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Abstract
This article addresses the question of what properties can be monitored over an unreliable communication channel. We model
unreliable communications as mutations to finite traces and define what it means for a property to be immune to such a
mutation. We also introduce the idea of a trustworthy verdict, which is a verdict guaranteed to be correct in the presence of
a trace mutation. We show that the trustworthiness of a verdict or immunity of a property for a single mutation is equivalent
to the trustworthiness or immunity for any number of mutations. We classify trustworthy verdicts on ω-regular properties by
updating a recently proposed monitorability-focused refinement of the safety-liveness taxonomy. The article also includes
a fixed-parameter tractable algorithm to test an ω-regular property for immunity to a trace mutation. Our results show that
many of the most common properties can be monitored over unreliable channels.

Keywords Runtime verification ·Monitorability · Unreliable communication · Formal methods

1 Introduction

In Runtime Verification (RV), the correctness of a program
execution is determined by another program, called a moni-
tor. In some cases, monitors run remotely from the systems
theymonitor, either due to resource constraints or for depend-
ability. For example, ground stations monitor a spacecraft,
while an automotive computer may monitor emissions con-
trol equipment. In both cases, the program being monitored
must transmit data to a remote monitor.

Communication between the program and monitor may
not always be reliable, however, leading to incorrect or
incomplete results. For example, data from the Mars Sci-
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ence Laboratory (MSL) rover are received out of order, and
some low priority messages may arrive days after being sent
[29]. Even dedicated debugging channels like ARM Embed-
ded Trace Macrocell (ETM) have finite bandwidth and may
lose data during an event burst [6]. Some works in the field
of (RV) have begun to address the challenges of imperfect
communication, but the problem has been largely ignored in
the study of monitorability.

Our recent work introduced a definition for a property to
be considered monitorable over an unreliable channel [41].
We defined common mutations that may occur to a trace and
provided a decision procedure to testω-regular properties for
monitorability over a channel with such amutation. This arti-
cle expands on that work by defining when a property can be
unmonitorable over an unreliable channel but still have value
to monitor. We also provide a classification of properties that
may be monitored over certain unreliable channels.

The article is organized as follows. We first define nota-
tion used throughout the article in Sect. 2. We then introduce
foundations necessary for understanding the article in Sect. 3,
first examining the concept of uncertainty in monitoring in
Sect. 3.1 and then reviewing common notions ofmonitorabil-
ity in Sect. 3.2. We then define common trace mutations due
to unreliable channels in Sect. 4. In Sect. 5, we describe what
makes a property immune to a trace mutation and how that
relates to monitorability. Section 6 expands on that idea by
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defining how a verdict for a propertymay be trustworthy over
an unreliable channel even when the property is not immune
to the channel’s mutation. We then review and augment the
Finitely Refutable/Finitely Satisfiable property classification
in Sect. 7 by adding subclasses relevant to common muta-
tions. We use this augmented classification to categorize
properties with trustworthy verdicts over those mutations in
Sect. 8 including a discussion of the utility of such properties
in Sect. 8.5. We work toward a decision procedure for the
immunity of an ω-regular property by mapping the defini-
tion of immunity to a property of derived monitor automata
in Sect. 9. Finally, we present a decision procedure for the
immunity of an automaton to a mutation and prove it correct
in Sect. 10. We then present related work in Sect. 11. Sec-
tion 12 discusses some of the conclusions from the article
and possible future work.

2 Preliminary notation

We use N to denote the set of all natural numbers including
zero and∞ to denote infinity.Wewrite⊥ to denote false and
� to denote true.

In thiswork,weconsider bothfinite and infinite sequences.
A finite sequence σ of n values is written σ = 〈v1, . . . , vn〉
where both vi and σ(i) mean the i’th item in the sequence.
In this work, sequence index numbers begin at one. The
notation 〈v1, v2, · · · 〉 is used to denote either an infinite
sequence or a finite sequence of indeterminate length. A
value x is in a sequence σ , denoted by x ∈ σ , iff ∃ i ∈ N

such that σ(i) = x . The length of a sequence σ is written
|σ | ∈ N ∪ {∞}. The suffix of a sequence σ beginning at the
i’th item in the sequence is written σ i . The concatenation of
two sequences σ, τ is written σ · τ where σ is finite and τ

is either finite or infinite. A finite sequence u is a prefix of a
finite or infinite sequence σ , written u 
 σ , iff there exists a
sequence v such that u · v = σ .

We denote the cross product of A and B as A × B and
the set of total functions from A to B as A → B. Given a
set S, S∗ denotes the set of finite sequences over S where
each sequence element is in S, Sω denotes the set of infinite
sequences of such elements, and S∞ = S∗ ∪ Sω. Given a
set S, we write 2S to mean the set of all subsets of S. The
cardinality of a set S is written |S|. Amap is a partial function
M : K → V where K is a domain of keys mapped to the
set V of values. We write M(k) ← v to denote M updated
with k mapped to v. AP is a finite, non-empty set of atomic
propositions. Throughout the work, we assume an alphabet,
denoted Σ = 2AP. An element of the alphabet is a symbol
s ∈ Σ . A trace, word, or string is a sequence of symbols. A
language, or a property, is a set of words. A trace σ ∈ Σ∞
satisfies a property L ⊆ Σ∞ if σ ∈ L or violates it if σ /∈ L.

In this work, we use Finite Automaton (FAs) to repre-
sent both regular and ω-regular languages. We use (NBAs)
to represent ω-regular languages, which accept infinite
strings, and (NFAs) to represent regular languages, which
accept finite strings. Both NBA and NFA are written A =
(Q,Σ, q0, δ, F), where Q is the set of states,Σ is the alpha-
bet, q0 ∈ Q is the initial state, δ : Q × Σ → 2Q is the
transition function, and F ⊆ Q is the set of accepting states.
The two types of FAs differ in their accepting conditions.

A path (or run) through FA A from a state q ∈ Q over a
word σ ∈ Σ∞ is a sequence of states π = 〈q1, q2, · · · 〉 such
that q1 = q and qi+1 ∈ δ(qi , σi ).WewriteA(q, σ ) to denote
the set of all runs on A starting at state q with the word σ .
The set of all reachable states in FA A from a starting state
q0 is denoted Reach(A, q0) = {q ∈ Q : ∃σ ∈ Σ∞.∃π ∈
A(q0, σ ).q ∈ π}.

A finite run on NFA π = 〈q1, q2, . . . , qn〉 is considered
accepting if qn ∈ F . For an infinite run ρ on NBA, we
use Inf(ρ) ⊆ Q to denote the set of states that are visited
infinitely often, and the run is considered accepting when
Inf(ρ)∩ F �= ∅. L(A) denotes the language accepted by FA
A. The complement or negation of FAA = (Q,Σ, q0, δ, F)

is writtenAwhere L(A) = Σ∗\L(A) for NFAs and L(A) =
Σω \ L(A) for NBAs.

NFA is Deterministic Finite Automaton (DFA) iff ∀q ∈
Q. ∀α ∈ Σ. |δ(q, α)| = 1. Given DFA (Q,Σ, q0, δ, F), a
state q ∈ Q, and a finite string σ ∈ Σ∗ where |σ | = n, the
terminal (nth) state of the run over σ beginning in q is given
by the function δ∗ : Q ×Σ∗ → Q.

We use Linear Temporal Logic (LTL) formulae through-
out the article to illustrate examples of properties because it is
a common formalism in the RV area. The syntax of these for-
mulae is defined by the following inductive grammar where
p is an atomic proposition, U is the Until operator (ϕ Uψ

means ψ must eventually hold and ϕ must hold until then),
and X is the Next operator (Xϕ means ϕ must hold in the
next state, which must exist).

ϕ::=p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ

Weuse the following inductive semantics for the infinite case,
where σ ∈ Σω. The reader should assume the use of infinite-
trace semantics unless otherwise specified where LTL is
found in this article.

σ |� p if p ∈ σ(1)
σ |� ¬ϕ if σ �|� ϕ

σ |� ϕ ∨ ψ if σ |� ϕ or σ |� ψ

σ |� Xϕ if σ 2 |� ϕ

σ |� ϕ Uψ if ∃k ≥ 1. σ k |� ψ ∧ ∀ j . 1 ≤ j < k. σ j |� ϕ

The language of LTL formula ϕ is given in the infinite case
by L[[ϕ]] = {σ ∈ Σω : σ |� ϕ}.
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For the finite case, where σ ∈ Σ∗, we use the following
inductive semantics.

σ |� p if |σ | > 0 and p ∈ σ(1)
σ |� ¬ϕ if σ �|� ϕ

σ |� ϕ ∨ ψ if σ |� ϕ or σ |� ψ

σ |� Xϕ if |σ | > 0 and σ 2 |� ϕ

σ |� ϕ Uψ if ∃k ≥ 1. σ k |� ψ ∧ ∀ j . 1 ≤ j < k. σ j |� ϕ

The language of LTL formula ϕ is given in the finite case by
LF [[ϕ]] = {σ ∈ Σ∗ : σ |� ϕ}.

For both infinite and finite-trace semantics we also define
the standard notation: true = p ∨¬p for any proposition p,
false = ¬true, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ), ϕ → ψ = ¬ϕ ∨ ψ ,
Fϕ = true Uϕ (eventually ϕ), and Gϕ = ¬F¬ϕ (globally
ϕ).

Example Consider an infinite trace σ where p holds for the
entire trace except the tenth symbol, which is the only symbol
where q holds. The LTL formula Gp is violated for σ in the
infinite case, and it is violated in the finite case for prefixes
of σ of at least length ten. The formula is satisfied; however,
in the finite case for prefixes of σ of length less than ten.
Likewise, the LTL formula Fq is satisfied for σ in the infinite
case and in the finite case for prefixes of σ of at least length
ten. It is violated for prefixes of σ of length less than ten.

3 Foundations of monitoring

In this section, we establish definitions from previous works
referenced in the article. We begin with the truth domains
we use and how they relate to monitoring. We then provide
traditional definitions of monitorability.

3.1 Uncertainty

In RV, there are two prevailing options for checking that a
trace of a program’s execution satisfies a property: offline
and online. In offline RV, we consider a finite trace produced
by a program that has terminated. In this case, properties are
specified as languages of finite words, for example, using a
finite-trace semantics to interpret LTL formulae. In online
RV, we consider a continuously expanding finite prefix pro-
duced by a running program. In this case, properties are
specified as languages of infinite words, for example, using
an infinite-trace semantics to interpret LTL formulae.

In this work, we are interested in checking finite prefixes
of execution traces against properties specified as languages
of infinite words. We say a finite string determines inclusion
in (or exclusion from) a language of infinite words only if all
infinite extensions of the prefix are in (or out of) the language.
If some infinite extensions are in the language and some are
out, then the finite prefix does not determine inclusion and

the result is uncertainty. The problem appears with an LTL
property such as Fa, which is satisfied if an a appears in
the string. However, if no a has yet been observed, and the
program is still executing, it is unknown if the specification
will be satisfied in the future.

To express notions of uncertainty inmonitoring languages
of infinite words, extensions to the Boolean truth domain
B2 = {�,⊥} have been proposed. B3 adds a third verdict
of ? to the traditional Boolean notion of true or false to rep-
resent the idea that the specification is neither satisfied nor
violated by the current finite prefix [13]. B4 replaces ? with
presumably true (�p) and presumably false (⊥p) to provide
more information on what has already been seen [14].

Theverdicts�p and⊥p differentiate betweenprefixes that
would satisfy or violate the property interpreted with finite
trace semantics. The intuition is that⊥p indicates that some-
thing is required to happen in the future, while �p means
there is no such outstanding event. For example, if the for-
mula G(a → Fb) is interpreted as four-value LTL (LTL4)
(also called Runtime Verification LTL (RV-LTL) [14], which
uses B4), the verdict on a trace 〈{c}〉 is �p because a has
not occurred, and therefore, no b is required, while the ver-
dict on 〈{a}〉 is ⊥p because there is an a but as yet no b. If
the same property is interpreted as three-value LTL (LTL3)
(which uses B3), the verdicts on both traces would be ?.

The above intuitions are formalized in Definition 1. Here,
we define a property L to be a set of both finite and infinite
traces. The infinite words determine the permanent verdicts
of � and ⊥ while the finite words are used in the B4 case to
choose between�p and⊥p. For bothB3 andB4, Definition 1
includes a function that evaluates a finite trace prefix with
respect to L.
Definition 1 (Evaluation Functions) Given a property L ⊆
Σ∞ for each of the truth domains V ∈ {B3, B4}, we define
evaluation functions of the form EV : 2Σ∞ → Σ∗ → V as
follows.
For B3 = {⊥, ?,�},

EB3(L)(σ ) =

⎧
⎪⎨

⎪⎩

⊥ if σ · μ /∈ L ∀μ ∈ Σω

� if σ · μ ∈ L ∀μ ∈ Σω

? otherwise

For B4 = {⊥,⊥p,�p,�},

EB4(L)(σ ) =

⎧
⎪⎨

⎪⎩

EB3(L)(σ ) if EB3(L)(σ ) �= ?

⊥p if EB3(L)(σ ) = ? and σ /∈ L
�p if EB3(L)(σ ) = ? and σ ∈ L

Example Suppose we would like to monitor the LTL for-
mula ϕ = G(a) ∨ b using theB4 truth domain. The language
(property) to monitor is L = L[[ϕ]] ∪ LF [[ϕ]]. The following
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are the evaluations for given finite prefixes:

EB4(L)(〈{b}〉)= � All infinite strings beginningwith
this prefix are in the language.

EB4(L)(〈{}〉) = ⊥ No infinite strings beginning with
this prefix are in the language.

EB4(L)(〈{a}〉)= �p Some infinite strings beginning
with this prefix are in the lan-
guage, and the finite prefix is
itself in the language (because
〈{a}〉 ∈ LF [[ϕ]]).

Monitors also exist for properties that cannot be specified
in LTL or other common temporal logics. This work uses
language-theoretic formalisms that allow for the monitoring
of any language of finite and infinite words. For example, it is
possible tomonitor a property consisting of an infinite repeti-
tion of every valid C program. Clearly, such a language is not
representable inLTL since recognizing it requires a stack. For
the verdicts specified inDefinition 1 forEB4 tomake intuitive
sense, the infinite and finite words in the language must be
related. For an LTL formula ϕ, the infinite words are defined
by L[[ϕ]] and the finite words by LF [[ϕ]]. Given a language of
finite words, Falcone et al. defined how to construct both the
finite words and infinite words in [31]. In the general case,
however, the precise relationship between the two subsets
has not been defined. This relationship remains a subject for
future work on monitoring non-ω-star-free languages.

Introducing the idea of uncertainty in monitoring causes
the possibility that some properties might never reach a defi-
nite, true or false verdict. Amonitor that will only ever return
a ? result does not have much utility. The monitorability of
a property captures this notion of the reachability of definite
verdicts.

3.2 Monitorability

In this section,we examine the fourmost common definitions
ofmonitorability. To definemonitorability for properties over
unreliable channels, we must first define monitorability for
properties over ideal channels. Rather than choose one def-
inition, we introduce established definitions and allow the
reader to select that of their preference.

We begin with the definition of σ -Monitorability, which
depends not only on the monitored property but also on
the already-seen trace prefix. For each definition of mon-
itorability that depends only upon the monitored property
M ∈ {C(lassical), W(eak), A(lternative)}, we introduce an

evaluation predicate of the form MM
on : 2Σ∞ → B2 that

returns true iff the input property is monitorable. We say
that an LTL formula ϕ is monitorable if its language L[[ϕ]] ∪
LF [[ϕ]] is monitorable.

3.2.1 �-Monitorability

Pnueli andZaks introduced the first formal definition ofmon-
itorability in their work on Property Specification Language
(PSL) for model checking in 2006 [52]. They define moni-
torable properties given a traceprefixσ . Subsequentworks all
definemonitorability for a propertywithout assuming knowl-
edge of any part of the trace.

Definition 2 (σ -Monitorability) Given a finite sequence
σ ∈ Σ∗, a property L ⊆ Σ∞ is σ -monitorable iff
∃η ∈ Σ∗. ∀s ∈ Σω. (σ · η · s |� L or σ · η · s �|� L).

That is, there exists another finite sequence η such that σ · η
determines inclusion in or exclusion from L.

For example, the LTL formulaGFp is non-σ -monitorable
for anyfinite prefix, because the trace needed to determine the
verdict must be infinite. Other properties are σ -monitorable
for some prefixes but not others. For example, there is no
point to continuing to monitor GFp ∨ q if q does not hold
in the first symbol of the trace.

3.2.2 Classical monitorability

Bauer, Leuker, and Schallhart reformulated this definition of
monitorability and proved that safety (e.g., Gp) and guar-
antee (e.g., Fp) properties represent a proper subset of the
class of monitorable properties [15]. It was already known
that the class of monitorable properties was not limited to
safety and guarantee properties from the work of d’Amorim
and Roşu on monitoring ω-regular languages [24], however
that work did not formally define monitorability. Diekert and
Leuker have also defined a purely topological version of this
definition of monitorability [26].

The definition of monitorability given by Bauer et al. is
identical to Definition 2, except that it considers all possi-
ble trace prefixes instead of a specific prefix [30,31] and it
excludes languages with finite words. The restriction to infi-
nite words is due to their interest in defining monitorable
LTL3 properties, which only considers infinite traces.

Bauer et al. useKupferman andVardi’s definitions of good
and bad prefixes of an infinite trace [42] to define what they
call an ugly prefix. That is, given a language of infinite strings
L ⊆ Σω,

– a finite word b ∈ Σ∗ is a bad prefix for L iff
∀s ∈ Σω.b · s /∈ L, and

– a finite word g ∈ Σ∗ is a good prefix for L iff
∀s ∈ Σω.g · s ∈ L.

Bauer et al. use good and bad prefixes to define ugly prefixes
and then use ugly prefixes to define Classical Monitorability.
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Definition 3 (Ugly Prefix) Given a language of infinite
strings L ⊆ Σω, a finite word u ∈ Σ∗ is an ugly prefix
for L iff �s ∈ Σ∗. u · s is either a good or bad prefix.

Definition 4 (Classical Monitorability) Given a language of
infinite strings L ⊆ Σω,

MC
on(L) = �u ∈ Σ∗. u is an ugly prefix for L

Many works have explored decision procedures for Clas-
sical Monitorability. Diekert, Muscholl, and Walukiewicz
proved that the problem is PSPACE-Hard and can be solved
in EXPSPACE [27] for ω-regular languages. This result was
most recently refined by Peled and Havelund, who showed
that deciding Classical Monitorability for these languages is
EXPSPACE-Complete [49].

3.2.3 Weakmonitorability

Recently, both Chen et al. [21] and Peled and Havelund
[49] proposed a weaker definition of monitorability that
includes more properties than the Classical definition. They
observed that there are properties that are classically non-
monitorable, but that are still useful to monitor. For example,

¬MC
on(L[[a ∧ GFa]]) because any trace that begins with a

must then satisfy or violateGFa, which is not possible.How-
ever, a ∧GFa is violated by traces that do not begin with a,
so it may have some utility to monitor.

Definition 5 (WeakMonitorability) Given a language of infi-
nite strings L ⊆ Σω,

MW
on(L) = ∃p ∈ Σ∗. p is not an ugly prefix for L

Deciding that an ω-regular property is Weakly Moni-
torable requires testing that no information may be obtained
from the monitor. Peled and Havelund gave an algorithm
for deciding Weak Monitorability for these languages and
showed that it is EXPSPACE-Complete [49].

3.2.4 Alternative monitorability

Falcone et al. observed that the class of monitorable prop-
erties should depend on the truth domain of the monitored
formula. However, they noticed that changing from B3 to B4

does not influence the set of monitorable properties under
classical monitorability [30,31]. To resolve this perceived
shortcoming, the authors of [30,31] introduce an alternative
definition of monitorability. They introduce the notion of an
r-property (runtime property) which separates the property’s
language of finite and infinite traces into disjoint sets. We do
not require this distinction and treat the property as a sin-
gle set containing both finite and infinite traces. Falcone et

al. then define an alternative notion of monitorability for a
property using a variant of Definition 1.

Definition 6 (Alternative Monitorability) Given a truth
domain V and an evaluation function for V,
EV : 2Σ∞ → Σ∗ → V and a property L ⊆ Σ∞,

MA
on(L) =∀σin ∈ L ∩Σ∗. ∀σout /∈ L ∩Σ∗.

EV(L)(σin) �= EV(L)(σout)

Definition 6 says that, given a truth domain, a property
with both finite and infinite words is monitorable if evalu-
ating the finite strings in the property always yield different
verdicts from evaluating the finite strings out of the prop-
erty. By Definition 6, only properties with finite words are
considered monitorable and its results must be understood in
the same context asEB4 , where finite words identify prefixes
where no outstanding event precludes satisfaction.

Procedures for deciding if an ω-regular property is Alter-
natively Monitorable depend on the truth domain. For B3,
monitorable properties are exactly the union of Safety and
Guarantee properties (see Sect. 8) [31]. Determining inclu-
sion in these classes is known to be PSPACE-Complete [55].
For B4, monitorable properties are the Reactivity properties,
which are all properties representable in LTL [31]. Deciding
if a language represented as an NBA is a Reactivity property
is PSPACE-Complete [25].

4 Unreliable channels

For a property to be monitorable over an unreliable channel,
it must be monitorable over ideal channels, and it must reach
the correct verdict despite the unreliable channel. To illustrate
this, we introduce an example.

4.1 An example with unreliable channels

Consider the LTL formula ϕ = Fa over the alphabet
Σ = {{a}, {¬a}}. That is, all traces that contain at least one
symbol with a satisfy ϕ. We assume that the trace is moni-
tored remotely, and, for this example, wewill adopt aB3 truth
domain. Using EB3 from Definition 1, the verdict on finite
prefixes without an a, is ?, while the verdict when an a is
included is�. Figure 1a shows the NBA for such a property.

4.1.1 Monitorability under reordering

Suppose that the channel over which the trace is transmit-
ted may reorder events. That is, events are guaranteed to be
delivered, but not necessarily in the same order in which they
were sent.

We argue that Fa should be considered monitorable over
a channel that reorders the trace. First, the property is mon-
itorable over an ideal channel (see Sect. 3.2). Second, given
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(a) (b)

Fig. 1 Example NBA that accept the infinite-string language of the
corresponding LTL formulae.

any trace prefix, reordering the prefix would not change the
verdict of a monitor. Any a in the trace will cause a transition
to state q2, regardless of its position.

Note that we are not concerned with when the verdict
occurs. For example, assume a trace 〈{a}, {¬a}〉 that is
reordered to 〈{¬a}, {a}〉. Both traces result in a B3 verdict of
�, but in the reordered case it comes one symbol later. This
article considers these results to be equivalent, but future
work could consider the implications of such a change in
timing.

4.1.2 Monitorability under loss

Now suppose that, instead of reordering, the channel over
which the trace is transmitted may lose events. That is, the
order of events is guaranteed to be maintained, but some
events may be missing from the trace observed by the mon-
itor.

We argue that Fa should not be considered monitorable
over a channel that loses events, even though the property is
deemed to bemonitorable over an ideal channel. It is possible
for the verdict from the monitor to be different from what it
would be given the original trace. For example, assume a
trace 〈{a}, {¬a}〉. For this trace, the verdict from ltl3 monitor
would be �. However, if the first symbol (containing a) is
lost, the verdict would be ?.

Note that there may still be some utility to monitor Fa
when symbols may be lost because a� verdict is actionable.
That is, if the monitor receives a trace 〈{a}〉 then a must have
held in the original trace as well. In this case, we call � a
trustworthy verdict. We explore the concept of trustworthy
verdicts in Sect. 6.

4.2 Tracemutations

To model unreliable channels, we introduce trace muta-
tions. A mutation represents the possible modifications to
traces from communication over unreliable channels. These
mutations are defined as relations between unmodified orig-
inal traces and their mutated counterparts. Trace mutations

include only finite traces because only finite prefixes may be
mutated in practice.

There are four tracemutationsMk ⊆ Σ∗ ×Σ∗whereM
denotes any of the relations in Definitions 7, 8, 9, and 10 or
a union of any number of them, and k denotes the number of
inductive steps.

Definition 7 (Loss Mutation)

Loss = {(σ, σ ′) : σ = σ ′ ∨
∃α, β ∈ Σ∗. ∃x ∈ Σ .
σ = α · 〈x〉 · β ∧ σ ′ = α · β}

Definition 8 (Corruption Mutation)

Corruption = {(σ, σ ′) :
∃α, β ∈ Σ∗. ∃x, y ∈ Σ.
σ = α · 〈x〉 · β ∧ σ ′ = α · 〈y〉 · β}

Definition 9 (Stutter Mutation)

Stutter = {(σ, σ ′) : σ = σ ′ ∨
∃α, β ∈ Σ∗. ∃x ∈ Σ.
σ = α · 〈x〉 · β ∧ σ ′ = α · 〈x, x〉 · β}

Definition 10 (Out-of-Order Mutation)

OutOfOrder = {(σ, σ ′) :
∃α, β ∈ Σ∗. ∃x, y ∈ Σ .
σ = α · 〈x, y〉 · β ∧ σ ′ = α · 〈y, x〉 · β}

Definition 11 (Inductive k-Mutations) Given any mutation
or union of mutations M, we define Mk inductively as fol-
lows.

M1 ∈ {
⋃

m : m ∈ 2{Loss,Corruption,Stutter,OutOfOrder} ∧ m �= ∅

}
Mk+1 =Mk ∪ {

(σ1, σ3) : ∃σ2. (σ1, σ2) ∈Mk ∧ (σ2, σ3) ∈M1

}

Thesemutations are based on Lozes andVillard’s interfer-
encemodel [48].Otherworks on the verification of unreliable
channels, such as [19], have chosen to include insertion
errors instead of Corruption and OutOfOrder. We prefer to
define Corruption and OutOfOrder because the mutations
more closely reflect our real-world experiences. For exam-
ple, packets sent using the User Datagram Protocol (UDP)
may be corrupted or arrive out-of-order, but packets must be
sent before these mutations occur.
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In this work, we assume that the monitor has no infor-
mation about how a received trace has been modified by an
unreliable channel. Instead,we only permit that the channel is
known to sometimes mutate traces in a certain manner (e.g.,
losing symbols). This differs from and is a weaker assump-
tion than some other works, where trace modifications are
marked [11,34,40,45].

We say amutationM isprefix-assuredwhen∀(σ, σ ′) ∈ M
such that |σ | > 1, ∃(σp, σ

′
p) ∈ M , where σp 
 σ and

σ ′p 
 σ ′. All mutations M1 are prefix-assured. Combining
mutations is possible under Definition 11, and it is possible to
form any combination of strings by doing so. This capability
is important to ensure the mutation model is complete.

Definitions 7 through 10 include every possible mutation.
That is, it is possible to apply a combination of these muta-
tions to a trace to transform it into any other trace.

Theorem 1 (Completeness of Mutations) Given any two
sets of non-empty traces S, S′ ⊆ Σ∗ \ {ε}, ∃k ∈ N. (Loss∪
Corruption ∪ Stutter)k = S × S′.

Proof First, Definition 8 allows an arbitrary symbol in a
string to be changed to any other symbol. Thus, ∀σ ′ ∈ Σ∗
there exists σ : (σ, σ ′) ∈ Corruptionn where |σ | = |σ ′| and
n ≥ |σ |. A string can also be lengthened or shortened arbi-
trarily, so long as it is non-empty. Definition 9 allows length-
ening, because Stutter(σ, σ ′) �⇒ |σ | < |σ ′|, while Defini-
tion7 allows shortening, becauseLoss(σ, σ ′) �⇒ |σ |>|σ ′|.

��
These mutations are general and it may be useful for prac-

titioners to define their own, more constrained mutations
based on domain knowledge. For example, if a communica-
tions protocol guarantees delivery of high priority messages
but allows low priority messages to be lost, this can be mod-
eled as amutation. Some properties may bemonitorable over
this more-precise mutation when they would not be mon-
itorable over the Loss mutation, which permits losing any
message.

Even Definition 10 (OutOfOrder) is a more-constrained
version of the Corruptionmutation. That is,OutOfOrdern ⊂
Corruption2n ∀n ∈ N. OutOfOrder is unnecessary for the
completeness of the mutation model, as can be seen in The-
orem 1. However, we consider the mutation to be general
enough to include here, and a combination ofDefinitions 7, 8,
and 9 can only over-approximate the OutOfOrder relation.

5 Immunity to tracemutations

The two requirements for a property to be monitorable over
an unreliable channel are that the property is monitorable
over an ideal channel and that the property is immune to the
effects of the unreliable channel. A monitor must be able to

reach a meaningful, actionable verdict for a trace prefix, and
the verdict must also be correct. If a monitored property is
immune to amutation, thenwe can trust themonitor’s verdict
whether or not the observed trace is mutated.

The notion of immunity to amutation is related to the con-
cept of monotonicity of entailment of a logical system. For
a monotonic logic, anything that could be concluded before
information is added can still be concluded after. In this case,
however, mutations to a trace may remove or modify infor-
mation aswell as add.Monotonicity of a propertywith regard
to past events was also previously defined by Joshi, Tcham-
goue, and Fischmeister for channels with Loss to mean that
the property’s monitor cannot change its verdict if lost infor-
mation is added to the trace [40]. Monotonicity has also been
used in RV in the sense of a monotone function to describe
how verdicts like � and ⊥ may not change once reached
[22]. Here, we use the term immunity to avoid overloading
the word monotonic further in the field of RV.

Definition 12 characterizes properties where the given
trace mutation will have no effect on the evaluation verdict.
For example, the LTL formula Fa from Fig. 1a is immune
to OutOfOrder1 (an LTL formula ϕ is immune to a mutation
Mk if its language L[[ϕ]] ∪ LF [[ϕ]] is immune to Mk) with
truth domain B3 or B4 because reordering the input trace
cannot change the verdict.

Definition 12 (Full Immunity toUnreliableChannels) Given
a property L ⊆ Σ∞, a trace mutation Mk ⊆ Σ∗ ×Σ∗, a
truth domain V, and an evaluation function EV : 2Σ∞ →
Σ∗ → V,L is immune to Mk iff ∀(σ, σ ′) ∈Mk .
EV(L)(σ ) = EV(L)(σ ′).

Example We want to check if the LTL formula ϕ = Ga
is immune to the Stutter1 mutation for truth domain B4.
The property for this formula is L = L[[ϕ]] ∪ LF [[ϕ]]. L is
immune to Stutter1 for B4 iff the verdict from EB4 is always
the same when applied to both the left and right sides of
every pair in Stutter1. WhereΣ = {{a}, {¬a}}, we check the
following:

– (EB4(L)(〈{a}〉),EB4(L)(〈{a}〉)) = (�p,�p)

– (EB4(L)(〈{¬a}〉),EB4(L)(〈{¬a}〉)) = (⊥,⊥)

– (EB4(L)(〈{a}〉),EB4(L)(〈{a}, {a}〉)) = (�p,�p)

– (EB4(L)(〈{¬a}〉),EB4(L)(〈{¬a}, {¬a}〉)) = (⊥,⊥)

– (EB4(L)(〈{a}, {a}〉),EB4(L)(〈{a}, {a}, {a}〉)) · · ·

If every pair has an equal verdict, then L (and ϕ) is immune
to Stutter1 for B4.

Definition 12 specifies a k-Mutation from Definition 11,
but a property that is immune to a mutation for some k is
immune to that mutation for any k. This significant result
forms the basis for checking for mutation immunity in
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Sect. 10. The intuition is that, since we assume any combina-
tion of symbols in the alphabet is a possible ideal trace, and
a mutation could occur at any time, one mutation is enough
to violate immunity for any vulnerable property.

Theorem 2 (Single Mutation Immunity Equivalence) Given
a property L ⊆ Σ∞, a trace mutationM ⊆ Σ∗ ×Σ∗, and
a number of applications of that mutation k, L is immune to
Mk iff L is immune to M1.

Proof Since k-Mutations are defined inductively, Theorem 2
is equivalent to the statement that L is immune to Mk+1 iff
L is immune to Mk . Now assume by way of contradiction
a property Lbad ⊆ Σ∞ such that Lbad is immune to some k-
Mutation Mk but not to Mk+1. That is, given a truth domain
V, there exists a pair of traces (σ1, σ3) ∈ Mk+1 such that
EV(Lbad)(σ1) �= EV(Lbad)(σ3). From Definition 11, either
(σ1, σ3) ∈ Mk , or there exists both (σ1, σ2) ∈ Mk and
(σ2, σ3) ∈M1 such that EV(Lbad)(σ1) �= EV(Lbad)(σ3). It
cannot be true that (σ1, σ3) ∈ Mk sinceLbad is immune toMk

so there must exist pairs (σ1, σ2) ∈Mk and (σ2, σ3) ∈M1.
SinceLbad is immune toMk ,EV(Lbad)(σ1) = EV(Lbad)(σ2)

so it must be true thatEV(Lbad)(σ2) �= EV(Lbad)(σ3). How-
ever, it is clear from Definition 11 that Mk ⊆ Mk+1, so
M1 ⊆ Mk for any k, which is a contradiction.

For the reverse case, assume a property Lsad ⊆ Σ∞
such that Lsad is not immune to some k-Mutation Mk but is
immune to Mk+1. However, as we saw before, Mk ⊆ Mk+1
so Lsad must not be immune to Mk+1, a contradiction. ��

Immunity under Definition 12 is too strong to be a require-
ment for monitorability over an unreliable channel, however.
Take, for example, the property G(a → F¬a) ∨ Fb, as
shown in Fig. 1b. By Definition 12 with truth domain B4 this
property is vulnerable (not immune) toOutOfOrder1 because
reordering symbols may change the verdict. For example,
the trace 〈{a,¬b}, {¬a,¬b}〉 results in a verdict of �p, but
reordering the trace to 〈{¬a,¬b}, {a,¬b}〉 changes the ver-
dict to ⊥p. However, this property is monitorable under all
definitions in Sect. 3.2, because it is always possible to reach
a � verdict if a b appears. We would like a modified defini-
tion of immunity that only considers the parts of a property
that affect its monitorability.

To achieve this modified definition of immunity, we con-
sider only the determinization of the property to be crucial.
Definition 13 characterizes properties for which satisfaction
and violation are unaffected by a mutation. We call this true-
false immunity, and it is equivalent to immunity with truth
domain B3. The intuition is that B3 treats all verdicts outside
{�,⊥} as the symbol ? so immunity with this truth domain
does not concern non-true-false verdicts.

Definition 13 (True-False Immunity to Unreliable Chan-
nels) Given a trace mutation Mk ⊆ Σ∗ ×Σ∗, a language

L ⊆ Σ∞ is true-false immune toMk iffL is immune toMk

for the truth domain B3.

The true-false immunity of a property to a mutation is
necessary but not sufficient to show that the property is mon-
itorable over an unreliable channel. For example, the LTL
formula GFa is true-false immune to all mutations because
EB3(L[[GFa]])(σ ) = ? for any prefix σ ∈ Σ∗, but the prop-
erty is not monitorable. We can now define monitorability
over unreliable channels in the general case.

Definition 14 (Monitorability over Unreliable Channels)
Given a language L ⊆ Σ∞, a trace mutation Mk ⊆ Σ∗ ×
Σ∗, and a definition ofmonitorabilityMM

on : 2Σ∞ → B2,L is

monitorable overMk iffMM
on(L) andL is true-false immune

toMk .

The question of what languages are considered moni-
torable by Definitions 4, 5, and 6 has largely been answered
by priorwork. To understandwhat languages aremonitorable
over an unreliable channel, we must understand what lan-
guages are true-false immune to the given mutation.

6 Trustworthy verdicts

Some properties that are unmonitorable over an unreliable
channel may still have some utility. A property that is not
true-false immune to a trace mutation may still yield trust-
worthy verdicts when monitored. This idea is similar to that
of weak-monitorability, defined in Sect. 3.2.3, in that some
properties may be interesting to monitor despite being clas-
sically unmonitorable. In this section we define trustworthy
verdicts and examine their practical consequences.

A trustworthy verdict for a property over an unreliable
channel implies the same verdict for the property over an
ideal channel. For example,EB3(L[[Fa]])(σ ) = � (the NBA
for the LTL formula Fa is shown in Fig. 1a) when there exists
a symbol in σ where a holds. Over a channel with the Loss
mutation, a � verdict guarantees that a held in the original
as well as the mutated trace, since Loss cannot add such a
symbol.

Definition 15 (Trustworthy Verdicts) Given a property L ⊆
Σ∞, a trace mutation Mk ⊆ Σ∗ ×Σ∗, a truth domain V,
and an evaluation function EV : 2Σ∞ → Σ∗ → V, a ver-
dict v ∈ V is trustworthy for L over a channel with Mk iff
∀(σ, σ ′) ∈Mk . (EV(L)(σ ′) = v)→ (EV(L)(σ ) = v).

Definition 15 specifies a k-Mutation from Definition 11,
but a property that is immune to a mutation for some k is
immune to that mutation for any k. This result follows from
Theorem 2, which specifies single mutation immunity equiv-
alence.
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Corollary 1 (Single Mutation Trustworthy Verdict Equiva-
lence) Given a property L ⊆ Σ∞, a truth domain V, a
trace mutation M ⊆ Σ∗ × Σ∗, and a number of applica-
tions of that mutation k, a verdict v ∈ V is trustworthy from
L over a channel with Mk iff v is trustworthy for L over a
channel withM1.

Proof Corollary 1 is implied by Theorem 2. Theorem 2 spec-
ifies that a property L ⊆ Σ∞ is immune to a mutation
Mk ⊆ Σ∗ × Σ∗ iff L is immune to M1. By Defi-
nition 12, if the property is immune to M1 for a truth
domainV and an evaluation functionEV : 2Σ∞ → Σ∗ → V

then for all pairs (σ, σ ′) ∈Mk and for all verdicts v ∈ V

(EV(L)(σ ) = v)↔ (EV(L)(σ ′) = v). Therefore, the same
result applies for a specific verdict v ∈ V and one-way impli-
cation instead of two. ��

If all verdicts in a truth domain are trustworthy for a prop-
erty and a trace mutation, then that property is immune to
the trace mutation. This equivalence allows us to apply the
study of trustworthy verdicts to that of mutation immunity.
In Sect. 8, we classify properties with trustworthy verdicts
over unreliable channels which applies equally to the classi-
fication of mutation-immune properties.

Theorem 3 (Trustworthy Verdict Immunity Equivalence)
Given a property L ⊆ Σ∞, a trace mutation Mk ⊆
Σ∗ × Σ∗, a truth domain V, and an evaluation function
EV : 2Σ∞ → Σ∗ → V,L is immune to Mk iff all verdicts
in V are trustworthy over a channel with Mk .

Proof Theproof is trivially derived fromDefinitions 12 and15.
If for all pairs (σ, σ ′) ∈Mk and for all verdicts v ∈ V it is
true thatEV(L)(σ ′) = v impliesEV(L)(σ ) = v, then for all
pairs (σ, σ ′) ∈Mk and all verdicts v ∈ V it must be true that
EV(L)(σ ) = EV(L)(σ ′). ��
Corollary 2 (TrustworthyVerdict True-False ImmunityEquiv-
alence) Given a property L ⊆ Σ∞, and a trace mutation
Mk ⊆ Σ∗×Σ∗,L is true-false immune toMk iff all verdicts
in B3 are trustworthy over a channel with Mk .

Proof Theproof follows directly fromDefinition 13 andThe-
orem 3. For a property to be true-false immune to a mutation,
it must be immune for the B3 truth domain. If all verdicts in
a domain are trustworthy for a property and mutation, then
the property is immune to that mutation. ��

7 Classification for mutation immunity

In this section, we update the monitorability-focused refine-
ment of the safety-liveness taxonomy, recently introduced by
Peled and Havelund [49]. This classification is designed so

that its delineations between classes align well with ques-
tions of monitorability. This makes it better suited for our
purposes than the more established Safety-Progress Hierar-
chy [20].We are interested in classifyingω-regular properties
that are immune to trace mutations from unreliable channels.

7.1 The FR/FS classification

Peled and Havelund classify properties by whether they are
Finitely Refutable (FR) or Finitely Satisfiable (FS) [49]. An
ω-regular property L ⊆ Σω must be one of the following.

– Always Finitely Refutable (AFR) iff ∀σ /∈ L. ∃α ∈ Σ∗
such that α 
 σ and ∀μ ∈ Σω. α · μ /∈ L

– SometimesFinitelyRefutable (SFR) iff∃σ /∈ L.∃α ∈ Σ∗
such that α 
 σ and ∀μ ∈ Σω. α · μ /∈ L

– Never Finitely Refutable (NFR) iff ∀σ /∈ L. �α ∈ Σ∗
such that α 
 σ and ∀μ ∈ Σω. α · μ /∈ L

Additionally, L must be one of the following.

– Always Finitely Satisfiable (AFS) iff ∀σ ∈ L. ∃α ∈ Σ∗
such that α 
 σ and ∀μ ∈ Σω. α · μ ∈ L

– SometimesFinitelySatisfiable (SFS) iff∃σ ∈ L.∃α ∈ Σ∗
such that α 
 σ and ∀μ ∈ Σω. α · μ ∈ L

– Never Finitely Satisfiable (NFS) iff ∀σ ∈ L. �α ∈ Σ∗
such that α 
 σ and ∀μ ∈ Σω. α · μ ∈ L

The definitions for AFR, NFR, AFS, and NFS map directly
to the classic definitions of safety and liveness properties,
and their duals, guarantee and morbidity. The authors of
[49] show that all ω-regular properties are included in both
AFR ∪ SFR ∪ NFR and AFS ∪ SFS ∪ NFS.

– Liveness (NFR)—A property L ⊆ Σω is a liveness
property iff for all finite prefixes α ∈ Σ∗ there exists an
infinite suffix β ∈ Σω such that α · β ∈ L.

– Morbidity (NFS)—A property L ⊆ Σω is a morbidity
property iff for all finite prefixes α ∈ Σ∗ there exists an
infinite suffix β ∈ Σω such that α · β /∈ L.

– Safety (AFR)—A property L ⊆ Σω is a safety prop-
erty iff for all infinite traces σ /∈ L there exists a finite
trace α ∈ Σ∗ such that α 
 σ and for all infinite suffixes
β ∈ Σω α · β /∈ L

– Guarantee (AFS)—A property L ⊆ Σω is a guarantee
property iff for all traces σ ∈ L there exists a finite pre-
fix α ∈ Σ∗ such that α 
 σ and for all infinite suffixes
β ∈ Σω α · β ∈ L

The FR/FS classification is defined by the intersections
between pairs of FR and FS classes. These intersections are
shown in Fig. 2, which also labels the intersectionSFR∩SFS
as Quaestio, which are the ω-regular properties not covered
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Fig. 2 Original FR/RS property classification. In the figure, Liveness
is NFR, Morbidity is NFS, Safety is AFR, and Guarantee is AFS

by the liveness, morbidity, safety, and guarantee classes. In
the figure, each of NFR, NFS, AFR, and AFS is shown as
a stadium shape with their intersections in the corners. The
SFR∩SFS class surrounds the stadia and is also represented
in the center of the diagram.

7.2 Additional property classes

We introduce five classes of properties that overlap with
the classes from the FR/FS taxonomy. These are Proximate,
Tolerant, Permissive, Inclusive, and Exclusive. We propose
language-theoretic definitions for these classes and locate
them within the context of the FR/FS framework.

The FR/FS classification provides the basis for a frame-
work for relating properties that are immune to a trace
mutation to properties that are monitorable under ideal con-
ditions. However, the original FR/FS classes do not precisely
define properties with mutation immunity in many cases. We
must define smaller property classes within the framework to
identify the properties with trustworthy verdicts over chan-
nels with the mutations from Definitions 7-10.

Figure 3 shows the FR/FS classification with the addi-
tional property classes indicated. In the figure, each area is
numbered for ease of reference.Each areamay representmul-
tiple classes (if they overlap) and each class may be include
multiple areas. For example, Liveness (NFR) Properties are
represented in the figure by areas 1, 7, 8, 12, 13, and 16.
Inclusion Properties, on the other hand, are represented in
only area 12.

Fig. 3 FR/RS property classification including Proximate (9, 10, 14,
15, and parts of 5, 6, 8, 13), Tolerant (1, 7, 12, 16), Permissive (1, 2, 3,
4), Inclusion (12), and Exclusion (3)

7.2.1 Proximate properties

Proximate Properties, which we denote Prox, are proper-
ties where the duplication of a symbol may change whether
or not a trace satisfies or violates the property. For example,
L[[Xp]] is Proximate, since the trace 〈{¬p}, {p}, · · · 〉 satis-
fies the property but 〈{¬p}, {¬p}, {p}, · · · 〉 does not. The
intuition behind the name “Proximate” is that these proper-
ties depend, in someway, on the proximity of two parts of the
trace. In Figure 3, areas 9, 10, 14, and 15 contain only Proxi-
mate Properties, and areas 5, 6, 8, and 13 include Proximate
Properties but not only Proximate Properties.

Proximate Properties are related to the dual of a class usu-
ally called closed under stuttering [55], or stutter-invariant
[50]. Stutter-invariant Properties are those in which any
satisfying trace still satisfies the property when symbols
are repeated. Proximate is not exactly the dual of stutter-
invariant, as Proximate Properties are affected only by finite
stuttering. This includes most, but not all, LTL formulae that
contain the next (X ) operator. For example, L[[GF(p∧Xq)]]
is not Proximate because finite duplication of symbols can-
not cause a satisfying trace to violate the property. Note that
the presence of next (X ) in an LTL formula is not sufficient
to prove inclusion in Prox but the absence of X guarantees
that the formula is out of Prox.

Definition 16 (Proximate Properties) A given property
L ⊆ Σω is a Proximate Property (L ∈ Prox) iff
∃α ∈ Σ∗. ∃μ ∈ Σω. ∃x ∈ Σ such that eitherα · 〈x〉 · μ ∈ L,
andα · 〈x, x〉 · μ /∈ L, orα · 〈x〉 · μ /∈ L, andα · 〈x, x〉 · μ ∈ L.
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7.2.2 Tolerant properties

Tolerant Properties, which we denote by the abbreviation
Tolr, are properties where satisfying traces will still satisfy
the property with any finite string inserted into the trace. For
example, L[[Fp]] is a Tolerant Property because adding any
finite string to a satisfying trace (say, 〈{p}, · · · 〉) cannot cause
the trace to violate the property. The intuition behind the
name “Tolerant” is that the properties tolerate the insertion
of a finite string. Tolerant Properties are shown in Fig. 3 as
areas 1, 7, 12, and 16.

Definition 17 (Tolerant Properties) A given property L ⊆
Σω is a Tolerant Property (L ∈ Tolr) iff ∀α, β ∈ Σ∗.
∀μ ∈ Σω. (α · μ ∈ L)→ (α · β · μ ∈ L).

Tolerant is a subclass of Liveness and is disjoint from
Proximate. That Tolerant is disjoint from Proximate is
obvious, and we show that it is a subclass of Liveness
in Theorem 4. Areas 8 and 13 in Fig. 3 represent Live-
ness Properties that are not Tolerant. A consequence of
the differences between Definitions 16 and 17 is that
NFR ∩ Prox ⊂ NFR \ Tolr, however. An example of NFR
property that is not Tolerant, but also is not Proximate is
L[[F(p ∧ Xq)]]. A Proximate Property that is not Tolerant
is L[[F(p ∧ Xq ∧ XXp)]]. An exact characterization of the
properties NFR \ (Prox ∪ Tolr) is unknown and left for
future work.

Theorem 4 (Tolerant is a Subclass of Liveness) Tolr ⊂
NFR

Proof Wemust consider twocases: if the property is infinitely
satisfied, or finitely satisfied.

1. Case1 (infinite satisfaction): In that case the infinite suffix
of the trace μ ∈ Σω determines that α · μ ∈ L for any
α ∈ Σ∗. This is what Sistla called an absolute liveness
property which are a subset of liveness properties [55].

2. Case 2 (finite satisfaction): Suppose, a propertyL2 ⊆ Σω

where the finite prefix determines satisfaction. For
clarity, we separate this finite portion into two parts
α, β ∈ Σ∗ such that ∀μ ∈ Σω. α · β · μ ∈ L2. We will
prove by contradiction. Now assume there exists a finite
trace γ ∈ Σ∗ and an infinite suffix μ f ∈ Σω such that
α · γ · β · μ f /∈ L2. If ∀μ f ∈ Σω. α · γ · β · μ f /∈ L2,
then L2 is finitely refutable and not a Liveness prop-
erty. Otherwise, ∃μt ∈ Σω such that α · γ · β · μt ∈ L2.
If that is true, then it must be that ∃μ ∈ Σω. ∀σ ∈
Σ∗. σ · μ ∈ L2 which is the definition of a Liveness
property.

��

7.2.3 Permissive properties

Permissive Properties, which we denote by the abbreviation
Perm, are properties where violating traces will still violate
the property with any finite string inserted into the trace. For
example, L[[Gp]] is a Permissive Property because adding
any finite string to a violating trace (say, 〈{¬p}, · · · 〉) cannot
cause the trace to satisfy the property. The intuition behind the
name “Permissive” is that the properties permit the insertion
of a string (like tolerant, but negative). Permissive Properties
are shown in Fig. 3 as areas 1, 2, 3, and 4.

Definition 18 (Permissive Properties) A given property
L ⊆ Σω is an Permissive Property (L ∈ Perm) iff
∀α, β ∈ Σ∗. ∀μ ∈ Σω. (α · μ /∈ L)→ (α · β · μ /∈ L).

Permissive is a subclass of Morbidity and is disjoint
from Proximate. That Permissive is disjoint from Prox-
imate is obvious, and we show that it is a subclass of
Morbidity in Theorem 5. Areas 5 and 6 in Fig. 3 represent
Morbidity Properties that are not Permissive. A conse-
quence of the differences between Definitions 16 and 18
is that NFS ∩ Prox ⊂ NFS \ Perm, however. An example
of an NFS property that is not Permissive, but also is not
Proximate is L[[G(p Uq)]]. A Proximate Property that is
not Permissive is L[[G(p → Xq)]]. Like with Tolerant
and Proximate, an exact characterization of the properties
NFR \ (Prox ∪ Perm) is unknown and left for future work.

Theorem 5 (Permissive is a Subclass ofMorbidity) Perm ⊂
NFS

Proof The proof is equivalent to that for Theorem 4 but for
Morbidity instead of Liveness. ��

7.2.4 Inclusion properties

Inclusion Properties, which we denote by the abbreviation
Incl, are always satisfied by the presence of a finite set
of symbols. For example, L[[Fp]] is an Inclusion Property
because its satisfaction depends only on the presence of one
symbol where p holds. Intuitively, Inclusion Properties are
restricted to those that can be expressed as LTL formulae
of the form Fp where p is propositional, or disjunctions of
Inclusion Property formulae with Fp or Gq where p and q
are propositional. Inclusion Properties are shown in Fig. 3 as
area 12.

Definition 19 (Inclusion Properties) A given property L ⊆
Σω is an Inclusion Property (L ∈ Incl) iff there exists a
finite set of symbols S ⊆ Σ such that ∀σ ∈ Σω. (σ ∈ L↔
∀s ∈ S. s ∈ σ).

Theorem 6 (Inclusion is a Subclass of Tolerant and Disjoint
from Morbidity) Incl ⊂ Tolr \ NFS
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Proof Clearly, L ∈ Tolr ∀L ∈ Incl. Given a property
L ∈ Incl, any traceσ ∈ Lwill still satisfy the propertywith
additional symbols. It is also obvious that L /∈ NFS ∀L ∈
Incl, since it must be possible to satisfy L by the inclusion
of a finite set of symbols. ��

7.2.5 Exclusion properties

Exclusion Properties, which we denote by the abbreviation
Excl, are always violated by the presence of a finite set of
symbols. For example, L[[G(¬p)]] is an Exclusion Property
because its satisfaction depends only on the absence any state
where p holds. Intuitively, Exclusion Properties are restricted
to those that can be expressed as LTL formulae of the form
Gp where p is propositional, or conjunctions of Exclusion
Property formulae with Fp or Gq where p and q are propo-
sitional. Exclusion Properties are shown in Fig. 3 as area 3.

Definition 20 (Exclusion Properties) A given property L ⊆
Σω is an Exclusion Property (L ∈ Excl) iff there exists a
finite set of symbols S ⊆ Σ such that ∀σ ∈ Σω. (σ /∈ L↔
∀s ∈ S. s ∈ σ).

Theorem 7 (Exclusion is a Subclass of Permissive and Dis-
joint from Liveness) Excl ⊂ Perm \ NFR

Proof Like for Theorem 6, L ∈ Perm ∀L ∈ Excl. Given
a property L ∈ Excl, any trace σ /∈ L will still violate
the property with additional symbols. It is also obvious that
L /∈ NFR ∀L ∈ Excl, since it must be possible to violate L
by the inclusion of a finite set of symbols. ��

8 Classifying immune properties

In this section, we classify trustworthy verdicts in the B3

truth domain for properties monitored over unreliable chan-
nels. As shown in Sect. 6, this classification also serves to
categorize properties that are immune to the trace mutations
from those unreliable channels. To classify properties, we use
the augmented FR/FS classification introduced in Sect. 7.We
limit our study to the mutations introduced in Sect. 4.

Table 1 shows trustworthy verdicts in B3 for each FR/FS
class of properties and each of the four mutations from
Sect. 4. In the table, a ✓ indicates that the verdict is trust-
worthy, a ✗ means that the verdict is not trustworthy, and
a—denotes that the verdict is not possible for the given prop-
erty class. The table also includes an example property for
each class. For example, the first row in Table 1 shows the
results for the SFR ∩ NFS class, an example of which is the
LTL property Fp ∧ Gq. The leftmost three cells show the
results for the Loss mutation. The cells show that the � ver-
dict is not possible for SFR ∩ NFS Properties, the ⊥ verdict

is trustworthy (for the Permissive subclass), and the ? verdict
is not trustworthy.

Most of the property classes for which verdicts are trust-
worthy are subclasses of the original FR/FS classes defined
in Sect. 7.2. For these, we annotate the ✓ mark to indicate
the precise subclass. A ✓p indicates the verdict is trustwor-
thy for only Permissive properties. A✓t indicates the verdict
is trustworthy for only Tolerant properties. A ✓i denotes that
the verdict is trustworthy for only Inclusive Properties. A
✓e denotes that the verdict is trustworthy for only Exclusive
Properties. A ✓x indicates the verdict is trustworthy for the
given property class excluding Proximate Properties.

8.1 Channels with loss

Only the unmonitorable class NFR∩NFS is immune to Loss,
but true and false verdicts are trustworthy over certain prop-
erties. Loss is interesting because it is the only mutation from
Definitions 7-10 for which some properties have both trust-
worthy and non-trustworthy verdicts.

Theorem 8 (Over Channels with Loss, True is Trustwor-
thy only for Tolerant Properties) Given a property L ∈
Tolr, for all pairs (σ, σ ′) ∈ Loss1, (EB3(L)(σ ′) = �) →
(EB3(L)(σ ) = �). Given a property L ⊆ (Σω \ Tolr),
there exists a pair (σ, σ ′) ∈ Loss1 such that (EB3(L)(σ ′)=�)

∧ (EB3(L)(σ ) �= �).

Proof We will show that true is trustworthy for exactly
the properties Tolr. We must show that ∀L ∈ Tolr there
cannot exist a pair of traces (σ, σ ′) ∈ Loss1 such that
EB3(L)(σ ′) = �∧ EB3(L)(σ ) �= �. Or, to restate using
Definition 1, σ ′ · μt ∈ L for all infinite suffixesμt ∈ Σω and
there exists an infinite suffixμ f ∈ Σω such that σ · μ f /∈ L.
We will prove by contradiction.

From Definition 7, since σ and σ ′ must not be equal (or
they must result in the same verdict), there exist finite traces
α, β ∈ Σ∗ and a symbol ∃x ∈ Σ such that σ = α · 〈x〉 · β
and σ ′ = α · β. So, we assume there exist a pair of finite
traces (α · 〈x〉 · β, α · β) ∈ Loss1 such that, for all infinite
suffixes μt ∈ Σω, α · β · μt ∈ L and there exists an infinite
suffix μ f ∈ Σω such that α · 〈x〉 · β · μ f /∈ L. For this to be
true, itmust be that there exists an infinite suffixμ ∈ Σω such
that α · β · μ ∈ L and α · 〈x〉 · β · μ /∈ L. Since β ·μ appears
in both traces, we can simplify to say that there exists an infi-
nite suffix μ ∈ Σω such that α · μ ∈ L and α · 〈x〉 · μ /∈ L.
However, this is the complement of Tolerant Properties from
Definition 17, which we have explicitly excluded. ��
Theorem 9 (False is Trustworthy only for Permissive Prop-
erties over Channels with Loss) Given a property L ∈
Perm, for all pairs (σ, σ ′) ∈ Loss1, (EB3(L)(σ ′) = ⊥) →
(EB3(L)(σ ) = ⊥). Given a property L ⊆ (Σω \ Perm),
there exists a pair (σ, σ ′) ∈ Loss1 such that (EB3(L)(σ ′) =
⊥) ∧ (EB3(L)(σ ) �= ⊥).
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Table 1 Trustworthy B3
verdicts over unreliable
channels by property class

Class Loss Corruption Stutter OutOfOrder Example

� ⊥ ? � ⊥ ? � ⊥ ? � ⊥ ?

SFR ∩ NFS – ✓p ✗ – ✗ ✗ – ✓x ✓x – ✓e ✓e Fp ∧ Gq

AFR ∩ NFS – ✓p ✗ – ✗ ✗ – ✓x ✓x – ✓e ✓e Gp

AFR ∩ SFS ✗ ✗ ✗ ✗ ✗ ✗ ✓x ✓x ✓x ✗ ✗ ✗ p ∨ Gq

AFR ∩ AFS ✗ ✗ ✗ ✗ ✗ ✗ ✓x ✓x ✓x ✗ ✗ ✗ p

SFR ∩ AFS ✗ ✗ ✗ ✗ ✗ ✗ ✓x ✓x ✓x ✗ ✗ ✗ p ∧ Fq

NFR ∩ AFS ✓t - ✗ ✗ – ✗ ✓x – ✓x ✓i – ✓i Fp

NFR ∩ SFS ✓t - ✗ ✗ – ✗ ✓x – ✓x ✓i – ✓i Gp ∨ Fq

NFR ∩ NFS – – ✓ – – ✓ – – ✓ – - ✓ GFp

SFR ∩ SFS ✗ ✗ ✗ ✗ ✗ ✗ ✓x ✓x ✓x ✗ ✗ ✗ (p ∨ GFp) ∧ q

Proof The proof is identical to that for Theorem 9, but for
false and Permissive Properties. ��
Theorem 10 (NFR∩NFS Properties are Vacuously Immune
to All Mutations) Given a property L ∈ NFR ∩ NFS,
for any finite traces σ, σ ′ ∈ Σ∗ it is always true that
EB3(L)(σ ′) = EB3(L)(σ ).

Proof The proof is trivial, sinceEB3(L)(σ ) = ? for any finite
trace σ ∈ Σ∗. ��

8.2 Channels with corruption

Corruption is the only trace mutation we examine for which
no properties, apart from those in NFR∩NFS, have trustwor-
thy verdicts. This result is not surprising, since corruption
can change any symbol in the alphabet to any other symbol.
Corruption cannot change the length of the original trace, so
we first show that this does not limit the properties for which
the mutation may affect the monitoring verdict.

Lemma 1 (Strings of the Same Length Must Be Able to
Result in Different Verdicts) Given a property L ⊆
Σω, if there exist two finite strings s, s′ ∈ Σ∗ such that
EB3(L)(s′) �= EB3(L)(s), then there must exist two finite
strings of the same length σ, σ ′ ∈ Σ∗. |σ | = |σ ′| such that
EB3(L)(σ ′) �= EB3(L)(σ ).

Proof First, suppose a propertyL ∈ Σω such that there exist
finite traces s, s′ ∈ Σ∗ such that EB3(L)(s′) �= EB3(L)(s),
and for all pairs of finite traces of equal length
(σ, σ ′) ∈ Σ∗. |σ | = |σ ′|,EB3(L)(σ ′) = EB3(L)(σ ).

If all traces of the same length yield the same verdict, then
one of s or s′ must be longer than the other (which one does
not matter). Assume |s| > |s′|. There are three cases:

1. If EB3(L)(s′) = � then, from Definition 1, s′ · μ ∈ L
for all infinite suffixes μ ∈ Σω. However, for all traces
of the same length t ∈ Σ∗. |t | = |s′|, we assume that

EB3(L)(t) = �, so there must be a prefix of s where
the verdict is �, but this is a contradiction.

2. The same logic applies if EB3(L)(s′) = ⊥.
3. If EB3(L)(s′) = ?, then either EB3(L)(s) = � or

EB3(L)(s) = ⊥. Suppose that EB3(L)(s) = �, as the
same argument applies for both verdicts. Then for all
finite suffixes t ∈ Σ∗ such that s′ concatenated with t
is the same length as s, |s′ · t | = |s|, it must be that
(s′ · t) ∈ L. However, by Definition 1, there exists an
infinite suffix μ ∈ Σω such that (s′ · μ) /∈ L. Then,
there must be either a finite suffix the same length as
t , σ ∈ Σ∗. |s′ · σ | = |s| where EB3(L)(s′ · σ) = ⊥ or
EB3(L)(s′ · σ) = ?, which is a contradiction.

��
Theorem 11 (If Multiple Verdicts are Possible for a Prop-
erty, Then None are Trustworthy Over Channels with
Corruption) Given a property L ⊆ Σω, for all verdicts
v ∈ B3, if there exist two finite traces s, s′ ∈ Σ∗ such that
EB3(L)(s′) = v and EB3(L)(s) �= v, then there exists a pair
of traces (σ, σ ′) ∈ Corruption1 such that EB3(L)(σ ′) = v

and EB3(L)(σ ) �= v.

Proof Suppose two finite traces with different verdicts
s, s′ ∈ Σ∗. EB3(L)(s′) = v ∧ EB3(L)(s) �= v. From
Lemma 1 it must be possible for |s| = |s′|. Clearly, from
Definitions 8 and 11, there exists a number k ∈ N such that
(s, s′) ∈ Corruptionk , since any finite string may appear on
the left side of the pair and applying Corruption an arbitrary
number of times can transform a string to any other string of
the same length. From Corollary 1, a verdict is trustworthy
for Corruption1 iff it is trustworthy for Corruptionk . ��

8.3 Channels with stutter

Many works on temporal logic have examined the effects
of stuttering. Lamport argued for the omission of the next
(X ) operator in temporal logic, and demonstrated that traces
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with repeating symbols could not be differentiated without
it [44]. The difference between prior work on stuttering and
ours is that Definition 9 includes only finite stuttering, while
other works have allowed for infinite repetition of a symbol
[5,50,55]. This difference has significant consequences for
what properties are immune to the mutation.

Theorem 12 (All Non-Proximate Properties are Immune to
Stutter) Given a property L⊆(Σω \ Prox), for all pairs
(σ, σ ′)∈Stutter1, itmust be true thatEB3(L)(σ ′)=EB3(L)(σ ).

Proof The proof follows directly from Definitions 9 and 16.
For all non-Proximate Properties, L ∈ (Σω \ Prox) and for
all finite prefixes α ∈ Σ∗ for all infinite suffixes ∀β ∈ Σω

and for all symbols x ∈ Σ , either α · 〈x〉 · β ∈ L, and
α · 〈x, x〉 · β ∈ L, or α · 〈x〉 · β /∈ L, and α · 〈x, x〉 · β /∈ L.
Clearly, true is trustworthy, since for all pairs (σ, σ ′) ∈
Stutter1, if σ ′ · μ ∈ L for all infinite suffixes μ ∈ Σω, then
σ · μ ∈ L. By the same logic, false is trustworthy. If there
exist infinite suffixesμt , μ f ∈ Σω such that σ ′ · μt ∈ L and
σ ′ · μ f /∈ L, then σ · μt ∈ L and σ · μ f /∈ L, so ? is also
trustworthy. By Theorem 3 such a property is immune. ��

8.4 Channels with out-of-order

Properties that are immune to OutOfOrder are limited to
subclasses of Liveness and Morbidity. The Inclusion and
Exclusion classes defined in Sect. 7 are limited to proper-
ties where satisfaction or violation depend on the presence
of specific symbols.

Theorem 13 (InclusionandExclusionProperties are Immune
to OutOfOrder) Given a propertyL ∈ Incl ∪ Excl, for all
pairs of finite traces (σ, σ ′) ∈ OutOfOrder1, it must be true
that EB3(L)(σ ) = EB3(L)(σ ′).

Proof The proof follows directly fromDefinitions 10, 19 and
20. By Definition 19, given a property L ∈ Incl, for all
traces in that property s ∈ L there exists a set of symbols
X ⊆ Σ such that for an infinite trace σ ∈ Σω, σ ∈ L iff all
of the symbols in X are in σ . By Definition 10, for all pairs
of finite traces (σ, σ ′) ∈ OutOfOrder1 there cannot exist a
symbol x ∈ Σ such that x ∈ σ ′ and x /∈ σ . Since all pairs
(σ, σ ′) ∈ OutOfOrder1 must contain the same symbols, they
must result in the same verdicts. The same logic applies for
Definition 20 and violation, rather than satisfaction, of the
property. ��
Theorem 14 (NoVerdicts areTrustworthy forNon-Inclusion,
Non-Exclusion Properties Over Channels with OutOfOrder)
Given a property L ⊆ (Σω \ (Incl ∪ Excl)), for all ver-
dictsv∈B3 there exists a pair of traces (σ, σ ′)∈OutOfOrder1
such thatEB3(L)(σ ′) = v andEB3(L)(σ ) �= v, except in the
case where L ∈ NFR∩NFS and v = ?, since that is the only
possible verdict for such properties.

Proof The proof, again, follows directly fromDefinitions 10,
19 and20.Consider a propertyL ⊆ (Σω \ (Incl ∪ Excl)).
Then, there must exist two infinite traces σ, σ ′ ∈ Σω such
that σ ∈ L and σ ′ /∈ L where all symbols s ∈ Σ occur in
both string s ∈ σ and s ∈ σ ′. In that case, there are two pos-
sibilities.

1. Satisfaction or violation depend on infinite strings. In that
case, either both satisfaction and violation depend on infi-
nite strings, so L ∈ NFR ∩ NFS and the verdict is always
?, or only one depends on infinite strings and the other is
covered by the second case.

2. Satisfaction or violation depend on symbol order. In that
case, by Definition 10, there exists a pair of finite traces
(σ, σ ′) ∈ OutOfOrder1 such that σ ∈ L and σ ′ /∈ L.

��

8.5 Utility of mutation immune properties

Many properties that are immune to the Stutter and OutO-
fOrdermutations or have trustworthy verdicts in the presence
of Loss are useful. To show the importance of these prop-
erties, we provide a classification of property specification
patterns from Dwyer, Avrunin, and Corbett’s survey [28].
This analysis shows that the most common patterns are mon-
itorable over some unreliable channels.

Table 2 shows the property specification patterns from
[28] and where they fit in the updated FR/FS classification.
Note that we only list patterns in the global scope as these
patterns account for 78.9% of all the properties in the survey.
In the table, the Pattern column gives the name of the pattern,
Class gives the classification of that pattern in the updated
FR/FS taxonomy, and Occurrence gives the incidence of that
pattern in the global scope in the original study [28].

All of the patterns in Table 2 are immune to at least Stut-
ter, and most are immune to or have trustworthy verdicts
over other mutations. The Absence, Universality, Existence,
and Bounded Existence patterns are all either Inclusive or
Exclusive Properties. These patterns are immune to Stutter
andOutOfOrder and have trustworthy verdicts over Loss and
make up 37.2% of the global-scope properties from [28].
The Precedence and Precedence Chain patterns, which make
up 56.8% of global-scope properties, are non-Proximate and
immune to Stutter. The Response and Response Chain pat-
terns, which only make up 5.9% of global-scope properties,
are in NFR ∩ NFS, which means they are non-monitorable
and trivially immune to all mutations.

The property classification in this section is valuable for
quickly identifying properties that can be monitored over
channels with the Loss,Corruption, Stutter, andOutOfOrder
mutations. However, custom mutations that more precisely
model an unreliable channel must be analyzed separately.
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Table 2 Property specification patterns

Pattern Class Occurrence (%)

Absence AFR ∩ NFS ∩ Excl 9.4

Universality AFR ∩ NFS ∩ Excl 25.1

Existence NFR ∩ AFS ∩ Incl 2.7

Bnd. existence AFR ∩ NFS ∩ Excl 0

Precedence AFR ∩ SFS \ Prox 55

Response NFR ∩ NFS 5.7

Precedence Chn. SFR ∩ SFS \ Prox 1.8

Response Chn. NFR ∩ NFS 0.2

This requires a decision procedure that can accommodate
any mutation. By Rice’s Theorem, monitorability over unre-
liable channels is undecidable in the general case where the
language may require a Turing Machine to express. Most
properties of interest, however, including those expressible
as LTL, are ω-regular. We now provide a decision procedure
for those properties expressible by an NBA.

9 Deciding immunity for !-regular
properties

To determine the immunity of anω-regular property to a trace
mutation, wemust construct automata that capture the notion
of uncertainty from B3. Bauer et al. defined a simple process
to build a B3 monitor using two DFAs in their work on LTL3

[13]. We will examine these DFAs to decide if the property
is true-false immune to the trace mutation.

Two DFAs are needed to represent the B3 output of the
monitor, since each DFA can only accept or reject a trace. In
the monitor, if one DFA rejects the trace then the verdict is
⊥, if the other rejects the trace then the verdict is � and if
neither reject then the verdict is ?. It is not possible for both
DFAs to reject due to how they are constructed.

The construction procedure for the monitor begins by
complementing the property. A language of infinite words
L is represented as an NBA AL = (Q,Σ, q0, δ, FL), for
example, an LTL formula can be converted to an NBA by
tableau construction [56]. The NBA is then complemented
to form AL = (Q,Σ, q0, δ, FL).

Remark 1 The upper bound for NBA complementation is
2O(n log n), so it is cheaper to complement an LTL property
and construct its NBA if starting from temporal logic [43].

To form the monitor, create two NFAs based on the NBAs
and then convert them to DFAs. The two NFAs are defined
asA = (Q,Σ, q0, δ, F) andA = (Q,Σ, q0, δ, F)The new
accepting states are the states from which an NBA accept-
ing state is reachable. That is, we populate the accepting

(a) (b) (c)

Fig. 4 The acnba that accepts the infinite-string language of the LTL
formula ¬(G(a→ F¬a) ∨ Fb) and its monitor DFA

states so that F = {q ∈ Q : (Reach(AL, q) ∩ FL) �= ∅}, and
F = {q ∈ Q : (Reach(AL, q) ∩ FL) �= ∅}. The two NFAs
are then converted to DFAs via subset construction. The ver-
dict for a finite trace σ is then given as the following function
VB3 : 2Σω → Σ∗ → B3.

Definition 21 (B3 Monitor Verdict) Given a property L ⊆
Σω , derive B3 monitor DFAs A and A. The B3 verdict for
a string σ ∈ Σ∗ is the following.

VB3(L)(σ ) =

⎧
⎪⎨

⎪⎩

⊥ if σ /∈ L(A)

� if σ /∈ L(A)

? otherwise

Example Figure 1b shows the NBA AL that accepts the
infinite-string language of the LTL formula ϕ = G(a →
F¬a) ∨ Fb. To construct an LTL3 monitor for ϕ, we must
first complement this NBA, then use the two NBAs to create
NFAs and finally DFAs.

Figure 4a shows the NBA AL that accepts the language
L[[¬ϕ]] and is the complement of AL in Fig. 1b. To obtain
monitor DFAs, the states and transitions from these NBAs
are used to construct NFAs with new accepting conditions,
and then the NFAs are determinized. Figure4b, c shows the
simplifiedmonitor DFAs for L[[ϕ]] and L[[¬ϕ]], respectively.
The monitor reaches a � verdict if the input trace prefix
contains a symbol where b holds; otherwise, the verdict is ?.

We can now restate Definition 13 usingmonitor automata.
This new definition will allow us to construct a decision pro-
cedure for a property’s immunity to a mutation.

Theorem 15 (True-False Immunity to Unreliable Channels
for ω-Regular Properties) Given an ω-regular language
L ⊆ Σω, deriveB3monitorDFAsA = (Q,Σ, q0, δ, F) and
A = (Q,Σ, q0, δ, F). L is true-false immune to a trace
mutation Mk ⊆ Σ∗ ×Σ∗ iff for all pairs of finite traces
in the mutation (σ, σ ′) ∈Mk , it must be that (σ /∈ L(A)⇔
σ ′ /∈ L(A)) and (σ /∈ L(A)⇔ σ ′ /∈ L(A)).
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Proof By Definition 13 we need only show that
EB3(L)(σ ) = EB3(L)(σ ′) is equivalent to (σ /∈ L(A) ⇔
σ ′ /∈ L(A)) and (σ /∈ L(A)⇔ σ ′ /∈ L(A)). There are three
cases: ⊥, �, and ?. For ⊥ and � it is obvious from Defi-
nition 21 that the verdicts are derived from exclusion from
the languages of A and A. As there are only three possible
verdicts, this also shows the ? case. ��

We say that an automaton is immune to a trace mutation
in a similar way to how a property is immune. To show that
a property is true-false immune to a mutation, we only need
to show that its B3 monitor automata are also immune to
the property. Note that, since the implication is both direc-
tions, we can use either language inclusion or exclusion in
the definition.

Definition 22 (Finite Automaton Immunity) Given a finite
automaton A = (Q,Σ, q0, δ, F) and a trace mutation
Mk ⊆ Σ∗ ×Σ∗, A is immune to Mk iff for all pairs of
finite traces in the mutation (σ, σ ′) ∈Mk , it must be that
σ ∈ L(A)⇔ σ ′ ∈ L(A).

With this definition we can provide a decision procedure
for the monitorability of an ω-regular property over an unre-
liable channel. The procedure will check the immunity of the
B3 monitor automata to the mutations from the channel, as
well as the property’s monitorability. If the DFAs are both
immune to the mutations and the property is monitorable,
then the property is monitorable over the unreliable channel.

10 Decision procedure for finite automaton
immunity

We propose Algorithm 1 for deciding whether a DFA is
immune to a trace mutation. The algorithm is loosely based
on Hopcroft and Karp’s near-linear algorithm for determin-
ing the equivalence of finite automata [37].

Algorithm 1 checks if the DFAA is immune to the muta-
tion M , where A represents part of the B3 monitor for a
property and M is a relation given by M1 in Definition 11.
The intuition behind Algorithm 1 is to follow transitions for
pairs of unmutated and corresponding mutated strings in M
and verify that they lead to the same acceptance verdicts.
More specifically, Algorithm 1 finds sets of states which
must be equivalent for the DFA to be immune to a given
mutation. The final verdict of immune is found by checking
that no equivalence class contains both final and non-final
states. If an equivalence class contains both, then there are
some strings for which the verdict will change due to the
given mutation.

If all mutations required only a string of length one, the
step at Lines 7 and 8 could follow transitions for pairs
of single symbols. However, mutations like OutOfOrder

Algorithm 1 Determine if DFA is immune to a given trace
mutation.
1: procedure immune( A = (Σ, Q, q0, δ, F), M )
2: for q ∈ Q do E(q)← {q} � E is a map
3: R← Reach(A, q0) � R is the reachable states
4: T ← { } � T is a worklist
5: for (σ, σ ′) ∈ M where |σ | = minLength(M) do
6: for q ∈ R do
7: q1 ← δ∗(q, σ ) � Follow original trace
8: q2 ← δ∗(q, σ ′) � Follow mutated trace
9: E(q1)← E(q2)← {q1, q2}
10: T ← T ∪ {(q1, q2)}
11: while T is not empty do
12: let (q1, q2) ∈ T � Get a pair from the worklist
13: T ← T \ {(q1, q2)} � Remove the pair from T
14: for α ∈ Σ do
15: n1 ← δ(q1, α)

16: n2 ← δ(q2, α)

17: C ← {E(n1), E(n2)}
18: if |C | > 1 then
19: E(n1)← E(n2)←⋃

C �Merge sets in E
20: T ← T ∪ {(n1, n2)}
21: if Any set in E contains both final and non-final states then

return False
22: else return True

require strings of at least two symbols, so we must follow
transitions for short strings. We express this idea of a mini-
mum length for a mutation in the minLength : 2Σ∗×Σ∗ →
N function. For mutations in Sect. 4, minLength(Loss) =
minLength(Corruption) = minLength(Stutter) = 1 and
minLength(OutOfOrder) = 2. Note that minLength for
unions must increase to permit the application of both
mutations on a string. For example, minLength(Loss ∪
Corruption) = 2. This length guarantees that each string has
at least one mutation, which is sufficient to show immunity
by Theorem 2.

The algorithm works as follows. We assume a mutation
can occur at any time, sowebegin by following transitions for
pairs of mutated and unmutated strings from every reachable
state (stored in the set R). On Lines 5-10, for each pair (σ, σ ′)
in M and for each reachable state, we compute the states q1
and q2 reached from σ (respectively, σ ′). Themap E contains
equivalence classes,whichweupdate forq1 andq2 to hold the
set containing both states. The pair of states is also added to
the worklist T , which contains equivalent states from which
string suffixes must be explored.

The loop on Lines 11-20 then explores those suffixes. It
takes a pair of states (q1, q2) from the worklist and follows
transitions from those states to reach n1 and n2. If n1 and
n2 are already marked as equivalent to other states in E or
aren’t marked as equivalent to each other, those states are
added to the worklist, and their equivalence classes in E are
merged. If at the end, there is an equivalence class with final
and non-final states, then A is not immune to M .
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Theorem 16 (ImmunityProcedureCorrectness) Algorithm1
is sound and complete for any DFA and prefix-assured muta-
tion. That is, given a DFA A = (Σ, Q, q0, δ, F), and a
mutation, M, Immune(A, M)⇔ A is immune to M.

Proof By Definition 22, this is equivalent to showing that
Immune(A, M)⇔ (∀(σ, σ ′) ∈ M, σ ∈ L(A)⇔ σ ′ ∈ L(A)).

We will prove the⇒ direction (soundness) by contradic-
tion. Suppose at the completion of the algorithm that all sets
in E contain only final or non-final states, but that A is not
immune to M . There is at least one pair (σb, σ

′
b) ∈ M where

one leads to a final state, and one does not. If Algorithm 1
had checked this pair then these states would be in an equiva-
lence class in E . Since the loop on Line 7 follows transitions
for pairs in M of length minLength(M), the reason (σb, σ

′
b)

was not checked must be because |σb| �= minLength(M).
The length of σb must be greater than minLength(M) since
strings shorter thanminLength(M) cannot be mutated by M .
Since M is prefix-assured, there must be a pair (σ, σ ′). |σ | =
minLength(M) that are prefixes of (σb, σ

′
b). The loop on

Line 11 will check (σ · s, σ ′ · s) ∀s ∈ Σ∗. Therefore, it must
be the case that there exist two different finite suffixes
t, u ∈ Σ∗. t �= u such that σb = σ · t and σ ′b = σ ′ · u. How-
ever, if t �= u then (σb, σ

′
b) ∈ Mk for some k > 1, so A

is immune to M1 but not Mk , but from Theorem 2 this is a
contradiction.

We prove the ⇐ direction (completeness) by induction.
We will show that ifA is immune to M then no set in E , and
no pair in T will contain both final and non-final states. The
base case at initialization is obviously true since every set
in E contains only one state and T is empty. The induction
hypothesis is that at a given step i of the algorithm if A is
immune toM then every set in E and every pair in T contains
only final or non-final states.

At step i + 1, in the loop starting at Line 7, E and T
are updated to contain states reached by following σ and
σ ′. Clearly, if A is immune to M then these states must be
both final or non-final since we followed transitions from
reachable states for a pair in M . In the loop on Line 11,
n1 and n2 are reached by following the same symbol in the
alphabet from a pair of states in T . IfA is immune to M , the
strings leading to that pair of statesmust both be in, or both be
out of the language. So, extending both strings by the same
symbol in the alphabet creates two strings that must both be
in or out of the language. These states reached by following
these strings are added to T on Line 20.

On Lines 17 and 19, the two sets in E corresponding to n1
and n2 are merged. Since both sets must contain only final or
non-final states, and one-or-both of n1 and n2 are contained
in them, the union of the sets must also contain only final or
non-final states. ��
Theorem 17 (Immunity Procedure Complexity) Algorithm 1
is Fixed-Parameter Tractable. That is, given a DFA A =

(Σ, Q, q0, δ, F), and a mutation, M, its maximum running
time is |Q|O(1) f (k), where f is some function that depends
only on some parameter k.

Proof The run-time complexity of Algorithm 1 is O(n)

O(ml f (M))where n = |Q|,m = |Σ |, l = minLength(M),
and f is a function on M . First, Lines 4, 7, 8, 9, 10, 12, 13,
15, 16, 17, 18, 19, and 20 execute in constant time, while
each of Lines 2, 3, and 21 run in time bounded by n.

The initialization loop at Line 5 runs once for each
pair in the mutation where the length of σ is bounded by
minLength(M). This count is ml times a factor f (M) deter-
mined by the mutation. For example, f (Loss) = l because
each σ is mutated to remove each symbol in the string. Crit-
ically, this factor f (M) must be finite, which it is for the
mutations M1. The loop at Line 6 runs in time bounded by
n, so the body of the loop is reached at mostml f (M)n times.

The loop at Line 11 may run at most ml f (M)+ n times.
The loop continues while the worklist T is non-empty. Ini-
tially, T has ml f (M) elements. Each time Line 13 runs, an
element is removed from the worklist. For an element to be
added to T , it must contain states corresponding to sets in
E which differ. When this occurs, those two corresponding
sets are merged, so the number of unique sets in E is reduced
by at least one. Therefore, the maximum number of times
Line 20 can be reached and an element added to T is n. ��

Note that, in practice, minLength(M) is usually small
(often only one), so Algorithm 1 achieves near linear per-
formance in the size of the FA. The size of the alphabet has
an effect, but it is still quadratic.

11 Related work

Unreliable channels have been acknowledged in formal
methods research for some time. For example, Lamport sug-
gested in 1983 that temporal logics without next operators
were immune to stutter [44]. More recent works by Puran-
dare et al. [53] and Lomuscio et al. [47] applied the principle
suggested by Lamport for performance optimizations.

In this section, we describe related work in three areas.
First, on works examining unreliable channels in RV, sec-
ond, on the study of unreliable channels as they relate to
Communicating Finite StateMachines (CFSMs), and finally,
on other definitions of monitorability.

11.1 Runtime verification

RVseeks to decidewhether a trace generated by the execution
of a program satisfies a specification, often expressed in a
temporal logic like LTL [9]. Most RV methods assume an
ideal trace, but the topic of unreliable channels is of growing
interest in the field.
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Work has been done to show which properties are veri-
fiable on a trace with mutations and to express degrees of
confidence when they are not. Stoller et al. used Hidden
Markov Models (HMMs) to compute the probability of a
property being satisfied on a lossy trace [58]. Their defi-
nition of lossy included a “gap” marker indicating where
symbols weremissing. They usedHMMs to predict themiss-
ing states where gaps occurred and aided their estimations
with a learned probability distribution of state transitions.
Joshi et al. introduced an algorithm to determine if a specifi-
cation could be monitored soundly in the presence of a trace
with transient loss, meaning that eventually it contained suc-
cessfully transmitted events [40]. They definedmonotonicity
to identify properties for which the verdicts could be relied
upon once a decision was made.

Garg et al. introduced a first-order logic with restricted
quantifiers for auditing incomplete policy logs [34]. The
authors used restricted quantifiers to allow monitoring poli-
cies that would, in principle, require iterating over an infinite
domain. Basin et al. also specified a first-order logic for audit-
ing incomplete policy logs [12]. Basin et al. also proposed
a semantics and monitoring algorithm for Metric Temporal
Logic (MTL)with freeze quantifiers thatwas sound and com-
plete for unordered traces [11]. Their semantics was based on
a three-value logic, and the monitoring algorithm was eval-
uated over ordered and unordered traces. All three of these
languages used a three value semantics (t, f ,⊥) to model a
lossy trace, where ⊥ represented missing information.

Leuker et al. introduced a technique for a Stream Run-
time Verification (SRV) over incomplete traces [45]. They
defined an abstract form of the TeSSLa SRV language and
showed how it could be used to obtain sound verdicts on
traces with well-defined gaps. Abstract verdicts were clearly
delineated from concrete ones, so that imprecise results could
not be confused for incorrect results. Theirwork assumed that
missing valueswerewithin a known range and that gapswere
identifiable.

Li et al. examined out-of-order data arrival in Complex
Event Processing (CEP) systems and found that SASE [62]
queries processed using the Active Instance Stack (AIS) data
structure would fail in several ways [46]. They proposed
modifications to AIS to support out-of-order data and found
acceptable experimental overhead to their technique.

Baader, Bauer, and Tiu examined the complexity of regu-
lar language inclusion and exclusion of a finite trace with lost
symbols [7]. They modeled traces as patterns where missing
sequences were replaced with variables and considered both
the linear case, where variables were unique, and the non-
linear case, where they could repeat. The authors showed
that, for languages specified as an NFA, linear exclusion was
solvable in polynomial time while non-linear exclusion was
PSPACE-Complete. For inclusion, they found that both the
linear and non-linear cases were PSPACE-Complete.

Runtime verification in the presence of noise has been
studied in the context of Analog and Mixed Signal (AMS)
components, also referred to as mixed signal circuits. These
integrate analog circuits and digital circuits, e.g., such a com-
ponent can transform an analog signal to a digital signal.
Wang et al. describe using runtime verification in combina-
tion with Monte Carlo simulation (called statistical runtime
verification) to analyze Jitter [60]. Jitter is defined as the
deviation in time between a noisy signal and an ideal one. A
related concept is the notion of system instability, where con-
trol outputs oscillate permanently while inputs are constant.
Halbwachs et al. proposed a method to verify the stability of
systems using heuristics to check strongly connected com-
ponents of an operator network [36].

11.2 Communicating finite state machines

Several works in information theory have modeled the prob-
lem of unreliable communication channels in CFSMs [17].
CFSM communication channels are treated as unbounded
first-infirst-out (FIFO)buffers betweenFiniteStateMachines
(FSMs), which is a Turing complete model of computation
for a class of infinite-state systems called simple reactive pro-
grams [61]. Simple reactive programs are data independent
and are useful for modeling communication protocols like
the Alternating Bit Protocol [10] and High-level Data Link
Control (HDLC) [38]. CFSMs also form the basis of protocol
specification languages such as Estelle [18], and Description
Language (SDL) [16]. CFSMs with unreliable communica-
tions channels are no longer Turing complete, and a number
of useful properties have been shown to hold in such cases.

Finkel introduced his notion of completely specified pro-
tocols to show that they are a class of machines for which the
termination problem is decidable [32]. He defined a com-
pletely specified protocol as a CFSM where any FSM can
receive any message in any local state and can stay in that
state, and he showed that protocols using lossy FIFO chan-
nels are examples of such protocols. Abdulla and Jonsson
later provided algorithms for deciding the termination prob-
lem for protocols on lossy FIFObuffers, aswell as algorithms
for some safety and eventuality properties [2].

Cécé et al. expanded this examination of unreliable FIFO
channels in CFSMs by considering channels with insertion
errors, duplication errors, and a combination of insertion,
duplication, and lossy errors [19]. Their work defined inser-
tion errors in FIFO buffers to be equal to our general notion
of noisy traces, but their duplication errors were restricted
to consecutive duplicates. They showed that noisy errors on
a communication channel between two FSMs decrease the
expressive power of the systemmore than lossy errors, while
consecutive duplication errors do not decrease its expressive
power at all.
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Iyer andNarasimha introduced probability to the notion of
lossy communications channels [39]. They argue that this is a
more realistic notion of loss, as hardware reliability statistics
are often known. Their work included algorithms for solv-
ing probabilistic notions of reachability and model checking.
That is, given a channelwith a known probability of loss, they
asked whether a global state in the CFSMwas reachable with
a certain probability and tolerance, and whether a Proposi-
tional Temporal Logic (PTL) property was true with a certain
probability and tolerance. Baier and Engelen proved that the
set of message sequences on a probabilistic lossy channel
that satisfy an LTL property could be decided with probabil-
ity 1 if the probability of message loss was at least 1/2 [8].
Abdulla et al. proved that, if the probability of message loss
was less than 1/2 then the same problem was undecidable
[1].

Peng and Makki introduced Lossy Communicating Finite
StateMachines (LCFSMs) to simplify protocol modeling for
lossy channels [51]. Traditionally, loss in unreliable commu-
nications channels has been modeled using the addition of
extra CFSMs which consume messages. The authors argued
that this leads to messy CFSM specifications which obfus-
cate the protocol being modeled. They introduced a delete
action to allow the removal of these extra CFSMs.

11.3 Other definitions of monitorability

Some other definitions of monitorability exist which are out-
side the scope of this work. These solutions either assume
partial knowledge of the monitored system or concern mon-
itoring multiple systems simultaneously.

Sistla, Žefran, and Feng definedmonitorability and strong
monitorability for partially observable stochastic systems
modeled as HMMs [57]. Gondi, Patel, and Sistla had already
introduced this notion in their work on external monitoring
of ω-regular properties of stochastic systems [35], but the
later work focused on formalizing the concept and on inter-
nal monitoring. In these works, properties to be monitored
are given as deterministic Streett automata [54] and a model
of the system is supplied as a HMM. This varies from defini-
tions of monitoring where only a trace of the output symbols
from the monitored system is assumed to be known.

Sistla et al. use Acceptance Accuracy (AA) and Rejection
Accuracy (RA) to define monitorability and strong monitora-
bility, and define them as properties of both a monitored
formula and a monitored system. AA is given as the prob-
ability that a monitor accurately returns a positive verdict
(accepts) for a formula and a system model, while RA is
given as the probability that a monitor accurately returns a
negative verdict (rejects) for a formula and a system model.
Sistla et al. thus define that a system is strongly monitorable
with respect to a formula if there exists a monitor such that
both the AA and RA are 1. They then define that a system

is monitorable with respect to a formula if there exists a
monitor(s) such that accuracies arbitrarily close to 1 may be
achieved. The authors conclude that all properties that can
be represented as Streett automata are considered externally
monitorable for finite state systems and safety properties are
also strongly monitorable.

Agrawal and Bonakdarpour first proposed monitoring
hyperproperties and introduced a notion ofmonitorability for
such properties [4]. Hyperproperties are sets of sets of traces
where monitoring requires reasoning about many prefixes
simultaneously. The authors introduce a three-valued seman-
tics for the hyperproperty specification languageHyperLTL
[23] and define monitorable classes in that logic. Stucki et
al. proposed incorporating partial or complete knowledge
of the system into monitoring hyperproperties [59]. They
showed that monitoring hyperproperties without such infor-
mation is infeasible in general and refined Agrawal and
Bonakdarpour’s definition of hyperproperty monitorability
to incorporate computability of the monitor.

Francalanza, Aceto, and Ingolfsdottir defined monitora-
bility for μ-Hennessy-Milner Logic (μHML), a branching
time logic for RV based on the modal μ-calculus [33]. They
characterized what properties ofμHML are monitorable and
gave a method to synthesize monitors for those properties.
Aceto et al. later introduced a hierarchy of monitorable frag-
ments for μHML and established different guarantees for
each fragment [3].

12 Conclusions and future work

The mutations from Definitions 7 to 10 are useful abstrac-
tions of common problems in communication. However, in
many cases, they are stronger than is needed as practition-
ers may have knowledge of the channel that constrains the
mutations. For example, on Mars Science Laboratory , mes-
sages contain sequence numberswhich can be used to narrow
the range of missing symbols. Although the property classi-
fication from Sect. 8 cannot be used for custom mutations,
mutations can be easily defined and then properties can be
tested for immunity using Algorithm 1. Custom mutations
should avoid behavior that requires long strings to mutate,
however, as this causes exponential slowdown. Future work
should incorporate a decision procedure for trustworthy ver-
dicts that can be used for custom mutations.

Well-designed mutations like those from Definitions 7–
10 can be checked quickly. However, the method relies on
B3 monitor construction to obtain DFAs, and the procedure
to create them from an NBA is in 2EXPSPACE. We argue
that this is an acceptable cost of using the procedure since it
is done offline and a monitor must be derived to check the
property in any case. Future work should explore ideas from
the study ofmonitorability [27,49] to find a theoretical bound
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on deciding immunity and to explore algorithms that do not
require monitor construction.

Another avenue for improving our work is to incorpo-
rate partial system models to reduce the range of unmutated
strings as in gray-box monitoring [59]. Currently, the def-
inition of immunity to a mutation requires that any string
(using the alphabet) could be mutated. For many systems,
this is more general than is needed, and constraining unmu-
tated strings can allow for more properties to be considered
immune and therefore monitorable.

Our definition of monitorability also assumes that every
verdict must be trustworthy for a mutation, but some prop-
erties may be useful to monitor where only some verdicts
are trustworthy. This is similar to how Weak Monitorability
relaxes the requirement from Classical Monitorability that
every execution may reach a true or false verdict. It may be
interesting to define a notion of Weak Monitorability over
Unreliable Channels that only requires true and false to be
trustworthy.

The ability to check properties expressible by NBAs for
monitorability over unreliable channels allows RV to be con-
sidered for applications where it would have previously been
ignored. To arrive at this capability, we first needed to define
monitorability over unreliable channels using both existing
notions of monitorability and a new concept of mutation
immunity. We proved that immunity to a single applica-
tion of a mutation is sufficient to show immunity to any
number of applications of that mutation, and we defined
true-false immunity using B3 semantics. The FR/FS classifi-
cation provided a framework that we extended to categorize
the properties that are immune to common mutations. In
some cases, we found that properties had trustworthy ver-
dicts when monitored over an unreliable channel, despite not
being immune to the mutation from that channel.

We believe unreliable communication is an important
topic for RV and other fields that rely on remote systems.
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