International Journal on Software Tools for Technology Transfer (2022) 24:563-587
https://doi.org/10.1007/s10009-021-00616-0

COMPETITIONS AND CHALLENGES l‘)

Check for
updates

Regular

DisCoveR: accurate and efficient discovery of declarative process
models

Christoffer Olling Back'® - Tijs Slaats'® - Thomas Troels Hildebrandt'® - Morten Marquard?

Accepted: 6 May 2021 / Published online: 28 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Declarative process modeling formalisms—which capture high-level process constraints—have seen growing interest, espe-
cially for modeling flexible processes. This paper presents DisCoveR, an efficient and accurate declarative miner for learning
Dynamic Condition Response (DCR) Graphs from event logs. We present a precise formalization of the algorithm, describe
a highly efficient bit vector implementation and present a preliminary evaluation against five other miners, representing the
state-of-the-art in declarative and imperative mining. DisCoveR performs competitively with each of these w.r.t. a fully auto-
mated binary classification task, achieving an average accuracy of 96.1% in the Process Discovery Contest 2019 (Results are
available at https://icpmconference.org/2019/process-discovery-contest). We appeal to computational learning theory to gain
insight into its performance as a classifier. Due to its linear time complexity, DisCoveR also achieves much faster run times
than other declarative miners. Finally, we show how the miner has been integrated in a state-of-the-art declarative process
modeling framework as a model recommendation tool and discuss how discovery can play an integral part of the modeling
task and report on how the integration has improved the modeling experience of end-users.

Keywords Process discovery - Declarative process models - Process mining - DCR graphs

1 Introduction

Technologies for business process management have matured
significantly since the early proposals of office automation
systems and business process definition languages in the late
1970s [30,84,89]. Today, BPMN [29,62,88] has become a

Work supported by the Innovation Fund Denmark project EcoKnow
(7050-00034A) and the Danish Council for Independent Research
project Hybrid Business Process Management Technologies
(DFF-6111-00337).

B Christoffer Olling Back
back@di.ku.dk

Tijs Slaats
slaats @di.ku.dk

Thomas Troels Hildebrandt
hilde @di.ku.dk

Morten Marquard

mm@dcrsolutions.net

Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark

DCR Solutions, Copenhagen, Denmark

stable, de-facto standard notation for describing business
processes. Users can choose from a number of commercial
design tools and business process management systems, sup-
porting the design and enactment of business processes. In
recent years, we have even seen commercial process mining
tools [44] that support the automated discovery of BPMN
models from event logs [83,85].

With the increased need to accommodate flexible,
knowledge-intensive processes, notations focusing on essen-
tial rules, rather than detailed procedures have seen increased
attention from researchers [28,55,65,70,75]. This approach is
often characterized as declarative and juxtaposed with imper-
ative notations like BPMN [39,52,66].

Highly regulated workflows, for example governmental
case work processes, are particularly challenging examples,
since constantly changing legislation gives rise to changes in
rules, and often an increase in complexity [24,36]. Declara-
tive notations are, by design, well-suited to translation from
natural language rules while avoiding over-specification,
making them suited to capturing regulatory constraints in
workflows requiring some degree of flexibility.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-021-00616-0&domain=pdf
http://orcid.org/0000-0001-7998-7167
http://orcid.org/0000-0002-7435-5563
http://orcid.org/0000-0001-6244-6970
https://icpmconference.org/2019/process-discovery-contest

564

C.0.Backetal.

As part of a broader national digitalization initiative, the
challenge of modeling knowledge-intensive workflows has
been tackled in several collaborative projects involving Dan-
ish universities, government institutions and firms in the
private sector. One such project is the EcoKnow! project
which builds upon the DCR Graphs formalism [40,55,75].

To support the local development and maintenance of the
declarative DCR models, several modeling tools have been
developed [16,20,52], supported by formal understandability
studies [1-3]. Along with the tools, a methodology for mod-
eling with DCR has been developed, advocating an iterative
and incremental, scenario-driven approach with three main
tasks. First, to identify key activities and roles. Second, to per-
form simulations of wanted and unwanted scenarios. Finally,
the modeler may either go back to add missing activities and
roles or forward to the task of identifying rules that supports
the wanted scenarios and forbid the unwanted scenarios.

The iterative approach lends itself extremely well to being
supported by process discovery: after the users define wanted
and unwanted scenarios, discovery algorithms can be used
to automatically make suggestions for which rules should be
added. Such a discovery algorithm needs to be both efficient
and accurate. On the one hand, users expect their modeling
experience to be continuous, without long interruptions wait-
ing for a discovery algorithm to compute possible rules. On
the other hand, they are only helped by rule suggestions that
are relevant and correct in terms of the suggested scenarios:
poor suggestions will only confuse the users and reduce the
quality of their modeling experience.

Recently, an efficient and accurate discovery algorithm
was developed for DCR Graphs and implemented in a com-
mercial design tool [59]. One advantage of the algorithm
is that it can provide accurate suggestions even with small
training sets, facilitating rule discovery from large historical
event logs as well as fast recommendations based on few
simulated scenarios carried out as part of the scenario-driven
modeling approach.

This paper is part of a special issue of the journal in
connection with the Process Discovery Contest 2019, which
frames process discovery as a binary classification task. The
DisCoveR algorithm secured a second place in that year’s
contest in terms of classification accuracy. The algorithm
itself was first introduced by Nekrasaite et al. in [59], and
the current paper expands on this initial introduction with:
a complete and thorough formalization of the algorithm that
provides all details required for its implementation (Sect. 4);
a novel, open source and more efficient implementation
based on bit vector operations (Sect. 5); an evaluation of
the algorithm against flagship academic miners based on the
classification task provided by the Process Discovery Con-

! Effective, co-created and compliant adaptive case management for
Knowledge workers.

@ Springer

test 2019 and a run time comparison suggesting the miner is
competitive with its peers, along with a framing of process
discovery in terms of computational learning theory which
helps explain the key to its effectiveness in terms of regular-
ization (Sect. 6); a case study showing how the algorithm has
been swiftly transferred to industry through its integration in
the dcrgraphs.net process modeling portal, leading to
an enhanced modeling experience by its users (Sect. 7).
After surveying related work in Sect. 2 and introducing
preliminaries in Sect. 3, we proceed as sketched above, con-
cluding and proposing future directions of research in Sect. 8.

2 Related work

Many declarative process notations have been developed,
several with corresponding discovery algorithms [76]. One of
the first of these was Declare [66,82,86], which was inspired
by property specification patterns for linear temporal logic
(LTL) [31]. Declare identified a particular set of patterns rele-
vant for business processes and gave them semantics through
a mapping to LTL formulae relevant for describing the rules
governing a business process. A Declare model is therefore
a collection of such patterns, and the semantics of a model is
defined as the traces that satisfy the conjunction of the formu-
lae underlying the patterns. More recently, the same patterns
have been formalized using colored automata [48], SCIFF
[53,54], and regular expressions [92]. Extensions to Declare
include timed [90] and data [18] constraints, which were
combined in MP-Declare [10] (Multi-Perspective Declare),
and hierarchy [95]. The first miner for Declare was the
Declare Maps Miner [49], while initially using a brute-force
approach, it was extended with several improvements [46]
inspired by the Apriori algorithm for association rule min-
ing [6]. More recently, the miner was extended to allow for
parallelization [47]. The second Declare miner to be devel-
oped was Minerful [14], which provided significant gains
in efficiency. Since its introduction, it has been extended
with support for target-branched constraints [27], removal of
redundancies and inconsistencies [12] and removal of vacu-
ously satisfied constraints [13].

Another prominent declarative approach is the Guard-
Stage-Milestone (GSM) notation [41], inspired by earlier
work on artifact-centric business processes [9]. GSM aims to
effectively model case management and has been a primary
contributor to the development of the Case Management
Model And Notation (CMMN) [61]. CMMN has seen a rel-
atively fast industrial and academic adoption through the
development of tools and case studies [35,43,93]. Work on
process discovery for GSM or CMMN on the other hand is
still rather sparse, and only one discovery algorithm has been
proposed to date [67] with no working implementation.

DisCoveR: accurate and efficient discovery of declarative process models

565

Process discovery has also been considered for the Declar-
ative Process Intermediate Language (DPIL) [72,94], which
is a textual, multi-perspective, declarative modeling lan-
guage. Process discovery for DPIL is supported through the
DPIL Miner.2 In comparison with other Declarative miners,
which tend to focus on the control-flow perspective of pro-
cesses, the DPIL Miner instead focuses more on mining the
organizational perspective [71]. Interestingly, the miner has
never been made publicly available and its effectiveness or
accuracy cannot be independently ascertained.

In more recent work, it has been proposed to combine
declarative and imperative discovery to produce the so-called
hybrid [7,21,69,79] or mixed [17,19,91] models that combine
both paradigms. Hybrid miners include the Fusion miner
[80], which produces an inter-mixed Petri net and Declare
model, the Hybrid Miner [50] which produces a hierarchical
Petri net and Declare model, and the Precision Optimization
Hybrid Miner [73] which produces a process tree in which
some nodes may be Declare models.

Approaches to workflow formalization based on Classical
Linear Logic, a resource-aware logic, were implemented in
WorkFlowFM [63,64] which guarantees optimally concur-
rent, correct-by-construction processes. The framework was
applied to intra-hospital patient transfers in [51].

Temporal logics have also been used to model phenomena
which would not be considered workflows, such as robot
motion [32], naval traffic, and train network monitoring [42].

Finally, DCR Graphs were inspired by event structures
[60] and developed after Declare was shown to not be suf-
ficiently expressive in modeling industrial cases [57]. In
contrast to Declare, the semantics of DCR Graphs are defined
as transformations on the markings of the events. This allows
modelers to straightforwardly reason about the execution
semantics of a model by simulating it and observing the
changes to the markings as events are executed. [52] Since
their inception, DCR Graphs have been extended with nest-
ing [37], time [38], data [16,56,78], and hierarchy [22].

Regarding evaluation, process mining has traditionally
been framed as an inherently descriptive rather than predic-
tive data mining problem, which precludes the use of standard
evaluation metrics familiar in classification and regression
tasks. This is largely due to the assumption that an event log
represents only positive examples [33]. Some authors have
addressed this by developing techniques to generate artificial
negative examples [34].

3 Preliminaries

We present here the definitions of processes and event logs,
necessary to give a formal presentation of the task of process

2 http://www.kppq.de/miner.html

discovery in terms of computational learning theory, as well
as the DCR Graphs formalism.

Definition 1 (Processes and Event Logs)

— An alphabet ¥ is a finite set of symbols denoting activi-
ties. We denote by X, activities present in log L.

— Y *and X denote countably infinite sets of finite, respec-
tively, infinite, sequences over X.

— A process is a pair (P, Pp) where P is a set of allowable
sequences of activities along with an associated proba-
bility distribution Pp over P. The probabilistic framing
is required for consistency with the statistical metrics
(e.g., accuracy) used for evaluation in Sect. 6.

— An event, denoted ¢, is a particular occurrence of an
activity.

- Atraceo € ¥*U X% = (¢1,..., G, ...) represents a
sequence of activities, with i € N. A trace can be seen as
a partial mapping:

c(i):N— X

— A process model h defines a semantics such that the lan-
guage £ of h denotes the set of traces accepted by /. That
is,

¢(h) € T*UT®

and for some process (P, Pp) wehave P = €(h) ifhisa
perfect model of the process. Note that 2 may be agnostic
regarding Pp.

— Finally, a log L is a multiset representing the number of
occurrences of different traces:

L= oo, o]

where m (o) € N denotes the multiplicity of o. As L
is essentially a sample from (P, Pp), it is necessary to
consider trace multiplicities rather than collapsing the log
to a set.

Note the assumption of strict monotonicity implied by this
definition of traces. That is, for all i, j € N we have that

i<j = o(@)=<0o(j)

where < denotes “precedes,” and also that
i=j = o(@)=o0()).

The definition of a trace as a function mapping from a
timestamp domain to the codomain of individual activities

implies that no two events can share the exact same times-
tamp (otherwise, o would not be a function). We note this,

@ Springer

http://www.kppq.de/miner.html

566

C.0.Backetal.

in part, due to the observation that shared timestamps are not
uncommon in real data sets. Nonetheless, the present for-
malization of traces is widely accepted and sufficient for the
study at hand.

Definition 2 (Process Discovery) Process discovery refers
to a procedure that derives a process model from an event
log. Let £ denote the set of all valid event logs and H r the
set of process models encodable by some process modeling
formalism F. A process discovery algorithm y is a mapping
from logs to models:

y:L— Hp

Examples of F include Petri nets, sound Petri nets, Work-
Flow nets, R/I-nets, Declare maps, and of course DCR
Graphs. In other words, H r is our hypothesis space to which
our learning algorithm is restricted.

By extension, we can view the overall task as a mapping
from a log to a language, i.e., a subset of all possible traces:

Uy): L — 2%"V%

Where 2% denotes the powerset of set X. To see this,
consider that for some L € L, we have y(L) = h and
¢(h) € 2%YZY That is, £(y(L)) C £* U £®. This view
of process discovery will lead naturally to the classification
task and reduce the choice of modeling formalism F to an
intermediate step w.r.t. classification.

Definition 3 (DCR Graphs) DCR Graphs consist of a set
of events with three associated unary predicates: executed,
pending, and included which together constitute the marking
(i.e., state) of a DCR Graph. Moreover, four binary relations
are defined between events. In order to be executed, an event
must be included and satisfy any relevant relations.
Formally, a dynamic condition response graph is a tuple

g=(E m A o>, —e -+, —>%,I)
where

— & is a set of “events” (analogous to transitions in a Petri
net, and not to be confused with events in a trace, see /).

- me2f x28 x 2% isthe marking

— A is the set of activities.

— —e € £ x & is the set of condition relations.

— e— € & x & is the set of response relations.

— —+ € £ x & is the set of includes relations.

— =% € £ x & is the set of excludes relations.

- >+ —->%=0.

— [: £ — Ais alabeling function mapping every “event”
to an activity.

@ Springer

A DCR Graph markingm = (Ex, Pe, In) represents events
which have previously been executed, pending events to be
executed or excluded, and events currently included. For
finite traces, a DCR Graph is defined to be accepting when
Pe NIn = ¢, i.e., no pending events are currently included.
For infinite traces, accepting states are defined in the limit as
with Biichi automata, to which DCR graphs can be translated
[58].

The execution semantics of DCR Graphs requires that for
an event e to be executed, it must fulfill the following criteria:

— e must be included, i.e., e € In

— If any condition relations exist s.t. ¢ — ee, then all such
¢’ must have been executed, or excluded, i.e., ¢ € Ex
or ¢ ¢ In. In this way, conditions can be nullified by
excluding the source event. The latter is the “dynamic”
aspect of DCR Graphs.

Furthermore, if e is executed, the marking m will change
as follows:

— If any response relations exist s.t. ee— ¢’., then all such
¢’ will become pending, i.e., ¢’ € Pe

— If any excludes relations exist s.t. ¢ —% ¢/, then any
included ¢’ will become excluded, i.e., ¢ ¢ In.

— If any includes relations exist s.t. ¢ —+ €', then any
excluded ¢’ will become included, i.e., e’ € In.

An important point to note regards the labeling function
[, which may map more than one event to the same activity
(analogous to Petri nets with duplicate transitions). This can
potentially result in a non-deterministic model. In the algo-
rithm presented here, only bijective labeling functions are
considered, so each event is mapped to exactly one activity
and vice versa.

Example Consider a DCR Graph consisting of 4 events with
a one-to-one mapping to activities: a,b,c,d:

— Initial marking:

— Executed: ¢
— Pending: a
— Included: a,c,d

— Relations

—a—eb
—ae—>b
- b—eua
—be—>a
- c—>+b
d—%b
d—%d

DisCoveR: accurate and efficient discovery of declarative process models

567

Accepting run 1: (a). The model begins in a non-accepting
state since a is both pending and included. Since b is not
included, » — e a does not come into effect. After a is
executed, b becomes pending, but since it is not included,
the model is in an accepting state.

Accepting run 2: (a,c,b,d,a). After a is executed, b
becomes pending. Executing ¢ causes b to be included as
well. Now, the model is in a non-accepting state. Executing
b causes a to become pending. Executing d excludes b and d
itself. Finally, a, which is still pending and included is exe-
cuted, which causes b to become pending, but since it is not
included, the model is in an accepting state.

Non-accepting run: (c,d,c). When c is executed, b
becomes included, but cannot be executed due to the con-
dition relation a —e b. Likewise, a is unable to execute due
to b — e a. Executing d excludes b and d itself, releasing
a from b — e a. At this point, executing a will lead to an
accepting state. However, if instead c is executed again, b is
included again and b — e a comes into effect and now d
cannot be executed to exclude b. The graph is now locked
in a permanently non-accepting state as neither a, nor b can
ever be executed because of their mutual conditions, yet a
remains forever included and pending.

4 Algorithm

In this section, we formally describe the ParNek algorithm
underlying DisCoveR. Note the distinction we draw between
the fundamental algorithm, ParNek, and the specific imple-
mentation, DisCoveR, presented in Sect. 5. This distinction
is also reflected in the formal, functional description in this
section which remains agnostic to concrete implementation
details, e.g., for extracting the sets of relations defined in
Table 2.

The algorithm always produces perfectly fitting models,
i.e., all traces in the log will be replayable on the generated

1. A set of candidates for four relation patterns is con-
structed.

2. Additional excludes relations are added based on prede-
cessor and successor relations.

3. Additional includes/excludes patterns are added analo-
gous to NOTCHAINSUCCESSION relations.

4. Redundant excludes relations are removed.

5. Redundant condition and response relations are removed
via transitive reduction.

6. Additional condition relations are discovered using a lim-
ited replay strategy.

7. A final transitive reduction is performed for condition
relations.

We will refer to seven relation templates from the
LTL-based modeling language Declare. The relations are
described in words in Table 1 with analogous DCR relations.
These particular Declare constraints have been selected based
on their ability to be mapped to DCR Graph relations that can
be composed orthogonally (thereby ensuring the perfect fit-
ness requirement of the miner), the possibility to detect them
in linear time and extensive experimentation to determine
which combination of constraints yielded the best balance
between precision and simplicity on real-life logs. Formal
specifications of functions for identifying relations satisfied
by the log are given in Table 2 (again, these are only specifica-
tions, not implementations). In the description that follows,
we refer to lines in the high-level control flow pseudocode in
Algorithm 1.

The first step of the ParNek algorithm is the initialization
of a DCR Graph, after which we begin adding relations using
a number of strategies.

Initialization (lines: 2-5) We begin by defining a set of events

model. The algorithm proceeds in the following steps: E={1,...,|Z.]}

I:rg;;;tesf{fiﬁagﬁ;itraim Declare DCR Graphs Description
ATMOSTONE(a) a—% a Activity a can occur 0 or 1 time
RESPONSE(a, b) a e—> b After a occurs, b must eventually occur
PRECEDENCE(a, b) a —>eb Before b can occur, a must have occurred
ALTERNATEPRECEDENCE(a, b) a —+ b and For b to occur, @ must occur exactly once prior

b—% b

CHAINPRECEDENCE(a, b) See caption For b to occur, @ must occur immediately prior
NOTCHAINSUCCESSION(a, b) a =% b Activity b may not occur immediately after a

NOTCOEXISTENCE(a, b)

a —% b ANb—% a Activities a and b may not co-occur in the same trace

The CHAINPRECEDENCETrelation is not straightforward to encode in DCR Graphs relations and in fact, ParNek
looks for evidence of CHAINPRECEDENCErelations, but encodes them as a —+ b, b — % b, which is not

exactly equivalent

@ Springer

568 C.0.Backetal.

e N N R W N -

10
11
12
13
14
15

16
17
18
19
20
21

22
23
24

25
26
27

28
29
30

31
32
33
34

35
36

37

input : Alog L
output: A DCR Graph G

// INITIALIZATION

E={1,....12.|} // set of events
A=3Xp // activities in log

| =ieErs5;€X; // bijective labeling (events and activities)
m= (9,9, E) // initial marking
—>+=0 // set of includes relations
% =0 // set of excludes relations
—eo = // set of condition relations
o— =1 // set of response relations
// ADD ’'DECLARE’ TEMPLATES

=% = —>% |J {(s,5) | s € AtMostOne(L) } // self exclusions
—e = —e |J Precedence(L) // condition relations
o— := e— | J Response(L) // response relations
-+ = >+ J {6, 0)|s#t A (s,t) € ChainPrecedence(L) } // alternate precedence
=% =—% \J {(t,1)|3s,s #1.(s,t) € ChainPrecedence(L) } // alternate precedence

// ADD ADDITIONAL EXCLUDES
—-% = =% U |, ChooseOneRelation({ (s,0) | (s,1) ¢ Predecessors(L) /\ // not coexistence
(s,1) ¢ Successors(L) s £t}
U{(s,1)]| (t,s) € Predecessors(L))\ // not succession
(t,s) ¢ Successors(L) N\
(t, 1) ¢—=>% \s #1})

// ADDITIONAL INCLUDES/EXCLUDES
—% | J NotChainSuccession(L) // not chain succession
-+ U { @, 1)]|3s.(s,t) € NotChainSuccession(L) \(s,u,t) € Between(L) }

—>%
—>+

// REMOVE 'REDUNDANT’ EXCLUSIONS
=% = =% \ {(s,t)|Fu. (u,1) e>% N\
(u,s) € AlternatePrecedence(L) }

// REMOVE ‘REDUNDANT’ CONDITIONS/RESPONSES
o~ = o> \{(s,0) | (s,u)e0—> A (u,1) €0~ }
—e == oo\ {(s,)|(ssu)e—>e A\ (u,1)e—e }

// ADD ADDITIONAL CONDITIONS
—e = e | J{(s,)|(FoelVk.s=c(@)Nt=0c()=0k) Ni<j<k) N
NMVoelLVi>js=c()Nt=0() NFJh<j. (c(h),s) € -% N\
Jg<j.g>hn(o(g.s) € —>+)}

// REMOVE 'REDUNDANT’ CONDITIONS
o—> = o= \{(s,0)| (s,u)ee—> A (u,t) € o— }

return (E, M, A, e—, —e, >+, 5%, [) // RETURN DCR GRAPH

Algorithm 1: High-level control flow of the mining algorithm.

@ Springer

569

DisCoveR: accurate and efficient discovery of declarative process models

1011012y 2u) 25001) 1dooxa (7) urewop oY) se sSo[JU2AD 9ARY SUONOUNJ [

[(r=9=1v

(NHo=1\ (No=mn\/ Sbﬂav
:.\A.N<3cuN<€c V,v
)

)

[(r>1V ©o=1V o
[(a+no=1V ®eo
[(1=no=s & wo=1
:Tv«v.\<€bu:«m

V=1V (Do=s)le « (o=
:.Nv.\<3cn@v.\m — o=y
[(r>1Vo=1)lE &= wo=5s

[r=1e o=wo=5s

TYIET D

THET S
TUET S
IAT D

AT >

AT >
AT >
AT >

LOAT D

og V
og V
og
of
op 'V

op 'V
op 'V
oa 'V
oAV

4309

Ny [\ Tx31ns
N>V T2
INENSE AV =R

NERAVARIER A

N1V 1Tx21°'s

INER NI AV iR
NENNAVAKER
NENNAVAKENFN

INENAAVAEN

NXNN ER'|

1 U01ID]IYP U () IS00Y)
(1¢nts) “ <~ T:usampag

(1°9) w < 7T S4055200N8

(1°5) w < 7 S408S202paLg

(1°5) W <] UO1SS220NSUINY)ION
) e

1 20UdPIIILJUIDY)

(1°%) v <] 1 20UIPIIILJ 2IDULI]]Y
(1) u <~ 7 2ouapadaLg

(1°5) “ <~ 7 : asuodsay

s y “~7

LU ISO IV

SUOTJE[AI JUBAD[QI JO SJAS UINJAI Yorym suonouny 1od[oy Jo SUOHIUYAp [BULIO] g d|qeL

pringer

As

570

C.0.Backetal.

containing the same number of events as distinct activities
present in the log, the latter defining our set of activities

A=3Xg.
The labeling function
[E— X1, it

is a bijective mapping between events and activities. So for
all intents, events and activities are equivalent. Finally, we
assign an initial marking

m=,0,E)

in which all events are included, none are pending, and none
are executed. This marking does not change and is returned
in the final graph.

Self-Exclusions—ATMOSTONE (line: 11): We begin with
activities for which the log satisfies the ATMOSTONE rela-
tion. Any activity s satisfying this unary relation is mapped
onto the binary self-exclusion relation s —% s.
Responses—RESPONSE (line: 13): All pairs of distinct activ-
ities s and ¢ for which the log satisfies the RESPONSE relation
are mapped directly onto the response relation s e— 7.
Conditions—PRECEDENCE (line: 12): All pairs of distinct
activities s and ¢ for which the log satisfies the PRECE-
DENCE relation are mapped directly onto the condition
relation s — e t. While this forms the basis of the condi-
tion relation, more will be added in lines 32-34.
Includes/Excludes—CHAINPRECEDENCE (line: 14—15): The
first step in populating — + and adding further self-
exclusions to — % is based on identifying CHAINPRECE-
DENCE relations. However, encoding CHAINPRECEDENCE in
DCR Graphs s less straightforward than ALTERNATEPRECE-
DENCE, which is (nearly’) captured by an include and
self-excludes. Since ALTERNATEPRECEDENCE subsumes
CHAINPRECEDENCE, it is safe to check for evidence of
the more restricted CHAINPRECEDENCE, yet add ALTER-
NATEPRECEDENCE to the model.
Excludes—Predecessor/Successor (lines: 17-21): Further
excludes relations are found by defining two relations:

Predecessor (L) and Successor (L)

which return the sets of all possible predecessors and suc-
cessors of an activity, respectively. Note that these relations

3 In order to completely capture ALTERNATEPRECEDENCE, the target
activity needs to be excluded in the initial marking. This can lead to
complications w.r.t. other relations in which the target is source, and is
therefore omitted.

@ Springer

are, in fact, each other’s dual:
(a,b) € Predecessor(L) —> (b, a) € Successor

Nonetheless, to maintain consistency between the implemen-
tation described in Sect. 5, we distinguish between the two.

Based on the observation that a log in which activities s
and t never co-occur in the same trace satisfies the NOT-
COEXISTENCE(s, t) relation, we add s —>% t andt —>% s
(lines: 17-18). However, due to the subsequent removal
of redundant exclusions (lines: 26-27), the NOTCOEXIS-
TENCE relation cannot be guaranteed to hold since one or
both of the exclusions may be removed.

Furthermore, if s is observed to precede, but never succeed
t, and if no self-exclusion s —% s has been found, we add
t =% s (lines: 19-21).

In order to restrain model complexity, only one exclusion

relation is included for each target activity by means of the
ChooseOneRelation function. At present, this function is
implemented in a naive (but fast and determinstic), first-come
manner with a more sophisticated approach being left for
future work.
Includes and Excludes—NOTCHAINSUCCESSION (lines: 23—
24): To identify further includes and excludes relations, we
rely on NotChainSuccession(L) as well as Between(L),
which simply identifies activities occurring between two
other activities in a log.

Put simply, if we never observe s followed immediately
by ¢, we add an exclusion s —% t (NOTCHAINSUCCESSION).
If, however, ¢ occurs after s, with some sequence of interme-
diate activities s.t. we have (...,s,uy,...,uy,,t,...), then
we allow all intermediate events to re-include ¢. That is, for
alll <i <n,weadd u; >+ t.

Remove Redundant Excludes (lines: 26-27): Here, we
remove redundant excludes relations based on the observa-
tion that if activity r always precedes s, and if r —% ¢, then
adding s — % ¢ is redundant. It should be noted that this
redundancy does not hold if some u occurs between r and
s and u —+ ¢. Presently, this caveat is ignored, potentially
leading to a decrease in model precision, but allowing for an
enormous reduction in model complexity.

Limited Transitive Reduction (lines: 29-30 and 36): The
condition and response relations satisfy the transitive prop-
erty when seen in isolation. That is, if we have s — of and
t — eu, then s — eu. In this case, s — eu is superfluous.
The caveat, seen in isolation, is crucial; however, since if the
same model has v — % ¢ for some v, then t may become
excluded, annulling the implicit s — eux. Formally,

s >ot At >euAPv.v %t =5 >eu

In fact, we can safely remove redundant s —eu despite
the presence of an interfering excludes relation (that is, we

DisCoveR: accurate and efficient discovery of declarative process models

571

ignore #lv. v —% t). The removal is safe in the sense that this
can only result in a more permissive model, i.e., we do not
risk arriving at a model on which the log cannot be replayed.
The downside is a less precise model, which may permit
behavior which ought to be forbidden.

A limited-horizon transitive reduction is performed which
considers only relations between an activity and its neigh-
bors’ neighbors, but not further, in order to constrain
computational complexity. This is applied to all condition
and response relations prior to the final step of discovering
additional condition relations, and once again on condition
relations afterward. In many models, the reduction in rela-
tions is very substantial. See Fig. 1 for a graphical illustration.
Additional Conditions (lines: 32-34): The first set of condi-
tions we added based on the PRECEDENCE relations were
conservative in that this relation was observed to hold
unconditionally across traces. We can now add less obvious
condition relations, taking advantage of semantics added to
our model by inclusion and exclusion relations.

We start by adding s —e ¢ if s occurs before the first
occurrence of ¢ in some trace. For those traces in which s
does not precede the first 7, it may be the case that at the
time of executing 7, that s is currently excluded, e.g., if the
relation u —% s is present and u is observed prior to 7, and s
has not been re-included. Recall that DCR Graphs semantics
dictate that a relation does not apply when the source activity
is excluded.

Since only includes and excludes relations are determina-
tive for the validity of these candidate relations, we can utilize
a limited replay strategy based on these relations alone. This
approach is less computationally demanding than using the
full model.

5 The DisCoveR miner

In the previous section, we provided a formal, functional
characterization of the ParNek algorithm. In the current

(a)

(b)

() ()
/ /

Fig.1 Transitive reduction with a limited horizon: graph a has the same
reachability/transitive closure as the reduced graph (b), but redundant
edges within a 2-edge horizon have been removed

section, we show how the algorithm was operationally imple-
mented as the DisCoveR miner. The full JAVA source code is
provided as open source (licensed under LGPL-3.0) at [81].
As the full source code is too large to include in this paper,
we will at various times provide a skeleton of the code and
refer to the repository for the full details, note that this means
that the listings below may at times obfuscate some details
from the actual source code, or include additional comments,
when class names and line numbers are mentioned, they refer
specifically to the release version 1.0.1.

The primary contribution of the implementation is its run

time complexity, expressed in terms of the size of the event
log (L) and in terms of the number of unique activities in
the log (A). This is achieved through two primary means.
First of all, instead of computing the various functions of
Table 2 naively by continuously re-parsing the log, we first
build an abstraction of the log, which allows us to afterward
compute these functions in O(Az), which in turn makes the
main Algorithm 1 independent to the size of the log, except
for the computation of additional conditions. Secondly, by
using bit vector operations for (1) the building of the abstrac-
tion, (2) the computation of additional conditions and (3) the
DCR Graph semantics, we reduce their complexity to be,
respectively, O(L x A), O(L), and O(1). This means that the
combined complexity of the mineris O((L x A) + A?), with
the log size usually dominating. The bitvector implementa-
tion of DCR Graphs was inspired by earlier work by Debois
et al. [20,45].
Why bit vectors? A bit vector (also bit array or bit set) is an
array of bits (i.e., Booleans) that exposes bitwise operations.
This allows the compiler to map the data structure directly to
bitwise machine instructions, making computations on them
extremely fast.

5.1 DCR graph semantics

We first show how we used bit vectors to improve the effi-
ciency of replaying DCR Graphs. Note that BitSets are
JAVA’s implementation of bit vectors, the marking of a DCR
Graph can then be represented as such:

public BitSet executed = new BitSet () ;
public BitSet included = new BitSet () ;
public BitSet pending = new BitSet () ;

Listing 1 [81]: BitDCRMarking, In. 7-9

For example, let us assume that we have three activities
with respective indices A (1), B (2), and C (3). If A and C
have been previously executed, then their executed states can
be represented as the bit vector:

executed = [true, false, truel;

We can similarly represent relations as matrices, encoded
in practice as hashmaps of bit vectors to allow fast lookup of
the relations of a particular activity:

@ Springer

C.0.Backetal.

572

public HashMap<Integer, BitSet>
conditionsFor = new HashMap<>{() ;

public HashMap<Integer, BitSet>

responsesTo = new HashMap<>() ;

public HashMap<Integer, BitSet>
excludesTo = new HashMap<> () ;
public HashMap<Integer, BitSet>

includesTo =

Listing 2 [81]: BitDCRGraph, In. 28-33

new HashMap<>() ;

Continuing on the previous example, if we have a con-
dition from A to B and from B to C, the data structure
conditionsFor would be constructed as follows:

conditionsFor.put (1, [false, false,
falsel]) ;

conditionsFor.put (2, [true, false,
falsel]) ;

conditionsFor.put (3, [false, true,
falsel]) ;

Given these definitions, the semantics of DCR Graphs can
be expressed as a short list of bitvector operations. Note that
the get() method retrieves the bit at a given index and that
the intersects method first applies an AND operation on two
vectors and afterward checks if the result is 0. Enabledness
of events can be computed as follows:
public Boolean enabled(final

BitDCRMarking marking, final int
event) {

if (!marking.included.get (event))
return false;

if (conditionsFor.get (event) .
intersects (marking.blockCond ())

)
return false;
return true;

}

public BitSet blockCond () {
return included.clone () .andNot (
executed) ;

}
Listing 3 [81]: BitDCRGraph, In. 96-116 & BitDCRMarking, In. 11-21

First, we check the index of the included bit vector corre-
sponding to the event, after we check if any of the conditions
for the event are current included and not executed. The
latter requires two bitwise operations: first, we subtract the
executed from the included events, giving us a bit vector rep-
resenting those events that are currently included, but have
not yet been executed, after we check if this bit vector inter-
sects (i.e., checking if the bitwise AND is greater than 0) with
the bitvector representing the conditions for the event. Note
that a more straightforward, but less efficient implementation
of DCR Graphs would loop over a data structure containing
all conditions to achieve a similar result.

@ Springer

Likewise, the execution of an event can be computed as
follows:
public BitDCRMarking execute (final

BitDCRMarking marking, final int
event) {

BitDCRMarking result = marking.
clone () ;

result.executed.set (event) ;

result.pending.clear (event) ;

result.pending.or (responsesTo.get (
event)) ;

result.included. andNot (excludesTo.
get (event)) ;

result.included.or (includesTo.get (
event)) ;
return result;

}
Listing 4 [81]: BitDCRGraph, In. 153-174

Here, we first set the bit that corresponds to the executed
event in the executed bit vector to true. We then set the bit
that corresponds to the event in the pending bit vector to
false. Afterward, we add any new pending responses through
the bitwise OR operation on the pending bitvector and the
responseTo bitvector for the executed event (which repre-
sents those events that are a response to the event). Then,
we remove excluded events from the included bitvector by
subtracting the excludesTo bitvector for the executed event.
Finally, we add included events to the included bitvector
through a bitwise OR with the includesTo bitvector (Table 4).

As before, because hashmap lookup and bitvector opera-
tions are constant, a function that would usually loop over the
sets of relations becomes a short list of constant operations.

This implementation of DCR Graphs allows for extremely
fast replay of logs, which significantly reduces the duration
of the Additional Conditions part of the algorithm, which
requires a replay of the log on the graph that has been found
up-to that point. We will further address how we reduced the
computation of Additional Conditions to linear time later in
this section.

5.2 Abstracting the log

To avoid repeating computations, we separate the mining
process into two steps: first, we build a number of relevant
abstractions of the log, which we then use afterward during
the actual model building steps as described in Sect. 4. This
separation of concerns ensures that there is a central part
of the code where we parse the log, with all other parts of
the algorithm working only on these abstractions, which are

DisCoveR: accurate and efficient discovery of declarative process models

573

Table 3 Example of bit operations involved in execute method (see
Listing 4)

[MARKING AT TIMESTEP ¢ |
10000000 executed
01001000 pending
01001001 included
[EXECUTE EVENT 4
10000000 executed
OR 00001000 event 4
10001000 executed’
01001000 pending
AND 11110111 notevent4
01000000
OR 00100000 responsesTo event 4
01100000 pending’
01001001 included
AND 11111110 not excludesTo event 4
00001000
OR 00100000 includesTo event 4
01101000 included’

[MARKING AT TIMESTEP ¢ 4- 1

10001000 executed
01100000 pending
01101001 included

bounded by the number of activities (O(A?%)) and not the
log size. To increase the efficiency of the log abstraction
mechanism, we also store and compute these abstractions
through bit vector operations. The listing below shows their
definition:

public HashMap<Integer, BitSet>
chainPrecedenceFor = new HashMap
<>();

public HashMap<Integer, BitSet>
precedenceFor = new HashMap<>() ;

public HashMap<Integer, BitSet>
responseTo = new HashMap<>() ;

public HashMap<Integer, BitSet>
predecessor = new HashMap<>{() ;

public HashMap<Integer, BitSet>
successor = new HashMap<>{() ;

public BitSet atMostOnce = new BitSet ()

7

Listing 5 [81]: BitParNekLogAbstractions, In. 37-50

Below we show how the abstractions are computed. The
parseTrace method is called once for each trace in the log.
Note that the method does not require a nested iteration over
the log or current trace, only a single nested iteration over the
activities to compute responses. Therefore, the complexity
of computing the abstractions is O(L x A). For convenience,
logs are transformed into lists of integers, this allows for

straightforward mapping of activities to the indices of the bit
vectors and efficient storage of the log for later reuse.

public void parseTrace (List<Integer> t)

{
We keep track of which
activities were seen at least
once before
BitSet localAtLeastOnce = new
BitSet () ;
We keep track of which
activities were seen only
before another activity
HashMap<Integer, BitSet>
seenOnlyBefore = new HashMap
<>();
We keep track of previously seen
activity
int last_i = -1;
For each event in the trace:
for (int 1 : t) {
Predecessors: any activities
seen at least once before

1
this.predecessor.get (i) .or (
localAtLeastOnce) ;
// 1 occurs than
if (localAtLeastOnce.get (1))
this.atMostOnce.clear (1) ;
localAtLeastOnce.set (1) ;
Precedence for (i): any
that occured
before the first
this.precedenceFor.get (i) .and(
localAtLeastOnce) ;
ChainPrecedence for (i): any

more once

activity
instance

activity that occured
before i in every instance.
if (last_i != -1) {
BitSet bs = new BitSet () ;

bs.set(last_1i);
this.chainPrecedenceFor.get
(i) .and (bs) ;
} else {
this.chainPrecedenceFor.get
(i) .and (new BitSet ());

To later compute responses
we track which events were
seen before 1 and not after

if (this.responseTo.get (i) .
cardinality () > 0) {
seenOnlyBefore.put (i, (

BitSet)
localAtLeastOnce.clone
()):

}

for (int j seenOnlyBefore.
keySet ()) {
seenOnlyBefore.get (j) .clear

(1)

}

last_1 = 1;

@ Springer

574 C.0.Backetal.
possibleConditions.put (kvp.
Responses: those events that getKey (), pc);
always occur after j }
for (int 3 seenOnlyBefore. keySet // Go through the log once.
()y) | for (final Entry<List<Integer>,
this.responseTo.get (j) .and (Integer > kvp h.traces.
localAtLeastOnce) ; entrySet ()) {
this.responseTo.get (j) .andNot (List<Integer> trace = kvp.
seenOnlyBefore.get (j)) ; getKey () ;
} BitDCRMarking m = g.
} defaultInitialMarking ()

Listing 6 [81]: BitParNekLogAbstractions, In. 156-217

To avoid unnecessary computations embedded in the main
parsing of the log, we exploit the fact that the predecessor
and successor functions are each other’s dual and compute
the successor function after the log has been parsed:

public void finish () {
for (int 1 this.predecessor.
keyset ()) |

for (int j this.predecessor.

keySet ()) {
if (this.predecessor.get (i)
.get (J)) |
this.successor.get (Jj) .
set (1) ;
}

}
Listing 7 [81]: BitParNekLogAbstractions, In. 219-230

5.3 Mining from log abstractions

After creating the log abstractions, we start the discovery
task. For the sake of brevity, we will not show source code
here, but refer to [81]: BitParNeks, In. 75-228. In short, the
implementation follows largely the steps described in Algo-
rithm 1. The key difference is in the additional condition
step, where we avoid having nested loops over the traces
by implementing this function as follows (we only show the
most relevant parts, for the full method we refer to [81]):

public wvoid
findAdditionalConditions (
BitParNekLogAbstractions h,
BitDCRGraph g) {
Possible additional
conditions: predecessors -
current conditions
HashMap<Integer, BitSet>
possibleConditions = new
HashMap <> () ;
for (final Entry<Integer,
BitSet> kvp h.predecessor
.entrySet ()) {
BitSet pc = (BitSet) kvp.
getValue () .clone () ;
pc.andNot (g.conditionsFor.

get (kvp.getKey ())) ;

@ Springer

7

for each trace we track

activities have

least

which
been seen at once
before.
BitSet seen = new BitSet () ;
for (int event trace) {
// possible activities
that may be a
condition for the
activity
that are

current
are those

not included, or
have been see
before.

BitSet ok = new BitSet

()

ok.set (0, h.
ActivityToID.size ()
)i

ok .andNot (m.included) ;

ok.or (seen) ;

// valid additional
conditions are
those for which
this applies in

each instance.

possibleConditions.get (
event) .and (ok) ;
execute the

in the
current DCR graph
to get a new
marking.

m = g.execute (m,

current
activity

event)

i

add the current

activity to those
we have

seen.set (event) ;

seen.

}
Listing 8 [81]: BitParNek, In. 255-296

Altogether, these optimizations provide us with an
extremely efficient implementation of the ParNek algorithm.
In the following section, we will show through experimen-
tation that it is in fact nearly one order of magnitude faster
than any other miner and two orders of magnitude faster than
most of the state-of-the-art Declare miners.

DisCoveR: accurate and efficient discovery of declarative process models

575

6 Evaluation

To evaluate the performance of our algorithm, we frame the
process discovery task as a binary classification task of iden-
tifying legal/illegal traces. For this, we take advantage of a
labeled data set from the Process Discovery Contest 2019.*
in which DisCoveR was among the top performing sub-
missions , classifying 96.1% of traces correctly. This result
was achieved despite the fact that DisCoveR considers only
control-flow, ignoring auxiliary data associated with events.
Nevertheless, the present evaluation should not be interpreted
as a comprehensive benchmarking, but rather a preliminary,
proof-of-concept evaluation.

For comparison, we report results for: (1) a miner based
on the same formalism (DCR Graphs) developed by Debois,
et.al. [25]; (2) two leading miners also based on the declar-
ative paradigm: MINERful[15] and Declare Miner [47]; (3)
the well-established Petri net miner, Inductive Miner; and
finally (4) the winning miner for the PDC 2019, the Log
Skeleton miner [87]. Note that the reason DisCoveR achieves
a higher accuracy than the Log Skeleton miner in our eval-
uation is due to the fact that we report the results of the
algorithm’s classification alone, whereas the winning sub-
mission to the process discovery contest was a manually
augmented model based on the output of the Log Skeleton
miner.

Framing process discovery as a binary classification task is
arguably an oversimplification of the aim of process discov-
ery, since it does not capture the degree to which a model fails
to capture an event log. Error measures that aim to capture
this are usually based on model-log alignment techniques [5],
or model specific measures such as token replay metrics for
Petri nets [68]. The advantage of classification-based evalu-
ation lies in the ease of interpretability and comparability. In
a model-agnostic manner, we gain a view of the algorithm’s
bias toward committing different classes of statistical errors
(e.g., Type I/Il) by analyzing true/false positives/negatives,
and the corresponding precision, recall, F1-score and MCC
measures.

Before presenting the results, we briefly formalize the task
of process discovery as binary classification in terms of com-
putational learning theory. This clarifies our formulation of
processes in probabilistic terms, a property which is implied
by the statistical evaluation metrics we present, a subset of
which were the basis for evaluation in the PDC 2019.

Through the appeal to learning theory, we aim to illus-
trate that a key reason our algorithm performs well is due
to the—albeit heuristic—regularization (i.e., restriction on
model complexity) performed at several steps in the algo-
rithm.

4 https://icpmconference.org/2019/process-discovery-contest

6.1 The learning task

The goal of a supervised learning task is to learn an approxi-
mation 4 of a target function f which is assumed to generate
the observed data [4]. The training data L are ani.i.d.” sample
from the true probability distribution (P p) associated with f.
The aim is to maximize performance (e.g., minimize an error
function) on out-of-sample data by means of optimizing per-
formance on in-sample training data in such a way that the
learned model avoids overfitting.

Formally, a learning algorithm y is a mapping from a
sampling L from the process (P, Pp) to a hypothesis space
'H s.t. the out-of-sample error Eyy is minimized:

y L — H; L+ argmin Eqy(h)
heH

To define our error function E, we can frame process
discovery-based binary classification as the task of predicting
the outcome of a random Bernoulli variable defined by

1(c € P)

which returns 1 when a trace o is a member of P (the set of
traces associated with the true process) and O otherwise.

The most straightforward way of defining the in-sample
error measure is simply the proportion of “successes” in this
Bernoulli trial. If L contains only positive examples (i.e., L €
P), the in-sample error can be formulated as the proportion
of traces accepted by the learned model 4 (i.e., recall):

1(o € £(h))

Bty = Y X0
oel | L |

If L contains both positive and negative examples, the in-
sample error can be written as the proportion of examples on
which the learned model and example agree (i.e., accuracy):

E%(h)zz]1(066(}1)';":} oeP)

oel

We include this formulation (Ej}) for clarity, but note thatitis
at odds with our formalization of alog L as a sample from P.
For it to be consistent, we would need to consider L a sample
of traces in P as well as not in P. In the evaluation based
on PDC 2019 data, all training logs contain only positive
examples.

In most learning tasks, minimizing Ej, (h) is trivial if the
hypothesis set H is large enough. Indeed, E{ can be triv-
ially minimized by a flower process model which permits all

> Independent and identically distributed.

@ Springer

https://icpmconference.org/2019/process-discovery-contest

576

C.0.Backetal.

behavior. The true challenge of the learning task lies in ensur-

ing not only that in-sample error is small, but simultaneously

that in-sample error is close to out-of-sample error.
Formally,

[E(h)in — E(h)ou| < €

for some tolerance threshold e.

While a large enough hypothesis space H may indeed
contain the target function f, the likelihood of our learning
algorithm choosing f in such a large hypothesis space is
vanishingly small. It is much more likely to settle on some
other, very complex, function g € H, leading to a high Ey:.
We therefore seek an approach to ensuring that

P |E(h)in - E(h)out| <€e]l>1-6§

where § is a desired confidence threshold. This is known as
a “probably (8), approximately (¢), correct” (PAC) bound.
While somewhat counter-intuitive, this formulation helps
us understand why restricting H to a smaller set which does
not include the target function f will often lead to a lower
Eout.
Regularization Thus, a key component in the learning pro-
cess is that of regularization: a process for controlling the
complexity of a learned model, i.e., restricting the size of
the hypothesis space, to improve generalization. This gives
rise to the formulation of the learning process as a trade-off
between inductive bias® of a hypothesis set and a penalty for
the complexity of a hypothesis [74]. The sum of these terms
gives an estimate of the out-of-sample error:

A

Eout = Ein + Q(N, H, 8)~

Where N denotes sample size, H the hypothesis space and §
the desired confidence that Eqy < l:?out.

So although we can achieve a very low in-sample error
using a rich hypothesis set, we penalize complex models
using a regularization function Q2. Explicitly incorporating
this function into learning algorithms s.t., it minimizes Eout
rather than Ej,, can greatly improve results.

ParNek does not currently attempt to explicitly minimize
Eout, and 2 is likewise not explicitly formulated. How-
ever, some form of regularization is achieved by effectively
restricting the size of . This is done via a set of heuris-
tics attempting to control model complexity, removing those
which are redundant w.r.t. training data or add little to the
precision of its semantics. Indeed, ParNek cannot discover
the entire set of DCR Graphs, thus

HpaNek C Hpcr = w-regular languages

© The minimal in-sample error achievable for hypothesis & € H.

@ Springer

Restricting the available hypothesis set is analogous to limit-
ing a linear regression algorithm to third-order polynomials,
for example, which corresponds to an €2 which assigns a zero
weight to all higher-order coefficients.

While heuristic in nature, the approach is effective, as is

seen in comparison with miners which do little to control
model complexity, such as Debois, et al’s miner. We intend
to pursue more well-defined regularization procedures for
DCR Graph mining algorithms in future work.
Metrics Aggregate evaluation metrics, such as precision,
recall, and Fi-score, are commonly reported for classifica-
tion tasks. Given a confusion matrix, we define precision
(prec.) and recall as follows:

PRED- DATA
ICTION + B
+ (TP) False Pos. (FP) prec. = rpimp

— False Neg. (FN)
recall = %

True Neg. (TN)

_ __ TP+IN
ACC-= TPITNLFPLIN

The Fg-score is then the harmonic mean of precision and
recall, where B determines a weighting of precision relative
to recall:

(1 + B?) - precision - recall

Fg —
B - precision + recall

Originally stemming from information retrieval, these

metrics have been criticized for giving weight to true posi-

tives and ignoring true negatives [11], and other metrics such

as Matthews Correlation Coefficient (MCC) avoid assump-

tions regarding the target class.

Arguably, process mining can be seen as an information
retrieval task, if the tool is used to “query” an event log for
compliant/noncompliant traces. For completeness, we report
precision, recall, and F-score for both the situation in which
the target class is compliant behavior (true positive) and non-
compliance (true negative), as well as Matthews Correlation
Coefficient (MCC).

6.2 Results

In addition to case studies, we present a controlled evaluation
of the algorithm based on a labeled data set from the Process
Discovery Contest 2019. The evaluation is bolstered by the
truly blind nature of the process. After being presented with
a training set with positive examples only, and submitting
results for a partially blind validation round, the predictions
on a separate test set were sent in to the contest administrators
who independently evaluated their accuracy. This removes
any potential for accidental data snooping.
See Table 4 for the complete results.

DisCoveR: accurate and efficient discovery of declarative process models

577

Dataset The data set essentially consists of 10 independent
data sets stemming from 10 different processes. Partici-
pants were presented with an unlabeled training set from
each process. Then, two validation sets were provided for
which participants could submit their algorithm’s classi-
fication results. The organizers then returned a confusion
matrix—but no details regarding which traces specifically
were misclassified and how. Two rounds of submission for
validation were permitted, though we only took advantage of
the first.

Event logs for processes 1, 5, 7, 8, 9, and 10 contained

auxiliary data associated with each event, sometimes more
than one attribute. The version of our algorithm presented
here considers only control-flow and is unable to take advan-
tage of additional attributes, and neither do the miners we
present in the following comparison.
Comparison For comparison, we present the performance of
five relevant mining algorithms: the first, another DCR Graph
mining algorithm designed by Debois et al. [25]; second,
two miners based on Declare constraints, MINERful[15] and
Declare Miner [47]; third, Inductive Miner, a flagship imper-
ative miner which returns Petri net models; and finally Log
Skeleton Miner, the winning submission to PDC 2019 [87].

Debois et al.’s DCR Graph miner takes a very greedy
approach to identifying DCR relations which hold for an
event log. Essentially, the algorithm begins with a fully con-
strained model over the set of activities in the log (mapped
one-to-one to DCR events), then goes through the log and
removes any constraints which are violated by observed
behavior.

Due to the greedy strategy, the algorithm often finds thou-
sands of constraints and clearly overfits the training data,
leading to poor performance on test data.

MINERful is a miner for the Declare language which uses
anumber of user-defined parameters to determine which con-
straints to include in a model after mining the event log. The
three core parameters are:

Support The fraction of traces in which the constraints
must hold.
Confidence Support scaled by the fraction of traces in

which a constraint is activated.
Interest Factor Confidence scaled by the fraction of traces in
which target of a constraint is also present.

A constraint is considered to be activated when it becomes
relevant in a trace. So, a succession constraint between s and
t will only become activated in traces in which s is present.
In addition, to count toward interest factor, the target r must
also be present. Defined as scalings, these parameters are
dependent on one another and result in the bounds: support
> confidence > interest factor.

MINER(ful also performs subsumption checks to eliminate
redundant or meaningless constraints. For example, wherever
a CHAINSUCCESSION constraint is found to hold, SUCCES-
SION will necessarily hold and adds no information. This
procedure is akin to DisCoveR’s strategy of removing transi-
tively redundant constraints in order to avoid unnecessarily
complex models.

We employed an automated parametrization procedure
originally developed for the evaluation in [8]. The procedure
employs a binary search strategy to find values for confi-
dence and threshold which result in a model with a number
of constraints as close to, but not exceeding, some limit. We
present results for models with between 89 and 200 con-
straints. Allowing larger models did not improve accuracy
further.

Declare Miner was the first miner developed for the
Declare language and uses a frequent itemset mining
approach using the Apriori algorithm combined with sub-
sequent pruning techniques. The user can set two threshold
parameters: support, which measures the fraction of traces in
which the constraints hold and alpha which measures the how
often a constraint is activated (same as confidence for Min-
erful). Furthermore, the user can specify which constraint
templates should be considered.

We consider models generated by Declare Miner with
thresholds support = 100 and alpha = 100 and with either all
constraint templates or only positive constraint templates (no
NOT- constraints). The parameter settings were settled upon
after testing numerous settings from the range of thresholds,
with 100/100 performing best.

Inductive Miner uses a divide-and-conquer approach to
recursively partition the directly-follows graph (eventually-
follows in the IMi variant of the miner) of a log such that the
partitions correspond to one of four process tree operators:
exclusive choice, sequential composition, parallel compo-
sition, and redo loop. The resulting process tree can be
transformed into a corresponding Petri net.

We tested Inductive Miner (IMf) using a range of noise
thresholds from 0.0 to 1.0, where a setting of 0.0 ensures
perfectly fitting models w.r.t. to the mined event log (training
set). A noise threshold of 0.0 is equivalent to the origi-
nal Inductive Miner (IM). We also investigated the variants
known as IM-EKS, IMc, IMcpt, IMlc and IMflc, whose
performance was nearly identical to standard IM (noise
threshold 0.0). The largest difference was IMflc with 2 fewer
correct classifications. We only report detailed results for
settings 0.0, 0.5, 1.0 for readability, but note that intermedi-
ate noise threshold between these values followed the same,
roughly linear, relationship with the accuracy of the resulting
model.

Log Skeleton miner was the basis for the winning sub-
mission to the PDC 2019 and builds on some basic Declare
constraint templates: PRECEDENCE, RESPONSE, NOTCOEX-

@ Springer

578

C.0.Backetal.

ISTENCE, and adds NOTPRECEDENCE, and NOTRESPONSE.
Furthermore, it employs the notion of equivalence classes
for co-occurring activities. We report the results for the fully
automated miner, but as noted, the final submission was man-
ually extended, which is why the results we report are lower
than the 99.78% accuracy achieved by the creator of Log
Skeleton.
Results We report results for the classification task in a confu-
sion matrix for each of the 10 processes, as well as aggregate
across processes in Table 4. Keep in mind, that a user-defined
error measure may choose to weigh false positives and false
negatives differently (o and $ in our formalization).
Additionally, we report Matthews Correlation Coefficient
(MCC) in addition to precision, recall, and F}-score, both in
the case of the target class being permissible traces, as well
as forbidden traces. The appropriate framing would depend
on the application.

6.2.1 Run time

We compared run time performance to the same miners as
in our classification evaluation, finding that DisCoveR per-
forms comparably with the fastest miners, and much faster
than Declare-based miners, MINERful and Declare miner,
even when multithreading is enabled. Note that for run time
comparison, the linear-time IMD variant of Inductive Miner
from the pmdpy”’ Python module was used.
Experimental setup Experiments were conducted on the set
of 10 test logs from the Process Discovery Contest 2019 and
were run on a Lenovo Thinkpad P50 with an Intel Xeon E3-
1535M v5 2.90 GHz quad-core processor and 32G of RAM.
We present mean run times over 100 runs of mining each log.

MINERful was parametrized with support threshold of
1.0, a confidence threshold of 1.0 and interest factor thresh-
old of 1.0. Declare miner was parametrized with support =
1.0 and alpha = 1.0. The parameters for MINERful were cho-
sen due to being the most “generous” in terms of run time.
The parameters for Declare miner stem from the best perfor-
mance in classification. We also report notable variants: for
MINER(ful with and without an additional model simplifica-
tion step, for Declare miner with/without negative constraints
and with/without multithreading. We note that changes in
parametrizations do not significantly alter performance—
certainly not relative to other miners. Note that we did not
employ the parameter tuning procedure used to achieve the
results for MINERful in Table 4 which requires re-running
the miner many times.

The 10 logs all consist of 700 traces. Run time results can
be seen in Fig. 2 as well as Table 5, where details regarding
number of activities and mean trace length are also included.

7 http://pmdpy.org

@ Springer

" Minerful (Simplified)
Minerful (NotSimplified)
Declare (no negatives, 1 thread)
Declare (with negatives, 1 thread)

100000 ¢ Declare (no negatives, 8 threads) —+—
Declare (with negatives, 8 threads) —e—
Debois —s—
LogSkeleton —a—
InductiveMiner (IMd) —s—
DisCoveR ——
10000 F E
W
- ="
E
()]
£ 1000 | O ot _ 1
= T N e
5)
04 L
% e— =
[}
=

100 | — —**;/ / \

s

1 1 L 1 L L
0 2 4 6 8 10

Log

Fig. 2 Mean run times in milliseconds across 100 runs on Process
Discovery Contest 2019 training logs. MINERful was run with the
thresholds: support = 1.0, confidence = 1.0, interest factor = 1.0, with
and without a post-processing step to simplify models. Declare Miner
was with and without multithreading, and with alpha = 1.0, support =
1.0, with all constraint templates and with all but the negative constraint
templates. For run times, the IMD variant of Inductive Miner from the
py4pm platform for Python, as this variant is significantly faster than
other IM variants. Log Skeleton Miner was the winning submission in
terms of classification accuracy, DisCoveR was the runner-up

Note that these results should be taken as a rough indi-
cation of performance subject to some variance. A number
of factors that are out of our control may affect run times,
especially for very low run times. These include Java Virtual
Machine’s garbage collection strategies, just-in-time com-
pilation and optimization strategies, as well as background
operating system processes. To determine a reasonable num-
ber of runs, we observed the convergence of run time
estimates w.r.t. increases in runs, finding that estimates stabi-
lized by 100 runs and clearly so by 1000 and 10,000 runs. We

http://pm4py.org

579

DisCoveR: accurate and efficient discovery of declarative process models

LSO LLO L oroL ooV 6LE 88 444 68T 8§LL 8€€ £29 69C 65/ Por 2218 [opop
0F0 9660 M 08T T 8§ 1 L 0 L O T I 8 0 O 0 8 0 9 0 v¢ 0 0T O - auudl
66'0 €90 o L9T ISP LE ¥r 8 S¥ 86 Sy €€ vb L€ S¥ SE€ Sv ¥T 8 61 Sy Il St ST S + -aaud

00 DO - + -+ - 4+ - 4+ -+ -+ - 4+ - + - + - + - + Sodare[oaq
L80 060 LI %668 0V L6 r6 r6 66 66 68 96 6 66 66 2218 [opop
6L°0 860 [[Bo9Y 1s€ I 8¢ I 8¢ 0 0¢ 0 C¢ 0 @ 0 ¥C 0 Lg 0 6¢ 0 ¢v 0 8¢ 0 - aarLdI
860 80 991d 96 (4514 L ¥ LI S¥ SI Sv €I Sy ¢ Sy 1T Sy S 8 9 ¥ [4 L Sv + -daadad

620 DO - + - + - + - + - + - + - + - + - + - + - + L EINIA
16°0 60 W %6'16 0V £81 vLI 681 661 661 861 r61 981 8§81 81 2218 12po
680 660 1By 08¢ 9 8¢ [3 0 8¢ 0 L 0 1Iv 0 9¢ 0 Iy 0 Iy | . 44 0 ¢€F C — QaLdI
860 L80 RERY | L9 LYY L T ¥I Sy L S 8 SF ¥ Sy 6l v 1 8y v o I Sy T ¢t + -daad

$80 DO - + — + — + — + - + - + - + - + - + - + - + JANFIANIN
€60 60 LI %9T6 0V oLl 594 0€C 374 (Y44 (Y4 081 0sc orc SY4 2218 [2po
760 16'0 [I®d°Yd (1147 0oy o6¢ 9 v I oy L LE 9 Sb 0 @ 0o Iy I ¢ L Sy € v 6 - aarLdI
16°0 760 091d LT €Iy 9 6¢ I v ¢ 8¢ 8 6¢ 0 Sy ¢ Sy T Ly C 8¢ 0 I 9¢ + -d3aad

€80 DO - + - + - + - 4+ - + - + - 4+ - + - + - 4+ - + uojapays 507
96'0 960 LW %196 00V 9¢1 1L1 ¥8C 1944 444 LYY 81 1L 681 444 9ZIS [9POIN
€60 660 ey LIV S LE I o 0 ¢¥ T LE I Sy 0 0 9¢ I sy 0 sy 0 <P 0 - aqaLdI
660 76'0 091d 0€ 1144 8 W [T ¢t 8 W 0 Sy ¢ Sy 9 Ly 0 ¢Sy 0 <y 0 <SP + -d3ad

260 OO - + - + - 4+ - 4+ - + - + - + - + - + - + - + Yor0DSIA

QATIBSON QATIISOJ 0lg 64 84 Ly d Sd vq & od |5
SHOVI], LADUV], 9e3a33y AdAdASIQ

(‘4 *'J) Se 0} PaLIgJAI UOTB[NULIOY INO UI ‘[dpow yiny) punoid oyeredss £q pojerouas yoes ‘sjas Biep [eNPIAIPUL JOJ SIJLIBW UOISNJUO)) § d|qel

pringer

as

C.0.Backetal.

580

JIQUIA] 9ATIONPU] Sy} WOIJ $19U LIJ9J Ul suonisuel) pue saoe[d usamiaq seSpa pue (uoje[eys SoT urpnpour) sfopowr
QATJRIB[OIP UI SUOTIB[I ATRUIq o' ‘S[OPOW [[& Ul ,SISPA,, 0 SI9JaI 9ZIS [OPOJA “U JO P[OYSAIY) 9SIOU B)M JOUIJA dAONPU] 0 SI9Jal ,eanonpuy 00| = Moddns ‘001 = eydye :suonesuojowered yim
10q ‘sre[dwa) JUTENSUOD [[B SOPN[OUT IR[IQ(] ‘SIUIRIISUOD dATIRTAU SUIPN[OXS JQUIA] IR[O3(] Y} O SIQJOI SOJAIB[Id(] "SIUIBISUOD ()()] - U URY) JOMIJ Y)IM [9POW B UI SI[NSAI Yorym uonezinawered v
03 $19Ja1 ,[NJYANIIN “partodar ose St (DDIA) WUSIOYJI0) UOTIB[AII0D) SMAUNEIA “A[oA1}0adsal ‘saoe) [T pue [e39] ST SSe[d 1811} oY) YoIym 10J pajiodar a1e $a100s-1,7 pue [[8I9y ‘(*091q)UOISIOxI]

99°0 170 LI %y0s oV SLL 86 9ILI 1524 SISl LSST 79 9L8C £6CC 281 2218 [2po
96°0 900 B3y 9Ty Ly o6 Le v Sy v v 66 I S S €€ 8¢ 8 W v Sv¥ S¥ S¥ S Sb - adarLdI
0s0 LSO 02ld 0c LT 8 9 0 1 1 1 14 9 0 0 L Tl 0 0 0 1 0 0 0 0 + -ddaad
€00 DOW - + - + - + - 4+ - 4+ - + - 4+ - + - + - + - + ‘T8 19 s10q2q

69°0 Y0 LI %79s ooy 88 001 81T 2% 801 ocl 001 orl 0sI o1l 2218 [2po
9660 €r'o ey 144 e S Sy Sy Sy Sy Sy S Sy Sy Gl ¢ vl 8 S Sv S Sy Sy SP - qaLdI
€60 L6'0 92Id < 19 0 0 0 0 0 0 0 0 0 0¢ ¢ I¢g 0 0 0 0 0 0 0 0 + -d3ad
920 DOW - + - + - 4+ - + - 4+ - 4+ - 4+ - 4+ - + - + - + o-[PABONpU]

990 S0 W %909 ooV Sri 08 454 6 911 ocl 494 S Ll (8 2218 [opo
SL'O 9’0 B3y LEE vwe v Sy Sy Sy Tl L ¥I 0l 1S4 ¢ & vl o 8F LE 8T SV S 0Ol 0 - aarLdI
8S°0 990 02ld 011 60T 1 0 0 0 ¢ 8¢ Ig ¢6¢ 0 ¢F [3 0 0 8 LI 0 0 ¢S¢ ¢b + -daad
970 DO - + - + - + - 4+ - + - + - 4+ - 4+ - + - 4+ - + ¢gPABONpUL

9¢°0 9L0 1 %889 ooV ocLl L0ST £89C 69€1 (94494 69rF S6€£C 2443 [44%3 0L81 2218 [opo
o0 L6'0 [[BO°Y 081 vl 6 ¢ 8¢ 1 L 0 7l 1 9 0 Ol 0 LI 0 ¥C ¢ LE ¢ 0 0 - adarLdI
€60 290 02ld L9T 6y 9¢ &b L v 8 Sy €€ ¥ 68 Sv € Sy ST 8 1T ¢} 8 v ST Sv + -aaad
SF0 DOW - + - + - + - 4+ - 4+ - + - 4+ - + - + - + - + [IVare[a(

S0} LLO LI %g69 0V 98 01l cll 6 1294 9¢1 oLl 144 vLI orl 2218 [2po
8¢°0 L66'0 1By LY ! 0 0 91 1 [0 1 0 ¢F 0 8¢ 0 8 0 6 0 <SP 0 Ol 0 - aarLdI
66°0 290 92ld SLT <y S Sy 6Cc v & S vb P [4 L Sy ve 8¢ 9¢ S 0 Sy s¢ <¥ + -d3aad
6¢0 DOW - + - + - 4+ - + - 4+ - 4+ - 4+ - 4+ - + - + - + 0-gPABONPUT

QATIBSON QANISO] 0l 6d 84 Lq S Sd vq &d oy g
SHOVY], 1ADY¥V], 9e3aI33Y AdAIASIO

penunuod {o|qel

pringer

Qs

581

DisCoveR: accurate and efficient discovery of declarative process models

dn-1ouuni oY) sem YOA0DSI(J ‘AOBINOIL UOTIBIYISSE[O JO SULI) UI }SOJUOD YY) 0) UOISSTWIQNS SUTUUIM) Sem IUTJA] U0IA[YS 30T "suonezinowered rourwr jo suondiiosap 10J g 31 99§

£€°6 [4% €9 8'C8 [4% 4 8L 1'¢€9¢T L¥98C 1"1eLe S eeoe 1°629 V'L 01
17'9¢ 6T £'6C 1'96¢ L'€C9 S0LI ¥'C98¢C 0°¢CI¢ £'881¢ 0'176S¢ 6'LyL 088 6
70'6 4% 'L 6011 €69 9°60C S LS9¢E £ 0ror £TLIE c8eey 026 0¢€01 8
86°CI S¢ 98 [a4n! 090L T6Cl 8°010¢ L'68¢C¢ I'811¢ EYLSE SETL 9'698 L
98 9374 9°¢ 8'ey 8€LL V161 T619¢ 9'900% £608¢ £TEIr 9018 6'6L6 9
€e's 144 (44 £0¢ §089 6'L91 L0Tse 0'168¢ ¥'9L9¢ Soviy LL6L 696 S
60°01 143 6 LLTT Y8y 6'vL L'SL8T £'860¢ 6'971¢ 0'96S¢ 1°¢€9 cleL 14
0clI 14 [9CIl 9Yr6 T6CE Ty60¥ £'8¢9Y 7oley 6°¢STS 6°¢€01 L€8I1 €
6681 9 00T 0¥01 €989 0'6cE £0scy 134914 [A215% 4349 9°8%01 19¢C1 C
1TL1 8% 1'0¢ £05¢ 6'CL8 ¥TIE 9911¥ 0°Csoy 8'66¢LY TL6IS 8'1L01 £evel I
qI3u9[SANIATIOR (PINT) Tourw Jouru ‘SONON soAT)E3oU ‘SONON soAne3au ‘[dwisioN poyrdurs
08I} UBIA! JoqunN ¥A0DSI QATIONPU] UOJQ[AYS S0 SI0Q(QIB[OdP IYI-§ QIB[IAP IYI-§ e[Are[o(g [NJIDUIN [NJIDUIN
SHLNGRNLLY 9507 (sw) INIL NNd D07

sonsnes Sof yim Suope ‘sSof Sururer) g1 1SAU0D) AISA0ISI(T SSII0IJ UO SUNI ()()] SSOIOL SPUOIISI[[IW UT SSWIT) UNI UL\ § d|qel

172} (72} O v O |~ 1 Lo~ §
5 S8 £ @HELEFBE O T8)
1) R =R = = A o b
° 5= 88 5.2 ro2 SEECENS ¢
= OEESaTE . E85838%0 ~ ¢
5] = I = 8 T g
5 o © 2 = 2 - = o £ 58)
=} RhRm.n'.ahU.ednnO..%r <
i Q= a. B gL b
Q O oS %8S & E o =] M o}
=2 DWDrsam c=72 -8 v S
&b = 8 2 S 2 " o2 TS ©
= ST E3B5EQRNESE S H
. | O = = <
2 E22E2288 158 4¢ Q
= I < o = = Xsm [} © ~
F =:E8fys 285 3 .
g
27 SSCZES . dgg & " 0 :
g Sgo 2SS S| @ s A2
- O —_——= O = = = [¢]
Mf Wbomrmb.m*Oﬂﬂ_vm - . -
N
=g SELEEEZSNGEg L% 0 R 57
= -2 i= = . -
= g bmmw‘mee»rmgln - - ~ © ©
2 3 se=82 5053 | g9 8 S -~ o - - B o~~~
g = g o 3 = = 5 0o 0T v 0 S —~ . 0® o < -
S e SE28 52858222095 © s ol & ° =z
g 2 cEZE23,:292¢£2 ~ =T 5% -0 - " “
— = —_ . © »n S »n Y O = O O Il Q © ~ S N H4 © N —~~ 0~ ~
< =1
= £ [7] Q = L oos 5 0 en = = © © IS <. c o N © Q
S -] 242 8 o 2 - ¥ o I - - N NN
< o = = 2 = © s 0 o
- E m mwgmweowm»bmm R < Qq - > O S © A O [Y ~ o
= 3 22 2oz ° 4 s 5 0o 0B H QO M ———0C8C-A 4 A———a-= Q T T =] o ©
= -] b0~ 8L g o= X S L = 8B— 02— 0C— 0 © — S © M - WOz a———0Xx n o~
4 = 7] Worpaeraddspf * K kK X ok X A AN A A A o o
28 £ lfmeSﬂOSV s e g Xk kK %k kK x x x x x AAAAAAAX AA T I I I A I 000 P o Ao e A
= » = =2 r.men.UV,..U.m.m AANAANANAAAAT T T T T 1 AT T 1T 1 1 1 1 1T AANAANAANAANQAT AAA
g o =g L .= © 9o M-z = L T T T T T T T e T T O T O O R O B B
%m N .I.am..%b.w_L_a.mm..n..mmd [T T T O B B I x % x [T R T T R B I o
g o N S5 2588553580 @8 208 0 0Q Mo ©.QNGT 5 o
8. © © L 3ESILLCLLEZCESTTC BTDAPLUEZLOAXKXNOOCCCCCONM3CGEG6G60GBTHOEQATCHE Xonodd

pringer

as

582

C.0.Backetal.

u -->% (g, ad, u, 1, r, aa, ao, ab, ak,
agq, e, ai)

m -->% m

v -->% (v, ae)

o -->% (d, g, o, ao, ae)

1 -->% 1

r -->% r

aa -->% (ad, u, v, 1, r, aa, ao, ab, ak
, aq, e, ai)

c -->% (i, t, g, w, p, b, h, c)

ao -->% ao

ab -->% ab

ak -->% ak

e -->% e

ai -->% ai

Listing 9 Mined DCR Graph for log 10 of PDC2019

7 Case study: interactive model
recommendation

In this section, we discuss how DisCoveR has been inte-
grated in the dcrgraphs.net process portal as a means to
provide modeling recommendations for the interactive mod-
eling of declarative knowledge-intensive processes. We start
by briefly describing the portal and its main functionalities.
We then show how process discovery has been integrated
in the portal and end with a discussion on how the model
recommendation functionality is used in practice.

7.1 The DCR process portal

The dcrgraphs.net process portal is a cloud-based com-
mercial modeling solution for declarative process models,
offering an extensive range of functions including process
modeling, simulation, analysis, maintenance, and a wide
variety of collaboration features. The portal has been created
and is maintained by DCR Solutions, in close collaboration
with researchers from the University of Copenhagen, IT Uni-
versity of Copenhagen and Danish Technical University. The
DCR notation, portal and DCR process engine have been
applied in a range of application domains. Most notably, the
engine was integrated into Workzone, a case management
product used by over 70% of Danish central government
institutions® and the portal has become a cornerstone of the
Ecoknow research project,” which proposes a novel dig-
italization strategy for Danish municipalities grounded in
the declarative modeling of knowledge-intensive citizen pro-
cesses.

The key component of the portal is the DCR modeling tool,
shown in Fig. 3, which allows users to model and simulate

8 http://www.kmd.dk/indsigter/fleksibilitet-og-dynamisk-
sagsbehandling-i-staten

9 https:/ecoknow.org/

@ Springer

5 Unemployment Benefits [SiSeiSimiise

Flle Insert Edit Smulation Apps Window Help

5
|
.| @ o
Approve
- % Included Pending Execute d
itean Coreworar =
*= > Documentation
Request 2
beneft) |
Roles [+ |
! |
5
tzen
Reject Groups. [+ |
Phases + |
> Advanced
> Customization
= - KN -

Fig.3 DCR graphs modeling

- - Ea -

Fig.4 DCR graphs simulation

DCR graphs. At the center of the screen is the modeling pane
with the graphical representation of the DCR Graph, where
activities are drawn as boxes and relations as colored arrows
in a style similar to the formal syntax. Users can add and
manipulate activities and relations between them directly in
the modeling pane and change their details in an option panel
on the right. The simulation screen is shown in Fig. 4. The
upper right of the screen shows the current task list; here, the
user can select which task to execute next. The middle of the
screen shows recommendations for next steps and a simula-
tion log. On the left, we have a number of advanced features,
such as making time steps and a list of all users involved
in the simulation (collaborative simulations are supported).
In the bottom of the screen, the user can see a step-by-step
flowchart representation of the current simulation, divided
into swimlanes.

7.2 Interactive process modeling through model
recommendation

In the declarative modeling approach advocated by DCR
Solutions modelers are encouraged to (1) identify the activ-
ities and roles of the process, (2) think about what common
and uncommon scenarios (i.e., traces) should be supported
by the process, (3) based on the scenarios determine what rea-

http://www.kmd.dk/indsigter/fleksibilitet-og-dynamisk-sagsbehandling-i-staten
http://www.kmd.dk/indsigter/fleksibilitet-og-dynamisk-sagsbehandling-i-staten
https://ecoknow.org/

DisCoveR: accurate and efficient discovery of declarative process models

583

sonable constraints for the process would be, and (4) ensure
that the constraints do not conflict with any desired paths
through the use of simulation and test-cases [77]. The iden-
tification of constraints in step 3 has been identified as the
most challenging for users because it requires a firm grasp
of the semantics of DCR Graphs. While test cases and sim-
ulation can be used to retroactively check that no conflicting
constraints have been introduced, they are not helpful for
identifying suitable constraints directly. As a result, novice
users often use a fairly inefficient trial-and-error approach
where they try a constraint, check how it behaves under sim-
ulation and then update their model accordingly.

We introduced process discovery as an alternative to this
trial-and-error approach. In this new setting, the portal sup-
ports the user by having an algorithm automatically propose
suitable relations based either on an existing event log, and/or
the traces that were identified during step 2 of the previously
sketched modeling method.

Figure 5 provides an overview of the adapted approach: we
start by identifying the activities of the process and modeling
these directly in the portal. In the next step, we run simula-
tions on these activities (recall that following the declarative
paradigm, these simulations are entirely unconstrained and
any trace can be generated). We store the traces generated
during the simulation and use these as input for the following
step, where we use DisCoveR to identify constraints based on
the generated traces. Finally, the user can improve on their
model and potentially run more simulations which can be
used for additional process discovery, possibly finding addi-
tional constraints that were not found for the initial traces.

The model recommendation screen is shown in Fig. 6 and
fairly straightforward: the user is shown which relations were
found between which activities and can select those they wish
to add through the box on the left. The user can also enter an
explanation for the relation (i.e., why was it added or left out),
this enables rationale management of the model and allows
other users to follow the modeler’s reasoning. In addition, we
plan to use this information in the future to improve upon the
discovery algorithm. By clicking Add Relations, all selected
relations are added to the model.

7.3 Discussion

Since the integration of DisCoveR into the DCR Graphs por-
tal, DCR Solutions has been actively conducting workshops
with users where the new methodology is demonstrated and
used. The inclusion of process mining in the modeling task
was embraced enthusiastically by users and has been (infor-
mally) observed to lower the complexity of the modeling
task.

In the traditional modeling exercise, users that are more
familiar with BPMN and/or flowcharts are often hampered
by the novelty of the notation, e.g., they will be unclear

Define activities

nnnnnnnn
monthly

unempioyment Approve oy Pay beneits
activation

Reject

Define desired traces

Simulation Log &

Pay benefits

by Tijs Slaats at 23:32:35

Document monthly job-search & activation
by Tis Slaats at 23:3232

Approve
by Tis Slaats at 23:32:
Request unemployment benefit

by Tijs Slaats a1 23:32:13

Discover constraints

uiebe auiw g
saoeJ) [eUOlIPpE BuUa(

Improve model

RS RS

ol
unemployment Approve i Pay benefits
benefit

Reject

Fig.5 Overview of the model recommendation approach

4] DT

inl
}

b

Fig.6 Model recommendation

@ Springer

584

C.0.Backetal.

on what the different relations mean and how to use them.
In particular, the fact that arrows do not indicate flow, but
logical relations between the activities can lead to confu-
sion. Using model recommendations, on the other hand, has
allowed DCR Solutions to ask the users questions based on
the recommended relations such as, “Is it true that approval
is a condition for providing documentation?” or, “Is it true
approval removes the ability to reject?”.

In essence, model recommendation has managed to bridge
an important gap between the consultant and user: in the past,
the users were new to the notation, the consultants to the
process. This made building a common understanding about
the process a time intensive task. Model recommendation
closes this divide by, on the one hand, helping the consultant
better understand the process and, on the other, providing the
user with examples of the notation that are uniquely fitting
to their own domain.

The high accuracy of the algorithm has also been noted
in practice: even for processes that include other perspec-
tives than just control-flow (e.g., decisions depending on
contextual data), the algorithm has been noted to be highly
successful in recommending relevant relations that improved
the users’ understanding of the process.

The integration of the algorithm in the commercial tools
was relatively effortless: the front-end of the model recom-
mendation was developed rapidly at DCR Solutions through
existing plugin support for the portal. The algorithm itself
was simply deployed as a cloud service by the researchers.
Because of a long history of close collaboration between the
two parties, the details of the interface between these two
components and a general understanding of how the system
should work was fleshed out quickly over two meetings and
a few emails.

It should be noted that two variations of DisCoveR exist:
the regular version used in the Process Discovery Contest
prioritizes accuracy, whereas there also exists a light version
that skips the step of finding additional inclusions and exclu-
sions, thereby returning a less accurate but simpler model.
It is this light version that is used within the DCR Graphs
portal.

8 Conclusion

In this paper, we presented DisCoveR, a declarative miner
for DCR Graphs based on the ParNek algorithm. We for-
mally defined the underlying algorithm and how it has been
implemented using an acute mapping to bit vector opera-
tions, yielding a highly efficient process discovery tool. We
then preface the evaluation by framing process-discovery-
as-classification in terms of computational learning theory
in order to gain insight into the convincing performance
of the algorithm on out-of-sample data. We evaluated the

@ Springer

miner using a traditional classification task and computed
the standard machine learning measures of accuracy (0.961),
precision (0.94 on positive traces, 0.99 on negative traces),
recall (0.99 on positive traces, 0.93 on negative traces), F1
(0.96 on each) and MCC (0.92).

The present evaluation suggests that DisCoveR is com-

petitive with its peers. However, this should not be seen as
a comprehensive benchmarking: this would require a more
extensive evaluation on a larger variety of data sets, and
against a more representative collection of miners. Where
DisCoveR does appear to excel—in particular in compari-
son with other declarative miners—is in terms of run time,
performing one order of magnitude faster than the state-of-
the-art in DCR Graphs discovery and nearly two orders of
magnitude faster than the state-of-the-art in Declare discov-
ery . Finally, we showed how the tool has been integrated in
a commercial modeling tool and discuss how its integration
has significantly improved the modeling experiences of its
users.
Future Work Several avenues exist for future work in min-
ing DCR Graphs from event logs. So far, we have considered
only the control flow of processes. Incorporating timing, data,
and resource perspectives is very relevant for many real-
world scenarios and one of the primary requests made by
DCR Solutions. Furthermore, accounting for noisy data is an
important point to address since this is common in real-world
applications.

We restricted our hypothesis space to graphs with the same
simple initial marking in which all events are enabled. This
is due to the complicated interactions arising with other rela-
tions when excluding a source event. Considering different
initial markings would enable the discovery of more complex
models, but also enlarge the hypothesis space and increase
the danger of overfitting.

In order to control more explicitly for overfitting and quan-
tify the tradeoff between inductive bias and complexity, a
formulation of regularization functions for classes of DCR
Graphs is an important next step. This is not entirely straight-
forward due to the non-monotonic nature of DCR Graphs
[23], rendering simple relation counting more or less mean-
ingless for regularization purposes.

As described in the case study, users of the dcrgraphs.net
portal are not only able to define positive scenarios, but also
undesired scenarios. The use of negative input data in pro-
cess discovery has so far been mostly ignored based on the
assumption that such data are not available. Having negative
scenarios provided by the portal offers a unique opportunity
to develop new algorithms that take negative examples as
input and thereby produce more relevant models. We observe
that DisCoveR has a noticeably lower recall on negative than
positive traces and hypothesize that the ability to analyze neg-
ative examples of traces will help us improve on this aspect
of the accuracy of the tool.

DisCoveR: accurate and efficient discovery of declarative process models

585

Finally, there remain certain points in the ParNek algo-
rithm in which choices are currently taken in a naive manner
(e.g., ChooseOneRelation). This decision point should be
framed as a proper optimization problem. In fact, framing
DCR Graph mining properly as an optimization task would
open a powerful set of tools from the general optimization
literature.

References

1. Abbad Andaloussi, A., Buch-Lorentsen, J., Lopez, H.A., Slaats,
T., Weber, B.: Exploring the modeling of declarative processes
using a hybrid approach. In: Laender, A.H.F., Pernici, B., Lim,
E.P, de Oliveira, J.P.M. (eds.) Conceptual Modeling, pp. 162—170.
Springer, Cham (2019)

2. Abbad Andaloussi, A., Burattin, A., Slaats, T., Petersen, A.C.M.,
Hildebrandt, T.T., Weber, B.: Exploring the understandability of a
hybrid process design artifact based on DCR graphs. In: Reinhartz-
Berger, 1., Zdravkovic, J., Gulden, J., Schmidt, R. (eds.) Enterprise,
Business-Process and Information Systems Modeling, pp. 69-84.
Springer, Cham (2019)

3. Abbad Andaloussi, A., Slaats, T., Burattin, A., Hildebrandt, T.T.,
Weber, B.: Evaluating the understandability of hybrid process
model representations using eye tracking: first insights. In: Daniel,
F., Sheng, Q.Z., Motahari, H. (eds.) Business Process Management
Workshops, pp. 475-481. Springer, Cham (2019)

4. Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.: Learning from
data: a short course. AMLBook.com (2012). https://books.google.
co.uk/books?id=iZUzMwEACAAJ

5. Adriansyah, A., Mufioz-Gama, J., Carmona, J., van Dongen, B.F.,
van der Aalst, W.M.: Alignment based precision checking. In:
International Conference on Business Process Management, pp.
137-149. Springer (2012)

6. Agrawal, R., Srikant, R.: Fast algorithms for mining association
rules in large databases. In: Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB 94, pp. 487-499.
Morgan Kaufmann Publishers Inc., San Francisco (1994). http://
dl.acm.org/citation.cfm?id=645920.672836

7. Andaloussi, A.A., Burattin, A., Slaats, T., Kindler, E., Weber, B.:
On the declarative paradigm in hybrid business process representa-
tions: a conceptual framework and a systematic literature study. Inf.
Syst. 91, 101505 (2020). https://doi.org/10.1016/].is.2020.101505

8. Back, C.O., Debois, S., Slaats, T.: Towards an empirical evaluation
of imperative and declarative process mining. In: International Con-
ference on Conceptual Modeling, pp. 191-198. Springer (2018)

9. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards
formal analysis of artifact-centric business process models. In: In
preparation, pp. 288-304 (2007)

10. Burattin, A., Maggi, EM., Sperduti, A.: Conformance checking
based on multi-perspective declarative process models. Expert
Syst. Appl. 65, 194-211 (2016)

11. Chicco, D.,Jurman, G.: The advantages of the Matthews correlation
coefficient (MCC) over f1 score and accuracy in binary classifica-
tion evaluation. BMC Genom. 21(1), 6 (2020)

12. Ciccio, C.D., Maggi, EM., Montali, M., Mendling, J.: Resolving
inconsistencies and redundancies in declarative process models.
Inf. Syst. 64, 425-446 (2017)

13. Ciccio, C.D., Maggi, EM., Montali, M., Mendling, J.: On the rele-
vance of a business constraint to an event log. Inf. Syst. 78, 144—-161
(2018)

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Ciccio, C.D., Mecella, M.: On the discovery of declarative control
flows for artful processes. ACM Trans. Manag. Inf. Syst. 5(4),
24:1-24:37 (2015). https://doi.org/10.1145/2629447

Ciccio, C.D., Mecella, M.: On the discovery of declarative control
flows for artful processes. ACM Trans. Manag. Inf. Syst. 5(4), 1-37
(2015)

Costa Seco, J., Debois, S., Hildebrandt, T., Slaats, T.: Reseda:
declaring live event-driven computations as reactive semi-
structured data. In: 2018 IEEE 22nd International Enterprise
Distributed Object Computing Conference (EDOC), pp. 75-84
(2018). https://doi.org/10.1109/EDOC.2018.00020

De Giacomo, G., Dumas, M., Maggi, EM., Montali, M.: Declara-
tive process modeling in BPMN. In: Zdravkovic, J., Kirikova, M.,
Johannesson, P. (eds.) Advanced Information Systems Engineer-
ing, pp. 84-100. Springer, Cham (2015)

De Masellis, R., Maggi, FEM., Montali, M.: Monitoring data-aware
business constraints with finite state automata. In: Proceedings of
the 2014 International Conference on Software and System Pro-
cess, ICSSP 2014, pp. 134-143. ACM, New York (2014). https://
doi.org/10.1145/2600821.2600835

De Smedt, J., De Weerdt, J., Vanthienen, J., Poels, G.: Mixed-
paradigm process modeling with intertwined state spaces. Bus. Inf.
Syst. Eng. 58(1), 19-29 (2016). https://doi.org/10.1007/s12599-
015-0416-y

Debois, S., Hildebrandt, T.: The DCR Workbench: declara-
tive choreographies for collaborative processes. In: S. Gay, A.
Ravara (eds.) Behavioural Types: From Theory to Tools, River
Publishers Series in Automation, Control and Robotics, pp. 99—
124. River Publishers (2017). https://www.riverpublishers.com/
pdf/ebook/chapter/RP_9788793519817C5.pdf

Debois, S., Hildebrandt, T., Marquard, M., Slaats, T.: Hybrid Pro-
cess Technologies in the Financial Sector: The Case of BRFkredit,
pp- 397-412. Springer, Cham (2018)

Debois, S., Hildebrandt, T., Slaats, T.: Hierarchical declarative
modelling with refinement and sub-processes. In: Sadiq, S., Sof-
fer, P., Volzer, H. (eds.) Business Process Management, pp. 18-33.
Springer, Cham (2014)

Debois, S., Hildebrandt, T., Slaats, T.: Safety, liveness and run-time
refinement for modular process-aware information systems with
dynamic sub processes. In: International Symposium on Formal
Methods, pp. 143—-160. Springer (2015)

Debois, S., Hildebrandt, T., Slaats, T., Marquard, M.: A case
for declarative process modelling: agile development of a grant
application system. In: 2014 IEEE 18th International Enterprise
Distributed Object Computing Conference Workshops and Demon-
strations, pp. 126—133 (2014). https://doi.org/10.1109/EDOCW.
2014.27

Debois, S., Hildebrandt, T.T., Laursen, P.H., Ulrik, K.R.: Declar-
ative process mining for DCR graphs. In: Proceedings of the
Symposium on Applied Computing, pp. 759-764 (2017)

Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refine-
ment & reachability: complexity in dynamic condition-response
graphs. Acta Inform. 55(6), 489-520 (2018). https://doi.org/10.
1007/500236-017-0303-8

Di Ciccio, C., Maggi, EM., Mendling, J.: Efficient discovery
of target-branched declare constraints. Inf. Syst. 56(C), 258-283
(2016). https://doi.org/10.1016/].i5.2015.06.009

Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive pro-
cesses: characteristics, requirements and analysis of contemporary
approaches. J. Data Semant. 4(1), 29-57 (2015). https://doi.org/
10.1007/s13740-014-0038-4

Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis
of business process models in BPMN. Inf. Softw. Technol. 50(12),
1281-1294 (2008)

@ Springer

https://books.google.co.uk/books?id=iZUzMwEACAAJ
https://books.google.co.uk/books?id=iZUzMwEACAAJ
http://dl.acm.org/citation.cfm?id=645920.672836
http://dl.acm.org/citation.cfm?id=645920.672836
https://doi.org/10.1016/j.is.2020.101505
https://doi.org/10.1145/2629447
https://doi.org/10.1109/EDOC.2018.00020
https://doi.org/10.1145/2600821.2600835
https://doi.org/10.1145/2600821.2600835
https://doi.org/10.1007/s12599-015-0416-y
https://doi.org/10.1007/s12599-015-0416-y
https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788793519817C5.pdf
https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788793519817C5.pdf
https://doi.org/10.1109/EDOCW.2014.27
https://doi.org/10.1109/EDOCW.2014.27
https://doi.org/10.1007/s00236-017-0303-8
https://doi.org/10.1007/s00236-017-0303-8
https://doi.org/10.1016/j.is.2015.06.009
https://doi.org/10.1007/s13740-014-0038-4
https://doi.org/10.1007/s13740-014-0038-4

586

C.0.Backetal.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals
of Business Process Management. Springer, Cham (2013). https:/
doi.org/10.1007/978-3-642-33143-5

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property
specifications for finite-state verification. In: Proceedings of the
1999 International Conference on Software Engineering (IEEE
Cat. No. 99CB37002), pp. 411-420. IEEE (1999)

Fu, J., Topcu, U.: Computational methods for stochastic control
with metric interval temporal logic specifications. In: 2015 54th
IEEE Conference on Decision and Control (CDC), pp. 7440-7447.
IEEE (2015)

Goedertier, S., Martens, D., Baesens, B., Haesen, R., Vanthienen,
J.: Process mining as first-order classification learning on logs with
negative events. In: International Conference on Business Process
Management, pp. 42-53. Springer (2007)

Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust
process discovery with artificial negative events. J. Mach. Learn.
Res. 10, 1305-1340 (2009)

Herzberg, N., Kirchner, K., Weske, M.: Modeling and monitor-
ing variability in hospital treatments: a scenario using CMMN. In:
International Conference on Business Process Management, pp.
3-15. Springer (2014)

Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Designing a cross-
organizational case management system using dynamic condition
response graphs. In: 2011 IEEE 15th International Enterprise
Distributed Object Computing Conference, pp. 161-170 (2011).
https://doi.org/10.1109/EDOC.2011.35

Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic
condition response graphs. In: Proceedings of Fundamentals of
Software Engineering (FSEN) (2011). http://www.itu.dk/people/
rao/pubs_accepted/fsenpaper.pdf

Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts
for cross-organizational workflows as timed dynamic condition
response graphs. J. Log. Algebr. Program. 12, 12 (2013). https://
doi.org/10.1016/j.jlap.2013.05.005

Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based
workflow as distributed dynamic condition response graphs.
In: Proceedings Third Workshop on Programming Language
Approaches to Concurrency and Communication-Centric Soft-
ware, PLACES 2010, Paphos, Cyprus, 21st March 2010, pp. 59-73
(2010). https://doi.org/10.4204/EPTCS.69.5

Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based
workflow as distributed dynamic condition response graphs. arXiv
preprint arXiv:1110.4161 (2011)

Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath III, ET.,
Hobson, S., Linehan, M., Maradugu, S., Nigam, A., Sukaviriya,
P., Vaculin, R.: Introducing the guard-stage-milestone approach
for specifying business entity lifecycles. In: Proceedings of WS-
FM’10, pp. 1-24. Springer, Berlin (2011)

Kong, Z., Jones, A., Belta, C.: Temporal logics for learning and
detection of anomalous behavior. IEEE Trans. Autom. Control
62(3), 1210-1222 (2016)

Kurz, M., Schmidt, W., Fleischmann, A., Lederer, M.: Leverag-
ing CMMN for ACM: examining the applicability of a new omg
standard for adaptive case management. In: Proceedings of the
7th International Conference on Subject-Oriented Business Pro-
cess Management, p. 4. ACM (2015)

La Rosa, M., Reijers, H.A., Van Der Aalst, WM., Dijkman, R.M.,
Mendling, J., Dumas, M., Garcia-Ba nuelos, L.: Apromore: an
advanced process model repository. Expert Syst. Appl. 38(6),
7029-7040 (2011)

Madsen, M.F., Gaub, M., Hggnason, T., Kirkbro, M.E., Slaats, T.,
Debois, S.: Collaboration among adversaries: distributed workflow
execution on a blockchain. In: Symposium on Foundations and
Applications of Blockchain, p. 8 (2018)

@ Springer

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Maggi, EM., Bose, R.PJ.C., van der Aalst, W.M.P.: Efficient dis-
covery of understandable declarative process models from event
logs. In: Advanced Information Systems Engineering, pp. 270-285
(2012)

Maggi, EM., Ciccio, C.D., Francescomarino, C.D., Kala, T.: Par-
allel algorithms for the automated discovery of declarative process
models. Inf. Syst. 74, 136-152 (2018)

Maggi, EM., Montali, M., Westergaard, M., van der Aalst, W.M.P.:
Monitoring business constraints with linear temporal logic: an
approach based on colored automata. In: Business Process Manage-
ment (BPM) 2011, Lecture Notes in Computer Science, vol. 6896,
pp- 32-147 (2011). https://doi.org/10.1007/978-3-642-23059-13
Maggi, EM., Mooij, A.J., van der Aalst, W.M.P.: User-guided dis-
covery of declarative process models. In: 2011 IEEE Symposium
on Computational Intelligence and Data Mining (CIDM), pp. 192—
199 (2011). https://doi.org/10.1109/CIDM.2011.5949297

Maggi, EM., Slaats, T., Reijers, H.A.: The automated discovery of
hybrid processes. In: Sadiq, S., Soffer, P., Volzer, H. (eds.) Business
Process Management, pp. 392-399. Springer, Cham (2014)
Manataki, A., Fleuriot, J., Papapanagiotou, P.: A workflow-driven
formal methods approach to the generation of structured check-
lists for intrahospital patient transfers. IEEE J. Biomed. Health Inf.
21(4), 1156-1162 (2016)

Marquard, M., Shahzad, M., Slaats, T.: Web-based modelling and
collaborative simulation of declarative processes. In: Motahari-
Nezhad, H.R., Recker, J., Weidlich, M. (eds.) Business Process
Management, pp. 209-225. Springer, Cham (2015)

Montali, M.: Specification and Verification of Declarative Open
Interaction Models: a Logic-Based Approach. Lecture Notes in
Business Information Processing, vol. 56. Springer (2010)
Montali, M., Pesic, M., van der Aalst, W.M., Chesani, F., Mello,
P, Storari, S.: Declarative specification and verification of service
choreographiess. ACM Trans. Web 4(1), 3 (2010)

Mukkamala, R.: A formal model for declarative workflows:
dynamic condition response graphs. it University of Copenhagen.
Ph.D. thesis, IT University of Copenhagen (2012)

Mukkamala, R.R.: A formal model for declarative workflows—
dynamic condition response graphs. Ph.D. thesis, IT University of
Copenhagen (2012)

Mukkamala, R.R., Hildebrandt, T., Tgth, J.B.: The resultmaker
online consultant: From declarative workflow management in prac-
tice to LTL. In: Proceedings of the 2008 12th Enterprise Distributed
Object Computing Conference Workshops, EDOCW °08, pp. 135—
142. IEEE Computer Society, Washington, DC, USA (2008).
https://doi.org/10.1109/EDOCW.2008.57

Mukkamala, R.R., Hildebrandt, T.T.: From dynamic condition
response structures to Biichi automata. In: 2010 4th IEEE Interna-
tional Symposium on Theoretical Aspects of Software Engineer-
ing, pp. 187-190. IEEE (2010)

Nekrasaite, V., Parli, A.T., Back, C.O., Slaats, T.: Discover-
ing responsibilities with dynamic condition response graphs. In:
Accepted for Proceedings of 31st International Conference on
Advanced Information Systems Engineering (CAiSE 2019) (2019)
Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures
and domains. In: Kahn, G. (ed.) Semantics of Concurrent Compu-
tation. Lecture Notes in Computer Science, vol. 70, pp. 266-284.
Springer, Berlin (1979). https://doi.org/10.1007/BFb0022474
Object Management Group: Case Management Model and Nota-
tion, version 1.0. Webpage (2014). http://www.omg.org/spec/
CMMN/1.0/PDF

Object Management Group BPMN Technical Committee: Business
Process Model and Notation, version 2.0. Webpage (2011). http:/
www.omg.org/spec/BPMN/2.0/PDF

Papapanagiotou, P., Fleuriot, J.: Workflowfm: a logic-based frame-
work for formal process specification and composition. In: Interna-

https://doi.org/10.1007/978-3-642-33143-5
https://doi.org/10.1007/978-3-642-33143-5
https://doi.org/10.1109/EDOC.2011.35
http://www.itu.dk/people/rao/pubs_accepted/fsenpaper.pdf
http://www.itu.dk/people/rao/pubs_accepted/fsenpaper.pdf
https://doi.org/10.1016/j.jlap.2013.05.005
https://doi.org/10.1016/j.jlap.2013.05.005
https://doi.org/10.4204/EPTCS.69.5
http://arxiv.org/abs/1110.4161
https://doi.org/10.1007/978-3-642-23059-13
https://doi.org/10.1109/CIDM.2011.5949297
https://doi.org/10.1109/EDOCW.2008.57
https://doi.org/10.1007/BFb0022474
http://www.omg.org/spec/CMMN/1.0/PDF
http://www.omg.org/spec/CMMN/1.0/PDF
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.omg.org/spec/BPMN/2.0/PDF

DisCoveR: accurate and efficient discovery of declarative process models

587

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

tional Conference on Automated Deduction, pp. 357-370. Springer
(2017)

Papapanagiotou, P., Fleuriot, J.: A pragmatic, scalable approach to
correct-by-construction process composition using classical linear
logic inference. In: International Symposium on Logic-Based Pro-
gram Synthesis and Transformation, pp. 77-93. Springer (2018)
Pesic, M., Schonenberg, H., Van der Aalst, W.M.: Declare: full
support for loosely-structured processes. In: 11th IEEE Inter-
national Enterprise Distributed Object Computing Conference
(EDOC 2007), p. 287. IEEE (2007)

Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE:
full support for loosely-structured processes. In: 11th IEEE Inter-
national Enterprise Distributed Object Computing Conference
(EDOC 2007), 15-19 October 2007, Annapolis, Maryland, USA,
pp- 287-300 (2007). https://doi.org/10.1109/EDOC.2007.25
Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery.
Int. J. Coop. Inf. Syst. 24(01), 1550001 (2015). https://doi.org/10.
1142/S021884301550001X

Rozinat, A., Van der Aalst, W.M.: Conformance checking of pro-
cesses based on monitoring real behavior. Inf. Syst. 33(1), 64-95
(2008)

Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in work-
flow specification. In: Kunii, H.S., Jajodia, S., Sglvberg, A. (eds.)
Conceptual Modeling—ER 2001. Lecture Notes in Computer Sci-
ence, vol. 2224, pp. 513-526. Springer, Berlin (2001)

Santos Franga, J.B.D., Netto, J.M., do E. S. Carvalho, J., Santoro,
FM., Baido, F.A., Pimentel, M.: Kipo: the knowledge-intensive
process ontology. Softw. Syst. Model. 14(3), 1127-1157 (2015).
https://doi.org/10.1007/s10270-014-0397-1

Schonig, S., Cabanillas, C., Jablonski, S., Mendling, J.: A frame-
work for efficiently mining the organisational perspective of
business processes. Decis. Support Syst. 89, 87-97 (2016)
Schonig, S., Zeising, M.: The DPIL framework: tool support for
agile and resource-aware business processes. BPM (Demos) 1418,
125-129 (2015)

Schunselaar, D.M.M., Slaats, T., Maggi, EM., Reijers, H.A., van
der Aalst, W.M.P.: Mining hybrid business process models: a quest
for better precision. In: Abramowicz, W., Paschke, A. (eds.) Busi-
ness Information Systems, pp. 190-205. Springer, Cham (2018)
Shalev-Shwartz, S., Ben-David, S., Press, C.U.: Understand-
ing Machine Learning: From Theory to Algorithms. Cam-
bridge University Press (2015). https://books.google.co.uk/books?
id=tBVCtAEACAAJ

Slaats, T.: Flexible process notations for cross-organizational case
management systems. Ph.D. thesis, IT University of Copenhagen
(2015)

Slaats, T.: Declarative and hybrid process discovery: recent
advances and open challenges. J. Data Semant. 9(1), 3-20 (2020).
https://doi.org/10.1007/s13740-020-00112-9

Slaats, T., Debois, S., Hildebrandt, T.: Open to change: a theory for
iterative test-driven modelling. In: Weske, M., Montali, M., Weber,
1., vom Brocke, J. (eds.) Business Process Management, pp. 31-47.
Springer, Cham (2018)

Slaats, T., Mukkamala, R.R., Hildebrandt, T., Marquard, M.: Exfor-
matics declarative case management workflows as DCR graphs. In:
Daniel, F., Wang, J., Weber, B. (eds.) Business Process Manage-
ment, pp. 339-354. Springer, Berlin (2013)

Slaats, T., Schunselaar, D.M.M., Maggi, FEM., Reijers, H.A.: The
semantics of hybrid process models. In: Debruyne, C., Panetto, H.,
Meersman, R., Dillon, T., Kiihn, E., O’Sullivan, D., Ardagna, C.A.
(eds.) On the Move to Meaningful Internet Systems: OTM 2016
Conferences, pp. 531-551. Springer, Cham (2016)

Smedt, J.D., Weerdt, J.D., Vanthienen, J.: Fusion miner: process
discovery for mixed-paradigm models. Decis. Support Syst. 77,
123-136 (2015)

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

Tijs Slaats:
(2020)

van der Aalst, W., Pesic, M., Schonenberg, H., Westergaard, M.,
Maggi, EM.: Declare. Webpage (2010). http://www.win.tue.nl/
declare/

Van Der Aalst, W.: Process Mining: Discovery, Conformance and
Enhancement of Business Processes, vol. 2. Springer (2011)

van der Aalst, W.M.P.,, van Hee, K.M.: Workflow Management:
Models, Methods, and Systems. MIT Press (2002)

Van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining:
discovering process models from event logs. IEEE Trans. Knowl.
Data Eng. 16(9), 1128-1142 (2004)

van der Aalst, W.M., Pesic, M.: DecSerFlow: towards a truly declar-
ative service flow language. In: M. Bravetti, M. Nunez, G. Zavattaro
(eds.) Proceedings of Web Services and Formal Methods (WS-FM
2006), LNCS, vol. 4184, pp. 1-23. Springer (2006)

Verbeek, H., de Carvalho, R.M.: Log skeletons: a classification
approach to process discovery. arXiv preprint arXiv:1806.08247
(2018)

Volzer, H.: An overview of BPMN 2.0 and its potential use. In:
Mendling, J., Weidlich, M., Weske, M. (eds.) Business Process
Modeling Notation, Lecture Notes in Business Information Pro-
cessing, vol. 67, pp. 14-15. Springer, Berlin (2010). https://doi.
org/10.1007/978-3-642-16298-5_3

Weske, M.: Business Process Management—Concepts, Lan-
guages, Architectures, 2nd edn. Springer (2012). https://doi.org/
10.1007/978-3-642-28616-2

Westergaard, M., Maggi, EM.: Looking into the future. In: Meers-
man, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou,
X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, L.F. (eds.) On
the Move to Meaningful Internet Systems: OTM 2012, pp. 250-
267. Springer, Berlin (2012)

Westergaard, M., Slaats, T.: Mixing paradigms for more compre-
hensible models. In: Daniel, F., Wang, J., Weber, B. (eds.) Business
Process Management, pp. 283-290. Springer, Berlin (2013)
Westergaard, M., Stahl, C., Reijers, H.A.: Unconstrainedminer:
efficient discovery of generalized declarative process models
(2013)

Wiemuth, M., Junger, D., Leitritz, M., Neumann, J., Neumuth, T.,
Burgert, O.: Application fields for the new object management
group (OMG) standards case management model and notation
(CMMN) and decision management notation (DMN) in the periop-
erative field. Int. J. Comput. Assist. Radiol. Surg. 12(8), 1439-1449
(2017)

Zeising, M., Schonig, S., Jablonski, S.: Towards a common plat-
form for the support of routine and agile business processes. In:
2014 International Conference on Collaborative Computing: Net-
working, Applications and Worksharing (CollaborateCom), pp.
94-103. IEEE (2014)

Zugal, S., Soffer, P., Haisjackl, C., Pinggera, J., Reichert, M.,
Weber, B.: Investigating expressiveness and understandability of
hierarchy in declarative business process models. Softw. Syst.
Model. 14(3), 1081-1103 (2015). https://doi.org/10.1007/s10270-
013-0356-2

DisCoveR. https://github.com/tslaats/DisCoveR

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1109/EDOC.2007.25
https://doi.org/10.1142/S021884301550001X
https://doi.org/10.1142/S021884301550001X
https://doi.org/10.1007/s10270-014-0397-1
https://books.google.co.uk/books?id=tBVCtAEACAAJ
https://books.google.co.uk/books?id=tBVCtAEACAAJ
https://doi.org/10.1007/s13740-020-00112-9
https://github.com/tslaats/DisCoveR
http://www.win.tue.nl/declare/
http://www.win.tue.nl/declare/
http://arxiv.org/abs/1806.08247
https://doi.org/10.1007/978-3-642-16298-5_3
https://doi.org/10.1007/978-3-642-16298-5_3
https://doi.org/10.1007/978-3-642-28616-2
https://doi.org/10.1007/978-3-642-28616-2
https://doi.org/10.1007/s10270-013-0356-2
https://doi.org/10.1007/s10270-013-0356-2

	DisCoveR: accurate and efficient discovery of declarative process models
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Algorithm
	5 The DisCoveR miner
	5.1 DCR graph semantics
	5.2 Abstracting the log
	5.3 Mining from log abstractions

	6 Evaluation
	6.1 The learning task
	6.2 Results
	6.2.1 Run time
	6.2.2 Mined model

	7 Case study: interactive model recommendation
	7.1 The DCR process portal
	7.2 Interactive process modeling through model recommendation
	7.3 Discussion

	8 Conclusion
	References

