
International Journal on Software Tools for Technology Transfer (2021) 23:701–719
https://doi.org/10.1007/s10009-020-00596-7

GENERAL

Special Issue: MeTRID

Programming dynamic reconfigurable systems

Rim El Ballouli1 · Saddek Bensalem1 ·Marius Bozga1 · Joseph Sifakis1

Accepted: 1 December 2020 / Published online: 5 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
DR- BIP is an extension of the BIP component framework intended for programming reconfigurable systems encompassing
various aspects of dynamism. It relies on architectural motifs to structure the architecture of a system and to coordinate its
reconfiguration at runtime. An architectural motif defines a set of interacting components that evolve according to reconfigura-
tion rules. WithDR- BIP, the dynamism can be captured as the inter-play of dynamic changes in three independent directions:
(1) the organization of interactions between instances of components in a given configuration; (2) the reconfiguration mech-
anisms allowing creation/deletion of components and management of their interaction according to a given architectural
motif; and (3) the migration of components between predefined architectural motifs which characterizes dynamic execution
environments. The paper lays down the formal foundation of DR- BIP, illustrates its expressiveness on few examples and
discusses avenues for dynamic reconfigurable system design.

Keywords Architectural motifs · Components · Reconfigurable systems

1 Introduction

Modern computing systems exhibit dynamic and reconfig-
urable behavior. They evolve in uncertain environments and
have to continuously adapt to changing internal or exter-
nal conditions. This is essential to efficiently use system
resources, e.g., reconfiguring the way resources are accessed
and released in order to adapt the system behavior in case of
mishaps such as faults, and to provide the adequate function-
ality when the external environment changes dynamically as
in mobile systems. In particular, mobile systems are becom-
ing important in many application areas including transport,
telecommunications and robotics.

There exist two complementary approaches for the expres-
sion of dynamic coordination rules. One respects a strict
separation between component behavior and its coordina-

The research leading to these results has received funding from the
European Union Horizon 2020 research and innovation programme
under grant agreement no. 700665 CITADEL (Critical Infrastructure
Protection using Adaptive MILS).

B Marius Bozga
Marius.Bozga@univ-grenoble-alpes.fr

1 Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of
Engineering Univ. Grenoble Alpes), VERIMAG, 38000
Grenoble, France

tion. Coordination is exogenous in the formof an architecture
that describes global coordination rules between the coordi-
nated components. This approach is adopted by numerous
Architecture Description Languages (ADLs) (see [11] for a
survey). The other approach is based on endogenous coordi-
nation by using explicitly primitives in the code describing
the behavior of components. Most programming models use
internalized coordination mechanisms. Components usually
have interfaces that specify their capabilities to coordinate
with other components. Composing components boils down
to composing interfaces. This approach is in particularly
adopted by formalisms such as dynamic wright [3], leda
[14], pilar [35], scel [17] to name just a few based on
process algebra. The obvious advantage of endogenous coor-
dination is that programmers do not have to build explicitly
a global coordination model. The absence of such a model
makes the validation of coordination mechanisms and the
study of their underlying properties much harder. In contrast,
exogenous coordination is advocated for enabling the study
of the coordination mechanisms and their properties. It moti-
vated numerous publications and the development of 100+
ADLs [29]. In this case, the coordination model is external
to the behavior and can therefore be used to perform some
analysis almost independently from the behavior.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00596-7&domain=pdf

702 R. El Ballouli et al.

There exists a huge literature on architecture model-
ing reviewed in detailed surveys classifying the various
approaches and outlining new trends [24] and needs from an
industrial perspective [29]. Despite the impressive amount of
work on this topic, there is no clear understanding about how
different aspects of architecture dynamism can be character-
ized.

We consider that the degree of dynamism of a system
can be captured as the inter-play of dynamic change in
three independent aspects. The first aspect requires the abil-
ity to describe parametric system coordination for arbitrary
number of instances component types, for example, sys-
tems with m producers and n consumers or rings formed
from n identical components. The second aspect requires the
ability to add/delete components and manage their interac-
tion rules depending on dynamically changing conditions.
This is needed for a reconfigurable ring of n components,
e.g., removing a component which self-detects a failure
and adding the removed component after recovery. So
adding/deleting components implies the dynamic applica-
tion of specific interaction rules depending on their type.
This is also needed for mobile components which are sub-
ject to dynamic interaction rules depending on the state
of their neighborhood. The third aspect is currently the
most challenging. It meets in particular, the vision of “fluid
architectures” [38] which allows components/services to
seamlessly roamand continue their activities on any available
device or computer. Applications and objects live in an envi-
ronment which is conceptually an architecture motif. They
can be dynamically transported from one motif to another.
Supporting dynamicmigration of components allows a disci-
plined and easy-to-implement management of dynamically
changing coordination rules. For instance, self-organizing
systems may adopt different coordination motifs to adapt
their behavior so as to meet a global property.

The paper presents dynamic reconfigurable BIP (DR-
BIP) component framework, an extension of BIP [4,5] which
encompasses all these three aspects of dynamism. DR- BIP
has been introduced in [22] and represents one further step
in our research toward extending BIP with dynamic fea-
tures. This research was initiated with DyBIP [9] for BIP
with dynamic interactions and more recently continued with
Functional-BIP [20] and Java-BIP [31] for BIPwith dynamic
components and interactions. As such, DR- BIP follows an
exogenous approach respecting the strict separation between
behavior and architecture. It directly encompassesmultiparty
interaction [7] and is rooted in formal operational seman-
tics allowing a rigorous implementation. DR- BIP privileges
an imperative and exogenous style characterizing dynamic
architecture as a set of interaction rules implemented by con-
nectors and a set of configuration rules.

Although DR- BIP does not allow ad hoc dynamism, it
directly encompasses several kinds of dynamism at run time,

namely programmed dynamism and in addition adaptive
dynamism, and self-organizing dynamism according to the
classification in [11]. It provides support for component cre-
ation and removal at run time. Moreover, DR- BIP directly
supports component migration from one motif to another. It
supports programmed reconfiguration and triggered recon-
figuration as defined in [13]. The big advantage from using
motifs is thatwhen a component is created, its type defines the
interaction with other components. So, a motif is a “world”
where components live and from which they can migrate to
join other “worlds” as in fluid architectures [38].

This paper is an extended version of two recent confer-
ence papers, namely [22] presenting the formal foundation
and [21] introducing additional examples of DR- BIP. It
was restructured to provide a comprehensive introduction
and clarification of key DR- BIP concepts as well as to
fully illustrate its modeling expressivity on a complete set
of benchmarks. It justifies the proposed concepts, discusses
their limitations and identifies potential improvements from a
practical point of view. Furthermore, it provides an extended
discussion of related work.

The paper is organized as follows. Section 2 provides
a brief overview of DR- BIP and major design principles.
Section 3 briefly recalls the key concepts of BIP and its oper-
ational semantics. Section 4 introduces formally the motif
concept and its semantics, and Sect. 5 introduces formally
motif-based systems. Section 6 presents several examples
with benchmarks using the DR- BIP implementation as well
as some lessons learned from these experiments. We discuss
related work in Sect. 7. Finally, Sect. 8 presents conclusions
and future work directions.

2 DR-BIP overview

The DR- BIP framework is designed to cover the practical
needs for the design of dynamic systems and, therefore, ful-
fill specific requirements for rigorous design and analysis. It
allows to:

– specify architectural constraints/styles, i.e., define archi-
tectures as parametric operators on components guaran-
teeing by design specific properties,

– describe systems with evolving architectures, i.e., define
system architecture that can be updated at runtime using
dedicated primitives,

– support separation of concerns, i.e., keeping separate
the component behavior (functionality) from the system
architecture to avoid blurring the behaviorswith informa-
tion about their execution context and/or reconfiguration
needs,

– provide sound foundation for analysis and implementa-
tion, i.e., rely on a well-defined operational semantics,

123

Programming dynamic reconfigurable systems 703

leveraging on existing models for rigorous component-
based design.

The followingmotivating example belongs to the category
of dynamic systems we are interested to consider for DR-
BIP. This example will be used along the paper to illustrate
the newly proposed concepts.

Example 1 (Dynamic token ring) A token ring consists
of two or more identical components interconnected using
unidirectional communication links according to a ring topol-
ogy. A number of tokens are circulating within the ring. A
component is busy when it holds a token and idle otherwise.
A component can do specific internal actions depending on
its state, busy or idle. It can receive a token from the incom-
ing link only its idle and send its token on the outgoing link
only when its busy.

A token ring is dynamic if idle components are allowed to
leave the ring at any time as long as at least two components
remains in the ring. New idle components are allowed to
enter the ring at any time (as long as the maximal allowed
ring size is not reached). A token ring system consists of one
or more, pairwise disjoint, token rings. A token ring system
is dynamic if every ring is dynamic, and moreover, two rings
are allowed to merge into a single one provided their overall
size is not exceeding the maximal allowed ring size.

2.1 Motifs for Dynamic Architectures

In DR- BIP, a motif is the elementary unit used to describe
dynamic architectures. A motif encapsulates (i) behavior, as
a set of components, (ii) interaction rules dictatingmultiparty
interaction between components and (iii) reconfiguration
rules dictating the allowed modifications to the configura-
tion of a motif including the creation/deletion/migration of
components. Motifs are structurally organized as the deploy-
ment of component instances on a logical map as illustrated
in Fig. 1. Maps are arbitrary graph-like structures consisting
of interconnected positions. Deployments relate components
to positions on the map.

Example 2 (Motif structure) Figure 2 (middle) illustrates the
proposedmotif concept for describing the dynamic token ring
system introduced in Example 1. In the depicted configura-
tion, three component instances b1, b2, b3 define the behavior
B. They are deployed into a three-position cyclemap denoted
by H . The deployment is denoted by D.

The definition of the motif is completed by two sets of
rules, defining interactions and reconfiguration actions of the
following generic forms:

Deployment

Map

Interaction rules

Reconfiguration rules

Behavior

Fig. 1 Motif concept

Reconfiguration rules

Map H

when |B| ≤ 10

Deployment D

b2b1

Behavior B

Interaction rules

when D(x1) D→� (x2)
sync x1.out x2.in

b3

n:=H.extend(), D.attach(x, n)
do x := B.create(C, idle),

Fig. 2 Motif example

interaction-rule ::=
sync-rule-name(formal-params) ≡
when rule-constraint
sync interaction-ports
[[guard →] interaction-action+]

reconfiguration-rule ::=
do-rule-name(formal-params) ≡
when rule-constraint
do [guard →] reconfiguration-action+

Both sets of rules are interpreted on the current motif
configuration. Formal-params denotes (sets of) component
instances and defines the scope of the rule. Rule-constraint
defines the conditions under which the rule is applica-
ble. Constraints are essentially Boolean combinations on
deployment and map constraints built from formal-args.
An interaction rule also defines the set of interacting ports
(interaction-ports), the interaction guard (guard) and the
associated interaction actions (interaction-action). Theguard
and the action define, respectively, a triggering condition and
an update of the data of components participating in the
interaction. Finally, a reconfiguration rule defines a recon-
figuration guard (guard) and a number of reconfiguration
actions (reconfiguration-action) to update the content of the

123

704 R. El Ballouli et al.

motif. Such actions include creation/deletion of component
instances, and change of their deployment on the map as well
as change of the map itself, i.e., adding/removing map posi-
tions and their interconnection. Notice that rule constraints
and guards deal with complementary aspects. The former are
constraints on motif configuration (map and deployment),
whereas the later are constraints on component data only. In
a similar way, reconfiguration actions update motif configu-
rations, whereas interaction actions update component data
only.

Example 3 (Motif rules) The interaction rule given in Fig. 2
(top) reads as follows: for components x1, x2 deployed on
adjacent nodes (that is,D(x1) �→ D(x2)) connect their ports
x1.out and x2.in.1 This ruledefines three interactions between
the components, namely {b1.out b3.in}, {b3.out b2.in} and
{b2.out b1.in}. The reconfiguration rule given in Fig. 2
(bottom) allows to extend the ring by adding one more com-
ponent. The rule is applicable as long as the number of
component instances |B| is less than or equal to 10. When
executed, a new component x of type C is created at ini-
tial state idle (that is, x := B.create(C, idle)), a new node
n is added to the cycle map (that is, n := H.extend())
and the component x is deployed on the node n (that is,
D.attach(x, n)).

Notice that the distinction between reconfiguration and
interaction rules allows separation of concerns in modeling
dynamic architectures. On one hand, reconfiguration rules
are used to update the motif structure (components, map,
deployment) under specific conditions (as depicted by the
red arrows in Fig. 1). On the other hand, interaction rules use
themotif structure to define how the components of the motif
are interconnected (as depicted by the green arrows in Fig. 1).
This approach associates interaction rules with motifs, and
these rules remain unchanged when components are created
or removed.

The reason for choosing maps and deployments as a mean
for structuring motifs is their simplicity. On one hand, maps
and deployments are common concepts, easy to understand,
manipulate and formalize. On the other hand, they ade-
quately support the definition of arbitrarily complex sets of
interactions over components by relating them to connectiv-
ity properties (neighborhood, reachability, etc.). Moreover,
maps and deployments are orthogonal to behavior. There-
fore, they can be manipulated/updated independently and
they also provide a very convenient way to express various
forms of reconfiguration. Both maps and deployments are
implemented as dynamic collections of objects, with specific

1 The dot operator is used interchangeably to access a component’s
port/data, and to access a motif’s components/deployment/map, and to
apply primitives over a motif’s deployment/map.

Deployment

Map

Interaction rules

Reconfiguration rules

Behavior

...

Reconfiguration rules

Deployment

Map

Interaction rules

Reconfiguration rules

Behavior

Fig. 3 Motif-based system concept

b1

b2

c1 c2

c4 c3

b1

b2

c1 c2 c3

c4

b1

b2

c1 c2

c4 c3

b3

c5

Fig. 4 An example of system reconfigurations

interfaces, in a similar way to standard collection libraries
available for standard programming languages.

2.2 Motif-based systems

Several types ofmotifs may be defined separately by specify-
ing the types of hosted components, parametric interactions
and reconfiguration rules. Then, systems are described by
superposing a number of motif instances of certain motif
types. In this manner, the overall system architecture cap-
tures specific architectural/functional properties by design.

Systems are defined as collections of motifs sharing a set
of components as depicted in Fig. 3. Each motif can evolve
independently of the others, depending only on its internal
structure and associated rules. Furthermore, several motifs
can synchronize all together to jointly perform a recon-
figuration of the system. Coordination between motifs is
therefore possible either implicitly by means of shared com-
ponents or explicitly by means of inter-motif reconfiguration
rules. These rules allow joint reconfiguration of several motif
instances. They also allow two additional types of actions,
respectively, creation and deletion of motif instances, and
exchanging component instances between motifs.

Both coordination mechanisms were proven useful and
easy to use in practice. On the one hand, global reconfigu-
ration rules provide an imperative way of changing several
motifs simultaneously, e.g., to migrate a component between

123

Programming dynamic reconfigurable systems 705

motifs, to merge several motifs into a single one, etc. On
the other hand, sharing a component between several motifs
allows controlling local reconfiguration in the motifs. For
instance, local reconfiguration rules may be enabled in some
motif and disabled in another one, depending on the state of
the component.

How these two coordination mechanisms are combined
depends on the dynamics of the considered system archi-
tecture. In some cases, the dynamics can be captured by a
fixed number of motifs with a very restricted form of global
reconfiguration (e.g., only migration of components between
motifs). This is the situation for the dynamic multicore task
system in Sect. 6.1 and the self-organizing robot colonies
in Sect. 6.3. In other cases, the dynamics is captured by an
evolving number of motifs and complex global reconfigura-
tion (e.g., merging or splitting existing motifs). This is the
situation for the dynamic token ring example, as well as for
the highway traffic system in Sect. 6.2.

Figure 4 provides an overall view on the structure and
evolution of a motif-based system. The initial configura-
tion (left) consists of six interacting components organized
using three motifs (indicated with dashed lines). The central
motif contains components b1 and b2 connected in a ring.
The upper motif contains components b1, c1, c2, c3, with b1
being connected to all others. The lower motif contains con-
nected components b2, c4. The second system configuration
(in the middle) shows the evolution following a reconfigu-
ration step. Component c3 migrated from the upper motif to
the lower motif, by disconnecting from b1 and connecting
to b2. The central motif is not impacted by the move. The
third system configuration (right) shows one more reconfig-
uration step. Two new components have been created b3 and
c5. The central motif now contains one additional component
b3, interconnected along b1 and b2 forming a larger ring. Fur-
thermore, a new motif is created containing b3 and c5.

2.3 Executionmodel

The evolution of motif-based systems in DR- BIP is defined
in a compositional manner. Every motif defines its own set
of interactions based on its local structure. This set of inter-
actions and the involved components remain unchanged as
long as the motif does not execute a reconfiguration action.
Hence, in the absence of reconfigurations, the system keeps
a fixed static architecture and behaves like an ordinary BIP
system. The execution of interactions has no effect on the
architecture. In contrast to interactions, system and/or motif
reconfigurations rules are used to define explicit changes in
the architecture. However, these changes have no impact on
components, i.e., all running components preserve their state
although components may be created/deleted. This indepen-
dence between execution steps is illustrated in Fig. 5.

b b′

m

m′

α
Interaction

Reconfiguration ρ

Behavior

Configuration

Fig. 5 Reconfiguration versus interaction steps

3 Component-based systems

BIP [4,5] is the underlying component-based framework for
DR- BIP. In BIP, systems are constructed from atomic com-
ponents, which are finite state automata, extended with data
and ports. Communication between components is by multi-
party interactions with data transfer. BIP systems are static in
the sense that components and interactions are fixed at design
time and do not change during system execution. We briefly
recall the key BIP concepts and their operational semantics.

3.1 Component types and instances

Acomponent type Bt is an extended labeled transition system
(L, P, V , T), where L is a finite set of control locations, P
is a finite set of ports, V is a finite set of data variables, and
T ⊆ L × P × G(V) × F(V) × L is a finite set of labeled
transitions, where G(V) andF(V) are, respectively, Boolean
guards and update functions defined over variables V . Every
transition τ = (�, p, g, f , �′) ∈ T is equivalently denoted

as τ = �
p g f−−−→ �′ ∈ T . For every port p ∈ P , we associate

a subset of variables Vp ⊆ V exported and available for
interaction through p.

For a component type Bt = (L, P, V , T), its set of states
is Q = L ×V where V is the set of all valuations defined on
V . A valuation of a set of variables V is a function v : V →
D, where D is an underlying domain of data values. The
semantics of a component-type Bt is defined as the labeled
transition system [[Bt]] = (Q,Σ,−→)where the set of labels
Σ = {p(vp) | vp ∈ Vp} and transitions −→⊆ Q × Σ × Q
are defined by the rule:

τ = �
p g f−−−→ �′ ∈ T

g(v) v′′
p∈Vp v′= f (v[v′′

p/Vp])

Bt : (�,v)
p(v′′p)−−−→(�′,v′)

That is, (�′, v′) is a successor of (�, v) labeled by p(v′′
p) iff

(1) τ = �
p g f−−−→ �′ is a transition of T , (2) the guard g

holds on the current state valuation v, (3) v′′
p is a valuation

of exported variables Vp and (4) v′ = f (v[v′′
p/Vp]), that is,

the next-state valuation v′ is obtained by applying f on v

123

706 R. El Ballouli et al.

u

busy

v

b4

b1

b2 b3

b6

out
idle

outv:=u+1
in

in in

out

in

out in out
b5

out

in

tuo ni tuo

in
out v u in

true → u:=v

Fig. 6 Component types, interactions and systems in BIP

previously updated according to v′′
p. Whenever a p-labeled

successor exists from a state, we say that p is enabled in that
state.

We consider a given finite set of component types. A com-
ponent instance b is a couple (Bt , k) for some k ∈ N. We
denote, respectively, by ports(b), spsstates(b), labels(b) the
set of ports, states and labels associated with the instance b
according to its type.

Example 4 (Component type) Figure 6 (left, top) illustrates
graphically a component type. The component has two ports
(in, out) attached with variables (respectively, u, v. It has two
control locations (idle, busy) and three transitions labeled by
the ports. For example, the transition labeled by in changes
control location from idle to busywhile performing the com-
putation v := u+1.

3.2 Systems of components

Systems of components Γ (B) are obtained by composing a
finite set of component instances B = {b1, . . . , bn} using a
finite set of multiparty interactions Γ . A multiparty interac-
tion a is a triple (Pa,Ga, Fa), where Pa ⊆ ⋃n

i=1 ports(bi)
is a set of ports, Ga is a Boolean guard, and Fa is an
update function. By definition, Pa must use at most one
port of every component in B, that is, |Pi ∩ Pa | ≤ 1 for
all i ∈ {1..n}. Therefore, we simply denote Pa = {bi .pi }i∈I ,
where I ⊆ {1..n} contains the indices of the components
involved in a and for all i ∈ I , pi ∈ ports(bi). Ga and Fa
are defined on the variables exported by ports in Pa (i.e.,
⋃

p∈Pa Vp).
The semantics of a system S = Γ (B) is defined as the

labeled transition system [[S]] = (Q,Σ,−→) where the set
of states Q = 〈b �→ q | b ∈ B, q ∈ spsstates(b)〉, the set
of labels Σ ⊆ P(ports(B) × P(V)) contains the ports and
sets of values exchanged on interactions and transitions −→
are defined by the rule:

a = ({bi .pi }i∈I ,Ga, Fa) ∈ Γ

Ga({vpi }i∈I) {v′′
pi }i∈I = Fa({vpi }i∈I)

∀i ∈ I .

(

Bt
i : (�i , vi)

pi (v′′
pi

)−−−−→ (�′
i , v

′
i)

)

∀i /∈ I . (�i , vi) = (�′
i , v

′
i)

Γ (B) : 〈b1 �→ (�1, v1), . . . , bn �→ (�n, vn)〉
{bi .pi (v′′

pi
)}i∈I−−−−−−−−→

〈b1 �→ (�′
1, v

′
1), . . . , bn �→ (�′

n, v
′
n)〉

For each i ∈ I , vpi above denotes the valuation vi restricted
to variables of Vpi . The rule expresses that S can execute an
interaction a ∈ Γ enabled in state ((�1, v1), . . . , (�n, vn)),
iff (1) for each pi ∈ Pa , the corresponding component
instance bi can execute a transition labeled by pi , and (2)
the guard Ga of the interaction holds on the current valua-
tion vpi of exported variables on ports in a. Execution of a
triggers first the update function Fa which modifies exported
variables Vpi . The new values obtained, encoded in the valu-
ation v′′

pi , are then used by the components’ transitions. The
states of components that do not participate in the interaction
remain unchanged.

Example 5 (System of components) Figure 6 (left, bottom)
depicts a binary interaction between two ports out, in, hav-
ing guard true and update function u := v. That is, whenever
the interaction is executed, the data are transferred from the
out port to the in port. Figure 6 (right) illustrates a system
obtained by composing six bi instances with six out in inter-
actions in a ring structure.

4 Motifs for dynamic architectures

Motifs are dynamic structures composed of interacting com-
ponents. Their structure is expressed as a combination of
three concepts, namely behavior, map and deployment. The
behavior consists of a set of components. The map is an
underlying logical structure (backbone) used to organize
the interaction of components. The deployment provides the
association between the components and the map. The com-
ponents within a motif run in parallel and synchronize using
multiparty interactions. The set of multiparty interactions is
defined by interaction rules evaluated on the structure of the
motif. Finally, the motif structure is also evolving. Any of the
three constituents can be modified, i.e., components can be
added/removed to/from themotif, themap and/or the deploy-
ment can change. The motif evolution is expressed using

123

Programming dynamic reconfigurable systems 707

reconfiguration rules, which evaluate and update the motif
structure accordingly. The following subsections present for-
mally all the motif-related concepts.

4.1 Maps and deployments

Maps and deployments are abstract concepts used to orga-
nize the motifs. Maps denote arbitrary dynamic collections
of inter-connected nodes (positions). They are defined as par-
ticular instances of generic map types Ht characterized by
(i) an underlying domain N (Ht) of nodes, (ii) a set of prim-
itives Ω(Ht) to update/access the map content and (iii) a
logic L(Ht) to express constraints on the map content.

We use maps as dynamic data structures (objects). For a
map H of type Ht , its set of nodes is denoted by dom(H)

and is a subset of N (Ht). For any primitive op ∈ Ω(Ht),
we use the dotted notation H .op(. . .) to denote the update
and/or access to the map H according to op. Moreover, for
any ψ ∈ L(Ht) we will use H |
 ψ to denote that the
constraint ψ is satisfied on H .

Example 6 (Maps as directed graphs) Map types can be
directed graphs (V , E) where vertices V denote the posi-
tions and edges E ⊆ V × V expressing the connectivity
between these positions. Such a map type (i) has the domain
V , (ii) can be manipulated explicitly using primitives such
as addVertex, remVertex, addEdge, remEdge and (iii) has
predicates allowing to express edge constraints · �→ ·, path
constraints · �→∗ ·, etc., with the usual meaning.

Example 7 (Maps as cycle graphs) In the dynamic token ring
example from Fig. 2, the map type is a cycle graph consisting
of a single cycle, where (i) vertices compose the domain,
(ii) primitives include init, extend, remove to, respectively,
initialize to an empty cycle, extend by one vertex (inserted
arbitrarily), remove one specified vertex from the cycle and
(iii) predicates allow for checking edge constraints · �→ ·, as
usual.

Deployments are partial mappings of a set B of compo-
nent instances to the nodes of a map H , formally D : B →
dom(H) ∪ {⊥}. As for maps, deployments are dynamic data
structures defined as particular instances of a generic deploy-
ment types Dt . We consider a set of primitives Ω(Dt) to
update and/or access the deployment as well as a logicL(Dt)

to express constraints on it. In particular,wewill use the prim-
itive attach to associate a component instance to a node of
the map.

Given a deployment D : B → dom(H)∪{⊥}, for a subset
of components B ′ ⊆ Bwedenote by D|B′ the restriction of D
to B ′, that is, the partial function DB′ : B ′ → dom(H)∪{⊥}
where D|B′(b) = D(b) for all b ∈ B ′. Similarly, for an
arbitrary map H ′ we denote by D|H ′ the restriction of D to
H ′, that is, the partial function D|H ′ : B → dom(H ′) ∪ {⊥}

where D|H ′(b) = D(b) if D(b) ∈ dom(H) ∩ dom(H ′) and
⊥ otherwise.

4.2 Motif types

Henceforth, we consider a given finite collection of compo-
nent types, map types and deployment types.

Definition 1 A motif type Mt is a tuple ((B,H,D), IR,
RR) where:

– the triple (B,H,D) consists ofmotif meta-variables, that
is, typed symbols used to denote, respectively, the set
of component instances, the map and the deployment of
component instances on the map,

– IR is a set of motif interaction rules of the form (Z , Ψ ,
PI , GI , FI) where Z is a set of rule parameters, Ψ is a
rule constraint, and (PI ,GI , FI) is the interaction speci-
fication, namely the set of ports of involved components,
the guard and the data transfer,

– RR is a set of motif reconfiguration rules of the form
(Z , Ψ , GR , ZL , AR) where as before Z is a set of rule
parameters, Ψ is a rule constraint, GR is a reconfigura-
tion guard, ZL are local rule parameters, and AR is a
(sequence of) reconfiguration action(s).

The motif configuration is defined by a valuation of meta-
variables B,H, D as, respectively, B, H , D where (i) B is a
finite set of components instanceswith types belonging to the
predefined set of component types, (ii) H is a map instance
of the type ofH, (iii) D is a deployment instance of the type
ofD which associates component instances from B to nodes
of the map, formally D : B → dom(H) ∪ {⊥}.

The meaning of the rules is explained in the next subsec-
tions. Note that motif configuration can dynamically change
as the meta-variables are being updated in reconfiguration
rules. Furthermore, component instances can interact as dic-
tated by interaction rules. Overall, we tacitly restrict to
syntactically consistent motif definitions, that is, where the
interaction and reconfiguration rules are restricted to use only
the map and deployment primitives defined for the types of
H and D, respectively.

Example 8 (Dynamic token ring motif type) Figure 7 illus-
trates the structure of a Ring motif type defined for the
dynamic token ring system. In any configuration, the behav-
ior B contains several component instances, all of the same
type C presented in Example 4. The map H is a cycle graph
(or equivalently, a circular linked list) with specific prim-
itives presented in Example 7. The deployment D assigns
components to locations of the map in a bijective manner.

Moreover, we consider that our Ring motif type contains
one interaction rule denoted as sync-ring-inout for defining

123

708 R. El Ballouli et al.

b2

b4
b1

b3

b6 b5

n1
n6 n5

n4

n3n2

B

D

H

Fig. 7 A configuration of the dynamic token ring motif type

interactions and three reconfiguration rules denoted, respec-
tively, do-ring-init, do-ring-insert and do-ring-remove for
dynamic reconfiguration, as follows:

sync-ring-inout(x1, x2 : C) ≡
whenD(x1) �→ D(x2)
sync x1.out x2.in

true → x2.u := x1.v
do-ring-init() ≡

when B = ∅
do x1 := B.create(C, busy),

x2 := B.create(C, idle),H.init(),
n1 :=H.extend(),D.attach(x1, n1)
n2 :=H.extend(),D.attach(x2, n2)

do-ring-insert() ≡
do x := B.create(C, idle),

n :=H.extend(),D.attach(x , n)
do-ring-remove(x : C) ≡

when |B| ≥ 3
do x .idle → n :=D(x), B.delete(x),H.remove(n)

For the sake of readability, we use the generic textual syn-
tax of rules proposed in Sect. 2. This textual representation
is actually a readable alternative for the abstract representa-
tion introduced in Definition 1. The relation between the two
representations will be clarified in the following subsections.

4.3 Rule parameters and constraints

Themotif evolution is defined by interaction and reconfigura-
tion rules. The set of rule parametersZ include typed symbols
denoting (sets of) component instances or map nodes and
interpreted as (subsets) elements of B or dom(H), respec-
tively. Rule constraints Ψ are Boolean combinations of map,
deployment and basic constraints built using parameters in
Z and meta-variables B,H, D:

Ψ ::= ψ0 | ψH | ψD | Ψ1 ∧ Ψ2 | ¬Ψ

In the above, Ψ 0 denotes any basic constraint using equality
and/or set constraints on parameters,ΨH denotes a constraint
on themap (conforming to themap logicL(Ht), for Ht being
the type of H) and ΨD denotes a constraint on the deploy-
ment (conforming to the deployment logic L(Dt), for Dt

being the type ofD). For example, the sync-ring-inout inter-
action rule in Example 8 has two parameters x1, x2 denoting
components of type C . The rule constraint D(x1) �→ D(x2)
checks if x1 and x2 are deployed on adjacent nodes on the
map, using the �→ predicate defined for cycle graphs.

For fixed motif configuration in terms of B, H , D, for
given interpretation ζ of parameters, the constraint satisfac-
tion B, H , D, ζ |
 Ψ is defined recursively on the structure
of Ψ as follows:

B, H , D, ζ |
 ψ0 iff ζ ∪ [B/B, H/H, D/D] |
 ψ0

B, H , D, ζ |
 ψH iff H , ζ ∪ [B/B, D/D] |
 ψH
B, H , D, ζ |
 ψD iff D, ζ ∪ [B/B, H/H] |
 ψD

B, H , D, ζ |
 Ψ1 ∧ Ψ2 iff B, H , D, ζ |
 Ψ1 and
B, H , D, ζ |
 Ψ2

B, H , D, ζ |
 ¬Ψ iff B, H , D, ζ �|
 Ψ

That means, equalities and/or set constraints are evaluated
in the usual way on the context ζ extended with the cur-
rent valuation for meta-variables B, H, D. Map constraints
are evaluated as defined by their underlying logic L(Ht) on
the map H and the context ζ extended with the valuation
for meta-variables B, D. The evaluation of deployment con-
straints is similar.

4.4 Interactions rules

Interaction rules are used to define multiparty interactions on
the components instances within the motif. The syntax of the
interaction specification part is as follows:

ports: PI ::= x .p | X .p | PI PI
guard: GI ::= true | eI | GI ∧ GI | ¬GI

action: FI ::= ε | x .v := eI | X .v := eI | aI , aI
expression: eI ::= x .v | opd(eI , · · · eI) | op′

d(X .v)

The symbols x , X are rule parameters denoting, respec-
tively, component instances or sets of component instances.
Moreover, p is a component port, v is a component (exported)
data variable and opd (resp. op′

d) are operations on (resp.
sets of) data values. A rule is syntactically well formed iff
all parameter names used in expressions (part of the guard or
data transfer) are also used as part of the interacting port spec-
ification. That is, only data from components participating in
the interaction can be used.

For given B, H and D in a motif, the set of multiparty
interactions Γ (r) corresponding to an interaction rule r =
(Z, Ψ , PI ,GI , FI) is defined as:

123

Programming dynamic reconfigurable systems 709

Γ (r) =

⎧
⎪⎪⎨

⎪⎪⎩
(Pa,Ga, Fa)

B, H , D, ζ |
 Ψ

Pa = ζ(PI), Ga = ζ(GI),

Fa = ζ(FI)

(Pa,Ga, Fa) is well formed

⎫
⎪⎪⎬

⎪⎪⎭

In the above, we tacitly lift the interpretation of ζ to port
interactions PI , guards GI and actions AI which are all con-
structed from rule parametersZ . The resulting triple Pa ,Ga ,
Fa is considered well formed iff it conforms to the definition
of multiparty interactions, namely if Pa does not contain
replicated or multiple ports of the same components, as well
as if Ga and Fa use and update only variables exported on
ports in Pa .

Example 9 (Interaction rules) The ring motif type presented
in Example 8 has a unique interaction rule denoted sync-ring-
inout. The rule connects the out port of a component x1 to
the in port of the component x2 deployed next to it on the
map. Consider themotif configuration depicted in Fig. 7. The
interpretation of rule parameters ζ = {x1 �→ b3, x2 �→ b4}
satisfies the rule constraint and therefore defines the binary
interaction (Pa,Ga, Fa) where Pa = {b3.out, b4.in}, Ga =
true, Fa = (b4.u := b3.v). The set of all defined interactions,
for all interpretations of rule parameters satisfying the rule
constraint, is depicted in Fig. 6.

4.5 Reconfiguration rules

Reconfiguration rules are used to define actions impacting the
content/organization of the motif. These actions essentially
include creating/deleting component instances, updating the
map structure and/or the deployment of component instances
to the map. They are expressed as specific updates on the
correspondingB,H,Dmeta-variables. For enhanced expres-
siveness, reconfiguration rules might use additional local
parameters (that is, the local contextZL) with arbitrary types
(component instances, map nodes, maps, deployments, etc.).
The local context is updated using standard assignments. As
mentioned already, we tacitly restrict to syntactically cor-
rect rules, that is, where primitive operations conform to the
types of the different symbols used, includingmeta-variables
as well as rule parameters.

The syntax of reconfiguration guards and actions is as
follows:

guard: GR ::= GI

action: AR ::= x := B.create(Bt , q) | B.delete(x) |
z := H.updateH (eR, · · · eR) |
z := D.updateD(eR, · · · eR) |
z := eR | AR, AR

expression: eR ::= z | B | H | D | op(eR, · · · eR)

That is, guards are the same as for interaction rules and define
constraints on components data. In the definition of recon-
figuration actions, the symbol x denotes a rule parameter
interpreted as component instance, and z denotes an arbitrary
local rule parameter. The intuitive meaning of reconfigura-
tion actions is as follows. The action x := B.create(Bt , q)

denotes the creation of a new component instance of type
Bt . The newly created instance is x and is added to the set
of components instances B. The parameter q denotes the ini-
tial state for the instance. The action B.delete(x) denotes
the deletion of the component x from the motif, that is, the
removal of the component instance x from the set B. The
action z := H.updateH (. . .) denotes an update of the map
according to a primitive operation updateH fromΩ(Ht), for
Ht being the type ofH. Whenever an extra-value is returned
by the primitive, it can be (optionally) assigned to the local
parameter z. If no extra-value is returned, the assignment
to z is omitted. Similarly, the action z := D.updateD(. . .)

denotes an update of the deployment according to a primi-
tive operation updateD from Ω(Dt), for Dt being the type
of D. Finally, the action z := eR denotes an update of a rule
parameter z according to the expression eR . Expressions are
constructed from rule parameters z and meta-variables B,H,
D using a set of predefined operations op, with given inter-
pretation.

Formally, the semantics [[AR]] of a reconfiguration action
AR is defined as a function2 updating the motif configuration
(B, H , D), the set of component configurations (b) and the
parameter interpretation (ζ):

[[x := B.create(Bt , q)]](B, H , D,b, ζ) =
(B ∪ {b}, H , D′,b′, ζ ′)

where b = (Bt , k) fresh, D′ = D[b �→ ⊥],
b′ = b[b �→ q], ζ ′ = ζ [x �→ b]

[[B.delete(x)]](B, H , D,b, ζ) = (B\{b}, H , D|B\{b},b, ζ)

where b = ζ(x) ∈ B
[[z := H.updateH (e1, · · · en)]](B, H , D,b, ζ) =

(B, H ′, D|H ′ ,b, ζ ′)
where H ′, v′ = H .updateH (ζ(e1), · · · ζ(en)),

ζ ′ = ζ [z �→ v′]
[[z := D.updateD(e1, · · · em)]](B, H , D,b, ζ) =

(B, H , D′,b, ζ ′)
where D′, v′ = D.updateD(ζ(e1), · · · ζ(em)),

ζ ′ = ζ [z �→ v′]
[[z := e]](B, H , D,b, ζ) = (B, H , D,b, ζ [z �→ ζ(e)])
[[AR1, AR2]](B, H , D,b, ζ) =

([[AR2]] ◦ [[AR1]])(B, H , D,b, ζ)

In the above, for an expression e we denoted by ζ(e) its
valuation given the interpretation ζ of rule parameters and

2 up to the choice of fresh component instance.

123

710 R. El Ballouli et al.

the implicit assignment of meta-variables (B �→ B,H �→
H ,D �→ D).

Example 10 (Reconfiguration rules) The ring motif type
introduced in Example 8 contains three reconfiguration rules.
The rule do-ring-init initializes the motif with a ring of two
components. The rule do-ring-create creates a new compo-
nent in the ring. The rule do-ring-remove(x : C) removes
an idle component x from the ring, provided it contains more
than three components.

4.6 Operational semantics

The semantics of component composition within a motif
involves two categories of atomic interleaved steps, namely
interaction steps and reconfiguration steps. An interaction
step corresponds to the execution of an interaction (as in
BIP) from a set of interactions defined by the interaction
rules. Reconfiguration steps correspond to the execution of
a reconfiguration rule.

Formally, the operational semantics of a motif type Mt

= ((B,H,D), IR, RR) is defined as the labeled transition
system [[Mt]] = (Q,Σ,−→) where

– the states of set Q correspond to motif configurations
B, H , D consistently extended with configurations for
all component instances b = 〈b �→ q | b ∈ B, q ∈
spsstates(b)〉,

– the labels of Σ correspond to valid interactions α con-
structed on components and an additional reconfiguration
action label ρ,

– the transitions −→=−→
I

∪ −→
R

correspond to execution of,

respectively, multiparty interactions as defined by inter-
action rules (−→

I
) and reconfiguration actions, as defined

by reconfiguration rules (−→
R
), formally

(Mot- I) Γ =∪r∈IRΓ (r) Γ (B) : b α−→b′

Mt : (B,H ,D,b)
α−→
I

(B,H ,D,b′)

(Z, Ψ ,GR,ZL , AR) ∈ RR B, H , D, ζ |
 Ψ

(ζ(GR))(b) = true

(Mot- R)
[[AR]](B,H ,D,b,ζ)=(B′,H ′,D′,b′,ζ ′)
Mt : (B,H ,D,b)

ρ−→
R

(B′,H ′,D′,b′)

The rule (Mot- I) says that the motif executes a multiparty
interaction α and change the configurations of components
instances from b to b′ iff (1) α belongs to the set of valid
interactions Γ defined from the interaction rules (that is,
according to the operational semantics in the static case
presented earlier in Sect. 3) and (2) a valid step labeled
by α is indeed allowed between b and b′ according to the

component-based semantics. The rule (Mot- R) says that
the motif executes a reconfiguration if (1) some reconfig-
uration rule is enabled at the current motif configuration,
when both its constraint Ψ and guard GR are satisfied for
the given interpretation of parameter ζ and configurations of
component instances b and (2) the current and next motif
configuration are related according to the semantics of the
action AR . The dichotomy between interaction and recon-
figuration steps ensures separation of concerns for execution
within a motif as previously discussed in Sect. 2 and illus-
trated in Fig. 5.

5 Motif-based systems

We consider systems defined as finite collection of motif
instances, with predefined types, and sharing a finite set
of component instances. In such systems, every motif can
evolve independently of the others, depending on its internal
structure and associated rules. In addition, several motifs can
also synchronize altogether and perform a joint reconfigura-
tion over the system.

Two ways of coordination between motifs are therefore
possible: implicit coordination, by means of shared com-
ponents and explicit coordination, by means of inter-motif
reconfiguration rules.

This section introduces formally inter-motif reconfigura-
tion and defines the operational semantics of motif-based
systems. Henceforth, we consider a given finite set of motif
types. As for components, a motif instance m is a couple
(Mt , k) for some motif type Mt and k ∈ N.

5.1 Inter-motif reconfiguration rules

The rules for inter-motif reconfiguration allow joint recon-
figuration of several motif instances. In addition to the
application of local reconfiguration actions, these rules allow
two additional types of actions, respectively, creation and
deletion of motif instances, and exchanging component
instances between motifs.

Inter-motif reconfiguration rules are defined as tuples (Z
,
Ψ
, G
, Z

L , A

R) similar to local reconfiguration rules. The

set of rule parameter Z
 might include additional symbols
denoting motif instances (y). The constraints Ψ ∗ are defined
by the grammar:

Ψ ∗ ::= Ψ 0∗ | 〈y : Ψ 〉 | Ψ ∗
1 ∧ Ψ ∗

2 | ¬Ψ ∗

In the above, Ψ 0∗ denotes some basic equality and/or set
constraint expressed on context parameters, 〈y : Ψ 〉 denotes
a local constraint Ψ to be checked in the context of the motif
instance y.

123

Programming dynamic reconfigurable systems 711

These constraints are evaluated on motif configurations
extended with context parameters. Motif configurations are
tuples (M,m) where M is a set of motif instances and m =
〈m �→ (B, H , D) | m ∈ M〉 provides the structure of these
instances in terms of behavior, map and deployment. The
constraints are evaluated as follows:

M,m, ζ |
 Ψ 0∗ iff ζm |
 Ψ 0∗
M,m, ζ |
 〈y : Ψ 〉 iff B, H , D, ζm |
 Ψ where

m �→ (B, H , D) ∈ m, ζ(y) = m
M,m, ζ |
 Ψ ∗

1 ∧ Ψ ∗
2 iff M,m, ζ |
 Ψ ∗

1 and M,m, ζ |
 Ψ ∗
2

M,m, ζ |
 ¬Ψ ∗ iff M,m, ζ �|
 Ψ ∗

In the above, ζm denotes an extended context, including
valuations for all meta-variables B, H, D accessed using
parameters y of ζ :

ζm = ζ ∪ 〈y.B �→ B, y.H �→ H , y.D �→ D |
ζ(y) = m, m �→ (B, H , D) ∈ m〉

Inter-motif reconfiguration guards and actions are defined by
the following grammar:

guard: G

R ::= GI

action: A

R ::= y := M.create(Mt , (e

R, e

R, e

R)) |
M.delete(y) | y.B.migrate(x) |
〈y : AR〉 | z := e

R | A

R, A

R
expression: e∗

R ::= z | y.B | y.H | y.D | op(e

R, · · · , e

R)

That is, guards are the same as for interaction rules. For inter-
motif reconfiguration actions, we use theM symbol to refer
the current set of existing motif instances. Also, the y sym-
bol denotes a rule parameter interpreted as motif instance,
and z a rule parameter of arbitrary type. The action y :=
M.create(Mt , (eB , eH , eD)) denotes the creation of a new
motif instance y of type Mt , with initial structure defined by
the valuation of eB , eH , eD . The actionM.delete(y) denotes
the deletion of the motif instance y, that is, its removal from
the set ofmotif instances. The action y.B.migrate(x) denotes
the insertion of an existing component instance x within the
set of component instances of the motif y. Finally, the action
〈y : AR〉 denotes any local reconfiguration action AR to be
executed in the context of the motif instance y and z := e

R
an assignment of expression e

R to a local rule parameter z.
As for intra-motif reconfiguration rules, expressions e

R are
constructed from rule parameters z and meta-variables B,H,
D associated with motif instances y, using a set of available
primitives op.

Formally, the semantics [[A∗
R]] of inter-motif reconfig-

uration actions is defined as a function updating motif
configurations (M,m), component configurations (B,b)

and context parameters (ζ), as follows:

[[y := M.create(Mt , (eB , eH , eD))]](M,m, B,b, ζ) =
(M ∪ {m},m′, B,b, ζ ′)

where m = (Mt , k) fresh,
m′ = m ∪ 〈m �→ (ζm(eB), ζm(eH), ζm(eD))〉,
ζ ′ = ζ [y �→ m]

[[M.delete(y)]](M,m, B,b, ζ) =
(M\{m},m|M\{m}, B,b, ζ)

where m = ζ(y) ∈ M
[[y.B.migrate(x)]](M,m, B,b, ζ) = (M,m′, B,b, ζ)

where m = ζ(y) ∈ M,m �→ (B1, H , D) ∈ m,

ζ(x) �→ b ∈ B,

m′ = m[m �→ (B1 ∪ {b}, H , D[b �→ ⊥])]
[[〈y : AR〉]](M,m, B,b, ζ) = (M,m′, B ′,b′, ζ ′)

where m = ζ(y) ∈ M,m �→ (B1, H , D) ∈ m,

[[AR]](B1, H , D,b, ζ) = (B ′
1, H

′, D′,b′, ζ ′),
m′ = m[m �→ (B ′

1, H
′, D′)], B ′ = B ∪ B ′

1
[[z := e]](M,m, B,b, ζ) = (M,m, B,b, ζ [z �→ ζm(e)])
[[A∗

R1, A
∗
R2]](M,m, B,b, ζ) =

([[A∗
R2]] ◦ [[A∗

R1]])(M,m, B,b, ζ)

In the above, for an expression e we denoted by ζm(e) its
valuation in the extended context ζm.

Example 11 (Inter-motif reconfiguration rule) Consider an
inter-motif reconfiguration rule for two ring motifs:

do-ring-merge(y1, y2 : Ring) ≡
when y1.B ∩ y2.B = ∅ and |y1.B| + |y2.B| ≤ 10
do zB := union(y1.B, y2.B),

zH := merge-cycle(y1.H, y2.H),
zD := union(y1.D, y2.D),
M.create(Ring, (zB , zH , zD)),
M.delete(y1),M.delete(y2)

The rule allows merging two ring motif instances y1, y2 into
a single one, whenever their sets of component instances
are disjoint and altogether their number does not exceed 10.
The new motif is created by taking the union of component
instances, the union of deployments and the merging of the
two underlying cyclic maps. The original motifs y1 and y2
are deleted.

5.2 Operational semantics

A motif-based system S is defined as a tuple ((Bt
i)i , (M

t
j) j ,

RR∗)) consisting of a set of component types (Bt
i)i , a set

of motif types (Mt
j) j and a set of inter-motif reconfiguration

rulesRR∗.
A motif-based system evolves either by executing inter-

actions and/or reconfiguration within any of the motifs, or
by executing some inter-motif reconfiguration. Formally, the

123

712 R. El Ballouli et al.

semantics of motif-based systems S is defined as the labeled
transition system [[S]] = (Q,Σ,−→) where:

– the set Q of system configuration contains tuples (M,m,

B,b) where M = {m1,m2, . . .} is a set of motif
instances, m = 〈m j �→ (Bj , Hj , Dj) | m j ∈ M, Bj ⊆
B〉 are the motif configurations, B is the set of com-
ponents instances, and b = 〈b �→ q | b ∈ B, q ∈
spsstates(b)〉 are the component configurations,

– the set of labels Σ correspond to valid interactions α on
component instances, a local reconfiguration action label
ρ and an inter-motif reconfiguration action label ρ∗,

– the set of transitions −→=−→
I

∪ −→
R

∪ −→
R∗ correspond

to execution of, respectively, multiparty interactions as
defined by interaction rules (−→

I
), local reconfiguration

as defined by local reconfiguration rules (−→
R
) and global

reconfiguration actions (−→
R

), formally

m j �→ (Bj , Hj , Dj) ∈ m
Mt

j : (Bj , Hj , Dj ,b j)
α−→
I

(Bj , Hj , Dj ,b′
j)

(M- I)
b′=b[Bj �→b′

j]
S : (M,m,B,b)

α−→
I

(M,m,B,b′)

m j �→ (Bj , Hj , Dj) ∈ m

Mt
j : (Bj , Hj , Dj ,b j)

ρ−→
R

(B ′
j , H

′
j , D

′
j ,b

′
j)

m′ = m[(B ′
j , H

′
j , D

′
j)/m j]

B ′ = B ∪ B ′
j

(M- R1)
b′=b[b′

j /B
′
j]

S : (M,m,B,b)
ρ−→
R

(M,m′,B′,b′)

(Z∗, Ψ ∗,G∗,Z∗
L , A∗

R) ∈ RR∗
M,m, ζ |
 Ψ ∗ (ζ(G∗))(b) = true

(M- R2)
[[A∗

R]](M,m,B,b,ζ)=(M ′,m′,B′,b′,ζ ′)

S : (M,m,B,b)
ρ∗−→
R

(M ′,m′,B′,b′)

Rules (M- I) and (M- R1) lift the transitions (steps) allowed
within the motifs at the level of the system, respectively, for
interactions and reconfigurations. The rule (M- R2) handles
inter-motif reconfiguration. These transitions are allowed if
(1) some inter-motif reconfiguration rule is enabled and (2)
the current and next system configurations are related by the
semantics of A∗

R .

6 Implementation and experiments

We have developed a prototype implementation of DR-
BIP including a concrete language to describe motif-based
systems and an interpreter (implemented in Java) for the
operational semantics. The language provides syntactic con-

c11

c21 c22

c12

Processor

t1 t4t3

t6

t2

t5 t7 t8

CoreTask

CoreTask

CoreTask

exec

work

exec fin

fin

work

CoreTask
Core

Task
c

r

w

Fig. 8 Multicore task system

structs for describing component and motif types, with some
restrictions on the maps and deployments allowed.3 The
interpreter allows the computation of enabled interactions
and (inter-motif) reconfiguration rules on system configura-
tions, and their execution according to predefined policies
(interactive, random, etc.). The DR- BIP prototype can be
retrieved from [39].

We have effectively used DR- BIP for programming
reconfigurable systems in different application domains [21].
We provide tentative solutions using the DR- BIP formal-
ism and evaluate their performance at executing dynamically
changing configurations.

6.1 Dynamic multicore task system

A multicore task system consists of a fixed n × n grid of
interconnected homogeneous cores, each executing a finite
number of tasks. Every task is either running or completed;
running tasks may execute on the associated cores and get
eventually completed. The load of a core is defined as the
number of its associated tasks, both running and completed.
A multicore task system is dynamic if the overall number
of tasks and their allocation to cores may change over time.
More specifically, new running tasks may enter the system
at the core c11 and completed tasks may be withdrawn from
the system at the core cnn . Moreover, any task is allowed to
migrate from its core to any of the neighboring cores (left,
right, top or bottom) in the grid, provided the load of the
receiving core is smaller than the load of the departing core
minus some constant (K).

Figure 8 presents the overall structure of the motif-based
system for four cores. We distinguish two types of atomic
components, namely Task and Core. Multiple cores are
interconnected together in a motif of type Processor. The
interconnecting topology reflects the platform architecture
(e.g., a 2 × 2 grid in the figure) and is enforced using a sim-
ilar grid-like map and deployment. An additional CoreTask

3 maps are restricted to simple graphs, e.g., chain, cycle, star.

123

Programming dynamic reconfigurable systems 713

0 1,000 2,000 3,000

5

10

15

20
c11

c33

c12
c21

c13
c22
c31
c23
c32

c11 c12 c13
c21 c22 c23
c31 c32 c33

Fig. 9 Task load across 3000 steps

motif type is used to represent every core with its assigned
tasks.

The interactions in the system are definedwithin the Core-
Task motif. The execution of a task by the core and the task
completion are represented by the rules:

sync-coretask-exec(x1 : Core, x2 : Task) ≡
sync x1.work x2.exec

sync-coretask-fin(x : Task) ≡ sync x .fin

The migration of a task from one core to another is modeled
using an inter-motif reconfiguration rulewhich involves three
distinct motifs. A task x3 migrates from motif y1 (of type
CoreTask) to motif y2 (of type CoreTask) if the core x1 of y1
is connected to the core x2 of y2 (according to the processor
motif Processor) and if the number of tasks in y1 exceeds
the number of tasks in y2 by constant K :

do-migrate(y1, y2 : CoreTask, y3 : Processor,
x1, x2 : Core, x3 : Task) ≡

when 〈 y1 : x1 ∈ B 〉 and 〈 y2 : x2 ∈ B 〉 and
〈 y3 :D(x1) �→ D(x2) 〉 and
|y1.B| > |y2.B| + K and x3 ∈ y1.B

do y2.B.migrate(x3), 〈y1 : B.delete(x3) 〉
To simplify notations in reconfiguration rules, we rely hence-
forth on sandwiching constraints/actions with angle brackets
to specify the scope. For example, 〈y1 : x1 ∈ B 〉 is a con-
straint stating that x1 is a component instance in motif y1.

Figure 9 illustrates the execution of the dynamicmulticore
task system with 3 × 3 cores for 3000 steps. Each core is
initializedwith a random load between 1 and20. The constant
K is set to 3, and hence, tasks are allowed to migrate to
neighboring cores (left, right, top or bottom) that differ in
task load by at least 3 tasks. The cores c11, and c33 are used
to, respectively, create new tasks and withdraw completed
tasks. These two cores retain the maximum and minimum
load. As tasks migrate, the task load of cores converges and
balances along the execution having at most a difference of

10 20 30 40
0

2

4

6

8

Exec. Time (sec)

10 20 30 40
0

0.2

0.4

0.6

0.8

1

I/R Ratio

10 20 30 40

10

20

30

40

Motifs

10 20 30 40
0

200

400

Components

Fig. 10 Dynamic multicore task system measurements—the x-axis
indicates the number of motifs in the initial configuration (i.e., n2 + 1
for n = 2, 3, 4, 5, 6). The meaning of y-axis is indicated at the top

3 tasks between neighboring cores. For example, in core c21
the task load increased from 6 to 14. As expected the cores
(c21, and c12) closest to c11 maintain a high load and as we
move away from c11, the core’s load gradually decreases.
This highlights the task migration process cascading from
the top left core to the bottom right core.

Figure 10 illustrates the evolution of the dynamic multi-
core task system for different initial configurations. We vary
the number of cores in the processor from 4 to 36 cores.
Each core is initialized with a random load as discussed
above. The system initial size varies between 46 and 482
component instances as depicted in the figure. Each configu-
ration is simulated for 1000 random steps. As the number of
cores increases in size, the execution time increases reach-
ing a maximum of 7.3 s. The motif instance count remains
constant across each configuration; however, the component
instance count varies as tasks are being created and deleted
once completed. Also note that the average ratio of executed
interactions versus reconfigurations is 0.7, since the task load
converges to a similar value across cores and less task migra-
tions (i.e., reconfigurations) are required.

6.2 Autonomous highway traffic system

This exercise is inspired from autonomous traffic systems
for automated highways [6]. The system consists of a single-
lane one-way roadwhere an arbitrary number of autonomous
homogeneous self-driving cars are moving in the same direc-
tion, at different cruising speeds. Cars are organized into
platoons, i.e., groups of cars cruising at the same speed and
closely following a leader car. Platoons may dynamically
merge or split. A merge takes place if two platoons are close
enough, i.e., the distance between the tail car of the first pla-

123

714 R. El Ballouli et al.

...

Platoon
......

Platoon

Road

...ci cj

Car

move getSpeed setSpeed

setSpeed

setSpeed ack split

getSpeed [...] split

move

split ack split

split

speed

move
pos := pos + v · Δt

v = v · 1.02

v := v · 0.98

ci+1

Fig. 11 Automated highway traffic system

toon and the leader car of the second is smaller than some
constant K . After the merge, the speed of the new platoon
is set to the speed of the first platoon. A platoon may split
when an arbitrary car requests to leave the platoon, e.g., in
order to perform some specific maneuver. After the split, the
leading platoon will increase its speed by 2%, whereas the
tail platoon will reduce its speed by 2%.

Figure 11 illustrates the motif-based system in DR- BIP.
We use a component type Car to model the behavior of a car.
Each car maintains its position pos and speed v. The position
pos is updated on themove transition. Transitions setSpeed
and ack_split are used by leader cars only to, respectively,
define the platoon speed and acknowledge a platoon split.
Similarly, transitionsgetSpeed and split are usedby follower
cars only to, respectively, synchronize on the leader speed and
initiate a platoon split.

The Road motif type contains all cars without additional
structuring. The Platoon motif type is structured as a chain
of cars. The map of the platoon motif is a (dynamic) lin-
ear graph of locations, and the deployment assigns a single
car to every position of the map. The Road motif defines a
single interaction by the rule sync-road-move, which syn-
chronizes themove ports of all cars and therefore performing
a joint update of their positions. The Platoon motif defines
several interactions by the rules sync-platoon-speed and
sync-platoon-split. The first rule synchronizes the speed of
the leading car with the speed of all follower cars. The sec-
ond rule allows any follower car to initiate a split maneuver
and become a leader in a newly created platoon.

sync-road-move(X : Car) ≡
when X = B sync X .move

sync-platoon-speed(x : Car, X : Car) ≡
when X = B\x andD(x) = head(H)
sync x .setSpeed X .getSpeed

true → X .v := x .v

sync-platoon-split(x1, x2 : Car) ≡
whenD(x1) = head(H) and x1 �= x2
sync x1.ack_split x2.split

Two reconfiguration rulesdo-platoon-merge anddo-platoon-
split handle the merging and the splitting of platoons,
respectively:

do-platoon-merge(y1, y2 : Platoon, x1, x2 : Car) ≡
when 〈y1 :D(x1) = tail(H)〉

and 〈y2 :D(x2) = head(H) 〉
do abs(x1.pos − x2.pos) < K →

zB := union(y1.B, y2.B),
zH := append(y2.H, y1.H),
zD := union(y1.D, y2.D),
M.create(Platoon, (zB , zH , zD)),
M.delete(y1),M.delete(y2)

do-platoon-split(y : Platoon, x : Car) ≡
do 〈y : n :=D(x),

zH1 := sublist1(H, n), zD1 := extract(D, zH1),
zB1 := components(zD1),
zH2 := sublist2(H, n), zD2 := extract(D, zH2),
zB2 := components(zD2) 〉,
M.create(Platoon, (zB1 , zH1 , zD1)),
M.create(Platoon, (zB2 , zH2 , zD2)) ,
M.delete(y)

Note thatwe use specificmap primitiveshead, and tailwhich
point, respectively, to the position of the leader and tail of a
platoon, namely the beginning and the end of the list. Further-
more, we use the primitive appendwhich appends and links
twomaps of type linked list together. Finally, primitives sub-
list1,2 extract sublists from a linked list, respectively, ending
before/starting at the node given as argument. The primi-
tive extract computes a restricted deployment for component
instances attached to a subset of nodes of the map.

Figure 12 illustrates the evolution of the system involv-
ing 200 cars along 2000 sampled steps. Each line describes
a configuration of the system. We show 13 sampled non-
consecutive configurations. A thin black rectangle represents
a platoon. Its length is proportional to the number of cars con-
tained. Its position in the line corresponds to its position on
the road. For reference, we show the evolution of a partic-
ular car by highlighting it in yellow. Initially, all the cars
belong to the same platoon. As the system evolves the initial
platoon splits into several platoons, which then keep split-
ting/merging back, etc.

Figure 13 summarizes the execution of several initial
configurations. We evaluate the performance and track the
system evolution while varying the number of cars in the
initial platoon from 200 to 600 cars. Each configuration is
simulated for 3000 random steps. Notice that the component
instance count remains constant across each configuration as

123

Programming dynamic reconfigurable systems 715

Fig. 12 Automated highway traffic evolution along few steps

200 400 600

100

200

300

Exec. Time (sec)

200
400

600
0

0.2

0.4

0.6

0.8

1

I/R Ratio

200 400 600
0

20

40

60

Motifs

200 400 600
200

400

600

Components

Fig. 13 Measurements on automated highway traffic systems

cars only rearrange within different platoons. However, the
motif instance count varies as platoons merge/split. Finally,
execution time increases reaching a maximum of 5min and
the average ratio of executed interactions versus reconfigu-
rations is 0.77.

6.3 Self-organizing robot colonies

This exercise is inspired by swarm robotics [34]. A num-
ber of identical robots are randomly deployed on a field and
have a mission to locate an object (the prey) and to bring it
near another object (the nest). The robots know neither the
position of the nest nor the position of the prey. They have
limited communication and sensing capabilities, i.e., they
can display a status (by turning on/off some colored leds)
and can observe each other as long as they are physically
close in the field. We consider hereafter the swarm algorithm
proposed in [34]. In a first phase, the robots self-organize
into an exploration path starting at the nest. The first robot
detecting the nest initiates the path, i.e., stops moving and
displays a specific (on-path) status. Any robot that detects
(robots on) the path, begins moving along the path toward
its tail, explores a bit further its neighborhood and gets con-
nected as well (i.e., becomes the new tail, stops moving and
displays the on-path status). Two cases may occur, either no
new robot gets connected to the pathwithin somedelay, hence
the tail robot disconnects and moves randomly (away from
the path), or the tail robot detects the prey and the second
phase starts. The path stays in place, while additional robots

Chain

Neighborhood

Arena

Neighborhood

r1

r2

r3

r4

r5

r6

r7

r8

r9

p : Prey

n : Nest

ri : Robot

Fig. 14 Self-organizing robot colonies

converge near the prey.When enough robots have converged,
they start pushing the prey along the path toward the nest. The
path gets consumed, and the system will stop when the prey
gets close enough to the nest.

We model the first phase of the algorithm above using
three different types of components and three different types
of motifs as illustrated in Fig. 14. The Arena motif contains
all the robots, the nest and the prey component instances.
No map and deployment are used as no specific architecture
is enforced by this motif. This motif defines a global tick
interaction used to model the synchronous passage of time
within the system.Whenever the tick interaction is triggered,
the robots update their positions, i.e., they move on the field.

For every robot, its Neighborhoodmotif is used to repre-
sent its visibility range, i.e., the set of robots physically close
to it in the field. This motif uses a star-like location map. The
inner robot is deployed at the center and the visible neighbors
on the leaves. The motif defines a set of binary observe sta-
tus interactions which are used by the inner robot to collect
all the available information from its neighbors. Finally, the
Chain motif represents the exploration chain linking robots
to the nest. It uses a linear map to deploy the robots belong-
ing to the chain. This motif defines a set of binary next prev
interactions which are used to communicate along the chain.

For this example, reconfiguration is used to redefine the
content of the Neighborhood and Chainmotifs. For the for-
mer, as robots are moving in the field, they continuously
enter or leave the visibility range of other robots. We use two
inter-motif reconfiguration rules to update the neighborhood
information:

do-neighborhood-enter(y1 : Neighborhood, y2 : Arena,
x1, x2: Robot) ≡

when 〈y1 :D(x1) = center(H) and ¬(x2 ∈ B)〉 and
〈y2 : x2 ∈ B〉

do dist(x1.pos, x2.pos) ≤ Rmin →
y1.B.migrate(x2),
〈y1 : n :=H.extend(),D.attach(x2,n) 〉

do-neighborhood-leave(y1 : Neighborhood,

123

716 R. El Ballouli et al.

x1, x2: Robot) ≡
when 〈y1 :D(x1) = center(H) and x2 ∈ B〉 and

x1 �= x2 and
do dist(x1.pos, x2.pos) ≥ Rmax →

〈y1 : n :=D(x2), B.delete(x2),H.remove(n) 〉
The rules above describe the reconfiguration allowing any
robot x2 to enter (resp. leave) the neighborhood y1 of any
different robot x1 whenever the distance between x1 and x2
is smaller than Rmin (resp. greater than Rmax). The evolution
of the chain is also described by reconfiguration. At any time,
the tail can disconnect or a robot can connect if it is close
enough to the tail.

do-chain-connect(y1 : Chain, y2 : Neighborhood,
x1, x2 : Robot) ≡

when 〈y1 :D(x1) = tail(H) and x2 /∈ B〉 and
〈y2 :D(x1) = center(H) and x2 ∈ B〉

do y1.B.migrate(x2),
〈y1 : n :=H.extend(),D.attach(x2,n) 〉

do-chain-disconnect(y1 : Chain, x1 : Robot) ≡
when 〈y1 :D(x1) = tail(H) 〉
do x1.timeout →

〈y1 : n :=D(x1), B.delete(x1),H.remove(n) 〉

6.4 Lessons learned

Although very preliminary, these experiments allowed us
to draw some conclusions and identify potential lines for
improvement:

– Arbitrarily complex interaction and/or architectural recon-
figuration patterns are usually decomposable as a super-
position of motifs, which, moreover, use relatively
restricted forms of maps and addressing functions. No
example required a map topology different than the ones
mentioned so far (chain, cycle, star).

– While DR- BIP semantics leaves unspecified the choice
of next rule to be executed between multiple interac-
tion and reconfiguration rules, some control mechanism
is needed to restrict non-determinism and enforce a
desirable scenario. For instance, giving high priority to
specific reconfiguration rules may enforce atomicity on
a long reconfiguration sequence by avoiding interference
with execution of interactions (e.g., for migrating a task
to some final executing core). In contrast, giving higher
priority to interaction rules may be useful when recon-
figuration is triggered by external events and will take
place only when the system reaches some stable state
(e.g., for constraining the insertion of new tasks in the
task system).

– The handling of time is very rudimentary. Actually, syn-
chronous time progress is modeled using a multiparty

interaction rule involving all timed components in a
global motif. For example, all cars are synchronized for
making theirmove action in theRoad motif; similarly, all
robots are synchronized in the Arenamotif, etc. Whereas
semantically correct, this representation is cumbersome
and shall be improved by using clock variables like in
real-timeBIP [1] and an implicit semantics of time allow-
ing to separate time-dependent system evolution from
functional (interaction, reconfiguration) behavior.

– Going beyond toy examples would require a new imple-
mentation of DR- BIP concepts integrating a full-fledged
representation of component types (e.g., as in BIP or
real-time BIP) as well as richer types of maps and of
addressing functions (e.g., defined as abstract data types
in some implementation language). This is needed for
building detailedmodels that could be used both for anal-
ysis with simulation-based techniques or for concrete
implementation and deployment as part of real systems.

7 Related work

There exists a significant number of frameworks dealingwith
dynamic software and system architectures. We recommend
[12,13] for exhaustive surveys and classification of existing
approaches and [24,29] for an overview of current and fore-
seen design challenges. In this section, we restrict ourselves
to formal frameworks dealingwith an explicit notion of archi-
tecture in terms of components and connectors and providing
primitives to express architectural reconfigurations. In par-
ticular, we do not consider general-purpose programming
languages or domain-specific languages.

We distinguish between frameworks for specification or
for programming architectural reconfiguration. In the first
category, we include frameworks based on temporal log-
ics such as [2,19], hybrid logics such as [36] or extended
configuration logics such as dream [18]. These frameworks
allow characterizing reconfiguration from the perspective of
an external observer. Nonetheless, they do not provide sup-
port for implementation of reconfigurationwithin the system.

The DR- BIP framework is part of the second category
dealing with explicit programming of reconfiguration within
the system. Most of the reconfigurable ADL frameworks
belong to this category. Usually, they can be classified
according to the underlying formalism for programming
reconfiguration and/or defining their operational seman-
tics, e.g., based on process algebra such as π -ADL [15],
montiarc [25], pilar [35] and darwin [28]; using graph
rewriting rules such as [26] and [37]; using chemical reac-
tion rules such as cham [40]; and using specific rules such
as gerel [23], c2sadel [32] and rapide [27] to cite only
a few. According to this classification, the reconfiguration
rules of DR- BIP are a specific class of graph rewriting rules

123

Programming dynamic reconfigurable systems 717

allowing to change the architecture seen as a hyper-graph
of interconnected BIP components. Our originality lies in
the use of maps and addressing functions to express recon-
figuration constraints and to organize the different types of
rewriting rules as reconfiguration and interaction rules.

The distinction between exogenous and endogenous
reconfiguration is another criteria for the classification of
existing approaches. Frameworks such as leda [14] are
endogenous as they allow to freely use reconfiguration prim-
itives, e.g., to create and remove components and connectors,
as regular actions of components. π -adl [15] allows for both
endogenous (within components) and exogenous (within
subsystems) reconfiguration.Nevertheless,most frameworks
are exogenous and try to isolate as best as possible reconfig-
uration from applicative component behavior. For example,
mode-based reconfiguration in montiarc [25], aadl- slim
[16] or graph-rewriting rules in [26] are both examples of
exogenous reconfiguration. It is also the case of DR- BIP
where reconfiguration and interaction rules are kept fully
separated from the behavior of components.

Finally, let us briefly discuss the positioning of DR- BIP
in the BIP landscape. The BIP framework introduced in [4]
and the big majority of its descendants including real-time
BIP [1], distributed send/receive BIP [8], stochastic real-time
BIP [33], etc., are restricted to static architectures, that is,
with a fixed number of components and fixed connectors.
The different variants consider specific models for compo-
nents, semantics of time, specific forms of interaction, etc.
The first extension toward dynamic reconfigurable systems
has been DyBIP [9] allowing for changes on the connect-
ing topology, whereas the set of components remain fixed.
Later on, fully reconfigurable extensions have been studied in
relation to specific implementations on some host languages.
For example, the functional-BIP [20] allows for implementa-
tion in functional languages, whereas Java-BIP [31] has been
developed to support concrete use of BIP concepts in relation
to industrial Java-based software platforms. With DR- BIP,
we try to re-unify these different dynamic variants behind
a unique high-level framework, independent of target host
languages and/or application domains to provide a common
platform for analysis and implementation of dynamically
reconfigurable systems.

8 Discussion

The DR- BIP framework for programming dynamic recon-
figurable systems has been designed to encompass three com-
plementary structuring aspects of component-based coor-
dination. Architecture motifs are environments where live

instances of components of predefined types subject to
specific parametric interaction and reconfiguration rules.
Reconfiguration within a motif supports in addition to cre-
ation/deletion of components, the dynamic change of maps
and the mobility of components. Maps are a common ref-
erence structure that proves to be very useful for both the
parameterization of interactions and the mobility of compo-
nents. It is important to note that a map can have either a
purely logical interpretation, or a geographical one or a com-
bination of both. For instance, a purely logical map is needed
to describe the functional organization of the coordination in
a ring or a pipeline. To describe mobility rules of cars on
a highway, a map is needed representing at some abstrac-
tion level their external environment, e.g., the structure of
the highway with fixed and mobile obstacles. Finally, a map
with both logical and geographic connectivity relations may
be used for cars on a highway to express their coordination
rules. These depend not only on the physical environment
but also on the communication features available.

Structuring a system as a set of loosely coordinated motifs
confers the advantage that when components are created or
migrate, we do not need to specify associated coordination
rules; depending on their type, components are subject to pre-
defined coordination rules ofmotifs. Clearly, these results are
too recent and there are many open avenues to be explored.
One is how we make sure that the modeled systems meet
given properties. The proposed structuring principle allows
a separation of concerns between interaction and recon-
figuration aspects. To verify correctness of the parametric
interacting system of a motif, we can extend the approach
adopted for static BIP: Assuming that dynamic connectors
correctly enforce the sought coordination, it remains to show
that restricting the behavior of deadlock-free components
does not introduce deadlocks. We have recently shown this
approach can be extended for parametric systems [10].

To verify the correctness of reconfiguration operations, a
different approach can be taken. If we have already proven
correctness of the parametric interacting system of a motif, it
is enough to prove that its architecture style is preserved by
statements changing the number of components, move com-
ponents and modify maps and their connectivity. In other
words, the architecture style is an invariant of the coordina-
tion structure. This can be proven by structural induction.
The architecture style of a motif can be characterized by a
formula of configuration logic φ [30]. We have to prove that
if a model m of the system satisfies φ, then after the appli-
cation of a reconfiguration operation, the resulting model m′
satisfies φ.

123

718 R. El Ballouli et al.

References

1. Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementa-
tion of real-time applications. In: Carloni, L.P., Tripakis, S. (eds.)
Proceedings of the 10th International conference on Embedded
software, EMSOFT 2010, pp 229–238. ACM, New York (2010)

2. Aguirre, N.,Maibaum, T.: A temporal logic approach to the specifi-
cation of reconfigurable component-based systems. In: 17th IEEE
International Conference on Automated Software Engineering,
ASE 2002, pp. 271–274. IEEE, New York (2002)

3. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing
dynamic software architectures. In: 1st International Conference
on Fundamental Approaches to Software Engineering, FASE’98.
LNCS, vol. 1382, pp. 21–37. Springer, Berlin (1998)

4. Basu, A., Bozga,M., Sifakis, J.: Modeling heterogeneous real-time
components in BIP. In: Fourth IEEE International Conference on
Software Engineering and Formal Methods (SEFM 2006), pp. 3–
12. IEEE Computer Society (2006)

5. Basu, A., Bensalem, S., Bozga,M., Combaz, J., Jaber,M., Nguyen,
T., Sifakis, J.: Rigorous component-based system design using the
BIP framework. IEEE Softw. 28(3), 41–48 (2011)

6. Bergenhem, C.: Approaches for facilities layer protocols for pla-
tooning. In: IEEE 18th International Conference on Intelligent
Transportation Systems, ITSC 2015, pp. 1989–1994. IEEE, New
York (2015)

7. Bliudze, S., Sifakis, J.: The algebra of connectors structuring inter-
action in BIP. IEEE Trans. Comput. 57(10), 1315–1330 (2008)

8. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis,
J.: A framework for automated distributed implementation of
component-basedmodels. Distrib. Comput. 25(5), 383–409 (2012)

9. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic
architectures usingDy-BIP. In: SoftwareComposition—11th Inter-
national Conference, SC 2012, LNCS, vol. 7306, pp. 1–16.
Springer, Berlin (2012)

10. Bozga, M., Iosif, R., Sifakis, J.: Checking deadlock-freedom of
parametric component-based systems. In: Tools and Algorithms
for the Construction and Analysis of Systems—25th International
Conference, TACAS 2019, LNCS, vol. 11428, pp. 3–20. Springer,
Berlin (2019)

11. Bradbury, J.: Organizing definitions and formalisms for dynamic
software architectures. Tech. Rep. 2004-477, Software Technology
Laboratory, School of Computing, Queen’s University (2004)

12. Bradbury, J., Cordy, J., Dingel, J., Wermelinger, M.: A survey of
self-management in dynamic software architecture specifications.
In: Proceedings of the 1st ACM SIGSOFT Workshop on Self-
Managed Systems, pp. 28–33. ACM, New York (2004)

13. Butting, A., Heim, R., Kautz, O., Ringert, J.O., Rumpe, B.,
Wortmann, A.: A classification of dynamic reconfiguration in
component and connector architecture description. In: Proceed-
ings of MODELS 2017 Satellite Event: Workshops (ModComp),
CEUR-WS.org, CEURWorkshop Proceedings, vol. 2019, pp. 10–
16 (2017)

14. Canal, C., Pimentel, E., Troya, J.M.: Specification and refine-
ment of dynamic software architectures. In: Software Architecture,
TC2 First Working IFIP Conference on Software Architecture
(WICSA1), IFIP Conference Proceedings, vol. 140, pp. 107–126.
Kluwer, Dordrecht (1999)

15. Cavalcante, E., Batista, T.V., Oquendo, F.: Supporting dynamic
software architectures: from architectural description to implemen-
tation. In: Bass, L., Lago, P., Kruchten, P. (eds.) 12th Working
IEEE/IFIP Conference on Software Architecture, WICSA 2015,
pp. 31–40. IEEE Computer Society (2015)

16. Cimatti, A., DeLong, R., Stojic, I., Tonetta, S.: Model-based run-
time synthesis of architectural configurations for adaptive MILS
systems. In: Romanovsky, A.B., Troubitsyna, E., Bitsch, F. (eds.)

Computer Safety, Reliability, and Security—38th International
Conference, SAFECOMP 2019, Lecture Notes in Computer Sci-
ence, vol. 11698, pp. 200–215. Springer, Berlin (2019)

17. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal
approach to autonomic systems programming: the SCEL language.
TAAS 9(2), 7:1–7:29 (2014)

18. De Nicola, R., Maggi, A., Sifakis, J.: DReAM: dynamic reconfig-
urable architecture modeling. In: Margaria, T., Steffen, B. (eds.)
Leveraging Applications of Formal Methods, Verification and
Validation. Distributed Systems—8th International Symposium,
ISoLA 2018, Lecture Notes in Computer Science, vol. 11246, pp.
13–31. Springer, Berlin (2018)

19. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using temporal logic
for dynamic reconfigurations of components. In: Barbosa, L.S.,
Lumpe, M. (eds.) Formal Aspects of Component Software—7th
International Workshop, FACS 2010, Lecture Notes in Computer
Science, vol. 6921, pp. 200–217. Springer, Berlin (2010)

20. Edelmann, R., Bliudze, S., Sifakis, J.: Functional BIP: embedding
connectors in functional programming languages. J. Log. Algebr.
Methods Program. 92, 19–44 (2017)

21. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Four exercises
in programming dynamic reconfigurable systems: methodology
and solution in DR-BIP. In: Leveraging Applications of Formal
Methods, Verification and Validation. Distributed Systems—8th
International Symposium, ISoLA 2018, LNCS, vol. 11246, pp.
304–320. Springer, Berlin (2018)

22. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Programming
dynamic reconfigurable systems. In: FormalAspects ofComponent
Software—15th International Conference, FACS 2018, Proceed-
ings, Lecture Notes in Computer Science, vol. 11222, pp. 118–136.
Springer, Berlin (2018)

23. Endler, M., Wei, J.: Programming generic dynamic reconfigura-
tions for distributed applications. In: International Workshop on
Configurable Distributed Systems, 1992, pp. 68–79. IET (1992)

24. Garlan, D.: Software architecture: a travelogue. In: Proceedings of
the on Future of Software Engineering, FOSE 2014, pp. 29–39.
ACM, New York (2014)

25. Heim, R., Kautz, O., Ringert, J.O., Rumpe, B., Wortmann, A.:
Retrofitting controlled dynamic reconfiguration into the archi-
tecture description language MontiArcAutomaton. In: Software
Architecture—10th European Conference (ECSA’16) (2016)

26. Le Métayer, D.: Software architecture styles as graph grammars.
In: In ACM SIGSOFT Software Engineering Notes, vol. 21, issue
6, pp. 15–23. ACM, New York (1996)

27. Luckham, D., Kenney, J., Augustin, L., Vera, J., Bryan, D., Mann,
W.: Specification and analysis of system architecture using Rapide.
IEEE Trans. Softw. Eng. 21(4), 336–354 (1995)

28. Magee, J., Kramer, J.: Dynamic structure in software architectures.
In: ACM SIGSOFT Software Engineering Notes, vol. 21, issue 6,
pp. 3–14. ACM, New York (1996)

29. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.:What
industry needs from architectural languages: a survey. IEEE Trans.
Softw. Eng. 39(6), 869–891 (2013)

30. Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Configuration
logics: modeling architecture styles. J. Log. Algebr. Methods Pro-
gram. 86(1), 2–29 (2017)

31. Mavridou, A., Rutz, V., Bliudze, S.: Coordination of dynamic soft-
ware components with JavaBIP. In: Formal Aspects of Component
Software—14th International Conference, FACS 2017, LNCS, vol.
10487, pp. 39–57. Springer, Berlin (2017)

32. Medvidovic, N., Rosenblum, D.S., Taylor, R.N.: A language and
environment for architecture-based software development and evo-
lution. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) Proceedings
of the 1999 International Conference on Software Engineering,
ICSE’99, pp. 44–53. ACM, New York (1999)

123

Programming dynamic reconfigurable systems 719

33. Nouri, A., Mediouni, B.L., Bozga, M., Combaz, J., Bensalem, S.,
Legay, A.: Performance evaluation of stochastic real-time systems
with the SBIP framework. IJCCBS 8(3/4), 340–370 (2018)

34. Nouyan, S.,Gross, R., Bonani,M.,Mondada, F.,Dorigo,M.: Team-
work in self-organized robot colonies. IEEE Trans. Evol. Comput.
13(4), 695–711 (2009)

35. Quintero, C.E.C., de la Fuente, P., Barrio-Solórzano, M.: Dynamic
coordination architecture through the use of reflection. In: Proceed-
ings of the 2001 ACM Symposium on Applied Computing (SAC),
pp. 134–140. ACM, New York (2001)

36. Sanchez, A., Madeira, A., Barbosa, L.S.: On the verification of
architectural reconfigurations. Comput. Lang. Syst. Struct. 44,
218–237 (2015)

37. Taentzer, G., Goedicke, M., Meyer, T.: Dynamic change manage-
ment by distributed graph transformation: towards configurable
distributed systems. In: International Workshop on Theory and
Application of Graph Transformations, pp. 179–193. Springer,
Berlin (1998)

38. Taivalsaari,A.,Mikkonen,T., Systä,K.: Liquid softwaremanifesto:
the era of multiple device ownership and its implications for soft-
ware architecture. In: IEEE 38th Annual Computer Software and
Applications Conference, COMPSAC 2014, pp. 338–343. IEEE
Computer Society (2014)

39. Verimag, DR-BIP Prototype (2018). https://www-verimag.imag.
fr/~bozga/download/drbip.tgz

40. Wermelinger, M.: Towards a chemical model for software archi-
tecture reconfiguration. IEE Proc. Softw. 145(5), 130–136 (1998)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://www-verimag.imag.fr/~bozga/download/drbip.tgz
https://www-verimag.imag.fr/~bozga/download/drbip.tgz

	Programming dynamic reconfigurable systems
	Abstract
	1 Introduction
	2 DR-BIP overview
	2.1 Motifs for Dynamic Architectures
	2.2 Motif-based systems
	2.3 Execution model

	3 Component-based systems
	3.1 Component types and instances
	3.2 Systems of components

	4 Motifs for dynamic architectures
	4.1 Maps and deployments
	4.2 Motif types
	4.3 Rule parameters and constraints
	4.4 Interactions rules
	4.5 Reconfiguration rules
	4.6 Operational semantics

	5 Motif-based systems
	5.1 Inter-motif reconfiguration rules
	5.2 Operational semantics

	6 Implementation and experiments
	6.1 Dynamic multicore task system
	6.2 Autonomous highway traffic system
	6.3 Self-organizing robot colonies
	6.4 Lessons learned

	7 Related work
	8 Discussion
	References

