribution to
the virtual best configuration. We consider a virtual portfolio
consisting of configurations of sallyusing different interpo-
lation algorithms of OpenSMT. In addition, we also consider
a separate virtual portfolio of configurations of sally using
MathSAT. The result of a virtual portfolio on a benchmark
is the best result achieved by any of the configurations of the
portfolio. As noted before, the configuration using Itp′

DI per-
formed quite poorly on our benchmarks. Since MathSAT
can compute Farkas interpolants and its duals, and restricted
form of decomposed interpolants but not its dual, we also
exclude Itp′

DI from the portfolio of OpenSMT’s configura-
tions, with minimal impact on the performance. We denote
the heuristic for computing decompositions described in [11]
and available in MathSAT as ItpM . We use the number of
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Table 4 Contribution of the
configurations to their respective
portfolios

Configuration #uniquely solved PAR-2 regret

OpenSMT ItpF 4 4046 3.5%

Itp′
F 3 4586 3.9%

ItpDI 10 10245 8.8%

MathSAT ItpF 0 260 0.2%

Itp′
F 3 3594 3.3%

ItpM 6 7754 7%

solved instances and PAR-2 score as a metric of measuring
the performance. PAR-2 score is computed as the sum of run-
time on solved instances plus two times the timeout for each
unsolved instance. Finally, for each configuration we com-
pute the number of uniquely solved instances (not solved by
any other configuration in the portfolio) and regret, i.e. how
much would the PAR-2 score of the portfolio worsen, if that
particular configurationwas excluded from the portfolio. The
results are summarized in Table 4. Note that OpenSMT and
MathSAT portfolios are considered separately.

OpenSMT configuration portfolio is able to solve 1,017
benchmarks with PAR-2 score 116,117.MathSAT configu-
ration portfolio is able to solve 1,018benchmarkswithPAR-2
score 110,356.We hypothesize that the better performance of
MathSAT can be at least partially attributed to the fact that it
supports interpolation in combination with incremental solv-
ing while OpenSMT does not. In both portfolios, the ability
to compute decomposed interpolants (even in the restricted
form) significantly improves the performance of the portfo-
lio. We also see that the contribution of our algorithm based
on methods from linear algebra to OpenSMT portfolio is
slightly larger than the contribution of the heuristic ItpM to
the MathSAT portfolio. Additionally, our algorithm solves
more instances uniquely within its portfolio. Interestingly,
the contribution of the configuration computing Farkas inter-
polants is non-trivial in OpenSMT, but almost non-existent
inMathSAT. Our hypothesis is that ItpM , compared to ItpDI ,
decomposes less often and the decompositions are of smaller
size (e.g. in the situation from Example 3). This would mean
that the interpolants from ItpM are more often similar (or
even identical) to Farkas interpolants, which would make the
MathSAT portfolio less diverse than the OpenSMT portfo-
lio.

8 Conclusion

In this paper, we have presented a new interpolation algo-
rithm for linear real arithmetic that generalizes the interpo-
lation algorithm based on Farkas’ lemma used in modern
SMT solvers. We showed that the algorithm is able to com-
pute interpolants in the form of a conjunction of inequalities

that are logically stronger than the single inequality returned
by the original approach. This becomes useful in the IC3-
style model-checking algorithms where Farkas interpolants
have been shown to be a source of incompleteness. In our
experiments, we have demonstrated that the opportunity to
decompose Farkas interpolants frequently occurs in practice
and that the decomposition often leads to (i) lower solving
time and, in some cases, to (ii) solving a problem not solvable
by the previous approach.

As the next steps, we plan to investigate how to auto-
matically determine what kind of interpolant would be more
useful for the current interpolation query in IC3-style model-
checking algorithms.We also plan to investigate other uses of
interpolation in model checking where stronger (or weaker)
interpolants are desirable [35].
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(eds.) CAV 2015, LNCS, vol. 9206, pp. 343–361. Springer, Cham
(2015)

21. Gurfinkel, A., Rollini, S.F., Sharygina, N.: Interpolation properties
and SAT-based model checking. In: Van Hung, D., Ogawa, M.
(eds.) ATVA 2013, pp. 255–271. Springer, Cham (2013)

22. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach
to hard computational problems. Science 275(5296), 51–54 (1997)

23. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.:
OpenSMT2: An SMT solver for multi-core and cloud computing.
In: Creignou, N., Le Berre, D. (eds.) SAT 2016, LNCS, vol. 9710,
pp. 547–553. Springer, Cham (2016)
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