
International Journal on Software Tools for Technology Transfer (2021) 23:895–903
https://doi.org/10.1007/s10009-021-00628-w

COMPET IT IONS AND CHALLENGES

Special Issue: TOOLympics 2019

SL-COMP: competition of solvers for separation logic

Report on the Third Edition

Mihaela Sighireanu1

Accepted: 12 May 2021 / Published online: 31 May 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
SL-COMP is a competition bringing together researchers and users interested in automated reasoning methods for separation
logic (SL). The competition provides a snapshot of the state of the art in the area through a set of problems that put forward
the strengths and challenges of the existing solvers and a comparative and replicable evaluation of participating solvers. The
third edition of SL-COMP took place in April 2019, as part of the TOOLympics event at TACAS 2019. It collected more than
1K satisfiability and entailment problems, had seen the adoption of the new input format based on SMT-LIB and had doubled
the number of participant solvers compared with the first edition in 2014. This report relates the history and the context
of SL-COMP competition and accounts of its third edition. It also discusses the issues related with its organization and the
challenges for the next editions.

Keywords Separation logic · SAT modulo theory · SMT-LIB

1 Introduction

SMT solvers play an important role in the success of verifi-
cation tools. The SL-COMP competition was inspired by the
success of SMT-COMP for solvers on first-order theories. It
aims at the development and promotion of solvers for separa-
tion logic (SL), an established and fairly popular extension of
Hoare logic for imperative, heap-manipulating programs [1].
A rather exhaustive list of the past and present tools using
separation logic may be found at [2]. An SL-COMP event
consists of two stages. The first stage collects satisfiability
and entailment problems for SL, translates them into a com-
mon format and finally assigns them to categories depending
on the fragment of SL they belong to. The problems origi-
nate from two sources: the verification tools employing SL or
the theoretical studies on separation logic. The later source
provides problems corresponding to corner cases (e.g., high-
complexity cases) in the decidable fragments, or problems in
undecidable fragments. The second stage of SL-COMP is the

B Mihaela Sighireanu
mihaela.sighireanu@irif.fr

1 IRIF, Université de Paris, Paris, France

comparative evaluation of registered solvers performed by
the organizer. SL-COMP uses StarExec[3], the platform also
used by SMT-COMP, to store the benchmark and the binaries
of participating solvers as well as to run the experiments until
the final run.

The first [4] and second editions of SL-COMP took place
as part of the Federated Logic Conferences (FLoC) in
2014 respectivement 2018 and were affiliated to SMT-COMP
respectivement Automated Deduction for Separation Logics
(ADSL) workshops. The third edition took place as part of
TOOLympics event [5] at TACAS 2019. Each event was an
opportunity to exchange with researchers interested in SL or
with developers of tools based on separation logic.

This paper provides an overview of SL-COMP and high-
lights themain achievements of the third edition and the open
issues for the next editions. Section 2 describes the stages of
the competition and the reasons leading to its current organi-
zation. The next sections detail the set of problems (Sect. 3),
the running infrastructure (Sect. 4) and the results of the third
edition (Sect. 5). Section 6 concludes with the achievements
of SL-COMP and its perspectives.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-021-00628-w&domain=pdf

896 M. Sighireanu

2 Competition organization

2.1 Rise and progress

The competition started in 2014, as an outcome of the emer-
gence of solvers for SL which were independent from the
verification tools. These solvers considered mainly the sym-
bolic heap fragment (see Sect. 3.3) which was successfully
used by static analyzers (e.g., SmallFoot [6]) and deductive
verification tools (e.g., Hip [7] or VeriFast [8]). The call for
problems and tools was addressed first to the teams develop-
ing these solvers and then sent to the SMT-COMP community.
We collected 600 problems on different fragments of SL
from the six participating solvers. The format was an ad
hoc extension of the SMT-LIB format. This choice for the
input format allowed SL-COMP to be considered an unoffi-
cial event associated with SMT-COMP at the FLoC Olympic
Games. SL-COMP benefited from the experience of SMT-
COMP’s organizer, David Cok, in setting the competition’s
rules and the execution platform StarExec, as well as in run-
ning the competition and in the publication of final results.
The organization details and the achievements of this edi-
tion are presented in [4]. The discussion following this event
had two outcomes. First, a working group was charged to
improve the input format by taking into account the new
features included on the draft of the new version (2.6) of
SMT-LIB. Second, the participants chose a sparse rhythm for
the competition, roughly aligned with the FLoC’s venues, in
order to avoid editions with insignificant increments and to
promote tools with strong theoretical foundations.

The second edition took place as expected at FLoC 2018
and was associated with the first workshop on Automated
Deduction for Separation Logics (ADSL). The competition’s
organization followed the stages described in the next sec-
tion and was disconnected from SMT-COMP, but it used the
StarExec platform. The call for benchmark was very fruitful:
the number of problems was doubled as well as the number
of categories. Eleven solvers enrolled in the first round of
the competition. The problems have been translated into the
new input format (see Sect. 3.2) which required to update
the translators to the input format of each solver. All these
novelties were dealt by the teams of the registered solvers
and the organizer during the two months before FLoC 2018.
This short time was not enough to fix the issues in some new-
comer solvers, so one solver abandoned before the final run.
The competition was run on all problems (from the 2014 edi-
tion and the new ones) several times before an agreement was
met on the results. The competition’s results [9] have been
presented during a full session of the ADSL workshop and
gave the opportunity of a prolific discussion on the different
aspects of the organization. The participants agreed to rerun
the competition next year as a pre-event of TOOLympics

2019, in order to gain visibility and to fix the identified prob-
lems in the benchmark, the scoring and the solvers.

The third edition took place a few days before TACAS
2019. Its organizationwas planned and described in [10]. The
competition considered a slightly modified set of problems.
The main changes were fixing the expected results of some
problems and changing the division of others. The solver
which abandoned at the second edition was enrolled suc-
cessfully. We tried a new way to score the results and, as an
indicator, we nominated a virtually best solver for each job
and division. The results have been presented at TACAS and
are available on the SL-COMP Web site [11]. They are sum-
marized in Sect. 5. The podium was different from the 2018
edition in several categories since the solvers were improved
in the meanwhile. The results pointed out some weaknesses
in the organization process, mainly concerning the choice of
problems used for scoring and the scoring itself. We discuss
these points in Sect. 5. The next edition of SL-COMP is sup-
posed to take place at FLoC 2022 and its organization will
be planned at ADSL 2021.

2.2 Organization process

The competition has a short running period, three months on
average. This is possible due to the availability of the mate-
rial used in the competition (the benchmark set, the definition
of the input format, the parsers for the input format and the
translators to the input of solvers) on StarExec and on a shared
development repository [12]maintained by the organizer and
the participants. Starting from its second edition, the organi-
zation of the event is discussed during the ADSL workshop
of the previous year.

The call for problems and participants launches the com-
petition and fixes the competition timeline. The call is sent
on the competition mailing list slcomp@googlegroups.com
and on some other mailing lists specialized on automated
reasoning.

New solvers are invited to send a short presentation (up
to two pages) including the team, the SL-COMP categories
joined in, a bibliographic reference and a Web site. Each
team nominates a corresponding person who is responsi-
ble for preparing the solver to comply to the competition’s
constraints. This preparation ensures that the input format is
supported, the solver is uploaded on the execution platform
and it is registered at the right categories with the correct con-
figuration. The organizer creates a subspace for each solver
on the space SL-COMP of StarExec. The solver’s correspon-
dent receives the necessary permissions for this subspace.

The benchmark problems are collected from the com-
munity and participants. Until now, we did not limit the
number of problems proposed by participants in each cate-
gory because we targeted the growing of our benchmark set.
However, this may change in the future in order to increase

123

SL-COMP: competition of solvers for separation logic 897

the diversity of problems and to avoid fine tuning of tools
(see Sect. 3). A problem may change during the competition
if an issue is signaled. However, the benchmark set is fixed
starting with the pre-final run.

The competition is run in three stages:

1. The training period takes around twoweeks duringwhich
the solver’s correspondent runs the solver on the execution
platform and the existing benchmark set. During this step,
the benchmark set may evolve if issues are detected; the
solver’s binary may be also changed.

2. The pre-final run is launched by the organizer using the
binaries of solvers uploaded on the execution platform.
The results of a pre-final run are available for all solvers’
representatives, in order to compare results and have a
first view on competitors’ achievements. The organizer
communicates with each correspondent to be sure that the
results of this run are accepted. Thebenchmark set is fixed,
but solvers’ binaries may change until the acceptance of
results.

3. The final run takes place one week before the event at
which the results are presented. The final results are avail-
able as soon as possible on the competition’sWeb site, and
the podium is presented during the event.

3 Benchmark set

The benchmark set of SL-COMP contains 1286 problems
which cover several fragments of SeparationLogic.Aquarter
of these problems are satisfiability checking problems, and
the remainder are entailment problems. This section outlines
the main features of this benchmark set, including the frag-
ments covered, the input format, and the divisions established
for this edition. The input theory and format are formally pre-
sented in [13].

3.1 Separation logic theory

The input theory is a multi-sorted second-order logic over a
signature Σ = (Σ s,Σ f), where the set of sorts Σ s includes
two (non-necessarily disjoint) subsets of sorts: Σ s

Loc repre-
sents locations of the heap and Σ s

Data represents heap’s data.
For each sort Loc in Σ s

Loc, the set of operations includes a
constant symbolnilLocmodeling the null location. The heap’s
type τ is an injection from location sorts inΣ s

Loc to data sorts
in Σ s

Data. We also assume that the signature Σ includes the
Boolean signature and an equality function for each sort.

Let Vars be a countable set of first-order variables, each
xσ ∈ Vars having an associated sort σ . The Ground Sep-
aration Logic SLg is the set of formulae generated by the

following syntax:

ϕ := φ | emp | t �→ u | ϕ1 ∗ ϕ2 | ϕ1 −−∗ ϕ2

¬ϕ1 | ϕ1 ∧ ϕ2 | ∃xσ . ϕ1(x) (1)

where φ is a Σ-formula, and t, u are Σ-terms of sorts in
Σ s

Loc and Σ s
Data, respectively, such that they are related by

the heap’s type τ . We omit specifying the sorts of variables
and functions when they are clear from the context.

The special atomic formulas of SLg are the so-called spa-
tial atoms: emp specifies an empty heap, t �→ u specifies a
heap consisting of one allocated cell whose address is t and
whose value is u. The operator “∗” is the separating conjunc-
tion denoting that the sub-heaps specified by its operands
have disjoint locations. The operator “−−∗” is the separat-
ing implication operator, also called magic wand. A formula
containing only spatial atoms combined using separating
conjunction and implication is called spatial. Formulas with-
out spatial atoms and separating operators are called pure.

The full separation logic SL contains formulas with spa-
tial predicate atoms of the form Pσ1...σn (t1, . . . , tn), where
each ti is a first-order term of sort σi , for i = 1, . . . , n.
The predicates Pσ1...σn belong to a finite set P of second-
order variables and have associated a tuple of parameter sorts
σ1, . . . , σn ∈ Σ s. Second-order variables Pσ1...σn ∈ P are
defined using a set of rules of the form:

P(x1, . . . , xn) ← ϕP (x1, . . . , xn), (2)

where ϕP is a formula possibly containing predicate atoms
and having free variables in x1, . . . , xn . The semantics of
predicate atoms is defined by the least fixed point of the
function defined by these rules.

An example of a formula specifying a heap with at least
two singly linked list cells at locations x and y is:

x �→ node(1, y) ∗ y �→ node(1, z) ∗ ls(z, nil) ∧ z 	= x (3)

where Σ s = {Int, Loc,Data} and the function node has
parameters of sort Int and Loc and its type is Data. The
predicate ls is defined by the following rules:

ls(h, f) ← h = f ∧ emp (4)

ls(h, f) ← ∃x, i . h 	= f ∧ x �→ node(i, x) ∗ ls(x, f) (5)

and specifies a possible empty heap storing a singly linked
list of Data starting at the location denoted by h and whose
last cell contains the location denoted by f . More complex
examples of formulas and predicate definitions are provided
in [4,13].

123

898 M. Sighireanu

3.2 Input format

The input format of SL-COMP changed between the first and
the second edition, but it was always based on the SMT-LIB
format [14]. The first version of the format was built upon
the version 2.5 of SMT-LIB and therefore introduced ad hoc
constructs for inductive predicate definitions (not allowed in
SMT-LIB 2.5) or datatypes; it also had the drawback of intro-
ducing a special type for spatial formulas. The new format
fixed these issues and was built upon version 2.6 of SMT-LIB.
The syntax and the semantics of this format were discussed
and approved using the public mailing group.
Signature encoding:Following this format, the new functions
ofSL theory are declared in a “theory”fileSepLogicTyped.
smt2 as follows:

(theory SepLogicTyped
:funs ((emp Bool)

(sep Bool Bool Bool :left-assoc)
(wand Bool Bool Bool :right-assoc)
(par (L D) (pto L D Bool))
(par (L) (nil L))
)

)

The functions pto and nil are polymorphic, with sort
parameters L (for location sort) and D (for data sort). There is
no restriction on the choice of location and data sorts. How-
ever, each problem shall fix them using a special command,
not included in SMT-LIB, declare-heap. For example, to
encode the formula given in Eq. 3, we declare an uninter-
preted sort Loc and a sort Data as a datatype as follows:

(declare-sort Loc 0)

(declare-datatype Data
((node (d Int) (next Loc))))

(declare-heap (Loc Data))

The last declaration fixes the type of the heap model.
The predicate definitions are written into SMT-LIB format

using the recursive function definition introduced in version
2.6. For instance, the definition of the list segment fromEqs. 4
and 5 is written into SMT-LIB as follows (based on the above
declarations of Loc and Data):

(define-fun-rec ls ((h Loc) (f Loc)) Bool
(or (and emp (= h f))

(exists ((x Loc) (d Int))
(and (distinct h f)

(sep (pto h (node d x))
(ls x f))))

)
)

Problem format: Each benchmark file is organized as fol-
lows:

• Preamble information required by the SMT-LIB format:
the sub-logic of SL theory (see Sect. 3.3), the team which
proposed the problem, the kind (crafted, application, etc.)
and the status (sat or unsat) of the problem.

• Alist of declarations for the sorts of locations anddata, for
the type of the heap (the declare-heap command),
for the second-order predicates, and for the free variables
used in the problem’s formulae. Notice that the input
format is strongly typed. At the end of the declarations, a
checking command check-sat may appear to trigger
for some solvers the checking for models of predicate
declarations.

• One or two assertions (command assert) introducing
the formulas used in the satisfiability, respectively, entail-
ment problem.

• The file ends with a checking satisfiability command
check-sat. Notice that checking the validity of the
entailment A ⇒ B is encoded by satisfiability checking
of its negation A ∧ ¬B.

3.3 Divisions

The main difficulty that faces automatic reasoning using
SL is that the logic, due to its expressiveness, does not have
very nice decidability properties [15]. For this reason, most
solvers use incomplete heuristics to solve the satisfiability
and entailment problems in SL or restrict the logic employed
to decidable fragments. Overviews of decidable results for
SL are available in [4,16].

Each problem of SL-COMP’s benchmark refers to one of
the sub-logics of the multi-sorted Separation Logic. These
sub-logics identify fragments which are handled by at least
two participants or have been identified to be of interest by
the jury (organizer with solvers’ representatives).

The sub-logics are named using groups of letters, in a way
similar to the SMT-LIB format. These letters have been chosen
to evoke the restrictions used by the sub-logics:

• QF for the restriction to quantifier free formulas;
• SH for the “symbolic heap fragment” where formulas
are restricted to (Boolean and separating) conjunctions
of atoms and do not contain magic wand; moreover, pure
atoms are only equality or dis-equality atoms;

• LS where the only predicate allowed is the acyclic list
segment, ls, defined in Eqs. 4 and 5;

• ID for the fragment with user-defined predicates;
• LID for the fragment allowing linear definitions of user
predicates, i.e., only one recursive call for all rules of a
predicate is allowed;

123

SL-COMP: competition of solvers for separation logic 899

Table 1 Divisions at SL-COMP
and the participants enrolled

Division size Solvers enrolled

qf_bsl_sat 46 CVC4- SL

qf_bsllia_sat 24 CVC4- SL

qf_shid_entl 312 Cyclist- SL, Harrsh, S2S, Sleek, Slide, Songbird, Spen

qf_shid_sat 99 Harrsh, S2S, Sleek, SlSat

qf_shidlia_entl 75 ComSPEN, S2S

qf_shidlia_sat 33 ComSPEN, S2S

qf_shlid_entl 60 ComSPEN, Cyclist- SL, Harrsh, S2S, Spen

qf_shls_entl 296 Asterix, ComSPEN, Cyclist- SL, Harrsh, S2S, Spen

qf_shls_sat 110 Asterix, ComSPEN, Cyclist- SL, Harrsh, S2S, Spen

shid_entl 73 Cyclist- SL, S2S, Sleek, Songbird

shidlia_entl 181 S2S, Songbird

• B for the ground fragment allowing any Boolean combi-
nation of atoms.

Moreover, the existing fragments defined in SMT-LIB are used
to further restrict the theory signature. For example, LIA
denotes the signature for linear integer arithmetic.

Currently, the competition has eleven categories, called
divisions and named by the concatenation of the logic’s name
with the kind of problem solved (sat or entl). Table 1 pro-
vides the names of these divisions, their size and the solvers
enrolled:

• qf_bsl_sat andqf_bsllia_sat divisions include
satisfiability problems for quantifier free formulas in the
ground logic using, respectively, none or LIA logic for
pure formulas.

• qf_shid_entl andqf_shid_sat divisions include
entailment, respectively, satisfiability problems for the
symbolic heap fragment with user-defined predicates.
The fragment is undecidable for general predicate def-
initions, but restrictions on these definitions lead to
decidability [17].

• qf_shidlia_entl and qf_shidlia_sat divi-
sions include entailment, respectively, satisfiability prob-
lems for the quantifier free, symbolic heap fragment with
user-defined predicates and linear arithmetic included in
pure formulas even in the predicate definitions.

• qf_shlid_entl division includes a subset of prob-
lems of division qf_shid_entl where the predicate
definitions are linear and compositional [18]. This frag-
ment is of interest because the entailment problem is
decidable and has lower complexity.

• qf_shls_entl andqf_shls_sat divisions include
entailment, respectively, satisfiability problems for the
quantifier free symbolic heap fragment with only singly
linked list predicate atoms. The inductive predicate,

called ls, is defined as above but without integer data
in each cell.

• shid_entl division contains entailment problems for
quantified formulas in the symbolic heap fragment with
general predicate definitions and no other logic theories
than Boolean.

• shidlia_entl divisions extends the problems in
shid_entl with constraints from linear integer arith-
metic.

Table 2 gives the contribution of each solver to the bench-
mark set of the third edition. The changes done on this set
may be tracked in the SL-COMP repository [12]. For the third
edition, these changes concern the expected status of some
problems (5%) and their division (2%). They have been done
at the request of participants and after the validation of the
organizer.

4 Running the third edition

4.1 Participation

The third edition brought together eleven solvers, like in the
second edition, but all passed the final round. A detailed pre-
sentation of each solver may be found in [10] and on their
Web site which is reachable from the competition’s Web site
[11]. The binaries of these solvers are available on StarExec.
Table 2 provides an overview of the participating solvers and
lists the features and technologies which they are using, as
well as their contribution to the benchmark set.

Concerning the techniques employed, observe that most
of the solvers combine several techniques. For the decid-
able fragments, the techniques based on reduction to SMT,
graph isomorphism and tree automata are predominant.
For the fragments including general inductive definitions
of predicates, the solvers employ techniques coming from

123

900 M. Sighireanu

Ta
bl
e
2

D
et
ai
ls
on

pa
rt
ic
ip
at
in
g
so
lv
er
s
an
d
th
ei
r
co
nt
ri
bu
tio

n
to

th
e
be
nc
hm

ar
k
se
t

So
lv
er

R
ef
.

R
ep
re
se
nt
at
iv
e

C
on

tr
ib
ut
io
n

R
ed
uc
tio

n
to

SM
T

A
bs
tr
ac
tio

n
ba
se
d

M
od
el
-

ba
se
d

T
he
or
em

pr
ov
in
g

L
em

m
a

pr
ed
efi
ne
d

L
em

m
a

sy
nt
he
si
s

G
ra
ph

is
o-

m
or
ph
is
m

H
ea
p

au
to
m
at
a

T
re
e

au
to
m
at
a

A
st
er

ix
[1
9]

Ju
an

N
av
ar
ro

Pe
re
z

30
%

✓
✓

C
om

SP
E
N

[2
0]

C
ho
ng

G
ao

3%
✓

✓
✓

C
y
cl

is
t-

SL
[2
1]

N
ik
os

G
or
og
ia
nn
is

6%
✓

C
V
C
4

[2
2]

A
nd
re
w
R
ey
no
ld
s

5%
✓

H
a
rr

sh
[2
3]

Je
ns

K
at
el
aa
n

2%
✓

S2
S

[2
4]

Q
ua
ng

L
oc

L
e

8%
✓

✓
✓

Sl
ee
k

[7
]

B
en
ed
ic
tL

ee
6%

✓
✓

✓

Sl
id
e

[2
5]

A
da
m

R
og
al
ew

ic
z

2%
✓

Sl
Sa

t
[2
6]

N
ik
os

G
or
og
ia
nn
is

–
✓

✓

So
n
g
bi
rd

[2
7]

Q
ua
ng
-T
ru
ng

Ta
31
%

✓
✓

✓

Sp
en

[2
8]

M
ih
ae
la
Si
gh

ir
ea
nu

7%
✓

✓
✓

✓

the mechanized proofs domain enriched with heuristics for
lemma synthesis.

Most participants of this edition contributed to the bench-
mark set, but two teams distinguish themselves. TheAsterix
team providedmost of the problems (> 95%) in the divisions
qf_shls_entl and qf_shls_sat. These problems
have their origin in the queries generated by the Small-
Foot [6] analyzer or have been crafted in a randomway. The
Songbird team provided most of problems in the divisions
qf_shid_entl (> 40%) and shidlia_entl (> 95%),
originating from the verification conditions of algorithms
on data structures. This massive participation to the bench-
mark set influenced the podium at the second edition since
Asterix maintained its first place and Songbird won the
first place in the division shidlia_entl and the second
place in the division qf_shid_entl. The origin of the
problem lost its importance at the third edition because the
S2S solver won the first or the second place for all categories.

The binaries used for the solvers evolved during this edi-
tion, mainly to fix the parsing of the new input format and to
deal with bugs revealed by the new problems. It is worth
noticing that these new problems have been proposed by
teams which studied the binary and the public code repos-
itory of their competitors. This is an interesting effect of
making available the binary and the code of solvers. Three
solvers used the binary stored on StarExec at the first edition
of SL-COMP: Asterix Cyclist- SL and SlSat.

One solver,CVC4,was theonlyparticipant in its divisions.
In the second edition of SL-COMP, it had one competitor
which was pulled out before the final run and did not join
the third edition. The organizer maintained these divisions
to encourage the development of solvers for these fragments
and to keep track of CVC4’s performances at this edition.

4.2 Training period

This period of the competition offers the opportunity to inter-
act closely with the solvers’ teams. In the third edition, the
training was used to fix some benchmarks, to adapt some
rules and to find an agreement on the scoring scheme. This
is possible due to the fact that the SL-COMP community is
still small. Having flexible rules stimulates the participation
and keeps a collegial atmosphere.

The corresponding person has to ask for a sub-space
in the SL-COMP space on the StarExec platform. The SL-
COMP space has a subspace for each edition which contains
a subspace with an up-to-date version of the benchmark, a
subspace for the binaries corresponding to the latest version
of each solver, and several examples of configuring StarExec
tasks, i.e., execution of solvers on benchmark’s categories.

The organizer applies for resources to the StarExec man-
ager. For the first edition, the training was done with few
resources, during the off-peak hours of SMT-COMP. For the

123

SL-COMP: competition of solvers for separation logic 901

second edition, SL-COMP had used six StarExec nodes for
the training and the competition. Given the increase in the
number of problems and solvers, the third edition used ten
nodes. These resources were enough even during the training
period when several solvers were tested. For this reason, the
organizer increased the memory limit for each task (pair of
solver and problem) from 4 GB used at the second edition
to 10 GB. This amount of memory was requested by one
solver using JVM; however, the solvers compiled to native
code are using less than 4 GB. The timeout for each task
ranged from 600 to 2400 seconds, depending on the timeout
rate experienced in each division during the training period.

4.3 Scoring scheme

The third edition adopted a score-based system to designate
the best solver in each division. In the previous editions, the
nomination of thewinner was based on the scoring scheme of
SMT-COMP, i.e., the best solverwas the onewith, in order: (a)
the least number of incorrect answers, (b) the largest num-
ber of correctly solved problems, and (c) the shortest time
taken in solving the correctly solved problems. We changed
this system for the third edition in order to limit the penalty
for sound but imprecise results (false positives). For each
division, the score was computed by:

10 · solved − false-positive − 10 · false-negative (6)

where a false-positive means a problem solved with result
“sat” instead of the expected “unsat” (this result is sound
for program verification but not precise), a false-negative
denotes a problem solved with result “unsat” instead of the
expected “sat” (this result is not sound for program verifica-
tion). The CPU time is the tiebreaker. The scoring scheme
was discussed with the corresponding persons during the
training period. Such a scheme deals uniformly with entail-
ment and satisfiability problems, which may be unfair if the
satisfiability problem is used in the context of symbolic exe-
cution or program testing. This point should be considered
for the next editions.

In addition to the score, the Virtually Best Solver con-
tribution (VBS, the solver which would be the best for the
division)was computed by taking theminimum time for each
correctly solved problem over all solvers. The contribution
of each solver to VBS is the number of problems where the
solver is the fastest. However, the VBS was given only as an
indicative information and not used for the podium.

4.4 Pre-final and final runs

The pre-final stage took nine days for the third edition com-
pared with four days for the second edition which used a
similar number of problems and benchmarks. More pre-final

runs were needed to converge to the final result because
of frequent changes in the solver’s binaries and configura-
tions. This is still possible with eleven solvers, but should
be regulated if the size of the benchmark or the number of
participants increase.

The final run took two days to be run by the organizer.
After that, the organizer produced the official results. Unfor-
tunately, the StarExec platform did not provide means to
automatically extract the results from the CSV files given
a scoring scheme. It could be interesting to share such
tools. The ones used for SL-COMP are available on the
GIT repository [12]. The final results were inspected and
approved by the participating teams before the presentation
at TOOLympics.

5 Results and discussion

For each division, the best solver obtained five stars, the fifth
one received one star. The global podium was computed by
sorting the solvers in the decreasing order of the total number
of stars obtained in all divisions.

Table 3 presents the podium (from first to fifth place)
for each division. For some divisions, the podium was
not completely occupied either by lack of participants or
because some solvers obtained negative scores. The table
also presents the final podium computed from the results of
all divisions. The Web site of the competition [11] provides
detailed results for each division and solver in the form of a
CSV file.

The results revealed the domination of the S2S solver. It
participated in 9 divisions (over a total of 11) and was able to
solve all the problems without errors and with the best score
in 7 over 9 divisions. These results are very different from
the first and the second editions, where the podium varied
between divisions. To avoid the feeling of a special tuning
of the winner for the current benchmark, the rules of the
competition should include a new way of choosing the set of
problems used for evaluation. Several competitions use such
rules consisting of a mixture of problems from the public
benchmark scrambled or not and problems chosen by the
jury for the final run. Another possibility is to ask solvers
to produce a certificate of the result as a list of proof rules
applied by the solver, like it is proposed for SMT-COMP. This
certificate may be checked offline using proof assistants like
Coq.

Looking at the rest of the podium, we observe a general
improvement of results obtained compared with the second
edition. More problems were solved in less time. However,
some divisions remain difficult to solve for most of solvers.
This is not surprising because these divisions correspond
to undecidable fragments. In the divisions corresponding to
decidable fragments, most solvers produce correct results in

123

902 M. Sighireanu

Ta
bl
e
3

O
ve
ra
ll
po
di
um

an
d
po
di
um

fo
r
ea
ch

di
vi
si
on

fr
om

fir
st
to

fif
th

pl
ac
e

Pa
rt
ic
ip
an
t

Po
di
um

q
f
_
b
s
l
_

s
a
t

q
f
_

b
s
l
l
i
a
_

s
a
t

q
f
_

s
h
i
d
_

e
n
t
l

q
f
_

s
h
i
d
_

s
a
t

q
f
_

s
h
i
d
l
i
a
_

e
n
t
l

q
f
_

s
h
i
d
l
i
a
_

s
a
t

q
f
_

s
h
l
i
d
_

e
n
t
l

q
f
_

s
h
l
s
_

e
n
t
l

q
f
_

s
h
l
s
_

s
a
t

s
h
i
d
_

e
n
t
l

s
h
i
d
l
i
a
_

e
n
t
l

A
st
er

ix
1

1

C
om

SP
E
N

B
ro
nz
e

3
2

5
3

C
y
cl

is
t-

SL
4

4
3

C
V
C
4

1
1

H
a
rr

sh
3

4
3

S2
S

G
ol
d

1
1

1
1

1
2

2
1

1

Sl
ee
k

5
2

4
5

5

Sl
id
e

4

Sl
Sa

t
3

So
n
g
bi
rd

Si
lv
er

2
5

2
3

2
4

2
2

Sp
en

3
4

relatively short time. Two newcomers obtained good gen-
eral results, ComSPEN and Songbird. Notice that Asterix
maintains its first place in the qf_shls divisions from the
first edition.

6 Conclusion and perspectives

The third edition of SL-COMP achieved the following objec-
tives:

1. It attracted eleven solvers (2014: 6 solvers, 2018: 10
solvers) from seven countries.

2. It provided a high-performance view of SL solvers.
3. The benchmark set was improved and reached more than

1K of problems (600 in 2014). The repository of prob-
lems is publicly available [12] for free use as standard
benchmark suite for evaluating solvers.

4. The input format for problems proposed in [13] was
largely adopted by the competing solvers. It is now a stan-
dard for submitting problems to SL-COMP.

5. The competition won visibility and the researchers inter-
ested in developing SL tools send us positive feedback.

For the next edition, planned for 2022, several points have
to be improved in the organization of SL-COMP. Firstly, the
rules shall be enforced to obtain a fair and transparent evalua-
tion.During the last edition,we identified two sources of bias:
the lack of diversity in the origin of the benchmark’s prob-
lems and an evaluation process that allows the fine-tuning
of solvers on the existing benchmark. The scoring scheme
should also be changed taking into account the kind of prob-
lems dealt with (satisfiability or entailments). Secondly, the
period between two events should be used to maintain the
link between competitors and a collegial atmosphere. The
annual workshop ADSL may be an opportunity to discuss
the issues related with the competition’s rules and content. A
special session could be dedicated to present the participat-
ing solvers or a new benchmark set. Finally, the increasing
number of participants and problems requires more autom-
atization for the tasks allocated to the jury, for example,
the problem classification, the validation of results and their
presentation. Appropriate tools could be developed for such
tasks. Apart from these improvements, SL-COMP should con-
tinue to enrich its benchmarkwith problems coming from the
fragments shown to have decidable satisfiability and entail-
ment problems. One of these fragments, which has also an
interesting application in program analysis [29], is the sepa-
ration logic with pointer arithmetic and arrays [30,31]

Acknowledgements The author thanks the representative of each par-
ticipating solver for their willing collaboration during the running of the
competition, especially Andrew Reynolds, Jens Katelaan, Le Quang

123

SL-COMP: competition of solvers for separation logic 903

Loc, Benedict Lee, Quang-Trung Ta, Adam Rogalewicz, Chong Gao
and Zhilin Wu. Cristina Şerban provided the first version of the parser
and the typechecker for the new format. The reviewers provided inter-
esting comments and suggestions for the improvement of this paper.
This work was partially supported by the ANR project CoLiS, contract
number ANR-15-CE25-0001.

References

1. O’Hearn, P.: Separation logic. Commun. ACM 62(2), 86–95
(2019). https://doi.org/10.1145/3211968

2. O’Hearn, P.: Separation logic. http://www0.cs.ucl.ac.uk/staff/p.
ohearn/SeparationLogic/Separation_Logic/SL_Home.html

3. StarExec: http://www.starexec.org
4. Sighireanu, M., Cok, D.: Report on SL-COMP’14. JSAT 9, 173–

186 (2014). https://doi.org/10.3233/SAT190107
5. Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.): Tools and

Algorithms for theConstruction andAnalysis of Systems - 25Years
of TACAS: TOOLympics, Held as Part of ETAPS 2019, Prague,
Czech Republic, April 6-11, 2019, Proceedings, Part III, LNCS,
vol. 11429. Springer (2019). https://doi.org/10.1007/978-3-030-
17502-3

6. SmallFoot: http://www0.cs.ucl.ac.uk/staff/p.ohearn/smallfoot/
7. Chin,W.N., David, C., Nguyen, H.H., Qin, S.: Automated verifica-

tion of shape, size and bag properties via user-defined predicates in
separation logic. Sci. Comput. Program. 77(9), 1006–1036 (2012).
https://doi.org/10.1016/j.scico.2010.07.004

8. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast pro-
gram verifier. In: APLAS, LNCS, vol. 6461, pp. 304–311. Springer
(2010). https://doi.org/10.1007/978-3-642-17164-2_21

9. SL-COMP’2018: https://www.irif.fr/~sighirea/sl-comp/18/
10. Sighireanu, M., Pérez, J.A.N., Rybalchenko, A., Gorogiannis, N.,

Iosif, R., Reynolds, A., Serban, C., Katelaan, J., Matheja, C., Noll,
T., Zuleger, F., Chin,W., Le, Q.L., Ta, Q., Le, T., Nguyen, T., Khoo,
S., Cyprian, M., Rogalewicz, A., Vojnar, T., Enea, C., Lengál, O.,
Gao, C., Wu, Z.: SL-COMP: competition of solvers for separation
logic. In: Beyer et al. [5], pp. 116–132. https://doi.org/10.1007/
978-3-030-17502-3_8

11. SL-COMP website. https://sl-comp.github.io/
12. SL-COMP repository. https://github.com/sl-comp
13. Iosif, R., Serban, C., Reynolds, A., Sighireanu,M.: Encoding sepa-

ration logic in SMT-LIB v2.5 (2018). https://github.com/sl-comp/
SL-COMP18/input/Docs

14. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard:
Version 2.6. Tech. rep., Department of Computer Science, TheUni-
versity of Iowa (2017). www.SMT-LIB.org

15. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M.I.,
Ouaknine, J.: Foundations for decision problems in separation logic
with general inductive predicates. In: FOSSACS, LNCS, vol. 8412,
pp. 411–425. Springer (2014). https://doi.org/10.1007/978-3-642-
54830-7_27

16. Demri, S., Deters, M.: Separation logics and modalities: a survey.
J. Appl. Non Class. Log. 25(1), 50–99 (2015). https://doi.org/10.
1080/11663081.2015.1018801

17. Iosif, R., Rogalewicz, A., Simácek, J.: The tree width of separa-
tion logic with recursive definitions. In: CADE, LNCS, vol. 7898,
pp. 21–38. Springer (2013). https://doi.org/10.1007/978-3-642-
38574-2_2

18. Enea, C., Sighireanu, M., Wu, Z.: On automated lemma gener-
ation for separation logic with inductive definitions. In: ATVA,
LNCS, vol. 9364, pp. 80–96. Springer (2015). https://doi.org/10.
1007/978-3-319-24953-7_7

19. Pérez, J.A.N., Rybalchenko, A.: Separation logic modulo theories.
In: APLAS, LNCS, vol. 8301, pp. 90–106. Springer (2013). https://
doi.org/10.1007/978-3-319-03542-0_7

20. Gu, X., Chen, T., Wu, Z.: A complete decision procedure for
linearly compositional separation logic with data constraints. In:
IJCAR, LNCS, vol. 9706, pp. 532–549. Springer (2016). https://
doi.org/10.1007/978-3-319-40229-1_36

21. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic
theorem prover. In: APLAS, LNCS, vol. 7705, pp. 350–367.
Springer (2012). https://doi.org/10.1007/978-3-642-35182-2_25

22. Reynolds, A., Iosif, R., Serban, C., King, T.: A decision procedure
for separation logic in SMT. In: ATVA, pp. 244–261 (2016). https://
doi.org/10.1007/978-3-319-46520-3_16

23. Katelaan, J., Matheja, C., Noll, T., Zuleger, F.: Harrsh: A tool for
unified reasoning about symbolic-heap separation logic. In: LPAR-
22, Kalpa Publications in Computing, vol. 9, pp. 23–36. EasyChair
(2018). https://doi.org/10.29007/qwd8

24. S2S: https://loc.bitbucket.io/s2s/
25. Iosif, R., Rogalewicz,A.,Vojnar, T.:Deciding entailments in induc-

tive separation logic with tree automata. In: ATVA, LNCS, vol.
8837, pp. 201–218. Springer (2014). https://doi.org/10.1007/978-
3-319-11936-6_15

26. Brotherston, J., Fuhs, C., Pérez, J.A.N., Gorogiannis, N.: A deci-
sion procedure for satisfiability in separation logic with inductive
predicates. In: CSL-LICS, pp. 25:1–25:10. ACM (2014). https://
doi.org/10.1145/2603088.2603091

27. Ta, Q.T., Le, T.C., Khoo, S.C., Chin, W.N.: Automated lemma
synthesis in symbolic-heap separation logic. Proc. ACM Program.
Lang. 2(POPL), 9:1-9:29 (2017). https://doi.org/10.1145/3158097

28. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional
entailment checking for a fragment of separation logic. In: APLAS,
LNCS, vol. 8858, pp. 314–333. Springer (2014). https://doi.org/10.
1007/978-3-319-12736-1_17

29. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Beyond
reachability: shape abstraction in the presence of pointer arithmetic.
In: SAS, LNCS, vol. 4134, pp. 182–203. Springer (2006). https://
doi.org/10.1007/11823230_13

30. Brotherston, J., Gorogiannis, N., Kanovich, M.: Biabduction (and
related problems) in array separation logic. In: CADE, vol. 10395,
pp. 472–490. Springer (2017). https://doi.org/10.1007/978-3-319-
63046-5_29

31. Kimura, D., Tatsuta, M.: Decidability for entailments of symbolic
heaps with arrays. CoRR arXiv:1802.05935 (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1145/3211968
http://www0.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html
http://www0.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html
http://www.starexec.org
https://doi.org/10.3233/SAT190107
https://doi.org/10.1007/978-3-030-17502-3
https://doi.org/10.1007/978-3-030-17502-3
http://www0.cs.ucl.ac.uk/staff/p.ohearn/smallfoot/
https://doi.org/10.1016/j.scico.2010.07.004
https://doi.org/10.1007/978-3-642-17164-2_21
https://www.irif.fr/~sighirea/sl-comp/18/
https://doi.org/10.1007/978-3-030-17502-3_8
https://doi.org/10.1007/978-3-030-17502-3_8
https://sl-comp.github.io/
https://github.com/sl-comp
https://github.com/sl-comp/SL-COMP18/input/Docs
https://github.com/sl-comp/SL-COMP18/input/Docs
www.SMT-LIB.org
https://doi.org/10.1007/978-3-642-54830-7_27
https://doi.org/10.1007/978-3-642-54830-7_27
https://doi.org/10.1080/11663081.2015.1018801
https://doi.org/10.1080/11663081.2015.1018801
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.1007/978-3-319-24953-7_7
https://doi.org/10.1007/978-3-319-24953-7_7
https://doi.org/10.1007/978-3-319-03542-0_7
https://doi.org/10.1007/978-3-319-03542-0_7
https://doi.org/10.1007/978-3-319-40229-1_36
https://doi.org/10.1007/978-3-319-40229-1_36
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1007/978-3-319-46520-3_16
https://doi.org/10.1007/978-3-319-46520-3_16
https://doi.org/10.29007/qwd8
https://loc.bitbucket.io/s2s/
https://doi.org/10.1007/978-3-319-11936-6_15
https://doi.org/10.1007/978-3-319-11936-6_15
https://doi.org/10.1145/2603088.2603091
https://doi.org/10.1145/2603088.2603091
https://doi.org/10.1145/3158097
https://doi.org/10.1007/978-3-319-12736-1_17
https://doi.org/10.1007/978-3-319-12736-1_17
https://doi.org/10.1007/11823230_13
https://doi.org/10.1007/11823230_13
https://doi.org/10.1007/978-3-319-63046-5_29
https://doi.org/10.1007/978-3-319-63046-5_29
http://arxiv.org/abs/1802.05935

	SL-COMP: competition of solvers for separation logic
	Report on the Third Edition
	Abstract
	1 Introduction
	2 Competition organization
	2.1 Rise and progress
	2.2 Organization process

	3 Benchmark set
	3.1 Separation logic theory
	3.2 Input format
	3.3 Divisions

	4 Running the third edition
	4.1 Participation
	4.2 Training period
	4.3 Scoring scheme
	4.4 Pre-final and final runs

	5 Results and discussion
	6 Conclusion and perspectives
	Acknowledgements
	References

