
International Journal on Software Tools for Technology Transfer (2021) 23:157–183
https://doi.org/10.1007/s10009-021-00605-3

GENERAL

Special Issue: RV 2018

Stream runtime verification of real-time event streams with the Striver
language

Felipe Gorostiaga1,2,3 · César Sánchez1

Accepted: 12 January 2021 / Published online: 26 April 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
In this paper, we study the problem of runtime verification of real-time event streams; in particular, we propose a language
to describe monitors for real-time event streams that can manipulate data from rich domains. We propose a solution based
on stream runtime verification (SRV), where monitors are specified by describing how output streams of data are computed
from input streams of data. SRV enables a clean separation between the temporal dependencies among incoming events and
the concrete operations that are performed during the monitoring. Most SRV specification languages assume that all streams
share a global synchronous clock and divide time in discrete instants. At each instant every input has a reading, and for every
instant the monitor computes an output. In this paper, we generalize the time assumption to cover real-time event streams,
but keep the explicit time offsets present in some synchronous SRV languages like Lola. The language we introduce, called
Striver, shares with SRV the simplicity and economy of operators, and the separation between the reasoning about time and
the computation of data values. The version of Striver in this paper allows expressing future and past dependencies. Striver
is a general language that allows expressing for certain time domains other real-time monitoring languages, like TeSSLa,
and temporal logics, like STL. We show in this paper translations from other formalisms for (piecewise-constant) real-time
signals and timed event streams. Finally, we report an empirical evaluation of an implementation of Striver.

Keywords Runtime verification · Stream runtime verification · Formal verification · Formal methods · Specification languages

1 Introduction

Runtime verification (RV) is a lightweight formal method
that studies the problem of whether a single trace from
the system under analysis satisfies a formal specification.
Runtime verification is therefore a dynamic technique that
considers only the traces observed, in contrast with static

This work was funded in part by the Madrid Regional Government
under Project “S2018/TCS-4339 (BLOQUES-CM)” and by Spanish
National Project “BOSCO (PGC2018-102210-B-100)”.

B Felipe Gorostiaga
felipe.gorostiaga@imdea.org

César Sánchez
cesar.sanchez@imdea.org

1 IMDEA Software Institute, Madrid, Spain

2 Universidad Politécnica de Madrid, Madrid, Spain

3 CIFASIS, Rosario, Argentina

verification that must consider all executions of the system.
Consequently, runtime verification sacrifices completeness
to obtain a readily applicable formalmethod that can be com-
bined with testing or debugging. Other common use of RV is
the formal monitoring of reactive systems to provide expla-
nations of the system behavior dynamically, which can be
combined at runtime with corrective measures. See [1,2] for
surveys on RV, and the recent book [3]. Early specification
languages proposed in RVwere based on temporal logics [4–
6], regular expressions [7], timed regular expressions [8],
rules [9], or rewriting [10]. The approach we propose here
is based on stream runtime verification (SRV), pioneered by
Lola [11].

Stream runtime verification defines monitors by declaring
the dependencies between output streams (results) and input
streams (observations from the system). The main idea of
SRV is that the same sequence of steps performed during the
monitoring of a temporal logic formula can be followed to
compute statistics of the input trace, as the temporal depen-
dencies between the inputs andoutputs are the same.Theonly

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-021-00605-3&domain=pdf
http://orcid.org/0000-0002-3478-3408
http://orcid.org/0000-0003-3927-4773

158 F. Gorostiaga, C. Sánchez

necessary change is to generalize the operations performed
from the data collected as input to compute the interme-
diate results and outputs, which allows computing richer
verdicts, following the same steps and data dependencies.
The generalization of the outcome of the monitoring pro-
cess to richer verdict values brings runtime verification closer
to monitoring and data stream-processing. See [12–14] for
further works on SRV. Temporal testers [15], which can be
seen as a Boolean SRV description, were later proposed as
a similar monitoring technique for LTL. SRV was initially
conceived for monitoring synchronous systems, where com-
putation proceeds in cycles.

In the pioneering Lola SRV specification language, writ-
ing a specification consists of associating every output stream
variable with a defining equation. The intention is that—once
the input streams are known—each output variable ismapped
to the unique output stream that satisfies its equation. Take,
for example, the following Lola specification [11]:

input bool p
define int one_p := if p then 1 else 0
output bool always_p := p / always_p[-1,true]
output int count_p := one_p + count_p [-1,0]

This specification defines one intermediate stream, called
one_p, and two output streams, called always_p and
count_p. The output stream always_p captures whether
the Boolean input stream p was true at every point in the
past (that is, the LTL formula �p). The stream one_p is 1
when the input p is true and 0 otherwise, which eases the
definition of count_p to count the number of times p was
true in the past. Offset expressions like count_p[-1,0]
or always_p[-1,true] refer to a different position in a
stream with a default value when there is no such a position
(that is, before the beginning and after then end of the trace).
The offset expression count_p[-1,0] refers to stream
count_p at the previous position with default value 0 if the
referred position falls before the beginning of the trace. Simi-
larly, the offset expressionalways_p[-1,true] refers to
the previous position with default value true. In this paper,
we introduce a similar formalism for timed event streams.
Our goal is to provide a simple language with few constructs
including explicit references to the previous and next position
at which some stream contains an event.

Other similar languages for timed event streams are
TeSSLa [16] and RTLola [17] but both of these preclude to
reason explicitly about real-time instants. Instead, TeSSLa
and RTLola offer building blocks like stream transformers in
the language to describe the temporal dependencies between
streams. For this reason we say that Striver is an explicit time
SRV formalism.

Striver is a stream-based declarative specification lan-
guage for timed asynchronous observations, where streams
are sequences of timed events. In other words, events in dif-

ferent streams do not necessarily happen at the same time.
However, all time-stamps are totally ordered according to a
global clock. This is the assumption made in the timed asyn-
chronous model of distributed systems [18]. Striver targets
the outline, non-intrusive monitoring of real-time systems.
Outline in this context means that the monitor is not inter-
twined or modifies the system under analysis, but instead
runs on its specific infrastructure, with the goal of mini-
mizing the effect of monitoring on the system’s behavior
(non-intrusiveness). One of the most important concerns in
RV is the usage of resources. The concept of trace length
independence refers to the ability of a monitoring algorithm
to carry out the online evaluation (processing of input streams
to generate output streams) with an amount of memory that
can be bounded from the specification and is independent of
the length of the trace.

Our intended application is the monitoring and testing of
cloud systems and multi-core hardware monitoring, where
our time assumption is reasonable. The Elastest project [19]
aims at improving the testing of large cloud applications. The
Elastest Monitoring Service (EMS) is a component of the
Elastest infrastructure that improves the testing capabilities
of Elastest. The core of the EMS is an implementation of the
algorithms described in this paper.
Notions of time. The concepts of time used in this paper are
summarized as follows:

– SynchronousSRV.Timeproceeds as sequenceof instants,
where exactly one event is read in each input stream, and
one output event is eventually computed for each output
stream. Examples of specification languages that assume
a synchronous model of time are Lola [11] and LTL [20].

– Isochronous SRV. The time domain is potentially con-
tinuous. Each observation is an event which carries a
time-stamp and can happen at any point. However, output
streams are updated at periodic intervals (which justifies
the name isochronous) or at those instants where there is
an event in an input stream. Examples include the peri-
odic stream definitions in RTLola [17].

– AsynchronousSRV.Again, the timedomain is potentially
continuous time, and time-stamped events can occur at
any time. Output streams can contain events at arbitrary
points in time, without any period or input event. This
requires the engine to generate events at arbitrary instants
which justifies the name asynchronous. Examples are
Striver [21] (extended in this paper) and TeSSLa [16].
RTLola [17] can generate events at periodic times and
also at those times at which there is an input event.

Related work. TeSSLa [16] is a specification language for
timed-event streams based on stream transformers (basic
building blocks that take streams and define new streams). In
contrast, Striver uses a style of specification that expresses

123

Stream runtime verification of real-time event streams with the Striver language 159

the dependency of streams using explicit time offsets, in
an approach more aligned to Lola. The seminal paper for
TeSSLa [16] presents the language, and [22] shows asyn-
chronous operational semantics for a simpler fragment of
the language (that encapsulates all recursionwithin the build-
ing blocks) that also disallows non-Zeno specifications. We
prove in this paper that Striver subsumes TeSSLa (under
some assumptions) in the sense that every stream transformer
from TeSSLa can be implemented in Striver.

Another similar work is RTLola [17], which also aims to
extend SRV from the synchronous domain to timed streams.
In RTLola, defined streams are either computed at prede-
fined periodic instants of time or at the ticking time of
input streams. Even though the semantics of RTLola are
given informally in [17], RTLola is either input driven or
isochronous according to the definition above because out-
put streams can only be generated at periodic times or at
time triggered instants. RTLola is very efficient on inputs
arriving at high speeds as a typical RTLola specification sim-
ply stores input events and computes output events (typically
summaries) at regular intervals. However, this sacrifices trace
length independence unless there is an assumption on the
ratio of arrival of events. Compared to RTLola, in the model
of computation of Striver, streams are computed at the spe-
cific real-time instants where they are required, resulting in
a fully asynchronous SRV system. In this case, Striver is
strictly more expressive than RTLola (the version from [17])
because RTLola cannot define properties that must be inter-
preted at every instant of time (like “there cannot be more
than k events in anywindowof 3 s”)which require to produce
events in the output at instants that are neither periodic nor
present in the input. It is simple to see that every construct
in RTLola can be translated into a few lines of Striver code.
Also, asynchronous languages like TeSSLa and Striver can
be used more easily to define specifications that are guaran-
teed to be trace length independent, and be very efficient on
inputs with sparse event but occasional heavy bursts.

Signal temporal logic (STL) [23,24] is a temporal logic for
real-time signals based on metric temporal logic (MTL) [25]
that is capable of dealing with numeric signals. We show
in Sect. 5.2 that Striver can subsume STL over piecewise-
constant signals and also generalize the semantics of STL
to quantitative data collection over piecewise constant signal
inputs.

Data Stream Management Systems (DSMS) [26] allow
working with streams of input data by continuously execut-
ing queries over stored stream. Typically, DSMS queries are
executed periodically and thus they present issues inherent
to isochronous approaches. In particular, these systems are
sensitive to sparse bursts of events, having to decide whether
to buffer a rather large input data and keep the execution
period high, or execute with a higher frequency, and waste
CPU cycles when there is no data to consume. Also, the

evaluation of queries typically comes in two flavors: (1) the
ones that are evaluated over a fixed window of time, which
may require only bounded resources but restrict the range
of observations (for example, in the Continuous Query Lan-
guage (CQL) developed as part of the STREAMData Stream
Management System [27]); (2) the evaluations that store the
whole history (which require unbounded storage). In compar-
ison, one of the main concerns of stream runtime verification
is to study rich monitoring languages with formal semantics
that know the whole history of the computation and can be
evaluated with bounded resources.
Contributions. In summary, the contributions of the paper
are:

1. The Striver specification language, which generalizes
(preserving the separation between data and time) SRV
to timed event streams, keeping explicit time offsets, and
not using additional building blocks or stream transform-
ers.

2. A trace length-independent online algorithm for the past
fragment, included in Sect. 4.1, and an online algorithm
for the full language, included in Sect. 4.2 (which is not
trace length independent in general).

3. A comparison between TeSSLa and Striver, which is
included in Sect. 5.1.

4. An extension of the language to describe sliding win-
dows, in Sect. 5.2, which allows a translation from STL
to Striver.

5. An empirical evaluation for both the past fragment and
the extensions including future dependencies and win-
dows, reported in Sect. 6.

Journal paper.An earlier version of this paper appears in the
Proceedings of the 18th InternationalConference onRuntime
Verification (RV’18) [21]. This paper extends [21] including
many proofs and additional examples, and more specifically,
the following additions:

– An extension of Striver that includes future operators,
which involves extending the syntax, type inference sys-
tem and generalizing the semantics and well-formedness
condition.

– The complete proof of trace length independence of
the algorithm for the past fragment of Striver presented
in [21] and a completely new online algorithm for the
fully fledged version of Striver, included in Sect. 4.2.
This algorithm does not proceed synchronously as the
simpler algorithm from but instead accesses each of the
streams independently.

– The complete comparison with all operators of the
TeSSLa specification language, included in Sect. 5.1.

– A further extension to define truly sliding windows in
Striver (windows that span from any two points in the
time domain) and the comparison with STL, included in

123

160 F. Gorostiaga, C. Sánchez

Sect. 5.2. This requires the bounded future fragment of
Striver, introduced in the same section.

– An extended empirical evaluation, in Sect. 6, particularly
with new experiments to evaluate the extensions of the
language.

– A discussion of the language properties in Sect. 7 includ-
ing a finer-grain analysis on time boundaries, a sketch on
how to perform offline monitoring which is a method to
achieve trace length independence monitoring provided
the appropriate host capabilities.

2 Preliminaries

The keystone of Stream Runtime Verification is to sepa-
rate two concerns: the temporal dependencies and the data
manipulated. The temporal dependencies are used to calcu-
late the order of operations in monitoring algorithms, while
the data manipulation describes how to perform each oper-
ation. We use here the term data domains to refer to the
first-order signatures and structures that allows modeling the
data manipulation. The clean separation between temporal
dependencies and data domains allows generalizing existing
algorithms that monitor temporal logics, from Boolean ver-
dicts to quantitative verdicts, by using data domains richer
than Booleans.

2.1 Data domains

We use many-sorted first-order signatures and structures to
describe data domains. A signature Σ : 〈S,F〉 consist on a
finite collection of sorts S, and function symbols F (where
each argument of a function has a sort, and the resulting term
also has a sort). A simple signature is Booleans, that has
only one sort (Bool) with two constants (true and false),
binary functions (∧, ∨…), unary functions like ¬, etc. In
this paper, we use sort and type interchangeably. A more
sophisticated signature is Naturals that consists of two sorts
(Nat and Bool), with constant symbols 0, 1, 2…of sort Nat,
binary symbols +, ∗, etc. (of sort Nat×Nat → Nat) as well
as predicates<,≤, which take twoNat arguments and return
a Bool with their usual interpretation. We assume that all
signatures have equality over all sorts and that every sort (Nat,
Bool, Queue, Stack, etc.) is equipped with a ternary symbol
if ·then ·else·. In the case of Nat, the if ·then ·else·
symbol has type Bool × Nat × Nat → Nat.

The theories we consider are interpreted. Therefore, for
every first-order signature there is a structure where all func-
tion symbols have a computational interpretation. That is,
every sort S is associated with a domain DS (a concrete set
of values), and each function symbolf is interpreted as a total
computable function f , with the given arity and that produces
values of the domain of the result given elements of the argu-

ments’ domains. For example, the symbol + can be used to
construct an expression of type Nat given two expressions of
type Nat, and + is associated with the interpreted function +
that computes the sum of two natural numbers. For simplic-
ity, we omit the sort S from DS (and simply write D) if it is
clear from the context.

We will build specifications using stream variables to
model input and output streams. Each stream variable is
associated with a sort. From the point of view of syntac-
tic expressions, stream variables are used to build atoms. As
usual, given a set of sorted atoms A and a signature, the set
of terms is the smallest set containing A and closed under the
use of function symbols in the signature as term constructors
(respecting sorts).

We consider a special time domain T, whose interpreta-
tion is a (possibly infinite, possibly dense) totally ordered
set. We also require the existence of a superset of the time
domain T

+ closed under addition + (which is a total func-
tion), and such that the temporal domain T is an interval
of T+. Usually, time domains contain a minimal element
0̄, a maximal element 1̄, or both, to denote the beginning
and the end of time. Examples of time domains are R≥0,
Q≥0, and N, with their usual order. Given ta, tb ∈ T, we use
[ta, tb] = {t ∈ T | ta ≤ t ≤ tb}, and also (ta, tb), [ta, tb)
and (ta, tb] with the usual meaning. We say that a set of time
points S ⊆ T is non-Zeno when it does not contain bounded
subsets with infinitely many elements, this is, whenever for
every ta, tb ∈ T, the set S ∩ [ta, tb] is finite.

We extend every domain D into Dnotick by including the
fresh symbol ⊥notick to indicate when a stream of type D
does not contain an event. Additionally, we extend Dnotick

into D⊥ by including two additional fresh symbols: ⊥-out

and ⊥+out. We extend the equality function symbol in the
signatures to deal with the introduced constants, where each
constant is equal to itself, and different from the other con-
stants and from all elements in the sorts of the underlying
signature. The fresh symbols ⊥-out and ⊥+out are used to
represent whether a time offset falls off the beginning or the
end of the trace. We use T-out for T ∪ {⊥-out}, T+out for
T ∪ {⊥+out} and Tout for T ∪ {⊥-out,⊥+out}. Similarly,
we use D-out for D∪{⊥-out}, D+out for D∪{⊥+out} and
Dout for D ∪ {⊥-out,⊥+out}.

A key principle in the design of Striver is that the imple-
mentation of data domains is used completely off-the-shelf,
so the addition of these new symbols is performed within
the Striver engine, and the actual off-the-self data domain
implementation only receives actual values from the appro-
priate domains. Besides equality (which is easily extended as
described above), we do not force any function in the theories
(like + for example) to handle these new symbols.

123

Stream runtime verification of real-time event streams with the Striver language 161

2.2 Streams

Monitors observe sequences of events as inputs, where each
event contains a data value from its domain and is time-
stamped with an increasing time value. We model these
sequences as event streams. Given a partial function f :
A⇁B, we use dom(f) as the subset of Awhere f is defined.

Definition 1 (Event stream) An event stream of sort D is a
partial function η : T⇁D such that dom(η) does not contain
bounded infinite subsets.

The set dom(η) is called the set of event points of η. An event
stream η with a first element can be naturally represented as
a timed word:

sη = (t0, η(t0))(t1, η(t1)) · · · ∈ (dom(η) × D)∗,

such that:

1. sη is ordered by time (ti < ti+1); and
2. the set {t | (t, d) ∈ sη} is non-Zeno.

Note that every sequence that is non-Zeno has first ele-
ment if the time domain has minimum element (or if at least
dom(η) has a minimum element). If dom(η) does not have a
maximumelement, we can extend time-words η intoω-timed
words

sη = (t0, η(t0))(t1, η(t1)) · · · ∈ (dom(η) × D)ω.

The set of all event streams over D is denoted by ED .
We introduce some additional notation for event streams

to capture the previous and next event in the stream for a given
point in time. Given a stream σ and a time instant t ∈ T, the
expressionprev<(σ, t)provides the nearest time instant in the
past of t at which σ is defined. Similarly, prev≤(σ, t) returns
t if t ∈ dom(σ); otherwise, it behaves as prev<. Formally,

prev<(σ, t)
def= sup(dom(σ) ∩ [0̄, t))

prev≤(σ, t)
def= sup(dom(σ) ∩ [0̄, t])

sup(S)
def=

{
max(S) if S �= ∅
⊥-out otherwise

The type of prev< and prev≤ is ED × T → T-out. These
functions can return⊥-out because sup returns⊥-out when
the stream has no events in the interval provided. Note that
max(S) is well-defined because time is totally ordered and
every stream σ has a finite number of elements in every given
interval. Similarly, given a stream σ and a time t ∈ T, the
expression succ>(σ, t) provides the nearest time instant in

the future of t at which s is defined, and succ≥(σ, t) returns
t if t ∈ dom(σ); otherwise, it behaves as succ>. Formally,

succ>(σ, t)
def= inf(dom(σ) ∩ (t, 1̄])

succ≥(σ, t)
def= inf(dom(σ) ∩ [t, 1̄])

inf(S)
def=

{
min(S) if S �= ∅
⊥+out otherwise

The type of succ> and succ≥ is ED × T → T+out. These
functions can return ⊥+out because inf returns ⊥+out when
the stream has no event in the interval provided.

2.3 Efficient monitorability

A synchronous SRV specification that only refers to the
past is called very efficiently monitorable (see [11]). In
synchronous SRV, these specifications can be monitored
online and guaranteed that (1) the online monitoring can be
performed trace length independently (with an amount of
memory that can be bounded a-priory and does not depend
on the length of the trace), and (2) each output stream can be
resolved immediately (that is, once all inputs are read at time
t , all outputs for time t can be computed). The resources
necessary to monitor a specification are considered rela-
tive to the size of data registers, meaning that for a trace
length-independent specification, the engine requires a con-
stant number of registers of the corresponding sort per stream.
For example, trace length independence in logic requires
a constant number of Boolean registers. In asynchronous
SRV formalisms like Striver, very efficiently monitorable
specifications can bemonitored preserving trace length inde-
pendence. In the general case of unrestricted specifications
the resources cannot be bounded at static time. We show in
Sect. 4.1 an online monitoring algorithm for very efficiently
monitorable Striver specifications and prove that this algo-
rithm is trace length independent.

3 The Striver specification language

A Striver specification describes the relation between input
event streams and output event streams, where an input
stream is a sequence of observations from the system under
analysis.

The key idea in Striver is to associate each defined stream
variable with:

– a ticking expression, which defines when the stream
may contain an event;

– a value expression, which defines the value contained
in the event.

123

162 F. Gorostiaga, C. Sánchez

Note that in synchronous SRV, only a value expression is
necessary because every stream has a value in every cycle
(i.e., in every synchronous instant). Therefore, expressing
explicitly when a stream produces a value in synchronous
SRV would be redundant.

Formally, a Striver specification ϕ : 〈I , O,V,C,T〉 con-
sists of input stream variables I = {x1, . . . , xn}, output
stream variables O = {y1, . . . , ym}, a collection of clock
or ticking expressions C = {C1, . . . ,Cm}, a collection of
value expressionsV = {V1, . . . , Vm} and a collection of sorts
T = {T1, . . . , Tn+m}. Note that there is one ticking expres-
sion and one value expression per output stream variable, and
one sort per streamvariable.Weassume I∩O = ∅.Wedefine
the size1 of a specification as its number of streams, that is,
the size of the specification ϕ is |I ∪ O|. Every output vari-
able y is associated with a ticking expression Cy ∈ C which
captures when stream y may tick, and with a value expres-
sion Vy ∈ V which defines what is the value of y when it
ticks, and if it ticks at all. Every stream variable x is associ-
ated with a type name Tx that indicates its domain. Note that
the sub-indices of Cy , Vy and Tx indicate the corresponding
stream variable associated.

In practice, it is very useful that Ty defines an over-
approximation of the set of instants at which y ticks. Then,
the value expression can decide if the stream indeed produces
a value or if the evaluation is a “no tick”. A simple example
of a filter can be seen in Example 1.

3.1 Syntax

We fix Z to be the set of stream variables Z = I ∪ O .
There are three types of expressions: ticking expressions,
value expressions and offset expressions. Offset expressions
are used inside value expressions to allow temporal shifts.
Formally, the expressions are:

– Ticking Expressions, which define when a stream may
produce a value:

α:: = {c} ∣∣ v.ticks
∣∣delay ε w

∣∣α U α (tick)

where c ∈ T, ε ∈ T
+ are constants (with ε �= 0), v ∈ Z

is an arbitrary stream variable, andU is used for the union
of sets of ticks.

– Offset Expressions, which allow to fetch events from
streams:

τx :: = x<˜τ
∣∣ x«τ

∣∣ x>˜τ
∣∣ x»τ (offset)

τ :: = t
∣∣ τz for z ∈ Z

1 A more refined version of size considers the size of the ticking and
value expressions as well, but this is sufficient for the purpose of this
paper.

The expression t represents the current time instant. The
expression x«τ is used to refer to the previous instant
at which x ticks strictly in the past of τ (or ⊥-out if
there is not such an instant). The expression x<˜τ also
considers the present as a candidate instant. Analogously,
the intendedmeaning of x»τ is to refer to the next instant
strictly in the future of τ at which x ticks (or ⊥+out if
there is not such an instant). The expression x>˜τ also
considers the present as a candidate.

– Value Expressions, which give the value of a defined
stream at a given ticking point candidate:

E :=d
∣∣ x (τx) ∣∣f(E1, . . . , Ek)

∣∣ τ (value)∣∣-out ∣∣+out ∣∣notick
where d is a constant of type D, x ∈ Z is a stream vari-
able of type D and f is a function symbol of return type
D. Note that in x (τx) the value of stream x is fetched at an
offset expression indexedby x ,which captures the ticking
points of x and guarantees the existence of an event if the
point is within the time boundaries. Expressions t and τx
build expressions of sort Tout. The three additional con-
stants -out, +out and notick allow reasoning (using
equality) about accessing both ends of the streams, or not
generating an event at a ticking candidate instant.

We also use the following syntactic sugar:

x(˜e)
def= x (x<˜e) x(<e)

def= x (x«e)

x(e˜)
def= x (x>˜e) x(e>)

def= x (x»e)

isticking(x)
def= x<˜t == t

x(˜e, d)
def= if (x<˜e)==-out then d else x(˜e)

x(<e, d)
def= if (x«e)==-out then d else x(<e)

x(e, d˜)
def= if (x>˜e)==+out then d else x(e˜)

x(e>, d)
def= if (x»e)==+out then d else x(e>)

Essentially, x(˜t) provides the value of x at the previ-
ous ticking instant of x (including the present) and x(<t)
is similar but not including the present. Also, x(<t, d) is
somewhat analogous to x[−1, d] in Lola, allowing us to fetch
the value of the previous event in stream x , or d if there is
not such previous event. The constructors x(e˜), x(e, d˜),
x(e>) and x(e>, d) are analogous to their respective past
constructors. Finally, isticking(x) indicates if the stream x
is producing a value at the current time instant.

Striver offers a concrete syntax where constructors bind
stream variables to stream definitions and stream types. Let
ϕ be a Striver specification. We use

input type name

to indicate that name is an input stream of type t ype. This

is, name ∈ I and Tname
def= t ype ∈ T. We use

123

Stream runtime verification of real-time event streams with the Striver language 163

ticks name := tickexpr
define type name := valexpr

to indicate that name is an output streamwith tick expression
tickexpr , type t ype and value expression valexpr . This is,

name ∈ O and Cname
def= tickexpr ∈ C, name ∈ O ,

Vname
def= valexpr ∈ V and Tname

def= t ype ∈ T. We use
some syntax highlight to make specifications more readable.
Reserved words include t, out and notick for which we
use italics fonts.

Example 1 The following specification defines a stream y
that filters out the negative values of an input stream x .
The stream y over-approximates its tick instants as the tick
instants of x and then delegates the filtering to its value
expression.

input int x
ticks y := x.ticks
define int y := if !isticking(x) then notick

else if x(~t)<0 then notick
else x(~t)

Example 2 Consider two input event streams: sale and
arrival, where sale represents the sales of a certain
product, and arrival represents the arrivals of the same
product to the store. We can define an output event stream
stock to calculate the stock of that product.

input int sale
input int arrival
ticks stock := sale.ticks U arrival.ticks
define int stock := stock(<t,0) +

(if isticking(arrival) then
arrival (~t) else 0) -

(if isticking(sale) then
sale(~t) else 0)

Note that stock is defined to tick when either sale or
arrival (or both) tick.

Example 3 We can define a stream clock to tick peri-
odically from a certain instant onwards using the delay
operator.

ticks clock := {0} U delay 1 clock
define Time clock := 5

The stream clock produces a value of 5 every 5 time
units starting at time 0. Note that this specification has no
input streams. ��

For a Striver specification ϕ = 〈I , O,V,C,T〉 to be legal,
every ticking expression in C is an α-expression; and every
value expression in V is an E-expression. In the next section
we show how a simple type inference mechanism guaran-
tees that expressions can be evaluated by the off-the-shelf
interpreted theories. If a function application is not applied
to a term that guarantees a value of the type needed by the
function, the specification is rejected.

3.2 Type inference rules

We use off-the-shelf data domains which do not know about
the fresh constants -out, +out and notick introduced to
manage the cases of out of stream bounds and absence of
tick as values. Therefore, the interpreted function+ from the
theory Naturals is not able to evaluate (x(˜t) + y(˜t)) in
cases where x(˜t) falls off the trace and becomes ⊥-out,
because Naturals does not know about the value ⊥-out. In
Striver we use a simple type system to rule out statically the
use of x(˜t) in (x(˜t)+y(˜t)) unless it is guaranteed that
x(˜t) is guaranteed to be evaluated to aNat value (typically
this is done via an if-then-else in the expression enclosing
(x(˜t) + y(˜t)).

We use x : ED to represent that x has been declared of
type D.

There are three sets of type inference rules, shown inFig. 1.

– τ inference rules:

[now], [PrevEq], [Prev], [SuccEq] and [Succ].

These rules allow inferring that offset expressions gen-
erate a time instant or an out-of-stream value.

– The E inference rules:

[notick], [- out], [+out], [access(1)],
[access(2)], [access(3)], [const] and [fun].

These rules allow typing value expressions, including
stream accesses.

– Type manipulation rules:

[Eq], [NEq], [=- commut], [�=- commut], [Ite],
[Hip], [⊕- intro], [⊕- assoc] and [⊕- commut].

These expressions allow accessing the hypotheses aswell
as introducing and eliminating union types.

A Striver specification ϕ = 〈I , O,V,C,T〉, in order to be
legal, must satisfy that, from the set of type assumptions

Γ
def= ⋃

x∈I∪O{x : ETx }, the type inference rules allow
deriving that the type of the value expression associated
with every output stream is correct: ∀y ∈ O, Γ � Vy :
Ty ⊕ {⊥notick}. Also, as mentioned above, every function
application f (e1, . . . , ek) of an off-the-shelf data domain
must type properly, meaning that all arguments must have
the appropriate types required by the f . Otherwise, the spec-
ification is declared illegal at compile time.

The type system shown in Fig. 1 is designed to be simple
to assess type correctness.More sophisticated type-inference

123

164 F. Gorostiaga, C. Sánchez

Fig. 1 Type inference rules for
Striver

systems would allow inferring the correct typing of expres-
sions that allow writing simpler expressions, but this is
outside the scope of this paper.

Example 4 We shownow that the streamstock fromExam-
ple 2 has type int. The specification without syntactic sugar
is:.

input int sale
input int arrival
ticks stock := sale.ticks U arrival.ticks
define int stock :=

(if stock <<t == -out
then 0 else stock(stock <<t)) +

(if arrival <~t == t
then arrival(arrival <~t) else 0) -

(if sale <~t == t
then sale (sale <~t) else 0)

We start from

Γ
def= {stock : Eint , sale : Eint , arrival : Eint }.
We first show the type proof of the fact that the following

expression is of type int.

if stock <<t == -out
then 0 else stock(stock <<t)

Figure 2a shows that ifstock<<t is different from-out
then stock(stock<<t) is of type int , with

Γ 1 def= Γ ,stock<<t �= -out

Γ 2 def= Γ ,stock<<t = -out.

We call this proof tree proof0.
Then, in Fig. 2b,we see the type proof of thewhole expres-

sion. We then show the proof tree to see that the following
expression has type int .

if arrival <~t == t then arrival(arrival <~t)

Figure 2c shows that if arrival<~t is equal to t, then
arrival(arrival<~t) is of type int , with

Γ 3 def= Γ ,arrival<~t = t

Γ 4 def= Γ ,arrival<~t �= t.

We call this proof tree proof1. Next, we see the type proof of
the whole expression, in Fig. 2d. The proof that the following
expression has type int is analogous.

if sale <~t == t then sale(sale <~t) else 0

The types inferred in the previous proofs imply that the
applications of (+) and (−), which are of type (int, int) →
int , receive the right types.We can conclude that the defining
value expression for stock has type int , and therefore, it is
also an expression of type int ∪ {⊥notick} as required. ��
It is easy to show that the type checking described above is
decidable (via an easy terminating argument on type infer-
ence).

123

Stream runtime verification of real-time event streams with the Striver language 165

Fig. 2 Type proof trees for
Example 4

3.3 Semantics

As common in stream runtime verification languages, the
semantics of Striver is defined denotationally first. This
semantics establishes whether a given input (one stream per
input stream variable) and a given output (one stream per out-
put stream variable) satisfy the specification. The semantics
of Striver are defined for non-Zeno streams only. We show
in Sect. 3.4 that if the input streams are non-Zeno, then the
output streams are guaranteed to be non-Zeno as well.

The semantics of Striver can be defined for infinite traces,
that is, over time domains that have no 0̄ or 1̄ (or neither).
However, the absence of each time boundary imposes certain
syntactic restrictions over the language. On the other hand,
any syntactically well-typed and well-formed specification
(see below) can be given semantics if its time domain is
finite. As a result, we face with a trade-off between language
expressivity and time domain restrictions:

1. We can define semantics for unrestricted time domains,
but accept only a fragment of the language.

2a. We can impose the existence of a minimum time 0̄ and
accept a fragment of the language that allows forwards
monitoring (that is, the time domain used in TeSSLa).

2b. We can impose the existence of a maximum time 1̄ and
accept a different fragment of the language to allow back-
ward monitoring

3. We can impose the existence of both a 0̄ and a 1̄ and
accept any specification that is syntactically well-typed
and well-formed.

In this section, we consider time domains to have a 0̄ and a
1̄ and discuss the other cases as extensions. This restriction,
combined with the fact that we deal with non-Zeno streams,
implies that all streams we consider contain finitely many
events. In Sect. 7, we give the syntactic conditions that allow
the use of unbounded timedomains, effectively enabling us to
deal with infinite streams. Note that non-Zenoness is always
a necessary condition for our denotational semantics.

This denotational semantics defines a satisfaction relation
in terms of valuations. Given the set of variables Z = I ∪ O
from the specification, a valuation σ is a map that associates
every x of sort D in Z with an event stream from ED . For
a stream variable x , the expression σx represents the stream
associated with x in σ . Given a valuation σ , we now define
the result of evaluating an expression for σ . We define three
evaluation maps �.�σ , �.�σ , �.�σ depending on the type of the
expression.2 The evaluation of a ticking expression is a set

2 We use colors to better distinguish between semantic maps.

123

166 F. Gorostiaga, C. Sánchez

Fig. 3 Semantics of offset
expressions

of ticks. The evaluation of an offset expression is a function
that for every point in time, returns another point in time (or
⊥-out). Finally, the evaluation of a variable expression is a
function that for every point in time provides a value of the
appropriate domain. These evaluation maps are defined as
follows:

– Ticking Expressions. The semantic map �.�σ assigns a set
of time instants to each ticking expression as follows:

�{c}�σ
def= {c}

�v.ticks�σ
def= dom(σv)

�a1 U · · · U ak�σ
def= �a1�σ ∪ · · · ∪ �ak�σ

�delay ε w�σ
def= {t ′ | there is a t ∈ dom(σw)

satisfying t + σw(t) = t ′,
|σw(t)| ≥ |ε| and
sign(σw(t)) = sign(ε), and

dom(σw) ∩ (t, t ′) = dom(σw) ∩ (t ′, t) = ∅}

A constant c defines the set of time instants that only
contains c. The ticks of a stream variable defines the
set of ticks that v is assigned in the valuation σ . The union
U is interpreted as the union of sets of ticks. Finally, the
operator (delay ε w) defines the set of times t+v such
that there is an event (t, v) in w, with v of the same sign
as ε, and |v| ≥ |ε|; and there is no event between t and
t+v. Notice that if the streamw produces an event whose
value is either of a different sign than ε, or is closer to
zero than ε, then it does not induce a time instant to be
added to the set, but it still might prevent the previous
value t + v in w to be added to the set.

– Offset Expressions. Offset expressions �.�σ calculate,
given a time instant t , another time instant, or a symbol
representing that the limits of the trace were surpassed.
The semantics is given in Fig. 3. The interpretation of t
is the current instant. For x«e, the interpretation is the
time of the event in the valuation of x (that is, σx) at the
closest instant previous to the evaluation of �e�σ at the
current instant, or the value ⊥-out if there is no such
event. For x<˜e, the interpretation takes the evaluation
of �e�σ at the current instant, or the previous one at which
σx contains an event. The semantics of » and >˜ are dual
to « and <˜.

– Value Expressions. The semantics of the value expres-
sions are given for an instant t :

�x (e)�σ (t)
def=

⎧⎪⎨
⎪⎩

⊥-out if �e�σ (t) = ⊥-out

⊥+out if �e�σ (t) = ⊥+out

v if �e�σ (t) = t ′ and σx (t ′) = v

�f(E1, . . . , Ek)�σ (t)
def= f (�E1�σ (t), . . . , �Ek�σ (t))

�t�σ (t)
def= t

�τx �σ (t)
def= �τx �σ (t)

�-out�σ (t)
def= ⊥-out

�+out�σ (t)
def= ⊥+out

�notick�σ (t)
def= ⊥notick

The interpretation of a stream access for x at e is the value
of the stream σx at the time t in case the evaluation of e is t
andσx is defined at t ; otherwise it is⊥-out or⊥+out. The
interpretation of a function is the corresponding inter-
preted function on the evaluation of the arguments, which
includes as particular case the interpretation of constant d
(as the value d). We rely on the type system to guarantee

123

Stream runtime verification of real-time event streams with the Striver language 167

that the arguments have values of the right domain. The
evaluation of t is the current value t . Similarly, the inter-
pretation of offsets is the corresponding instants of time
given by the evaluation of offset expression. Finally, the
interpretation of -out and notick is the values ⊥-out

and ⊥notick. Note that �x (e)�σ includes the possibility
that (1) the expression cannot be evaluated because the
time instant given by �e�σ (t) is outside the boundaries
of domain of the stream and (2) the expression is not
defined because the stream does not tick at t . It is easy
to see that the cases for �x (e)�σ are exhaustive because
�e�σ (t) guarantees that σx (�e�σ (t)) is defined.

We are now ready to define evaluation models as follows.

Definition 2 (Evaluation model) Given a valuation σ of vari-
ables I ∪O , the evaluation of the equations for stream y ∈ O
is the event sequence defined as follows:

�Cy,Vy�σ
def= {(t, d) | t ∈ �Cy�σ and d = �Vy�σ (t)

and d �= ⊥notick}

An evaluation model is a valuation σ such that for every
y ∈ O: σy = �Cy,Vy�σ .

In otherwords, a candidate valuationσ is an evaluationmodel
if σ satisfies all ticking equations and all value equations for
all defined stream variables. Note that if an instant t is not in
the domain of a stream s, then there is no d to comply with
the definition and then (t, d) /∈ σs .

The goal of a Striver specification is to define a monitor
that intuitively should be a computable function from input
streams into output streams. The following definition cap-
tures whether a specification indeed corresponds to such a
function.

Definition 3 (Well-defined) A specification ϕ is well-defined
if for all σI , there is a unique σO , such that σI ∪ σO is an
evaluation model of ϕ.

Specifications can be ill-defined. For example, the following
specification

ticks none := {5}
define bool none := not none(~t,False)

admits no evaluation model, and the following admits many
evaluation models

ticks many := {5}
define bool many := many(~t,False)

3.4 Dependency graph

Definition 3 states that a specification ϕ is well-defined if
for every valuation of the input streams σI there is a unique
valuation of the output streams σO that makes (σI , σO) an

evaluation model. Well-definedness is a semantic condition,
which is not easy to check for a given specification (undecid-
able for expressive enough domains). Following [11,28], we
present here a syntactic condition, called well-formedness,
that is easy to check on input specifications and guarantees
that specifications are well-defined.

Given a set of streams Z , we define the subsets of Present,
Past and Future offset expressions as the smallest subsets of
offset expressions such that:

– t ∈ Present,
– if e ∈ Future and x ∈ Z , then

– (x«e) ∈ Past ∩ Present ∩ Future,
– (x<˜e) ∈ Past ∩ Present ∩ Future,
– (x»e) ∈ Future and
– (x>˜e) ∈ Future

– if e ∈ Present and x ∈ Z , then

– (x«e) ∈ Past,
– (x<˜e) ∈ Present ∩ Past,
– (x»e) ∈ Future and
– (x>˜e) ∈ Present ∩ Future

– if e ∈ Past and x ∈ Z , then

– (x«e) ∈ Past,
– (x<˜e) ∈ Past,
– (x»e) ∈ Past ∩ Present ∩ Future and
– (x>˜e) ∈ Past ∩ Present ∩ Future

Note that e ∈ Future models whether e may be an instant in
the future in some valuation. In other words, if e /∈ Future,
then it is guaranteed that �e�σ (t) cannot refer to the future of
t in any valuation σ .

Definition 4 (Direct dependency)We say that y has a present

direct dependency on x (and we write x
0−→ y) if

– x .ticks appears in Cy , or
– Vy contains some present expression τx ∈ Present.

We say that y has a past direct dependency on x (and write

x
−−→ y) if

– delay ε x appears in Cy and ε > 0, or
– Vy contains some past expression τx ∈ Past.

We say that y has a future direct dependency on x (and write

x
+−→ y) if

– delay ε x appears in Cy and ε < 0, or
– Vy contains some future expression τx ∈ Future.

123

168 F. Gorostiaga, C. Sánchez

In turn, dependencies allow creating a graph with three kinds
of edges that represent future, past and present dependencies.
This graph is easily computed from the specification and it
has linear size in the size of the spec.

Definition 5 (Dependency graph) Given a specification ϕ =
〈I , O,V,C,T〉 the dependency graph is a directed graph
Gϕ = (Z , E), where set of vertices is Z = I ∪ O , and

set of edges is E : Z × Z × { 0−→,
−−→,

+−→}, where there is an
edge (x, y, t) ∈ E whenever x

t−→ y (for t ∈ {=,+,−}).
A path in the dependency graph is a past path if it contains

at least one past dependency edge
−−→ and it does not contain

any future dependency edge
+−→. A path in the dependency

graph is a future path if it contains at least one future depen-

dency edge
+−→ and does not contain any past dependency

edge
−−→. Note that future paths model paths that necessarily

refer to a future time instant, while past paths model paths
that necessarily refer to a past instant. If a path is neither
future nor past, then it may refer to the current instant. The
condition of well-formedness restricts the different kinds of
paths in circular dependencies of a given specification.

Definition 6 (Well-formed specifications) A specification ϕ

is well-formed if for everymaximal strongly connected com-
ponent (MSCC) M in its dependency graph, either every
closed path in M is a past path or every closed path in M is
a future path.

Closed paths are those paths whose initial and final vertices
are the same. Closed paths in the dependency graph of a spec-
ification ϕ capture dependencies between a stream and itself.
Therefore the fact that all closed paths in a given MSCC are
future or past guarantees that no circular dependency can
refer to the current instant. In turn, this guarantees that there
are no circularities in the information needed to compute the
value of a streamat a given instant. Thewell-formedness con-
dition is easy to check for a given specification and it implies
that the dependency graph consists of a DAG of MSCCs,
each of which is either future or past.

Theorem 1 Every well-formed Striver specification is well-
defined.

Proof Let ϕ be a well-formed specification and consider an
arbitrary valuation σI of the input stream variables of the
specification. By assumption, every stream in this input valu-
ation has a finite number of events because they are non-Zeno
and the temporal domain is restricted to have a minimum
value 0̄ and a maximal value 1̄.

We reason by induction in a reverse topological order
between the MSCCs, showing that for every MSCC M there
is a single valuation of the stream variables in M assuming
that all stream variables in lower MSCCs (we call these the

inputs to M) have a single valuation. Also, assuming that the
input valuations are non-Zeno, the output valuations are also
non-Zeno.

Assume that M is a future MSCC (the other case is
completely dual). We first define the following “quantum”
duration for M as follows:

q
def= min{−ε | (delay ε w) ∈ Cx for any x, w ∈ M}

For MSCCs that do not contain a delay, any constant
time q > 0 can be taken. The definition of quantum for
past MSCCs is identical, except that ε is used for −ε. It is
easy to see that the existence of an element in an expression
delay ε w at t only depends on σw in the interval [t + q, 1̄]
because the offset is at least q.We nowdivide the global dura-
tion of the streams [0̄, 1̄] into a sequence of � 1̄

q � intervals of
duration q:

[0̄, 0̄ + q), [0̄ + q, 0̄ + 2q), . . . , [0̄ + nq, 1̄]

We use Ii for the i-th interval in this sequence. We now
reason by induction from i = n down to 0 to show that there
are only finitely many candidates t ∈ Ii that can be a solution
to Tx for some x ∈ M . Take the first atomic expression in
Tx for x ∈ M . The case for s.ticks and delay ε s where
s /∈ M can only generate a finite number of ticks in Ii because
σs only has a finite number of ticks by assumption. The case
for delay ε w where w ∈ M can only generate as many
ticks as σw has in ∪ j>i I j because the offsets must be at least
of q by the definition of q.

Finally, the constructs w.ticks and U do not gener-
ate new ticks except ticks already included in the previous
cases. Finally, we show that for the finite number of time
instants in an interval Ii , the finite number of ticking candi-
dates {t0 < t1 < . . . < tk} in the interval Ii for �Tx , Vx�t j
is completely determined for every t j ∈ {t0, . . . , tk}. Note
that every closed path in a future MSCC contains at least a
future edge. Therefore, removing future edges, theMSCC M
becomes a DAG. Evaluating in a reverse topological order<
in thisDAGguarantees that at time t j the values of the streams
at t j necessary to compute the value of x at t j are known.
A case inspection in the structure of Tx and Vx reveals that
�Tx , Vx�σ is completely determined by the events in σs |[t j ,1̄]
if s < x , and in σs |[t j+1,1̄] otherwise. We then conclude that
there is a unique solution for every σx in the interval Ii , which
has a finite number of events. Since there is a unique valu-
ation for σx |[t j ,1̄] for every time instant t j in every interval
Ii , we conclude that there is a unique solution for every σx
within [0̄, 1̄]. ��

The proof above implies that for every well-formed spec-
ification, the input valuation determines uniquely a single
valuation σx for every stream x . Additionally, in order to

123

Stream runtime verification of real-time event streams with the Striver language 169

determine the value of streams in future MSCCs one only
needs to inspect the present and future of streams in the
same MSCC, or values of streams in lower MSCCs. Dually,
for past MSCCs only the past needs to be inspected. More
importantly, the finiteness and acyclicity of the dependencies
between events in the evaluation model allow us to reason
by induction to prove that operational monitoring algorithms
indeed compute the evaluation model.

4 Operational semantics

We show now the operational semantics of Striver. We first
present in Sect. 4.1 a monitoring algorithm for the past frag-
ment of Striver, this is, an algorithm to monitor Striver
specifications whose dependency graph does not contain

positive edges (
+−→). This algorithm allows to compute incre-

mentally the output streams from the input streams, and its
resources consumption is trace length independent. Then, in
Sect. 4.2 we show a general algorithm for the full version of
Striver, which includes also future operators.

4.1 Operational semantics for past specifications

The semantics of Striver specifications introduced inSect. 3.3
are denotational in the sense that these semantics guarantee
that for every input stream valuation there is exactly one
output stream valuation, but does not provide a procedure
to compute the output streams, let alone do it incremen-
tally. We provide in this section an operational semantics
that computes the output incrementally for the past fragment
of Striver. Note that in the past fragment the dependency

graph only contains
−−→ and

0−→ edges. We fix a past spec-
ification ϕ with dependency graph G, and we let G= be its

pruned dependency graph (obtained fromG by removing
−−→

edges). We also fix < to be an arbitrary total order between
stream variables that is a reverse topological order of G=.

We first present a simple online monitoring algorithm that
stores the full history computed so far for every output stream
variable. Later, we will provide bounds on the portion of the
history that needs to be remembered by the monitor, showing
that only a bounded number of events needs to be recorded,
and that this bound depends linearly on the size of the specifi-
cation and not on the length of trace. The modified algorithm
is a trace length-independent monitor for past Striver speci-
fications.

The following auxiliary lemma captures sufficient infor-
mation to determine the value of a given stream at a given
time instant.

Lemma 1 Let y be an output stream variable of a specifica-
tion ϕ, σ , σ ′ be two evaluation models of ϕ, such that, for
time instant t:

(i) For every variable x, either
t ′ /∈ dom(σx) and t ′ /∈ dom(σ ′

x) or
σx (t ′) = σ ′

x (t
′), for every t ′ < t , and

(ii) For every variable x, such that x
0−→∗ y, either

t ′ /∈ dom(σx) and t ′ /∈ dom(σ ′
x) or

σx (t ′) = σ ′
x (t

′), for every t ′ ≤ t .

Then, σy(t) = σ ′
y(t).

Proof It is easy to see that t ∈ �Ty�σ if and only if t ∈
�Ty�σ ′ , by structural induction on ticking expressions. The
key observation is that only values in the conditions of the
lemma are needed for the evaluation, which are assumed to
be the same in σ and σ ′. Similarly, it is easy to see that
�Vy�σ = �Vy�σ ′ because again the values needed are the
same in σ and σ ′. ��

The online algorithm for the past fragment maintains the
following state (H , tq):

– History: H contains a finite event stream for each output
stream variable. We use Hy for the event stream prefix
for stream variable y.

– Quiescence time: tq is the time up to which all output
streams have been computed.

The monitor runs a main loop, which first calculates the
next time tq that is relevant to the monitoring evaluation,
and then computes all outputs up to time tq . We will show
that no event can exist in any stream in the interval between
two consecutive quiescence time instants. We assume that at
time t , the next event for every input stream is available to
themonitor, even though knowing that there is no event up-to
some t < t ′ is sufficient.

The core observation that allows the design of our incre-
mental algorithm follows from Lemma 1, which limits the
information that is necessary to compute whether stream y
at instant t contains some event (t, d) and the value d within
the event. All this information is contained in H , so we write
�Ty�H and �Vy�H to remark that only H is needed to compute
�Ty�σ and �Vy�σ .

The main algorithm, PastMonitor, is shown in Algo-
rithm 1. Lines 2 and 3 set the history and initial quiescence
time. The main loop continues until no more events can be
generated. Line 5 computes the next quiescence time, by
taking the minimum instant after the last quiescence time
at which some output stream may tick. A stream y “votes”
(see Algorithm 2) for the next possible instant (in the future
of the current quiescence time) at which its ticking equation
Ty can possibly contain a value. Consequently, no event can
possibly be present between the current quiescence time and
the lowest vote. Note that recursion at lines 27 and 29 ter-
minates because the graph G= is acyclic. (Recall that the
specification is well-formed.)

123

170 F. Gorostiaga, C. Sánchez

Algorithm 1 PastMonitor: Online Monitor for Past Spec-
ifications
1: procedure PastMonitor
2: Hs ← 〈〉 for every s ∈ Z
3: tq ← −∞
4: loop � Step
5: tq ← min

s∈O{t | t = vote(H , Ts , tq)}
6: if tq = ∞ then break

7: for s in G= following < do
8: if tq ∈ �Ts�H then
9: v ← �Vs�H (tq)
10: if v �= ⊥notick then
11: Hs ← Hs ++ (tq , v) � Updates history H
12: emit(tq , v, s)

13: end for
14: end loop

Algorithm 2 vote: Compute the next ticking instant
15: function vote(H , expr , t)
16: switch expr do
17: case delay ε s
18: switch Hs do
19: case 〈〉 return ∞
20: otherwise
21: (t ′, v) = latest(Hs)

22: if v < ε ∨ t ′ + v > 1̄ then return ∞
23: else return t ′ + v

24: case {c}
25: if c > t then return c
26: else return ∞
27: case a U b
28: return min(vote(H , a, t),vote(H , b, t))
29: case y.ticks with y ∈ O
30: return vote(H , Ty, t)

31: case s.ticks with s ∈ I
32: return succ>(σs , t)

If the voted next quiescence time is ∞, it means that all
streams have been completed, and thus, the algorithm ends.
This behavior is reflected in line 6. If the voted next quies-
cence time is a time instant t , then the algorithm calculates
the potential value of each stream at t in topological order
< over G=, so the information about the past required in
Lemma 1 is contained in H . For every stream, if the calcu-
lated potential value is not ⊥notick, then the event is added
to the history of the stream (in line 11) and emitted as an
output of the monitor (in line 12).

Note that at every cycle, we need the next event on all input
streams at a time instant greater than the current quiescence
time. The algorithm will block until all such events occur.
As a consequence, the input streams will be inspected and
processed at different paces according to the global time. If
an input stream s has been consumed completely, then the
result of succ>(σs, t) will be ∞ at every succeeding cycle.
Finally, note that latest(Hs) in line 23 returns the latest event

in the past history of stream s (which is guaranteed to be
non-empty due to the test in lines 19 and 20).

The following result shows that assuming that σI is non-
Zeno, the output is also non-Zeno. Hence, for every instant t ,
the algorithm eventually reaches a quiescence time tq greater
than any given t in a finite number of executions of the main
loop.

Lemma 2 PastMonitor generates non-Zeno output for a
given non-Zeno input.

Proof Note that events are generated in strictly increasing
time for every stream, because the quiescence time tq decided
in line 5 is greater than the current time. However, that does
not imply non-Zenoness because some timedomains (like the
reals and the rationals) accept infinite sequences of increasing
time stamps that do not pass a given instant t .

Now, we first show that if the output generated by the
monitor is Zeno for time t (that is, there is no bound on
the executions of the loop body that make tq > t), then the
execution is also Zeno for time t−ε. The lemma then follows
because by repeating the result � t

ε
� times we will obtain that

there is a Zeno execution that does not pass t − ε t
ε

= 0, but
the second execution already passes 0.

Consider one such offending t . There must be an output
stream variable x that votes infinitely many times in the infi-
nite sequence of increasing quiescence times that never pass
t . Let x be the lowest such stream variable in (G=,<). Con-
sider the ticking expression for x . Since U collects the votes
for its sub-expressions, it follows that some sub-expression
votes for infinitely many quiescence times in the sequence.
The sub-expression cannot be s.ticks, because s would be
lower than x in < (contracting that x is minimal). Hence, the
sub-expression voting infinitely many times is of the form
(delay ε s).

Then, all these votes are caused by different events in Hs

that are ticks of s that happened earlier than t − ε. ��
We finally show that the output of PastMonitor is an

evaluation model. We use Hi
s (σI) for the history of events

Hs after the i-th execution of the loop body and H∗
s (σI) for

the sequence of events generated after a continuous execution
of themonitor. Note that H∗

s (σI) is a finite sequence of events
if time is bounded by 1̄, or if all inputs have a finite number
of events and no repetition is introduced in the specification
using delay. In this case, the vote is eventually ∞ and
the monitoring algorithm halts. However, this algorithm can
also be used (guaranteeing finite memory) for the continuous
online evaluation ad infinitum for unbounded input events or
the cyclic generation of events with delay.

Theorem 2 Let σI be an input event stream, and let σO con-
sist ofσx = H∗

x (σI) for every output stream x.Then, (σI , σO)

is an evaluation model of ϕ.

123

Stream runtime verification of real-time event streams with the Striver language 171

Proof Let σ be (σI , σO). By Lemma 2, the sequence of
quiescence times is a non-Zeno sequence. We show by
induction on the votes of PastMonitor that for every qui-
escence time tq , σ is an evaluation model up to tq , that is
H∗
x |tq = �Tx , Vx�σ |tq .
Let tprevq be a quiescence time and let

ty = vote(H , y.ticks, tprevq).
We first show that for every output stream y, ty ∈ �Ty�σ

and for no t ′ with tprevq < t ′ < ty , t ′ ∈ �Ty�σ . This result
follows by induction on <, by Lemma 1 which guarantees
that only the past is necessary to evaluate �Ty�σ , and by our
assumption that σ is an evaluation model up-to tprevq . Now,
let tq be the next quiescence time after tprevq chosen in line
5. We show, again by induction on <, that for every output
stream variable y, Hy contains an event (tq , v) if and only
if tq ∈ �Ty�σ (which we showed above), and v = �Vy�σ =
�Vy�H as computed in line 9. Hence, all events in Hy satisfy
that (tq , v) ∈ �Ty, Vy�σ and all events (tq , v) ∈ �Ty, Vy�σ

are added to Hy at quiescence time tq . Since only quiescence
times can satisfy �Ty�σ , it follows that σ is an evaluation
model up-to tq if σ is an evaluation model up-to tprevq , as
desired. Finally, since the set of quiescence times is non-
Zeno, for every t there is a finite number n of executions
of loop body after which tnq ≥ t . Then, after n rounds σ

is guaranteed to be an evaluation model up to t . Since t is
arbitrary, it follows that σ is an evaluation model. ��

Putting together Theorem 2, and Lemmas 1 and 2, we obtain
the following result.

Corollary 1 Let ϕ be a well-formed specification, σI a non-
Zeno input streamand H∗ the result of PastMonitor. Then,
H∗ is the only evaluation model for input σI , and H∗ is non-
Zeno.

The uniqueness of the evaluation model for a well-formed
specification is guaranteed by Theorem 1.

4.1.1 Trace length independent monitoring

The algorithm PastMonitor shown above computes incre-
mentally the only possible evaluation model for a given input
stream, but this naive algorithm stores the whole prefix Hy

for every output stream variable y. We show now a mod-
ification of the algorithm that is trace length independent,
based on the notion of flat specification. A specification is
flat if every occurrence of an offset expression is either of
the form x(<˜t) or x(«t). In other words, there can be no
nested term of the form x(<˜(y<˜t)) or x(<˜(y«t)) or
x(«(y<˜t)) or x(«(y«t)). We first show that every spec-
ification can be transformed into a flat specification. The
flattening applies incrementally the following steps to every
nested term x(E(y«t)), where E is an arbitrary offset term:

1. introduce a fresh stream s with equations Ts = y.ticks
and Vs = x(E(t))

2. replace every occurrence of x(E(y «t)) by s(<t).

Example 5 Consider a continuous integration process in
software engineering, described using the following specifi-
cation. The intended meaning of stream faulty is to report
those commits to a repository that fail the unit tests.

input commit_id commits , unit push , bool tests
ticks faulty := tests.ticks
define commit_id faulty :=

if tests(~t,true)
then notick else commits(<push <<t)

After applying the flattening process, the specification
becomes:

input commit_id commits , unit push , bool tests
ticks faulty := tests.ticks
define commit_id faulty :=

if tests(~t,true)
then notick else s(<t)

ticks s := push.ticks
define commit_id s := commits(<t)

Here, s stores the commit_id of the last commit at the
point of a push, which is precisely the information to report
at the time of a faulty commit. ��
Lemma 3 Let ϕ be a specification. There is an equivalent flat
specification ϕ′ that is linear in the size of ϕ.

Now, letϕ′ be the flat specification obtained fromϕ and let
y be an output stream variable. Consider the cases for offset
sub-expressions in the computation of �Vy�H (t) in line 9 of
PastMonitor:

– s<˜t : the evaluation fetches the value Hs at time t (if s
ticks at t) or at the previous ticking time (if s does not
tick at t).

– s«t : the evaluation fetches the value Hs at the previous
ticking time of s.

In either case, only the last two elements of Hs are needed.
The similar argument can be made to compute Ty because
only the last event of s is needed for (delay ε s). Hence, to
evaluate PastMonitor on flat specifications, the algorithm
only needs to maintain the last two elements in the history
for every output stream variable to compute the next value
of every value and ticking equation.

Theorem 3 Every flat specification ϕ can be monitored
online with linear memory in the size of the specification
and independently of the length of the trace. Moreover, every
step can be computed in linear time on the size of ϕ.

Proof We apply the flattening step until every output stream
definition is flat. ��

123

172 F. Gorostiaga, C. Sánchez

4.2 Operational semantics for full Striver

We now present operational semantics of the full Striver
language, including future and past references. As for the
algorithm presented in Sect. 4.1, the new algorithm proceeds
forward calculating the next event for each output stream.
The main idea of this algorithm is to decouple the instant of
this calculation for each individual stream. Before, there was
a single quiescence time common to all streams, but the new
algorithm proceeds with a potentially different time for each
stream.

As we did for the past fragment, we show a simple algo-
rithm focusing on simplicity instead of efficiency. However,
for the general algorithmshown in this section, there are cases
that force the algorithm to maintain an unbounded portion of
the calculated history. This is unavoidable as the monitoring
problem for future Striver not trace length independent in
general. Some cases can be optimized though. For example,
it is easy to see that using the operational semantics presented
in this section, a specification whose dependency graph is a
tree can bemonitored in a trace length-independentmanner if
the monitor has the additional power of choosing the speed
at which each of the input streams is processed. A shared
node in the dependency graph means that the events in one
stream (say s) influence another (say x) through different
sub-expressions e1 and e2. It is possible that e1 and e2 need
events from the common stream s that are arbitrarily far from
each other, and between these events there may be an arbi-
trary number of intermediate events (which cannot be bound
a priory) These intermediate events have to be buffered by
the engine for their future use. It is work in progress to char-
acterize other classes of specifications that can be monitored
in a trace length independent manner, other than those whose
dependency graph is a tree.

First, we define the type Iterator as Id× T, whose values
are pairs formed by a stream identifier and the timestamp
of the last value calculated for the stream. This value corre-
sponds to the time up to which the stream has been computed
which essentially separates quiescence time for every stream.
The constants -out and +out are used to represent out of the
bounds (initial and final, resp.). All stream histories are ini-
tialized as empty lists. Given an iterator it = (s, t), we use
it.stream for the stream s and it.time for the time t . Given an
event e = (t, d), we use e.time for the time t of the event and
e.val for the value d.
Monitor. We initialize an iterator for every stream and save
it in a map called outIters. The monitoring algorithm moni-
tor, shown in Algorithm 3, keeps calculating further events
for all streams in outIters. For each iterator, the algorithm
computes the next value, progressing in time. When an event
is computed, this is emitted to the environment as a monitor
observation. Therefore, for every stream, the events are gen-
erated in increasing time order (note that different streams

Algorithm 3 monitor: Online Monitor
1: typedef Iterator :: (Id,T)

2: -out ← (−∞,notick)
3: +out ← (∞,notick)
4: Hs ← 〈〉 for every s
5: outIters ← ∅
6: procedure Monitor
7: outIters.add(s,−∞) for every s
8: while outIters �= ∅ do
9: for it ∈ outIters do
10: (it, ev) ← next(it)
11: if ev = +out then
12: outIters.delete(it)
13: else
14: emit(ev.time, ev.val, it.stream)

15: end loop

need not emit the events in increasing order with respect to
each other). If the retrieved value for s is +out, this means
that σs will not contain any more values and the iterator of s
is removed from outIters.

Algorithm 4 Iterator functions
16: function (Iterator, (T, D ∪ {notick})) next(Iterator i t)
17: (s, t) ← i t
18: for i = 0 . . . si ze(Hs) − 1 do
19: ev ← Hs [i]
20: if ev.time > t then
21: return ((s, ev.time), ev)

22: ev′ ← solveNext(s)
23: if last(Hs).val = notick then
24: removeLast(Hs)

25: append(Hs , ev′)
26: return ((s, ev′.time), ev′)
27: function (T, D) ∪ {- out} peekPrev(Iterator i t)
28: (s, t) ← i t
29: for i = 0 . . . si ze(Hs) − 1 do
30: ev ← Hs [i]
31: if ev.time = t then
32: if i = 0 then
33: return -out
34: return Hs [i − 1]

Algorithm 5 Spec execution
35: function (T, D ∪ {notick}) solveNext(s)
36: if Hs = 〈〉 then
37: t ← −∞
38: else
39: t ← last(Hs).time
40: tv ← calculateNextTime(Ts , t)
41: if tv.val = notick then
42: return tv
43: val ← �Vs�H (tv.time)
44: return 〈tv.time, val〉

123

Stream runtime verification of real-time event streams with the Striver language 173

Iterator functions. Iterators are equipped with the following
methods, shown in Algorithm 4. The function next returns
the next event strictly in the future of the time in the state of
the iterator. Such event can be a progress event, which means
that there are no actual values up to the computed time t , and
encodes the processing of the stream up to t in cases where
there is no event at t . The simple naive implementation of
next shown here loops through the elements in the History
of the stream, until it finds the first event with a timestamp
greater than the iterator’s time, and returns the updated itera-
tor, along with the computed event. This event can be already
present in the history because the iterators for other streams
could have triggered progress in the computation of the his-
tory of s. If such an event is not found in the History, the
function calls solveNext for the computation of the next
event in the valuation of stream s. The event computed is
added to the History of the stream, removing the last value
stored if it was anotick (that is, a progress event), which guar-
antees that histories can only have a notick as the last event.
In other words, progress events are only used to encode the
precise quiescence time of the stream. The calculated actual
event is returned along with the new state of the iterator. The
function peekPrev retrieves the previous event before a cer-
tain t , or -out if t is the timestamp of the first event in the
trace. As a precondition, there has to be an event with times-
tamp t in the History (which is in turn always guaranteed in
the algorithm).
Spec execution. The calculation of the next value for a given
stream is performed by calling solveNext, shown in Algo-
rithm 5. If the event history Hs is empty, this computation
will call calculateNextTime with −∞ as the last times-
tamp. Otherwise, the computation will use the timestamp of
the last event in the history of s. If the event returned by cal-
culateNextTime is a progress event (indicated by a notick
value), it means that the ticking expression returned progress
but no actual event, and this progress event is returned. This
also covers the case where the returned event is +out. If
a real tick candidate is returned by calculateNextTime
(indicated by a () value, read as unit), this is used to compute
the value that corresponds to the denotational semantics of
the specification.Note that these semanticsmay invoke prev,
prevEq, succ or succEq according to the expression of Vs ,
potentially triggering the progress of other stream iterators.
An event with the timestamp of the tick and the computed
value is returned.
Tick calculation. For the calculation of the next potential
tick after t for a delay of a stream s with positive delays
(a stream with time values v ≥ ε > 0), the procedure
calculateNextTime iterates until it finds an event with
a timestamp greater than t . This procedure is shown in Algo-
rithm 6. If the event found is the first event (that is, if
peekPrev returns -out), then we can conclude that no tick
happens up to the time of that event, and this is all we can

Algorithm 6 Tick calculation
45: function (T, {(),notick}) calculateNextTime(expr , t)
46: switch expr do
47: case (delay ε s)
48: if ε > 0 then
49: it ← (s,−∞)

50: for (it, ev) ← next(it) do
51: if ev.time > t then
52: ev′ ← peekPrev(it)
53: if ev′ = -out then
54: return (ev.time,notick)
55: t ′ ← ev′.time + ev′.val
56: if t ′ > 1̄ then
57: return +out
58: if t ′ ≤ ev.time ∧ t ′ > t ∧ ev′.val ≥ ε then
59: return (t ′, ())
60: return (t ′,notick)
61: else
62: it ← (s,−∞)

63: for (it, ev) ← next(it) do
64: if ev = +out then
65: return +out
66: if ev.time > t ∧ ev.val �= notick then
67: t ′ ← ev.time + ev.val
68: if t ′ > t ∧ t ′ ≥ 0̄ ∧ ev.val ≤ ε then
69: return (t ′, ())
70: return (ev.time,notick)
71: case {c}
72: if c > t then
73: return (c, ())
74: return +out
75: case s.ticks
76: it ← (s,−∞)

77: for (it, ev) ← next(it) do
78: if ev.time > t then
79: return (ev.time, ())
80: case e1 U e2
81: (t1, v1) ← calculateNextTime(e1, t)
82: (t2, v2) ← calculateNextTime(e2, t)
83: if t1 = t2 then
84: if v1 = v2 = notick then
85: return (t1, v1)
86: else
87: return (t1, ())
88: if t1 < t2 then
89: return (t1, v1)
90: return (t2, v2)

conclude. If the event found is not the first event, the pro-
cedure considers the previous event, and adds its timestamp
and its value. If the result is not in the time domain, this
is, it is greater than 1̄, then we output +out. Otherwise, the
algorithm checks whether the last event is overridden by the
following event. If it is not overridden, the value generated
was greater or equal to ε, and the corresponding time com-
puted is greater than the argument t , then we output the time
of the event along with the unit value. This case corresponds
to the delay producing an actual tick. If it was overridden,
it was lower than ε or it has already been output (indicated

123

174 F. Gorostiaga, C. Sánchez

Algorithm 7 Stream access methods
91: function (T, D) ∪ {- out} prev(s, t)
92: i ter ← (s,−∞)

93: for (i ter , ev) ← next(i ter) do
94: if ev.time ≥ t then
95: return peekPrev(i ter)
96: function (T, D) ∪ {- out} prevEq(s, t)
97: i ter ← (s,−∞)

98: for (i ter , ev) ← next(i ter) do
99: if ev.time = t ∧ ev.val �= notick then
100: return ev
101: if ev.time ≥ t then
102: return peekPrev(i ter)
103: function (T, D) ∪ {+out} succ(s, t)
104: i ter ← (s,−∞)

105: for (i ter , ev) ← next(i ter) do
106: if ev = +out ∨ (evtime > t ∧ ev.val �= notick) then
107: return ev
108: function (T, D) ∪ {+out} succEq(s, t)
109: i ter ← (s,−∞)

110: for (i ter , ev) ← next(i ter) do
111: if ev = +out ∨ (evtime ≥ t ∧ ev.val �= notick) then
112: return ev

by the fact that the value is lower or equal to t), then no tick
will happen until the time of the next event.

If the expression is a negative delay , then we find the
next non-progress event in the stream s. If we reach the end of
the stream,we output+out. Otherwise,we add the timestamp
and value of the event and check whether the result is greater
than t , in the time domain (this is greater or equal to 0̄), and
the value was lower or equal to ε. If the condition is met,
the time of the corresponding event is returned with the unit
value. If it is not, then no event will be produced until the
timestamp of the next event.

For a constant expression, if the constant is greater
than t , then it is returned with the unit value. Otherwise, the
procedure returns +out.

For a s.ticks expression, the procedure iterates over s
until it finds the first event with a timestamp greater than t
and returns its timestamp along with the unit value.

Finally, for U, calculateNextTime finds the lowest
timestamp greater than t for each argument stream and then
proceeds in the followingway. If the timestamps are the same,
and the two values are notick, then a notick at the timestamp
is produced. If the timestamps are the same, but one of the
two values is not notick, then a unit value at the timestamp
is produced. Otherwise, the event whose timestamp is the
lowest is returned.
Stream access methods. We finally describe the implemen-
tation of prev, prevEq, succ and succEq that implement
prev<, prev≤, succ>and succ≥from the denotational seman-
tics. This is shown in Algorithm 7.

– To calculate prev<, prev iterates until if finds the first
event with a timestamp greater than t on s, and returns
the event immediately preceding.

– To calculate prev≤, prevEq iterates until it finds the first
event with a timestamp greater or equal to t on s. If such
event has timestamp t and it is not a progress event, it is
returned. Otherwise, prevEq behaves just like prev.

– To calculate succ>, succ iterates until it finds the first
non-progress event with a timestamp greater than t on s,
or +out, and returns this event.

– To calculate succ≥, succEq iterates until it finds the first
non-progress event that has a timestamp greater or equal
to t on s, or +out, and returns it.

The correctness of the algorithm means that the opera-
tional semantics implemented by the algorithm outputs all
events in the evaluation model for every output stream, and
only those events. This is easily shown by induction on the
well-formed graph of the finite set of events in the unique
evaluation model, guaranteed to exist and be unique by The-
orem 1.

5 Comparison with other formalisms

5.1 Comparison with TeSSLa

We compare in this section Striver with the TeSSLa specifi-
cation language [16]. Even thoughTeSSLa is defined both for
event streams and piece-wise constant signals, event streams
and piece-wise constant signals can be easily converted into
each other (see, e.g., [22]). We show in this section that
TeSSLa can be translated into Striver under the assumptions
described below, where the main difficulty is related to the
delay operator and the possibility of generatingZeno outputs.
Essentially, the decisions in the design of Striver presented in
the previous sections guarantee that all outputs are non-Zeno
(if all inputs are), while on the other hand, TeSSLa accepts
specifications that generate non-Zeno outputs. We modify
the delay operator in this section to increase the expressiv-
ity of Striver here to be able to cope with these additional
specifications.

The design principle of TeSSLa is not to handle explicit
time and offsets but instead to offer stream transformers that
can be combined to build specifications. A TeSSLa specifi-
cation consists of a collection of stream variables Z = I ∪O
and set of recursive equations of the form y:=e with y ∈ O
using the following operators:

e :: = nil
∣∣unit ∣∣ x ∣∣ lift(f)(e, . . . , e) ∣∣ time(e)

∣∣
last(e, e)

∣∣delay(e, e)
123

Stream runtime verification of real-time event streams with the Striver language 175

where x is a stream variable. The meaning of nil is the empty
stream that contains no events. The operator unit models the
unique stream of type unit that only contains a single event,
at time 0. The terminal x allows referring to other streams in
the specification. The operators lift, time, last and delay are
stream transformers, that is, they return streams from other
streams. The operator time returns a stream that contains
the same ticks as the stream passed, except that the values
are the instants at which the events occur. The operator lift
allows using functions from data domains by applying them
to the current or previous values of the argument streams.
The operator last(v, r) takes two streams, v for values and
r for triggers; last returns a stream at the ticking times of r
with the previous value of v. Finally, delay(d, r) takes two
streams: a delay stream d and a reset stream r . The output is
a stream of type unit that has an event at time t when d has
an event (t − v, v), there is no event in r in the time interval
(t − v, t), and either there was no tick pending or there is an
event in r at instant t − v as well.

We now present a translation from TeSSLa specifications
that are non-Zeno to Striver. The set of stream variables is
the same, and each equation is translated independently. To
simplify the translation we assume that the TeSSLa specifi-
cation is flat, that is, all arguments of all operators are stream
variables. Every specification can be easily flattened by intro-
ducing extra variables.

– nil: the stream x :=nil is translated into:

ticks x := {0}
define void x := notick

– unit: the stream x :=unit is defined as:

ticks x := {0}
define unit x := ()

– lift: the stream x :=lift(f)(s0, . . . , sn), where B is the
co-domain of f , is translated into:

ticks x := s0.ticks U ... U sn.ticks
define B x :=

if (s0 <~t==-out ||...|| sn <~t == -out)
then notick else f(s0(~t),...,sn(~t))

– time: the stream x :=time(s) is translated into:

ticks x := s.ticks
define Time x := t

– last: the stream x :=last(v, r), where v is a stream of type
A is defined as:

ticks x := r.ticks
define A x := v<<t

The translation of TeSSLa’sdelay operator ismore cum-
bersome as it allows the possibility of output event streams
with diverging (Zeno) time sequences. Since both Striver and
TeSSLa assume that inputs are non-Zeno, the only possibil-
ity to generate a sequence of Zeno time-stamps is by the

delay operator generating ticks that are closer and closer.
As defined in [16], TeSSLa still allows diverging outputs and
classifies as legal those executions that do not diverge. For
those specifications and inputs for which the TeSSLa oper-
ational semantics diverge the denotational and operational
semantics of TeSSLa disagree. A design principle of Striver
is to guarantee non-Zeno outputs, which was achieved in
Sect. 3 by forcing the time of all delays to be larger than
a constant ε (which can be arbitrarily small). Hence, since
there are non-Zeno sequences in which the delay generates
arbitrarily close events, the delay operator from Sect. 3 is
not sufficient to translate TeSSLa to Striver, at least in an
inductive way.

To capture all legal TeSSLa specifications, we introduce
now a modified delay operator delay′ sgn f w, where sgn
is one of {pos, neg}, f is a function with type T → Bool and
w is a stream of type T as before. The intended meaning of
f is to tell the delay operator whether to ignore or accept a
given event. The semantics are:

�delay sgn f w�σ
def= {t ′ | there is a t ∈ dom(σw)

satisfying t + σw(t) = t ′,
f (σw(t)), sign(σw(t)) = sgn and

dom(σw) ∩ (t, t ′) = dom(σw) ∩ (t ′, t) = ∅}

We require that f be non-divergent for valuation candidateσ ,
that is, that the set of ticks �delay sgn f w�σ is non Zeno.
We can mimic the original semantics of Striver’s delay
by choosing f (v) = |v| ≥ |ε|, which is Zeno-convergent for
any valuation. The function f serves as an oracle for delay to
accept candidate ticks. The introductionof f imposes anobli-
gation to the writer of the specification, who is now in charge
of guaranteeing that f meets the requirement of preventing
divergence. If this precondition is not met, then the deno-
tational semantics of the Striver specification is undefined
for such an offending trace, and the operational semantics
will simply keep producing an ever close set of ticks. If the
precondition is met, then the operational and denotational
semantics will coincide. Note that this is not really a big
practical limitation as a legal f can, for example, let a large
number of events be generated and reset the counter if a cer-
tain ε has been passed since the first event.

With this modified delay’ operator, we can define the
translation of TeSSLa delay as follows:

– delay: the stream x :=delay(d, r) is translated into:

ticks x_aux := d.ticks U r.ticks
define Time x_aux :=

if isticking(d) then
if isticking(r) ||

x_aux(<t,0) + (x_aux <<t) <= t
then d(~t)
else notick

else 0

123

176 F. Gorostiaga, C. Sánchez

ticks x := delay ’ 1 (\v -> True) aux
define unit x := ()

The choice of f (v) = true as the argument for delay
allows capturing the semantics of TeSSLa and guarantees
that if a given TeSSLa specification is legal (generates non
Zeno outputs for every input), then f is convergent for all
inputs.

In [22], the authors present a non-blocking engine for a
subset of TeSSLa, which can anticipate the computation of
some streams even if not all the input streams have events.
The operational semantics presented in Sect. 4.1 are kept
simple for the sake of explanation, but it can be extended to
mimic the asynchronous algorithm in [22] to evaluate and
increment iterators independently, and block an iterator only
when some of its necessary values is not present.

Theorem 4 The semantics of a legal TeSSLa specification ϕ

and the Striver specification ϕ′ resulting from following the
shown translation over ϕ are equal over any valid input.

Proof (sketch) An easy induction on the structure of TeSSLa
expressions allows proving that the resulting Striver spec-
ification obtained is equivalent. We sketch a proof for the
case of delay. The output stream x generates the unit value
after the last alarm set by x_aux , with a new value on x_aux
overriding the pending alarm. The auxiliary stream x_aux
behaves as follows: If stream d is generating an event, then
x_aux decides whether it will emit the value or ignore it. If
the reset stream is also generating a value, the delay is emit-
ted. Alternatively, if the last alarm set by x_aux has already
gone off (or if no alarm was ever set), then the delay is emit-
ted. If there was a pending alarm and the reset stream is not
generating a value, the delay is ignored, and x_aux produces
a notick value. If instead the delay stream d is not produc-
ing a value (and thus, the reset stream r is), then we cancel
any pending alarm by emitting a 0. ��

5.2 Comparison with signal temporal logic

We now show how Striver also subsumes the signal tempo-
ral logic (STL) [23,24]. To do so, we extend the core Striver
language with new constructors to allow the definition of
properties over slidingwindowswithout the need to introduce
container-types in a given data theory. First, we introduce the
notion of carried values which essentially allow tagging the
timestamp at which a stream ticks with values from the tick-
ing sub-expression that actually causes the tick. By itself, this
extension does not add expressive power to the language, and
could be expressed using the instruments presented in Sect. 3.
The second extension introduces shift, which allows moving
the ticks of another stream by a positive or negative constant.
Together with the carried values, shift allows defining a shift

stream transformer and truly sliding windows. In detail, we
extend the Striver language with two new capabilities:

1. Carried values: Every time a value expression is com-
puted at an instant t , it is because t belongs to its
associated ticking expression, which in turn can be
caused by other streams, by a constant or by a delay.
The idea of the carried value is to give a way to access
the values of the ticking streams from the value expres-
sions. To achieve this, we enrich the evaluation context of
the value expressions with a new language construct cv
whose value is a tuple containing the values of the mem-
bers in the ticking expression that induced the tick. We
indicate the type of the carried value in the tick expres-
sion of the stream. In particular, if the n-th source of ticks
is not producing a value at the time of evaluation, then
the n-th element of cv is ⊥notick.

2. Shift: The constructor shift extends ticking expres-
sions allowing to shift a stream by a constant duration.
Together with carried values, we can trivially shift a
stream by a given length as follows:

input int s
ticks int shift_s := shift 3sec s
define int shift_s := cv

Note that the carried value cv allows fetching the value
of s at a different time (after the delay 3sec), which
otherwise would require calculating the time instant and
allow accessing values of streams at arbitrary times. Such
a feature would increase the complexity of monitoring
algorithms and typically requires preserving the whole
trace of every stream.

We show how the addition of these constructors affects the
syntax:

– Ticking Expressions: We add the shift operator to the
ticking expressions.

α :: = α′ ∣∣α′ U · · · U α′
α′ :: = {c} ∣∣ v.ticks

∣∣delay ε w
∣∣shift c v

(1)

– Offset Expressions: Offset expressions are not affected
by these extensions.

– Value Expressions: We add the constructor to access the
carried values.

E := d
∣∣ x (τx) ∣∣f(E1, . . . , Ek)

∣∣ τ ′ ∣∣-out ∣∣+out∣∣notick ∣∣cv (2)

The additional expressioncv represents the value carried
by the ticking expression.

The idea is that the ticking expressions calculate not only
a set of tick instants, but also a value associated with every

123

Stream runtime verification of real-time event streams with the Striver language 177

potential tick instant. For the ticking expression v.ticks,
the associated value at instant t is σv(t). For the ticking
expression c, the associated value for each instant t is ()

(the unit value). For the ticking expression delay ε w, the
associated value for instant t is the value of w that made t
become a tick instant. For the ticking expression shift c v,
the associated value for each instant t is σv(t−c). Finally, for
the ticking expression e0 U · · · U ek , the associated value for
each instant t is a k-tuple where each element i = 1, · · · , k
is the value carried by the expression ei if t is in the tick
expression ei , and ⊥notick otherwise.

This value carried by the tick expression can be accessed
from the value expression with the new constructor cv.

Note that if the tick expression does not have a shift
expression, we can calculate the carried value using the origi-
nal value operators using the construct isticking(r) and
r(˜t) over every non-delayed tick expression of the form
r .ticks, and calculatingwithr(<t) over everydelay ε r
tick expression.

We are now ready to show that Striver with these
extensions subsumes signal temporal logic (STL) [23,24]—
when interpreted over piecewise-constant signals. Piecewise-
constant signals are signals that only change value in finitely
many points in every given interval and remain constant
between two points of value change. The syntax of STL is

ϕ:: = true
∣∣μ f

∣∣¬ϕ
∣∣ϕ ∨ ϕ

∣∣ϕ U[a,b] ϕ

where f is a function from R
n to R, and a and b belong

to the temporal domain. The satisfaction relation is defined
over a sequence x of real valued signals and a time-point t
as follows.

(x, t) |� true always holds
(x, t) |� μ f iff f (x[t]) > 0
(x, t) |� ¬ϕ iff (x, t) �|� ϕ

(x, t) |� ϕ1 ∨ ϕ2 iff (x, t) |� ϕ1 or (x, t) |� ϕ2

(x, t) |� ϕ1 U[a,b] ϕ2 iff for some t ′ ∈ [t + a, t + b],
(x, t ′) |� ϕ2,

and for all t ′′ ∈ [t, t ′],
(x, t ′′) |� ϕ1

Event streams have an alternative interpretation as
piecewise-constant signals, where the signal changes at the
points at which events are produced. A translation of STL
into Striver like the one shown in this section enables the
encoding of quantitative semantics of STL by enriching the
data types of expressions and verdicts. We show here how to
check STL Boolean properties by translating them to Striver
specifications. The specification is constructed recursively
over ϕ:

– True: We translate true as the stream tr as follows:

output bool tr
ticks unit tr := {0}
define bool tr := true

– Function sampling μ f :. We assume that the input sig-
nal is input D x and define the Boolean output signal
mu_f as follows:

output bool mu_f
ticks D mu_f := x.ticks
define bool mu_f := f(cv) > 0

– Negation: Given the Boolean stream x for ϕ, we define
the stream neg_x for ¬ϕ as follows:

output bool neg_x
ticks bool neg_x := x.ticks
define bool neg_x := not cv

– Disjunction: Given the Boolean streams x and y, for ϕ1

and ϕ2 (resp), we define the stream x_or_y for (ϕ1 ∨
ϕ2) as follows:

output bool x_or_y
ticks (bool ,bool) x_or_y :=x.ticks U y.ticks
define bool x_or_y :=

x(~t,false) || y(~t,false)

– Until: Given Boolean streams x and y for ϕ1 and ϕ2

(resp), and given a and b we define the stream x_U_y
for (ϕ1 U[a,b] ϕ2) as follows:

output bool x_U_y

ticks bool shift_y_a := shift -a y
define bool shift_y_a := cv

ticks bool shift_yT_a := shift_y_a.ticks
define Time shift_yT_a :=

if cv then t else notick

ticks bool x_F:=x.ticks
define Time x_F:=if cv then notick else t

ticks (bool ,bool ,bool ,bool) x_U_y :=
shift -a y U shift -b y
U shift -b x U x.ticks

define bool x_U_y := let
min_y := if shift_y_a (~t,false) then t

else shift_yT_a(>t,infty)
min_xF := if !x(~t,false)

then t else x_F(>t,infty) in
min_y+a <= t+b && min_y+a < min_xF

Essentially, the intermediate streamshift_y_adefines
a shift of y by exactly a time units, and then
shift_yT_a filters out the events with value false and
keeps occurrences of value true only. Hence, the time
and value of the next event in shift_yT_a at any
instant t correspond to the next time y becomes true after
t + a. The expression min_y contains the earliest time
at which y becomes true (considering the possibility of
t itself if y is already true). Similarly, min_xF contains
the earliest time at which x becomes false (considering
the possibility of t itself if x is already false). With these
auxiliary definitions, the value expression of x_U_y sim-
ply checks that y becomes true within [a, b] and that x

123

178 F. Gorostiaga, C. Sánchez

is true from t up-to that point.
The tick expression of the stream indicates the times at
which its value can change, namelywhen a y event enters
or leaves the sliding window defined by [t + a, t + b],
or when a x event enters or leaves the sliding window
defined by [t, t + b].

We use the constant infty to represent a value that is
greater than any value of T. The translation presented is
bottom-up and simple, but it does not exploit the fact that, if
b is not ∞, only a bounded future must be explored. As it
is, the translation of until is a future specification. We extend
now the language with bounded offset operators by redefin-
ing τ -expressions as follows:

τx :: = x<˜τ ′ ∣∣ x«τ ′ ∣∣ x>˜τ ′ ∣∣ x»τ ′ ∣∣ x<˜bτ
′ ∣∣

x«bτ
′ ∣∣ x>˜bτ

′ ∣∣ x»bτ
′

τ ′:: = t
∣∣ τz for z ∈ Z

The semantics of the newly added operators is as follows:
Considering ∀x ∈ T.⊥-out < x and x < ⊥+out,

If �x<˜e�σ (t) < �e�σ (t) − b, then �x<˜be�σ (t) =
⊥-out. Otherwise, x<˜be behaves as x<˜e at t .
If �x«e�σ (t) < �e�σ (t) − b, then �x«be�σ (t) = ⊥-out.
Otherwise, x«be behaves as x«e at t .
If �x>˜e�σ (t) > �e�σ (t) + b, then �x>˜be�σ (t) =
⊥+out. Otherwise, x>˜be behaves as x>˜e at t .
If �x»e�σ (t) > �e�σ (t) + b, then �x»be�σ (t) = ⊥+out.
Otherwise, x»be behaves as x»e at t .

Mathematically, the semantics of x<˜be is the following:

�x<˜be�σ (t)
def=

⎧⎪⎨
⎪⎩

⊥-out if �x<˜e�σ (t) = ⊥-out

or �x<˜e�σ (t) < �e�σ (t) − b

�x<˜e�σ (t) otherwise

The semantics of the other operators are analogous. Even
though these expressions do not enhance the expressive
power of Striver, they enable the monitoring engine to stop
seeking a value if the time progress grows beyond a bound.
With this information, the engine can optimize the execu-
tion and even guarantee trace length independence assuming
that the event rate is bounded. An empirical study on how
using bounded operators affects the resource performance is
included in Sect. 6. We can now use the »b operator to define
a more efficient version of STL’s Until:

ticks (bool ,bool ,bool ,bool) x_U_y :=
shift -a y U shift -b y
U shift -b x U x.ticks

define bool x_U_y := let
min_y := if shift_y_a (~t,false) then t

else shift_yT_a(>t_{b-a},infty)
min_xF := if !x(~t,false) then t

else x_F(>_b t,infty) in
min_y+a <= t+b && min_y+a < min_xF

At instant t , the implementation will be keeping the events in
y in the range [t + a, t + b] and the events in x in the range
[t, t + b].

6 Empirical evaluation

In this section, we report on an empirical evaluation of
Striver. We conduct two sets of experiments: one for the
past fragment of Striver, that is guaranteed to run in bounded
resources, and the other for the full version of Striver, includ-
ing the extension shown in Sect. 5.2. All experiments were
executed on a virtual machine running on an Intel Xeon at
3GHz with 32GB of RAM.

6.1 Past Striver

The empirical evaluation of past Striver is based on an imple-
mentation written in the Go programming language3 which
is the core element of the Elastest Monitoring Service.4 We
run experiments to measure the memory usage and time per
event for two collections of specifications:

– The first collection generalizes Example 2 computing the
stocks of p independent products. These specifications
contain a number of streams proportional to p, where
each defining equation is of constant size. Even though
each output stream in the specification could be moni-
tored in parallel, our engine is completely sequential.
input int sale_1
input int arrival_1
...
input int sale_p
input int arrival_p

ticks stock_1 :=
sale_1.ticks U arrival_1.ticks

define int stock_1 := stock_1(<t,0) +
(if isticking(arrival_1)
then arrival_1 (~t) else 0) -

(if isticking(sale_1)
then sale_1 (~t) else 0)

...
ticks stock_p :=
sale_p.ticks U arrival_p.ticks
define int stock_p := stock_p(<t,0) +

(if isticking(arrival_p)
then arrival_p (~t) else 0) -

(if isticking(sale_p)
then sale_p (~t) else 0)

3 Past-only Striver is available at http://github.com/imdea-software/
striver.
4 Available at https://github.com/elastest/elastest-monitoring-service.

123

http://github.com/imdea-software/striver
http://github.com/imdea-software/striver
https://github.com/elastest/elastest-monitoring-service

Stream runtime verification of real-time event streams with the Striver language 179

(a) (b)

(d)(c)

Fig. 4 Empirical evaluation of the past fragment of Striver

– The second collection computes the average of the last
k sales of a fixed product, via streams that tick at the
selling instants and compute the sum of the last k sales.
The resulting specifications have depth proportional to k.

ticks denom := sale.ticks
define int denom := if denom(<t) == k

then k
else denom(<t,0)+1

ticks sumlastk := sale.ticks
define int sumlastk :=

sumlastk(<t,0) +
sale(~t) -
sale(<sale <<sale <<... <<t, 0)

ticks avgk := sale.ticks
define int avgk := sumlastk / denom

We instantiate k and p from 10 to 500 and run each result-
ing specification with a set of generated input traces. We
measure the average memory usage (using the OS) and the
number of events processed per second.

In the first experiment, we run the synthesized monitors
with traces of varying length (shown in the top two plots
in Fig. 4). The results illustrate that the memory needed to
monitor each specification is independent of the length of the
trace. (The curves are roughly constant.)Also, the throughput
of events processed is independent of the length of the trace
and is a constant in the thousands of events per second in
each experiment. In the second experiment, we fix a trace of

123

180 F. Gorostiaga, C. Sánchez

1million events and run the specifications with k and p rang-
ing from 250 to 550. The results (lower diagrams) indicate
that the memory needed to monitor stock_p is indepen-
dent of the number of products while the memory needed
to monitor each avg_k specification grows linearly with k.
Recall that theoretically all specifications can be monitored
with memory linearly on the size of the specification.

6.2 Full Striver

We report an empirical evaluation of a prototype sequential
Striver implementation,written in the Java programming lan-
guage.5 For this set of experiments we consider a simple STL
specification of a moving vehicle. The speed of the vehicle is
an input stream of type double. The property to specify is:
“Whenever the vehicle is moving too fast, it must decelerate
continuously until it reaches a safe speed within 5 s.”We say
that the vehicle is moving too fast if its speed is greater than
1, and we define a safe speed as a speed under 0.8. We can
write this property in STL as follows:

ϕ : (speed > 1) → (
decel U[0,5] speed < 0.8

)
Note that this specification requires a Boolean input signal
decel that indicates whether the vehicle is decelerating. We
translate this property into Striver using the following spec-
ification, where slow_down is obtained by translating the
Until operator as shown in Sect. 5.2.

input double speed

ticks double toofast := speed.ticks
define bool toofast := cv > MAX_SPEED

ticks double speedok := speed.ticks
define bool speedok := OK_SPEED > cv

ticks double decel := speed.ticks
define double decel := cv > speed(>t)

slow_down := decel U_[0,5] speedok

ticks (bool ,bool) ok :=
toofast.ticks U slow_down.ticks

define bool ok :=
toofast (~t,false) => slow_down (~t,true)

Using Striver we measure the deceleration with the signal
speed comparing its value at the current instant with the
next value, and thus, there is no need of an extra input signal.

The input data, shown in Fig. 5a, c, are generated pseudo-
randomly. Figure 5a shows an input illustrating under the
graph (in green) the regions where ϕ holds. Also, at the bot-
tom we show the regions where the speed is too high, but

5 The full version of Striver is available at http://github.com/imdea-
software/striver.

where the car decelerates continuously until reaching a safe
speed, within 5 time units. Fig. 5c shows a much longer input
signal.

We translated the specification using bounded future oper-
ators and showed that the memory consumption of the
monitor remains constant over the trace length. However,
the memory requirement correlates linearly with the size of
the window and with the input event rate, as can be seen in
Fig. 5b.

On the other hand, if we use a Striver specification with
unbounded future operators, then the memory requirement
depends on the input signal and is no longer solely deter-
mined by the window size and input event rate. The memory
usage of the different runs can be seen in Fig. 5d. In the
Striver specification with unbounded future accesses, the
Until expression needs to retrieve at a given time, the next
instant at which the vehicle decelerates and also the next
instant at which its speed is safe. If one of these instants is far
in the future, the monitor engine needs to consume and store
all the input up to that point. This causes a rapid increase in
thememory consumption and is completely dependent on the
shape of the input signal, which is in principle arbitrary. Once
the relevant instants are found, the input signal is consumed
up to that point, which causes a rapid decrease in memory
consumption. As a result of this, we observe that memory
usage presents peaks during the execution. The green curve
in Fig. 5d represents the memory consumption of a run with
the original safe speed, of 0.8. We can see that usually this
value is reached quickly and keeps the memory below the
maximum value, which was set at 1GB.

In the blue run, wemodified the safe speed to−1600. This
value requires more time to find the relevant time instants,
resulting in higher peaks of memory usage, that go down
at approximately time instant 40. From that point on, the
speed of the car never comes back down to a value as low
as −1600, and thus, the memory consumption reaches the
maximum memory.

The red curve represents the memory consumption of
a run with a safe speed of −1750. Since this value is
never reached, or it is reached too far away in the input
trace, the memory consumption goes up continuously well
beyond the maximum memory threshold (without produc-
ing an output), and eventually the program crashes with a
java.lang.OutOfMemoryError. Note how a small
variation in the input data yields very different memory con-
sumption curves for unbounded future specifications.

7 Final discussion and conclusion

We have introduced Striver, a stream runtime verification
specification language for timed event streams, equipped
with explicit time. We have presented a trace length-

123

http://github.com/imdea-software/striver
http://github.com/imdea-software/striver

Stream runtime verification of real-time event streams with the Striver language 181

(a) (b)

(d)(c)

Fig. 5 Empirical evaluation of the fully fledged version of Striver

independent online monitoring algorithm for the past frag-
ment, and we show empirically that it behaves as expected
in terms of the bounds of resources. We have also presented
an online monitoring algorithm for the full version of the
language, and we show how its future fragment needs not
be trace length independent. We have shown how to trans-
late specifications in other specification languages, such as
TeSSLa and STL, to Striver and we showed empirically that
the memory requirement to monitor an STL specification is
bounded by the ratio between input rate and the size of the
intervals in the usage of Until operators.
Unbounded time domains. The semantics of Striver intro-
duced in Sect. 3.3 requires temporal domains to have both a
minimal element 0̄ and a maximal element 1̄ for all specifi-

cations to be well-defined in the general case. We describe
here how to relax these requirements. The boundaries in the
time domain are necessary for two reasons:

– First, to provide a base case for recursion, which is
required by closed paths in the dependency graph. A neg-
ative cycle imposes the need for a 0̄, while a positive cycle
imposes the need for a 1̄. For example, consider the fol-
lowing specification:

input unit r
ticks s := r.ticks U {5}
define int s := s(>t,0) + 1

123

182 F. Gorostiaga, C. Sánchez

Theremust be a value for s at 5, but if r produces infinitely
many events, it is not possible to find an integer that sat-
isfies the value equation of s.

– Second, to prevent faulty references to the occurrences of
functions prev<, prev≤, succ> and succ≥, in the seman-
tics of τ expressions. An expression s«e or s<˜e that
uses an expression e whose value could be ⊥+out (for
example r»t) imposes the need for a 1̄, while a s»e or
s>˜e using an expression e whose value could be ⊥-out

imposes the need for a 0̄. For example, consider the fol-
lowing specification:

input unit r
ticks v := {0}
define void v := notick
ticks s := {0}
define Time s := r<<(v>>t)

The stream s at 0 is trying to fetch the last value of r ,
which may not exist if r produces infinitely many events.

If we are dealing with a specification whose dependency
graph does not have positive cycles, and there are no expres-
sions s«e or s<˜e where the semantics of e could be ⊥+out,
then there is no need to impose the presence of a 1̄ in the time
domain. For example, this is the case when one uses only
past expressions. Dually, if we are dealing with a specifica-
tion whose dependency graph does not have negative cycles,
and there are no expressions s»e or s>˜e where the seman-
tics of e could be ⊥-out, then there is no need to impose the
presence of a 0̄ in the time domain.

The operational semantics of the past-only fragment of
Striver presented in Sect. 4.1 always converges to the correct
evaluation model if the specification is well-defined. On the
other hand, the operational semantics of the full language
presented in Sect. 4.2 may diverge for well-defined specifi-
cations which do not contain positive cycles, do not define a
1̄, but use unbounded future accesses or negative delays. For
example, the following specification is well-defined:

ticks (unit , unit) clock:={0} U shift 10 clock
define unit clock:=()

ticks unit empty := clock.ticks
define void empty := notick

ticks unit empty2 := {0}
define void empty2 := empty(>t,notick)

The stream clock generates a () every 10 time units start-
ing at 0, and the streamsempty andempty2 have no events,
something that can be easily deduced from their types. A
smart compiler could realize that empty and empty2 have
no events from their types or checking that the value expres-
sion of empty is notick, but an immediate application
of the operational semantics algorithm will diverge trying to
calculate the value of the streamempty2 at time 0. Themain
reason is that a future access (like empty(>t,notick))
requires to compute the next ticking instant of empty. Even

though this is a single offset, this instant may be arbitrarily
far in the future, or not even exist. Therefore, in a model of
time where the future is unbounded, this computation may
not terminate.
Language duality. There exists a duality between the past
and the future operators of Striver, which can be exploited to
offline monitor any specification using the online algorithm
presented in Sect. 4.1 and following the idea of multiple
passes used in Lola [11,28]. We start from a well-formed
specification and partition its dependency graph into max-
imal strongly connected components (MSCC). Since the
specification is well-formed, each of the MSCCs either has
only positive cycles, or have only negative cycles. MSCCs
with negative cycles will be computed from the beginning
of the trace forwards. MSCCs with positive cycles will be
computed from the end of the trace backwards. Every pass
will store the output streams of the MSCCs being calcu-
lated in a local file storage. The dependency graph ofMSCCs
is actually a DAG, and the order of evaluation is a reverse
topological order using the order induced by the dependen-
cies. Independent MSCCs can be computed in parallel. If
the specification does not contain both positive and nega-
tive cycles, then the whole specification can be computed
using only one pass. The lack of cycles of any kind implies
that well-definedness is not dependent on boundaries over
the time domain, and that the direction of the computation
can be freely chosen by the algorithm. In particular, the STL
translation of a property yields a dependency graph with no
cycles and thus can be computed both forward or backwards
as desired.
Future work. Future work includes the extension of the
language with parametrization, (like in quantified event
automata (QEA) [29], MFOTL [30] and Lola2.0 [31]), to
dynamically instantiate monitors for observed data items.
We also plan to study offline evaluation algorithms, and
algorithms that tolerate deviations in the time-stamps and
asynchronous arrival of events from the different input
streams, computing the values of the output streams as soon
as the necessary data are available.

References

1. Havelund, K., Goldberg, A.: Verify your runs. In: Proceedings of
VSTTE’05, LNCS 4171, pp. 374–383. Springer, Berlin (2005)

2. Leucker,M., Schallhart, C.: A brief account of runtime verification.
J. Log. Algebraic Program. 78(5), 293–303 (2009)

3. Lectures on RuntimeVerification-Introductory andAdvanced Top-
ics: Volume 10457 of LNCS. Springer (2018)

4. Havelund, K., Roşu, G.: Synthesizing monitors for safety prop-
erties. In: Proceedings of TACAS’02, LNCS 2280, pp. 342–356.
Springer, Berlin (2002)

5. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van
Campenhout, D.: Reasoning with temporal logic on truncated

123

Stream runtime verification of real-time event streams with the Striver language 183

paths. In: Proceedings of CAV’03, Volume 2725 of LNCS 2725,
pp. 27–39. Springer, Berlin (2003)

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for
LTL and TLTL. ACM Trans. Soft. Eng. Methods 20(4), 14 (2011)

7. Sen, K., Roşu, G.: Generating optimal monitors for extended reg-
ular expressions. ENTCS 89(2), 226–245 (2003)

8. Asarin, E., Caspi, P.,Maler, O.: Timed regular expressions. J. ACM
49(2), 172–206 (2002)

9. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based
runtime verification. In: Proceedings of VMCAI’04, LNCS 2937,
pp. 44–57. Springer, Berlin (2004)

10. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime
verification. Autom. Softw. Eng. 12(2), 151–197 (2005)

11. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W.,
Finkbeiner, B., Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA:
runtime monitoring of synchronous systems. In: Proceedings of
TIME’05, pp. 166–174. IEEE, New York (2005)

12. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard
real-time runtime monitor. In: Proceedings of RV’10, LNCS 6418.
Springer, Berlin (2010)

13. Goodloe, A.E., Pike, L.: Monitoring distributed real-time systems:
a survey and future directions. Technical Report, NASA Langley
Research Center (2010)

14. Bozelli, L., Sánchez, C.: Foundations of Boolean stream runtime
verification. In: Proceedings of RV’14, Volume 8734 of LNCS, pp.
64–79. Springer, Berlin (2014)

15. Pnueli, A., Zaks, A.: PSLmodel checking and run-time verification
via testers. In: Proceedings of FM’06, LNCS 4085, pp. 573–586.
Springer, Berlin (2006)

16. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz,
M., Thoma, D.: TeSSLa: temporal stream-based specification lan-
guage. In: Proceedings of the 21st. Brazilian SymposiumonFormal
Methods (SBMF’18), LNCS. Springer, Berlin (2018)

17. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-
time stream-based monitoring. CoRR. arXiv:1711.03829 (2017)

18. Cristian, F., Fetzer, C.: The timed asynchronous distributed system
model. IEEE Trans. Parallel Distrib. Syst. 10(6), 642–657 (1999)

19. Gortázar, F., Gallego, M., García, B., Carella, G.A., Pauls, M.,
Gheorghe-Pop, I.-D.: ElasTest—an open source project for testing
distributed applications with failure injection. In: Proceedings of
the 2017 IEEEConference onNetwork FunctionVirtualization and
Software Defined Networks (NFV-SDN’17), pp. 1–2. IEEE, New
York (2017)

20. Pnueli, A.: The temporal logic of programs. In: Proceedings of
the 18th IEEE Symposium on Foundations of Computer Science
(FOCS’77), pp. 46–67. IEEE Computer Society Press, New York
(1977)

21. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for
real-time event-streams. In: Proceedings of the 18th International
Conference on Runtime Verification (RV’18)

22. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm,
A.: TeSSLa: runtime verification of non-synchronized real-time
streams. In: Proceedings of the 33rd Symposium on Applied Com-
puting (SAC’18). ACM, New York (2018)

23. Maler, O., Nickovic, D.: Monitoring temporal properties of con-
tinuous signals. In: Proceedings of FORMATS/FTRTFT 2004,
Volume 3253 of LNCS, pp. 152–166. Springer, Berlin (2004)

24. Lectures on Runtime Verification, Volume 10457 of LNCS, Chap-
ter Specification-Based Monitoring of Cyber-Physical Systems: A
Survey on Theory, Tools and Applications, pp. 135–175. Springer,
Berlin (2018)

25. Koymans, R.: Specifying real-time properties withmetric temporal
logic. Real-Time Syst. 2(4), 255–299 (1990)

26. Babu, S., Widom, J.: Continuous queries over data streams. SIG-
MOD Rec. 30(3), 109–120 (2001)

27. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito,
K., Motwani, R., Srivastava, U., Widom, J.: STREAM: the Stan-
ford data stream management system. Technical Report 2004-20,
Stanford InfoLab (2004)

28. Sánchez, C.: Online and offline stream runtime verification of
synchronous systems. In: Proceedings of the 18th International
Conference on Runtime Verification (RV’18), Volume 11237 of
LNCS, pp. 138–163. Springer, Berlin (2018)

29. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard,
D.: Quantified event automata: towards expressive and efficient
runtime monitors. In: Proceedings of the 18th Int’l Symposium
on Formal Methods (FM’12), Volume 7436 of LNCS, pp. 68–84.
Springer, Berlin (2012)

30. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring
metric first-order temporal properties. J. ACM 62(1), 1–45 (2015)

31. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A
stream-based specification language for network monitoring. In:
Proceedings of the 16th International Conference on Runtime Ver-
ification (RV’16)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1711.03829

	Stream runtime verification of real-time event streams with the Striver language
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Data domains
	2.2 Streams
	2.3 Efficient monitorability

	3 The Striver specification language
	3.1 Syntax
	3.2 Type inference rules
	3.3 Semantics
	3.4 Dependency graph

	4 Operational semantics
	4.1 Operational semantics for past specifications
	4.1.1 Trace length independent monitoring

	4.2 Operational semantics for full Striver

	5 Comparison with other formalisms
	5.1 Comparison with TeSSLa
	5.2 Comparison with signal temporal logic

	6 Empirical evaluation
	6.1 Past Striver
	6.2 Full Striver

	7 Final discussion and conclusion
	References

