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Abstract

We present the probabilistic model checker STORM. STORM supports the analysis of discrete- and continuous-time variants of
both Markov chains and Markov decision processes. STORM has three major distinguishing features. It supports multiple input
languages for Markov models, including the JANI and PRISM modeling languages, dynamic fault trees, generalized stochastic
Petri nets, and the probabilistic guarded command language. It has a modular setup in which solvers and symbolic engines
can easily be exchanged. Its Python API allows for rapid prototyping by encapsulating STORM’s fast and scalable algorithms.
This paper reports on the main features of STORM and explains how to effectively use them. A description is provided of the
main distinguishing functionalities of STORM. Finally, an empirical evaluation of different configurations of STORM on the

QComp 2019 benchmark set is presented.
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1 Introduction

The verification of systems involving stochastic uncertainty
is a prominent research challenge. Among the many tech-
niques is probabilistic model checking, a mature technique
that grew out of model checking.

A model checker takes the formal system model and the
formal property as inputs and, somewhat simplifying, returns
one of three results, see Fig. 2. It reports that the property
holds or is violated, and these reports are—given a correct
implementation—guaranteed to be correct. The third out-
come is that the model checker ran out of computational
resources. Model checking has written numerous success sto-
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ries [16,79], and major contributors Edmund M. Clarke, E.
Allen Emerson and Joseph Sifakis were awarded the Turing
Award in 2007. Probabilistic model checking extends tra-
ditional model checking with tools and techniques for the
analysis of systems involving random phenomena or other
forms of behavior that can be approximated by random-
ization. Alur, Henzinger and Vardi [3] state: “A promising
new direction in formal methods is probabilistic model
checking, with associated tools for quantitative evaluation
of system performance along with correctness.” Distributed
algorithms and communication protocols are natural exam-
ples, as they often use randomization to efficiently break
symmetry. Another example are cyber-physical systems that
tightly integrate software and hardware such as sensors,
actors and microcontrollers. In particular, sensor readings
may be noisy, actors may not always have the same effects,
and physical components may fail. Other domains that give
rise to models involving probabilistic aspects include, e.g.,
security protocols and systems biology. All these systems are
naturally mapped to Markov models, and probabilistic model
checking takes exactly such models as input.

Probabilistic model checking is not new. Initial theoretical
results and algorithms for Markov chains [65,66] and Markov
decision processes [37,116] were provided about thirty years
ago. First tool support using explicit [53] and symbolic data
structures [10,73] followed. Tool realizations for continuous-
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time Markov chains appeared shortly thereafter [78]. PRISM
evolved as one of the main probabilistic model checkers!
covering all these models in a symbolic way [91]. In more
recent years, tool support extended to cover probabilistic real-
time and hybrid systems, as well as multi-player games.

Meanwhile, research in probabilistic model checking con-
tinued, changed directions, and progressed in new application
areas. The diversity of this field motivated the development
of a modular and adaptive model checker, called STORM.
STORM’s main aim is to be a performant, easily extendible
platform supplying various probabilistic model checking
algorithms. After five years of development, STORM was
released as open-source project in 2017 [41]. Despite its
relative young age, STORM has established the following in
pursuit of its original goals:

— In the first edition of QComp [60], STORM compared
favorably with other model checkers. Consider the qguan-
tile plot in Fig. 1. The quantile plot expresses how many
benchmark instances (on the x-axis) each were solved in
at most the time given on the y-axis. In other words, the
point (x, y) is contained in the quantile plot for tool ¢
if the maximal runtime when using c on the x fastest
solved instances (for c) is y seconds. STORM solved
more instances and was generally faster in solving these
instances. We elaborate these results in Sect. 7.4.

— STORM’s modularity paid off in various occasions: The
tool has been adapted to include various novel variants
to the typical value iteration algorithm and has been
extended with parameter synthesis for probabilistic sys-
tems and multi-objective model checking. In many of
these areas, STORM has helped to push the state of the art
considerably. We elaborate these results in Sect. 4.

In this paper, we report on STORM’s main features and how
to use them. We start with a very quick overview introducing
STORM before elaborating the supported models and prop-
erties. We survey STORM’s most prominent building blocks
and unique features in greater detail and discuss the possi-
bilities to interface with these features in STORM. Finally,
we report on its internal tool architecture and provide some
empirical evaluation of the main configurations of STORM on
the QComp 2019 benchmark set.

A video tutorial covering STORM and some of its core
features is available at

http://stormchecker.org/video-tutorial.

! Resulting in the Haifa Verification Conference 2016 Award.
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Fig. 1 Runtime comparison of general-purpose probabilistic model
checkers taken from the QComp 2019 report [60] licensed
under Creative Commons Attribution 4.0 International License: http://
creativecommons.org/licenses/by/4.0/

2 Storm in a nutshell

Research to advance concepts and methods for probabilistic
model checking often combines key routines and a variety of
essential model checking algorithms. STORM delivers these.
Some main characteristic features of STORM that help to push
the state of the art in probabilistic model checking are that
STORM

— contains efficient implementations of well-known and
mature model checking algorithms for discrete-time
and continuous-time Markov chains and Markov deci-
sion processes, but also for the more general Markov
automata [49], a model containing probabilistic branch-
ing, nondeterminism, and exponentially distributed
delaysz;

— supports explicit state and symbolic (BDD-based) model
checking as well as a mixture of these modes to handle a
wider range of models;

— has a modular setup, enabling the easy exchange of dif-
ferent solvers and distinct decision diagram packages; its
current release supports about 15 solvers and two BDD
packages.

— extends probabilistic model checking with the possibility
of generating (high-level) counterexample [39], synthe-
sizing permissive schedulers [46], symbolic bisimulation
minimization [119,121] as well as game-based abstrac-
tion of infinite-state MDPs [120].

2 Markov automata can be used to provide a compositional semantics
to modeling formalisms such as arbitrary generalized stochastic Petri
nets [48], dynamic fault trees [20], and AADL extended with the error
annex [22].
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— offers the possibility to improve the reliability of model
checking by supporting exact rational arithmetic using
recent techniques [18] and techniques to avoid premature
termination of value iteration [110].

— supports advanced properties such as multi-objective
model checking [51,52,109], efficient algorithms for con-
ditional probabilities and rewards [13], and long-run
averages on MDPs [6,44] and MAs [28]. STORM also
contains (the essential building blocks) for handling para-
metric models such as [38,108,114];

STORM can also be used to investigate the application of
model checking in novel domains: In particular,

— STORM supports various native input formats: the PRISM
and JANI languages, generalized stochastic Petri nets,
dynamic fault trees, and conditioned probabilistic pro-
grams. This support makes it easier to apply probabilistic
model checking, and amounts not to just providing
another parser; state-space reduction and generation tech-
niques as well as analysis algorithms are partly tailored
to these modeling formalisms;

— besides a command line interface with many optional
arguments, STORM provides a Python API facilitating
easy and rapid prototyping of other tools using the
engines and algorithms of STORM;

— it provides advanced approaches to model checking (see
above) and good performance in terms of verification
speed and memory footprint, cf. Fig. 1, under one roof.

How does STORM relate to other probabilistic model check-
ers? STORM has not reinvented the wheel, but has rather
been inspired and learned from the successes of in particular
PrRISM [93] and the explicit model checker MRMC [88]. Like
its main competitors PRISM, MCSTA [67], and EPMC [62],
STORM relies on numerical and symbolic computations.
Although many functionalities are covered by STORM, there
are some significant areas that STORM has not been extended
to. It does not support discrete-event simulation against
temporal logic formulas, known as statistical model check-
ing [2,97]. STORM does not support LTL model checking (as
supported by EPMC and PRISM), does not support probabilis-
tic timed automata (as supported by MCSTA and PRISM), has
no equivalent of PRISM’s hybrid engine (a crossover between
full MTBDD and STORM’s hybrid engine), and does not sup-
port the analysis of stochastic games. A longer survey of both
features and performance of the various model checkers can
be found in [26,60]. A detailed comparison between STORM,
EPMC, MCSTA, and PRISM is given in [76].
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Fig.2 Overview of the model checking approach [12]

Table 1 Overview of model types

Deterministic Nondeterministic
Discrete time DTMCs MDPs and PAs
Continuous time CTMCs MAs

3 Probabilistic model checking with STORM

We give a gentle introduction to probabilistic model check-
ing® with STORM, clarifying the different parts as outlined
in Fig. 2. For surveys and more formal introductions to prob-
abilistic model checking, we refer to [9,12,86].

3.1 Model types

STORM supports the analysis of several different formalisms.
They differ regarding (i) their notion of time and (ii) whether
or not nondeterministic choices are allowed. Table 1 shows a
categorization of the models supported by STORM along the
two dimensions. In a third dimension, STORM supports par-
tially observable models, in which the way nondeterminism
is resolved is restricted.

Discrete-time models abstract from timing behavior by
viewing the progression of time in terms of discrete steps. In
contrast, continuous-time models use real numbers to model

3 Readers familiar with probabilistic model checking may safely skip
this section.
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the flow of time and therefore have a dense notion of time.
Deterministic models (also referred to as Markov chains from
now on) behave purely probabilistically. Dually, in MDPs
and MASs, nondeterministic choices can be used to model,
for instance, the interaction with an adversarial environment
or underspecification of the model with the goal to synthesize
the optimal concrete system. In general, all model types can
be enriched with cost structures. Together with the probabil-
ities in the model this allows for reasoning over, for instance,
expected costs until a certain goal is reached. Rather than
providing formal definitions, we will illustrate a typical use
case for each model type.

3.1.1 Discrete-time Markov chains (DTMCs)

We start with the simplest model. In DTMCs [103], every
state is equipped with a single probability distribution over
successor states. The evolution of the system therefore is fully
probabilistic in the sense that it is governed only by repeated
randomized trials. A famous example that can be captured
in terms of a DTMC is the Herman protocol [94]. The gen-
eral setting is this: a ring consisting of identical processes
that each start either with a token or without one. If more
than one process holds a token, the protocol is in an unstable
state. The goal is to reach a configuration in which exactly
one token remains, a situation called a stable configuration.
This problem cannot be solved by deterministic algorithms
and randomization is crucial. Herman’s protocol uses syn-
chronous, unidirectional communication and can be shown
to eventually reach a stable configuration with probability 1.

3.1.2 Continuous-time Markov chains (CTMCs)

CTMCs [103] extend DTMCs with a continuous notion of
time. Here, the sojourn time of the system in a state is also
determined by a random experiment. More specifically, the
time is sampled according to a negative exponential distri-
bution. The transitions between states happen just like for
DTMCs, i.e., governed by the associated probability distri-
butions. Examples for CTMCs can be found in, for instance,
systems biology [29]. In this work, they are used to analyze
the effect of concentrations of proteins and reaction rates
on signal transduction pathways. In other words, the model
combines discrete aspects (the molecule concentration) and
continuous aspects (time). Here, not only the probabilistic
but also the timing effects are important: Since both the
underlying chemical reactions and the spatial distribution
of molecules take time, fundamental questions like “what
is the probability that the concentration of X is high after 10
seconds?” require a proper modeling of time.

@ Springer

3.1.3 Markov decision processes (MDPs)

MDPs [107] extend DTMCs with nondeterminic actions.
That is, instead of a single distribution governing the suc-
cessor states, the system can nondeterministically select
between several actions, each identifying a different distribu-
tion. After a selection has been made, the successor states are
resolved probabilistically, and in the successor state, a new
selection process is initiated. As already mentioned, non-
determinism can be used to model the possible interaction
with an adversarial environment. An important example for
this are distributed protocols. Such protocols are often ran-
domized to efficiently break symmetry. However, because of
their distributed nature, the progress of the processes is not
synchronized and they may be scheduled differently. A well-
known example is the randomized consensus algorithm by
Aspnes and Herlihy [95]. In this protocol, the participating
processes repeatedly modify a shared global counter based
on the outcome of a coin flip until the whole system agrees
on one of two outcomes, i.e., consensus has been reached. To
faithfully model the protocol, nondeterminism can be used to
account for the missing information about the scheduling of
the competing accesses to the counter. Probabilistic automata
(PAs) [112] extend MDPs with a more flexible action label-
ing.

3.1.4 Markov automata (MAs)

Finally, MAs [49] extend PAs using the notion of contin-
uous time that CTMCs use. In probabilistic states no time
passes, and the system nondeterministically selects one of
the available probability distributions. In Markovian states,
an amount of time passes that is distributed in a negative expo-
nential manner, as in CTMCs. A well-known example is the
stochastic job scheduling problem [109]. Here, the task is
to schedule n jobs with (different) exponential service times
onto k processors. The processors are assumed to run a pre-
emptive scheduling strategy: Upon completion of any job, all
k processors can take over any of the remaining jobs. The cor-
responding MA uses nondeterministic choices to model the
assignment of jobs to processors whenever such a choice can
be made. Thus, the nondeterminism is used to underspecify
the concrete behavior. Determining the job assignment that
maximizes the probability for completion within a given time
limit can thus be seen as synthesizing a scheduling policy that
one would like to impose in the actual system.

3.1.5 Partially observable MDPs (POMDPs)

Partially observable MDPs [7,85] are a popular extension
that cater for a common issue with the analysis of MDPs.
That analysis typically assumes that the nondeterminism can
be resolved arbitrarily. The policy resolving the nondeter-
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minism might, for example, depend on the internal state of
a remotely running process. Consequently, the policies that
are synthesized by such an analysis are unrealistic, and the
verification results are too pessimistic. Consider a game like
mastermind, where the adversary has a trivial strategy if it
knows the secret they have to guess. Intuitively, to analyze
an adversary that has to find a secret, we must assume it can-
not observe this secret. For a range of privacy, security, and
robotic domains, we may instead assume that the adversary
must decide based on system observations. In widespread
examples [85], the position of a robot is unknown and can
only be determined by landmarks (such as doors), or the
position of other agents in the same environment can only be
observed if these agents are sufficiently close.

Formally, POMDPs extend MDPs by a set of observations
and label every state with a one of these observations. Exten-
sions in which actions are labeled or where states are labeled
with distributions over observations can be reduced to this
simpler case.

3.2 Modeling languages

Markov models for practical purposes are often too large
to denote explicitly, but may be described by various more
powerful and concise modeling languages. Depending on the
domain, different modeling languages are more or less suit-
able. Furthermore, the structure of the model is often more
apparent from a symbolic description than on the state level.
STORM therefore tries to support a variety of different input
languages. In order to be compatible with the widespread
usage of PRISM, the PRISM language is supported. For testing
small models, explicit enumeration of states and transitions
is supported in two different formats. Furthermore, STORM
accepts models given in JANI [25], a modeling language that
was devised in a joint effort across multiple tools (involv-
ing EPMC, MODEST, FIG) in an attempt to unify the cluttered
language landscape. STORM supports three other modeling
languages. First, the user can input generalized stochastic
Petri nets (GSPNs) [100] specified in an extension of the
Petri net Markup Language PNML, which is then translated
to JANI automatically. GSPNs are an important modeling
formalism in dependability and performance evaluation. Sec-
ondly, dynamic fault trees (DFTs) are a means to specify
the fault behavior of systems and is a reliability engineering
formalism that is widely used in industry [111]. DFTs can
be specified in the GALILEO format [115]. Finally, a recent
trend in the analysis of probabilistic systems is probabilistic
programming [55]. The latter refers to programs written in
a probabilistic extension of regular programs. An extension
to imperative while programs is PGCL [74], and can addi-
tionally be extended with statements expressing conditional
reasoning [104], an ingredient that is essential to describe
inference as in Bayesian networks. STORM can parse and

translate programs written in PGCL to JANI, which makes
such programs amenable to existing probabilistic model
checking techniques.

3.3 Properties

STORM offers support for a multitude of properties. The most
fundamental properties are reachability properties. Intu-
itively, they ask for the probability with which a system
reaches a certain state. One may, e.g., ask

— “is the probability to reach an unsafe state of the system
less than 0.17”

— “isthe probability to reach a target within 20 steps at least
0.9?7”

For models involving nondeterministic choices, such an
analysis will reason about all possible resolutions of non-
determinism and assert that the desired property holds in all
cases. Alternatively, an easy extension is to ask for some
resolution of the nondeterminism such that the property
holds. Besides asking for whether the probability meets some
threshold, one may also ask “what is the probability to reach
an unsafe state of the system?.”

As models can be equipped with cost structures, properties
allow for retrieving, e.g.,

— “whatis the expected number of coin flips until consensus
has been reached?”

— “what is the expected energy consumption after ¢ time
units?”

— “what is the expected molecule concentration at time
point ¢?7”

Further properties include temporal logic formulas based
on PCTL [66] and CSL [8,11], conditional probability and
cost queries [13,14], long-run average values [6,28,44] (also
known as steady-state or mean payoff values), cost-bounded
properties [69] (see Sect. 4.2), and support for multi-objective
queries [51,109] (see Sect. 4.5).

3.4 Model checking methods

In probabilistic model checking and arguably in verifica-
tion in general, (sadly) there is no known “one-size-fits-all”
solution. Instead, the best tools and techniques depend
heavily on the input model and the properties. STORM—
as well as other model checkers—implements a variety
of approaches that allow a knowledgeable user to pick
the appropriate method as part of the input, and allows
developers to extend and combine their favorite meth-
ods. In particular, we provide approaches based on solving
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(explicit) linear (in)equation systems, value iteration vari-
ants on explicit or symbolic representations of (parts of
the) model, policy iteration methods, methods using abstrac-
tion techniques and bisimulation minimization. We refer to
Sect. 4 for some of STORM’s distinguishing features for
model checking, and Sect. 6 for specifics on the technical
realization.

4 STORM’s features

In this section, we detail some of the outstanding features
of STORM that go beyond conventional probabilistic model
checking methods. We give an overview in Table 2.

In particular, we have chosen four aspects that improve
probabilistic model checking of standard properties such
as reachability or expected rewards. These are reflected by
the first four rows. Sound/exact model checking reflects
a collection of approaches that, compared to the classical
numerical algorithms, provide stronger guarantees on the
accuracy of the obtained results. Cost-bounded model check-
ing, symbolic bisimulation minimization, and game-based
abstraction reduce the size of the analyzed model in various
ways to make probabilistic model checking more scalable.

Furthermore, we have selected three extensions that go
beyond the classical variants of probabilistic model checking:
We discuss how to extract counterexamples using STORM,
how to handle finding strategies that satisfy multiple prop-
erties simultaneously using multi-objective model checking,
and we discuss parametric models in which probabilities are
not fixed constants but rather unknown symbols.

Finally, we discuss tailored model checking methods for
POMDPs and dynamic fault trees. We stress that the modular
structure of STORM enables these approaches to easily reuse
the regular model checking methods and the other methods
outlined in this section.

4.1 Exact and sound model checking

Several works [18,58,121,123] observed that the numerical
methods applied by probabilistic model checkers are prone
to numerical errors. This has mostly two reasons. First, the
floating point data types used by the tools are inherently
imprecise. For example, representing the probability % using
IEEE 754 compliant double precision introduces an error of
5-10~ '8 Inthe presence of numerical algorithms, these errors
accumulate and may lead to incorrect results. An alternative
to the above is to employ rational arithmetic. That is, by rep-
resenting probabilities (and costs) in the model and also the
results as rational numbers, models may be analyzed without
introducing any numerical errors. STORM implements these
ideas and allows for the exact solution of many properties.
However, efficient approaches for floating point arithmetic
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such as value iteration become inefficient when using ratio-
nal numbers, as the representation of the latter grow very
large. STORM offers two tailored techniques to solve systems
of (in)equations using rational arithmetic. The first is based
on policy iteration and Gaussian elimination and the second
on a recent technique called rational search [18]. The idea of
the latter is to use an (imprecise) approximation of the exact
solution and then sharpen this to a precise rational solution
using the Kwek—Mehlhorn algorithm [90]. If a straightfor-
ward check then returns that the sharpened values constitute
an actual solution, the technique can return it. Otherwise, the
precision of the imprecise underlying solver is increased and
the loop is restarted.

Secondly, the numerical algorithms sometimes them-
selves are strictly speaking unsound. For example, stan-
dard value iteration for computing reachability probabilities
approximates the solution in the limit, but the termination
criterion implemented by most tools does not guarantee that
the obtained result is differing by at most the given precision
€ from the actual solution. One way to combat these problems
is to approach the solution from both directions, a technique
referred to as interval iteration [15,23,58]. STORM imple-
ments the latter and additionally the more recent sound value
iteration [110] and optimistic value iteration [71]. Numerical
errors aside?, these methods ensure a correct result within a
user-defined accuracy and come with a small time penalty as
shown in Sect. 7.

4.2 Cost-bounded reachability

A typical application for Markov models is to analyze the
probability to, e.g., reach a goal state before some resource
like time or energy is depleted. Another typical application
is to analyze the expected time before a number of tasks have
been fulfilled. Both instances can be generalized to cost-
bounded reachability. In cost-bounded reachability, one is
interested in the behavior of the system that does not vio-
late the bounds on the resources. The classical approach to
analyze cost-bounded reachability is to model this behavior
in the model description by keeping track of the resources
explicitly and then rely on standard reachability queries [5].
That is, the states of the model keep track of the consumed
resources, and the reachability query asks, e.g., what the
probability is that one of the target states is reached in which
the resource bounds are not violated. The downside is that
the model grows with these bounds.

STORM alternatively allows modeling the (nonnegative)
costs of actions or states in the modeling language. These
costs are attached in the model, and then, one may ana-
lyze cost-bounded reachability with the adequate query. The

4 The implementation of these methods still uses finite precision float-
ing point arithmetic.
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g'i"‘zi'lelguigﬁvl‘;’;"fi:::u‘is o Feature Reference DTMC CTMC MDP MA
STORM and their applicability Sound/exact model checking Section 4.1 v v v v
based on the model types . .
Cost-bounded model checking Section 4.2 v X v X
Symbolic bisimulation minimization Section 4.3 v v v
Game-based abstraction refinement Section 4.4 v X v X
Multi-objective model checking Section 4.5 W) W) v v
High-level counterexamples Section 4.6 v X v X
Parametric model checking Section 4.7 v vF v v
Partial observations Section 4.8 () ) v X
Dynamic fault trees Section 4.9 () v () v
Permissive scheduler synthesis [82] W) (x) v X
Quantiles [70] v X v X

v = except for time-bounded reachability properties

(-) = not meaningful

clear advantage of this approach is that the resources are
not encoded in the state space which keeps the model much
smaller. Rather, STORM does a series of model checking
calls on the much smaller model [69,70], generalizing ideas
from [59,89] to multiple cost dimensions. The reduced mem-
ory footprint allows to handle much larger models, and often
the reduced memory consumption also yields faster verifica-
tion times.

Cost-bounded reachability is closely related to quantile
properties [70,89], where one fixes a desired reachability
probability and asks how many resources have to be invested
in order to achieve this probability.

4.3 Symbolic bisimulation minimization

A typical approach to alleviate the state-space explosion is
to represent the state space symbolically. In the probabilistic
setting, employing variants of decision diagrams (DDs) such
as multi-terminal binary DDs (MTBDDs) or multi-valued
DDs (MDDs) is the most widely used approach to deal with
large state spaces [10]. They are a graph-based data structure
that can exploit structure and symmetry in the underlying
model to represent gigantic models very compactly.

A different angle to approach the problem is abstraction.
Here, the idea is to remove details from the model that are
unnecessary for the desired analysis. A well-studied tech-
nique is bisimulation minimization. Its core idea is that states
with equivalent behavior (in some suitable sense) can be
merged to obtain a quotient model that preserves the proper-
ties of the original input. Then, the (potentially much smaller)
quotient can be analyzed instead. Bisimulation minimization
was shown to yield substantial reductions in the case that
models are represented explicitly (for instance, in terms of a
probability matrix) [87].

STORM allows to combine a symbolic representation
with bisimulation minimization, thereby extending previous

work [119,121]. We extended the approach to deal with non-
deterministic models, which makes it available on all four
model types supported by STORM (see Sect. 3.1). This com-
bination leads to significant reductions in memory and time
consumption for a variety of models, and enables the analysis
of models that are otherwise out of reach [76]. The result-
ing quotient model is often small enough to be represented
explicitly which enables a wide range of efficient analysis
methods.

4.4 Game-based abstraction-refinement

Even though bisimulation minimization effectively helps
reducing the model, it has two major drawbacks. First, it is
not guided by the concrete analysis that is to be performed.
The quotient model may be much too fine for the analysis of
a given property as it preserves a whole class of properties.
Secondly, with few exceptions [42], the algorithms to com-
pute the bisimulation quotient require the entire state space
and transitions to be available. If the model is very large or
even infinite, the algorithms fail to produce a quotient even
if the quotient is very small.

Game-based abstraction [92] addresses these two chal-
lenges. It is based on two fundamental ideas. The first is that
states are merged much more aggressively than in bisimu-
lation minimization. That is, they may be collapsed even if
they have distinguishable behavior. The behavior of the orig-
inal model is over-approximated by the abstraction, and the
latter can therefore be used to obtain sound bounds for the
measures on the former. Note that the abstraction contains
two sources of nondeterminism: the one present in the origi-
nal model and the nondeterminism that is introduced by the
abstraction process. Merging these sources of nondetermin-
ism results in very loose and unsatisfactory bounds on the
target values. The second idea therefore is to keep the two
kinds of nondeterminism apart. This gives rise to a stochas-
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abstract game partition
SOlve M
too 1mprecise

Fig.3 Overview of abstraction—refinement using games

tic game [35] whose solution gives lower and upper bounds
on both minimal and maximal probabilities in the original
model.

STORM implements a game-based abstraction—refinement
loop based on the ideas in [120]. The loop is illustrated in
Fig. 3. As a first step, the abstract game is derived from the
model and the current partitioning of the states, which is
initially induced by the given property. If the bounds obtained
by the analysis of the game are precise enough, they can be
returned. Otherwise, the abstraction is refined by splitting the
partition in a suitable way and the process is repeated.

To enable the analysis of gigantic or even infinite mod-
els, the abstraction is extracted directly from the high-level
model description (given in terms of a PRISM or JANI model).
This extraction is achieved by the formulation as a (series of)
satisfiability problem(s), which are dispatched to an off-the-
shelf solver. While this has the aforementioned advantages, it
is often the computationally most expensive part of the over-
all procedure. To combat this, STORM implements several
optimizations outlined in [76, Ch. 6].

4.5 Multi-objective model checking

Initially, the focus in many probabilistic model checkers was
mostly on computing the probability that a certain event hap-
pens. However, probabilistic model checking can provide
meaningful data beyond the probability to reach some state,
such as the optimal strategies for MDPs, i.e., functions that
describe how to resolve the nondeterminism in an MDP such
that the induced behavior satisfies a given property.
However, if a strategy should satisfy multiple properties,
standard model checking techniques do not suffice. Con-
sider two properties limiting time and energy usage. Standard
techniques would independently compute two strategies, one
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optimizing time, the other optimizing energy consumption.
Both strategies might be wasting the other resource, thus
violating the limits described in the matching combined prop-
erty. Multi-objective model checking [50,51] helps in finding
strategies that satisfy multiple properties at once, and can be
used to clarify the trade-offs between various properties.

Essentially, state-of-the-art multi-objective model check-
ing boils down to a series of preprocessing steps on the
model, and then either solving a linear program [51] or iter-
atively applying standard model checking techniques [52].
STORM supports multi-objective model checking on MDPs,
and in addition on MAs [109] under general as well as more
restricted strategies [43]. Furthermore, it allows for a more
flexible combination of various properties, including prop-
erties with (multiple) cost bounds [69,70], and incorporates
some particularly efficient preprocessing steps.

4.6 Synthesis of high-level counterexamples

Besides the computation of a single strategy, the synthesis of
counterexamples and/or of sets of strategies that all satisfy or
violate a given property has gained some attraction. Here, we
discuss counterexamples, but similar ideas have been used
for so-called permissive strategies [46] as implemented in
STORM using [82].

Suppose that a system reaches a bad state with a prob-
ability above some threshold. To locate the reason for this
behavior, itis helpful to obtain the part of the system that leads
to this behavior, by means of a counterexample. Counterex-
amples try capturing the essence of the failed verification
attempt and help the user of the model checker—being a
human or another algorithm—to revise the system or its
model accordingly. In the nonprobabilistic setting, a coun-
terexample may be represented as one offending run of the
system. However, such a representation is not necessarily
possible in the probabilistic setting as there may be infinitely
many paths that contribute to the overall probability mass
reaching the bad state [63]. A single run ending in a bad
state is therefore typically insufficient as a counterexample.
While it is possible to consider sets of paths for probabilis-
tic safety properties, the resulting counterexamples are large
and hard to comprehend. Alternatively, counterexamples can
be computed as sub-Markov models [1,31].

Rather than considering counterexamples at the state-
space level, STORM computes counterexamples in terms of
the high-level model specification using the ideas of [122].
More concretely, given a JANI (or PRISM) model that violates
a safety property, STORM computes the smallest portion of
the JANI code that already witnesses the violation based on
the method proposed in [39]. It does so by a guided explo-
ration of all candidate sub-models. Ultimately, the smallest
sub-model highlights the core of the problem. It does so at
the abstraction level of the user. High-level counterexam-
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ples are thus a valuable as diagnostic feedback to tool users
(by humans). Recent work has illustrated that these examples
can be effectively used in a counterexample-guided inductive
synthesis approach of finite Markov chains [30].

4.7 Parametric model checking

Naturally, the model checking result of Markov models cru-
cially depends on the transition probabilities. Often, these
probabilities are approximations based on data or reflect
configurable parts of a modeled system. To represent the
uncertainty about the probabilities, parametric Markov mod-
els have been first considered in [38,96]. In parametric
Markov models, the probabilities are symbolic expressions
rather than concrete values. For any valuation of the parame-
ters, replacing the parameters in a parametric Markov model
yields an instantiated parameter-free Markov model.

There are many interesting questions that one can ask
revolving around parametric systems. The simplest is feasi-
bility, i.e., whether there exist a valuation such that the instan-
tiated Markov model satisfies a property. More advanced is
parameter space partitioning where the goal is to decom-
pose the parameter space into regions in which a predefined
property is either satisfied or violated. Such a decomposi-
tion indicates for most parameter valuations whether they
lead to a system that satisfies the given property. An alterna-
tive question is to find the solution function, i.e., a function
in closed form that gives the model checking result of the
instantiated Markov model in terms of the parameter values.
Already the feasibility problem is ETR-complete, that is, it
is asymptotically as hard as finding the root of a multivariate
polynomial [124].

STORM supports the construction and analysis of paramet-
ric Markov models. Besides handling models and supporting
efficient instantiation of parametric models, STORM provides
three methods to perform parameter synthesis. The first is
based on computing the aforementioned solution function
through state elimination [38,61] that can also be seen as
Gaussian elimination. This basic algorithm is improved by
heuristics that order the operations, and a representation of
the rational functions that allows for faster operations [40].
The second method, referred to as parameter lifting, avoids
computing a potentially large rational function and deter-
mines validity of a formula over a region of parameter
valuations through a sound abstraction into a nonparamet-
ric system [108]. The third method [114] aims to analyze
whether the solution function is monotonic in some parame-
ter without actually computing the solution function, as the
latter can be exponential in the number of parameters. These
and further methods are all used by the parameter synthe-
sis tool PROPHESY [81] which provides a playground for
parameter synthesis approaches using STORM as a back end.

4.8 Partially observable Markov decision processes

STORM supports three methods for POMDP analysis:

First, STORM supports the verification of (quantitative)
reachability in POMDPs, e.g., to check whether for each
policy resolving the nondeterminism based on the available
observations, the probability to reach a bad state is less than
0.1.In general, this problem is undecidable [99]. We consider
an equivalent reformulation of the POMDP as an (infinite)
belief MDP: Here, each state is a distribution over POMDP
states. Such a belief MDP has additional properties that have
been exploited to allow verification [80,98,102]. STORM uses
a combination of abstraction-and-refinement techniques to
iteratively generate a finite abstract belief MDP that soundly
approximates the extremal reachability probabilities in the
POMDP [19].

Often, POMDPs are analyzed in settings where nonde-
terminism is controllable: The main interests is than in the
dual of the verification problem: Find a policy such that the
induced probability to reach a bad state is less than 0.1.
The problem remains undecidable. A popular approach to
overcome the hardness of the problem is to limit the poli-
cies, i.e., by putting a (small) a priori bound on the memory
of the policy [4,24,64,101,105,125]. Such limits are espe-
cially reasonable when the nondeterminism is controllable,
i.e., if a policy is to be synthesized. There are various cases
in which small memory policies deliver adequate perfor-
mance. Additionally, these policies are small (and arguably
simple) by construction. STORM translates POMDPs under
observation-based policies with a fixed amount of memory to
parametric DTMCs [84]. Consider memoryless, observation-
based policies: These policies map the current observation
to a distribution over the available actions. We can encode
all possible actions with the help of parameters. Finding
values for these parameters then corresponds to finding an
observation-based policy, and arguing over all parameters
corresponds to arguing over all observation-based policies
adhering to the memory limit.

Third, in POMDPs, even a qualitative variant of reach-
ability is hard: In particular, to decide whether there exists
a policy—resolving the nondeterminism based on the avail-
able observations—such that the probability to reach a bad
state is 1 is EXPTIME-complete [33]. STORM can compute
small memory policies via SAT encodings [32], and finds
more general policies by an incremental procedure [83].

4.9 Model checking dynamic fault trees
Fault trees [111] are widely used in reliability engineering
and model how component failures lead to failures of the

complete system. Dynamic fault trees (DFTs) [47] extend
(static) fault trees by dynamic gates. DFTs more faithfully

@ Springer



598

C.Hensel etal.

model systems by allowing order-dependent failures, func-
tional dependencies and spare management.

Dynamic fault trees may be translated into corresponding
Markov models [21,47] whose analysis yields common mea-
sures on dynamic fault trees, such as reliability and mean time
to failure. The analysis of the corresponding Markov mod-
els also allows more complex measures, e.g., dealing with
degraded modes [54]. The essential step here is that STORM
supports all these queries out of the box. Due to the modular
architecture of STORM features such as parametric DFTs are
supported off the shelf without dedicated implementation.

To drastically improve the analysis of DFTs, STORM con-
tains a dedicated translation of such models into Markov
models [117]. To make the state-space generation as fast
as possible, STORM utilizes the structure of the DFT, and
constructs a Markov model that contains only the relevant
behavior of the DFT. Symmetries in the fault trees are
exploited to further collapse the model with is then subject
to regular model checking with STORM. As the state-space
explosion might still be present during translation, STORM
also supports a partial state-space generation for DFTs [117].
This partial state space yields a sound abstraction, which may
be model checked to obtain safe lower and upper bounds. The
state space can be iteratively extended to obtain the desired
precision of the analysis result.

5 Using STORM

STORM is available as free and open software. Below, we give
an overview how to use STORM. A detailed and up-to-date
guide may be found on STORM’s website:

http://stormchecker.org

Before you start. STORM has to be configured and compiled
on the target machine. This procedure automatically looks up
various dependencies and (optionally) adds them if they are
not found on the system. While this configuration and com-
pilation procedure offers some advantages, see Sect. 6.5, it is
often cumbersome. Therefore, we recommend users which
only want to experiment to rely on the docker containers’
containing STORM with all the key dependencies, and all
interfaces and extensions. One may start right away, at the
cost of slightly reduced performance.

Model descriptions. STORM can be used with a variety of
input languages including JANI and PRISM. A complete up-
to-date list and further resources can be found at STORM’s
website®. For the sake of conciseness, we do not discuss the
details of these languages here.

> Docker containers are a lightweight alternative to virtual machines.
See http://stormchecker.org/getting-started for more details.

6 http://stormchecker.org/documentation/languages.
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Below, we consider a PRISM description of the Bounded
Retransmission Protocol (brp) [75]. This and many other
examples can be found in the Quantitative Verification
Benchmark Set (QVBS)” [72].

5.1 Command line interface

The key way to interact with STORM is through its command
line interface. The command line interface allows to specify
the input model and properties, and after analysis reports on
the requested results. The command

storm --prism brp.pm --prop brp.props

invokes STORM with a PRISM description in brp . pm, and
the properties listed in a file brp . props. STORM will build
the model and perform model checking on each property. For
advanced users, the methods used for model checking can be
flexibly yet simply set, e.g.,

storm ... --engine hybrid --egsolver elimination
sets the engine to hybrid (see Sect. 6.3) and sets the linear
equation solver to state elimination, see Sect. 6.4. Experts
may exploit the possibility to configure even details of the
various procedures, e.g., the order in which state elimination
is applied.

5.2 C++ extensions

To be able to flexibly use the internal data structures of
STORM, one may build an own tool using STORM as a library.
This approach is also taken by the STORM command line
interface, as well as other extensions shipped and tightly
bound to STORM, such as the analysis of DFTs outlined in
Sect.4.9. This approach is the most flexible and powerful way
of using STORM, but also requires most effort. We illustrate
model checking DTMCs with the sparse engine in Fig. 4.
The code parses a string and a property, builds a DTMC
corresponding to the model, and applies model checking on
the property to compute the corresponding probability for all
states. The output is then created based on the model checking
result of (some) initial state. We provide a minimal working
example to build your own C++ tool based on STORM as a
template repository®.

5.3 Python interface

A much quicker way to flexibly interact with (a selection of)
STORM’s internal data structures is the Python API called

7 http://qcomp.org/benchmarks.
8 http://stormchecker.org/api/starter-project.
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#include

typedef storm::models::sparse::Dtmc<double> Dtmc;

typedef storm::modelchecker::SparseDtmcPrctlModelChecker <Dtmc> DtmcModelChecker;

bool

(std::string const& path_to_model, std::string const& property_string) {

auto program = storm::parser::PrismParser::parse(path_to_model);

// Code snippet assumes a Dtmc

assert (program.getModelType () == storm::prism::Program::ModelType::DTMC);

auto properties = storm::api::parsePropertiesForPrismProgram(property_string, program);
auto formulae = storm::api::extractFormulasFromProperties(properties);

auto model = storm::api::buildSparseModel <double>(program, formulae)->template as<Dtmc>();
auto checker = std::make_shared<DtmcModelChecker>(*model);

auto result = checker->check(storm::modelchecker::CheckTask<>(*(formulae[0]), true));
assert (result->isExplicitQuantitativeCheckResult ());

// Use that we know that the model checker produces an explicit quantitative result
auto quantRes = result->asExplicitQuantitativeCheckResult<double>();

return quantRes [*model->getInitialStates().begin()] > 0.5;

}

Fig. 4 Using the C++ interface (with STORM version 1.6.2). Please notice that we have omitted the necessary includes. An annotated version for

the latest version is given in the starter project

import stormpy as sp

def (path_to_model, property_str):
program = sp.parse_prism_program(path_to_model)
props = sp.parse_properties(property_str, program)
model = sp.build_model (program, props)

result = sp.model_checking(model, props[0])
return result.at(model.initial_states[0]) > 0.5

Fig.5 Using STORMPY 1.6.2

STORMPY®. We exemplify the ease of use in Fig. 5. The
code is equivalent to Fig. 4. Using Python may induce some
runtime penalty, but it enables a flexible access to the main
functionality of STORM. We stress that the code is powerful
enough to drive also larger projects, e.g., the parameter syn-
thesis tool PROPHESY [40] relies on STORMPY. We provide
a minimal working example to build your own Python tool
based on STORMPY as a template repository!”.

6 Architecture

In this section, we report on some internal aspects of STORM.
In particular, we aim to address how we realized performance
and modularity. Naturally, we cannot go into the details of the
various algorithms. Rather, we discuss some design choices
that will help a user to feel more familiar with the code base.

6.1 Logical structure

The root directory of STORM contains—among others—
sources and resources. The latter contains the logic for the
configuration routines as well as various third-party depen-

9 Available from http://stormchecker.org/stormpy or via the python
package index at https://pypi.org/project/stormpy/.

10" http://stormchecker.org/stormpy/starter-project.

dencies. The sources are divided into various libraries and
executables. The core functionality is found in the storm
library. Inside that library, one finds data structures for the
representation of matrices, models, expressions, modeling
languages, as well as the model checking engines and solvers,
which are discussed below. Besides this library, there are
libraries for parsing, handling parametric models, and han-
dling various modeling formalism such as GSPNs and DFTs.
All libraries depend on the core storm library. Moreover,
most libraries are accompanied by executables that provide
adequate command line interfaces.

6.2 Models

STORM features two different in-memory representations of
Markov models. First, it can use sparse matrices, an explicit
representation form that uses memory roughly proportional
to the number of transitions with nonzero probability. Sparse
matrices are suited for small- and moderate-sized models
and allow for fast operations also on models with irregular
structure. Secondly, STORM can store models symbolically
using MTBDD, cf. Sect. 4.3. The MTBDDs are built from
the model description directly. While it is possible to go from
MTBDDs to the explicit representation, the other direction
is not (efficiently) possible. While MTBDDs often store a
model compactly, typical operations for the analysis of mod-
els yield a growth in the MTBDDs and are therefore often
slow. All models can be built representing the reachability
probability with floating point arithmetic, exact rational num-
bers, or rational functions.

6.3 Model checking engines

STORM’s engines are built around the two model repre-
sentations. The sparse engine exclusively uses the sparse
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Table 3 Overview of engines

Enci
and supported features in neme

Supported features

STORM

dd
hybrid

exploration, abstraction-refinement

sparse, dd-to-sparse, automatic

All models and properties
DTMC, MDP

DTMC, CTMC, MDP, MA
Reachability on DTMC and MDP

matrix-based representation. It first constructs the matrix
representation of the state space by exploring the reachable
state space specified in the modeling language and then ana-
lyzes the model using one of the many (standard, numerical)
approaches, which are encapsulated as solvers (see below).
While the exploration engine also uses sparse matrices, it
uses ideas from reinforcement learning to avoid exploring
all reachable states [23]. Instead, it proceeds in an “on-the-
fly” manner and explores those parts of the system that appear
to be most relevant to the verification task.

The next two engines use MTBDDs as their primary form
of representation. Except for the concrete in-memory repre-
sentation, the dd engine is the counterpart to the sparse engine
in the sense that model building and verification is done on
the very same representation and no translation takes place.
STORM’s hybrid engine tries to avoid the costly numerical
operations on MTBDDs by transforming only parts of the
system that are relevant for the considered property into a
sparse matrix representation’!.

The dd-to-sparse engine is similar, but performs the trans-
lation independent of the property. This can be useful when
multiple properties are to be checked on the same model or
when symbolic bisimulation minimization is applied. In the
latter case, the quotient model will directly be constructed in
a sparse matrix representation.

The abstraction-refinement engine implements the tech-
nique described in Sect. 4.4 and is able to compute bounds
for both minimal and maximal reachability probabilities for
(infinite) MDPs.

Given simple features of the input PRISM or JANI model
(such as the number of parallel automata or the average
variable range), the automatic engine automatically selects
reasonable settings for STORM. The current implementation
uses a decision tree with 30 leaf nodes and a height of 7. It has
been generated with the tool SCIKIT- LEARN [106] using train-
ing data from experiments on the QComp benchmark set [60].
To avoid over-fitting, the automatic choice only selects either

— the sparse engine,
— the sparse engine with exact model checking and rational
arithmetic (cf. Sect. 4.1),

I This approach corresponds to PRISM’s sparse engine and is not to
be confused with the latter’s hybrid engine, which is to be classified as
“more symbolical.”
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— the hybrid engine, or
— the dd-to-sparse engine with symbolic bisimulation min-
imization (cf. Sect. 4.3).

Support for queries and model descriptions. Table 3 pro-
vides an overview of the models and queries supported by
each engine. The sparse engine supports all model checking
queries present in STORM and all DTMCs, CTMCs, MDPs,
MAs, and POMDPs described in PRISM or JANI. The engine
can be paired with sound or exact model checking as in
Sect. 4.1. However, exact arithmetic does not support time-
bounded properties in CTMCs and MAs as these involve
exponentials. Many advanced features such as cost-bounded
reachability and multi-objective model checking are only
implemented in the sparse engine. The dd-to-sparse engine
can often make use of these implementations, as well. The
support within other engines is more limited. The dd engine
does not support continuous-time models (considered too
slow) and POMDPs (typically sufficiently small). The explo-
ration engine and the abstraction-refinement engine are
both limited to reachability queries on discrete-time mod-
els. Moreover, some advanced features of the JANI language
(indexed assignments, nontrivial system compositions) cur-
rently cannot be translated into DDs. The automatic engine
falls back to the sparse engine if the input model is not sup-
ported by the predicted configuration.

6.4 Solvers

Probably the most outstanding trait of STORM’s architecture
is the concept of solvers. Ultimately, many tasks related to
(probabilistic) verification revolve around solving subprob-
lems. For example, computing reachability probabilities or
expected costs in a DTMC reduces to solving a system of lin-
ear equations. Similarly, for an MDP a system of equations
needs to be solved, with the difference that the equations are
Bellman equations involving minima and maxima. However,
these are by no means the only kinds of problems appearing
in probabilistic verification.

Figure 6 illustrates some functionalities of STORM which
have a dependency to one or more solvers. For example,
(explicit) model building employs SMT solving. As the initial
states of symbolic models (e.g., PRISM or JANI) are given by
the satisfying assignments of an expression, STORM uses SMT
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Table4 Solvers STORM Solver type

Available solvers

provides out of the box
Linear equations (sparse)
Linear equations (MTBDD)
Bellman equations (sparse)
Bellman equations (MTBDD)
Stochastic games (sparse)
Stochastic games (MTBDD)

EIGEN, GMM++, Gaussian elimination®, native™
CUDD, SYLVAN

EIGEN, GMM++, native™®

CUDD, SYLVAN

native™*

CUDD, SYLVAN

GUROBI, GLPK

73, MATHSAT, SMT- LIB [17]
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Fig.6 Most important solvers used by STORM

solvers to enumerate the possible initial states. Similarly, the
extraction of the abstract model from the symbolic model (as
presented in Sect. 4.4) in the abstraction refinement engine
crucially depends on enumerating satisfying assignments and
therefore SMT solvers. As yet another example, consider the
synthesis of high-level counterexamples as in Sect. 4.6. Here,
one of the offered techniques relies on the solution of a MILP
while the other uses SMT solvers.

Two of the main goals in the development of STORM were
the ability to exchange central building blocks (like solvers)
and to benefit from (re)using high-performance implementa-

tions provided by other libraries. It therefore offers abstract
interfaces for the solver types mentioned above that are
oblivious to the underlying implementation. Offering these
interfaces has several key advantages. First, it provides easy
and coherent access to the tasks commonly involved in prob-
abilistic model checking. Secondly, it enables the use of
dedicated state-of-the-art high-performance libraries for the
task at hand. More specifically, as the performance charac-
teristics of different backend solvers can vary drastically for
the same input, this permits choosing the best solver for a
given task. Licensing problems are avoided, because imple-
mentations can be easily enabled and disabled, depending
on whether or not the particular license fits the requirements.
Finally, implementing new solver functionality is easy and
can be done without detailed knowledge of the global code
base. This flexibility allows to keep STORM up to date with
new state-of-the-art solvers.

For each of the solver interfaces, several actual imple-
mentations exist. For example, STORM currently has four
implementations (each of them with a range of further
options) of the linear equation solver interface for problems
given as sparse matrices: One is based on GMM++, one is
based on EIGEN [56], one uses its native internal data struc-
tures and algorithms for numerical algorithms and another
one is based on Gaussian elimination [38]. Table 4 gives an
overview over the currently available implementations. Here,
all solvers that are purely implemented in terms of STORM’s
data structures and do not use libraries are marked with an
asterisk to indicate that they are “built in.”

To realize the support for DD-based representations of sys-
tems, STORM relies on two different libraries: CUDD [113]
and SYLVAN [118]. While the former is very well estab-
lished in the field, the latter is more recent and tries to make
use of modern multi-core CPU architectures by parallelizing
costly operations. The parallelization comes at the price of
more expensive bookkeeping and in general CUDD performs
better if there are many operations on smaller DDs, while
SYLVAN is faster when fewer operations on larger DDs are
involved. STORM implements an abstraction layer on top of
the two libraries that uses static polymorphism. This way, it
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is possible to write code that is independent of the underlying
library and does not incur runtime costs.

6.5 Technicalities

By far the largest part (over 170,000 lines of code) of STORM
is written in the C++ programming language and extensively
uses template meta-programming. This has several positive
and negative implications. On the one hand, it serves the
purpose of high performance for several reasons. First, C++
allows fine-grained control over implementation details like
memory allocations. Secondly, C++ templates allow code
to be heavily reused while maintaining performance as the
static polymorphism enables type-dependent optimizations
at compile time. Large parts of the code are written agnos-
tic of the data type (floating point, rational number, or even
rational functions) and only the core parts are specialized
based on the data type. As this happens at compile time,
no runtime cost is incurred. Finally, we observe that many
high-performance solvers and data structure libraries that are
well suited for the context of (probabilistic) verification are
written in C or C++ (and also partially make use of template
meta-programming), such as

SMT solvers (Z3 [45], MATHSAT [34], SMT- RAT [36]),
LP solvers (GUROBI [57], GLPK!?),

— linear algebra libraries (GMM++13, EIGEN [56])),

DD libraries (CUDD [113], SYLVAN [118]), and
rational arithmetic libraries (CARL [36], GMP!#).

Choosing C++ as the language for STORM therefore allows
easy and fast interfacing with these solvers. On the other
hand, the advantages come at a price. Advanced templating
patterns can be difficult to understand and increase compile
times significantly.

7 Evaluation

This section contains an empirical evaluation of some key
functionalities of STORM. Furthermore, we recap results of
QComp 2019 [60] and QComp 2020 [26] to emphasize the
competitiveness of STORM.

7.1 Setup and methodology

We consider the set of 100 benchmark instances that were
selected in QComp 2019 and 2020 [26,60]. Each instance

12 https://www.gnu.org/software/glpk/.
13 http://getfem.org/gmm.html.
14 https://gmplib.org/.
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consists of a symbolic model description and a property
specification from the Quantitative Verification Benchmark
Set (QVBS) [72]. If available, we consider model descrip-
tions in the PRISM language. Otherwise, the model is build
from the JANI description. For a better comparison across
STORM’s engines, we did not employ the techniques from
Sect. 4.9 to solve DFTs. Since STORM has no native support
for PTA, we used the tool MOCONV (part of the MODEST
TOOLSET!® [67]) to translate PTAs into MDPs. For four
instances either MOCONV did not support the PTA or STORM
did not support the output of MOCONV. We therefore restrict
our evaluation to the remaining 96 benchmark instances.

For each instance, the task is to solve the corresponding
model checking query within a time limit of 30 minutes and
a memory limit of 12 GB. The results are compared to the
reference results provided by the QVBS. If the relative dif-
ference between these values is greater than 1073, the result
is considered incorrect. This setup coincides with the setup
of QComp 2019. All experiments were run on 4 cores of
an Intel® Xeon® Platinum 8160 Processor. We measure the
wall-clock runtimes (including model building and model
checking) for all experiments. Notice that this machine is
more powerful than the QComp 2019 machine.

For our evaluation, we consider STORM version 1.6.2 in
seven different configurations comprising

— the main engines of STORM: sparse, hybrid, and dd,

— symbolic bisimulation (bisim) with sparse quotient
(Sect. 4.3),

— sound and exact model checking within the sparse
engine (Sect. 4.1), and

— the automatic engine.

Whenever the invoked model checking method is sound (i.e.,
provides precision guarantees), the precision of STORM is
set to 1073 (relative). Otherwise, STORM’s default preci-
sion 107 (relative) is used. We select SYLVAN [118] as
DD-library, and set its memory limit to 4 GB. We also con-
sider a “fastest” configuration that takes the best result from
the seven configurations, i.e., a configuration which runs
all seven configurations and terminates whenever the fastest
terminates (and further runs the seven configurations inde-
pendently on different machines).

All benchmark files, log files, and replication scripts are
available at [77].

7.2 Results

Table 5 summarizes the outcomes of our experiments. The
seven columns refer to the seven configurations as described

15 http://www.modestchecker.net/.
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Table 5 Outcomes of . . A
h
experiments on 96 benchmark sparse ybrid dd bisim sound exact automatic
instances #solved 73 67 40 59 73 43 84
#not supp. 11 42 7 14
#time-outs 3 5 4 8 3 12
#mem-outs 16 11 8 20 18 27
#incorrect 4 2 2
#fastest ¢, 19 21 14 8 3 40
#fastestys0% 39 46 16 26 27 78
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Fig.7 Runtime comparison of STORM’s key features

above. In the first row, we indicate how many of the 96 consid-
ered instances were correctly solved for each configuration.
The subsequent rows indicate the number of not supported
instances!®, the number of times the time or memory limit
was exceeded, respectively, and the number of incorrect
results!” that were obtained. Observe that these rows always
sum to 96.

For the “fastest” configuration, we obtain 87 solved
instances and 0 incorrect results. The next rows (after the hor-
izontal line) show how often each configuration was either
the fastest among the tested ones or only 1% (50%) slower
than the fastest one, i.e., terminated within 101% (150%) of
the fastest configuration.

We further compare the runtimes of the different engines
and features in Fig. 7. The shown quantile plot expresses
how many benchmark instances (measured on the x-axis)
each were solved in at most the time given on the y-axis. In
other words, the point (x, y) is contained in the quantile plot
for configuration c if the maximal runtime when using ¢ on
the x fastest solved instances (for c) is y seconds. Time and
memory outs, incorrect results, and unsupported experiments

16 Observe that sparse, sound, and automatic support all queries. For
details on the other configurations see Sect. 6.3.

17 The incorrect results are the consequence of imprecise floating points
or algorithms that do not guarantee sound results, see Sect. 4.1.

) 45 50
solved instances (out of 96)

may skew the lines of the affected configurations as all these
outcomes do not count as solved. Besides the seven consid-
ered configurations, we also depict the runtime obtained by
the fastest engine or feature for each individual benchmark.

Finally, we compare the configurations of STORM one by
one and give the results in Figs. 8 and 9. Each point in the
depicted scatter plots indicates the runtimes of the two com-
pared configurations for one benchmark instance. The type
(DTMC, CTMC, MDP, MA, or PTA) of the verification task
isindicated by means of different marks. The scatter plots use
logarithmic scales on both axes and indicate speed-ups of 10
by means of dotted lines. If an experiment ran out of resources
(time or memory), was not supported, or yielded an incor-
rect result, we draw the point on separate lines, labeled OOR,
NS, and INC, respectively. We compare the engines (sparse,
hybrid, and dd) with each other in Fig. 8a—c. Symbolic bisim-
ulation, sound, and exact model checking are compared with
the sparse engine (the default of STORM) in Fig. 8d—f. For
the comparison with sound model checking, we do not depict
benchmark instances where the default method is already
sound. Figure 9a, b compares the automatic engine with
the sparse engine and with the fastest configuration, respec-
tively.

More detailed results of our experiments can be found
on http://stormchecker.org/benchmarks.
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Fig.9 Comparison of engines and features of STORM (continued)

7.3 Discussion

Comparing the three main engines of STORM (sparse,
hybrid, and dd), the sparse engine was the most versa-
tile engine during our experiments since it supports all 96
instances and successfully solved the majority (73) of them,
outperforming the other two engines. However, looking at
Fig. 7 we see that the other engines are competitive. The
automatic engine often manages to pick the “right” config-
uration for a given benchmark and thus almost matches the
performance of the (notional) fastest configuration. As indi-
cated in Fig. 8, several instances could only be solved using
symbolic techniques based on the hybrid or the dd engine.
We emphasize that the benchmark selection can have a strong
impact when comparing the engines of STORM because the
symbolic engines are strongly reliant on the model structure.
Moreover, many benchmarks are not supported by the hybrid
and/or the dd engine which skews the lines in Fig. 7.

Symbolic bisimulation was extremely effective on models
with a concise DD-based representation and a small bisim-
ulation quotient. The export into a sparse quotient allows
STORM to make use of the versatility of the sparse engine.

In Fig. 8e, we see that the overhead for sound model
checking is often negligible. As mentioned above, we invoke
classical model checking (such as value iteration) with
the default precision parameters (107 relative precision),
whereas sound model checking is invoked with the actual
precision requirements (10~ relative precision), yielding
speed-ups for some instances.

Exact model checking is comparably costly. The use
of exact (infinite precision) arithmetic induces increasingly
larger number representations. Moreover, approximative,

not solved +

fastest
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2 o, Q25
2 @ VA
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(b) Comparison of automatic engine and fastest configuration

numerical solution methods cannot be applied. However, on
a few instances where numerical methods do not work well,
exact model checking was superior to the remaining config-
urations.

Figure 9a, b shows that—for this benchmark set—the
automatic engine improved the runtime of the sparse engine
in many cases and that there were only a few instances where
it was outperformed by the (notional) fastest engine.

7.4 Summary from QComp 2019

We briefly recap the results of QComp 2019, focusing on the
performance evaluation. For further details, we refer to the
competition report [60].

The experimental setup of QComp 2019 (benchmark
selection, precision requirements, time and memory limits,
etc.) coincides with our setup as detailed above, except that

— a different machine was used, and
— STORM was considered in version 1.3.0.

Each tool was executed in two different modes: once with
default settings (which for STORM coincides with using the
sparse engine) and once with benchmark specific settings.
For the latter mode, the participants could provide a tai-
lored tool invocation for each individual benchmark instance.
For STORM, this was realized by empirically determining the
fastest configuration for a given instance, where we consid-
ered the configurations sparse, hybrid, dd, bisim, sound,
and exact (as above).

@ Springer
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Fig. 10 Performance of STORM compared with other state-of-the-art model checkers. All figures are taken from [60] licensed under Creative
Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0/

Figure 10 depicts the performance results of QComp 2019
that are relevant for STORM. The quantile plots in Fig. 10a, b
compare STORM with the other participating general-purpose
probabilistic model checkers EPMC [62], MCSTA [68], and
PRISM [93] using the default and specific modes, respec-
tively. STORM supported 96 of the 100 considered benchmark
instances, whereas EPMC, PRISM, and MCSTA supported 63,
58, and 86 instances, respectively. For the quantile plots, only
the 43 instances that were supported by all 4 tools were taken
into account. In particular, all benchmarks are given in PRISM
language since PRISM does not support JANI. The scatter plots
in Fig. 10c, d compare STORM with the best of the other
8 participating tools. A point above the solid diagonal line
indicates that on the corresponding instance, STORM was the
fastest tool among all participants.

Considering the results for the default mode in Fig. 10a,
STORM is the strongest competitor of the other three tools.

@ Springer

However, the performance results of STORM and PRISM are
very close to each other. For instance-specific invocations
(Fig. 10b), STORM clearly outperformed all its competitors.
The scatter plots show that STORM performed best among all
tools for 1/3 of the supported benchmarks in default mode
and 1/2 of the supported benchmarks in specific mode.

7.5 Outlook to QComp 2020

Since QComp 2019 further progress of the participating tools
has been made. For example, new and efficient model check-
ing techniques for MDPs and MAs have been implemented
in MCSTA [27,71]. QComp 2020 [26] captures some of these
changes and gives a special emphasis to the correctness of
the results produced by the tools. In contrast to the 2019 edi-
tion, the performance evaluation is divided in six tracks. The
tracks consider the same benchmark set but impose different
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correctness requirements ranging from exact results to often
e-correct results. Among all nine participants, STORM has
been the only tool that implements supporting algorithms for
all tracks and has proven competitiveness in each of them.
More details to QComp 2020 can be found in its competition
report [26].

We remark that both QComp 2019 and QComp 2020 nec-
essarily only provide a snapshot of the tool landscape at
the time of the evaluation. A repetition of the evaluation of
QComp with newer tool versions can yield different results.

8 Conclusion

This paper presented the state-of-the-art probabilistic model
checker STORM. We have discussed its main distinguishing
features and described how it can be used for rapid prototyp-
ing of new algorithms and tools. Key aspects of STORM are
its modularity, its accessibility through a Python interface,
its various modeling formalisms, as well as the functionali-
ties that go beyond the standard probabilistic model checking
algorithms. We believe that its modularity, careful crafting
of the most time-consuming operations, and our experience
with earlier in-house developed model checkers, have led
to a tool that is competitive to existing probabilistic model
checkers. STORM provides an effective and efficient plat-
form for future-proof developments in probabilistic model
checking. It is open access and publicly available from http://
stormchecker.org. A major challenges will be to keep up with
the rapid progress in the field. This does not only involve
the implementation of new algorithms, but also involve con-
stantly revising existing code fragments.
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