
International Journal on Software Tools for Technology Transfer (2020) 22:437–455
https://doi.org/10.1007/s10009-020-00555-2

FOUNDATION FOR MASTER ING CHANGE

Special Section REoCAS

TheDReAM framework for dynamic reconfigurable architecture
modelling: theory and applications

Rocco De Nicola1 · Alessandro Maggi1 · Joseph Sifakis2

Published online: 6 March 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Modern systems evolve in unpredictable environments and have to continuously adapt their behaviour to changing conditions.
The “DReAM” (Dynamic Reconfigurable ArchitectureModelling) framework has been designed for modelling reconfigurable
dynamic systems. It provides a rule-based language, inspired from Interaction Logic, which is expressive and easy to use
encompassing all aspects of dynamicity including parametric multi-modal coordination with creation/deletion of components
aswell asmobility.Additionally, it allows the description of both endogenous/modular and exogenous/centralized coordination
styles and sound transformations from one style to the other. The DReAM framework is implemented in the form of a Java API
bundled with an execution engine. It allows us to develop runnable systems combining the expressiveness of the rule-based
notation together with the flexibility of this widespread programming language.

Keywords Architecture description languages · Software architectures · Domain-specific languages · Formal methods ·
Reconfigurable systems · Dynamic systems

1 Introduction

The ever increasing complexity of modern software sys-
tems has changed the perspective of software designers who
now have to consider new classes of systems, consisting
of a large number of interacting components and featuring
complex interaction mechanisms. These systems are usually
distributed, heterogeneous, decentralized and interdepen-
dent, and are operating in an unpredictable environment.
They need to continuously adapt to changing internal or
external conditions in order to efficiently use their resources
and to provide adequate functionality when the external envi-
ronment changes dynamically. Dynamism, indeed, plays a
crucial role in these modern systems and can be guaranteed
by exploiting the expressive power offered by the three fol-
lowing features:

1. the parametric description of interactions between inst-
ances of components for a given system configuration;

B Alessandro Maggi
alessandro.maggi@imtlucca.it

1 IMT School for Advanced Studies Lucca, Lucca, Italy

2 Université Grenoble Alpes, Grenoble, France

2. the reconfiguration involving creation/deletion of com-
ponents and management of their interaction according
to a given architectural style;

3. the migration of components between predefined archi-
tectural styles.

The first feature implies the ability of describing the coor-
dination of systems that are parametric with respect to the
number of instances of types of components; examples of
such systems are Producer–Consumer systems with m pro-
ducers and n consumers or Ring systems consisting of n
identical interconnected components.

The second feature is related to the ability of reconfiguring
systems by creating or deleting components and managing
their interactions taking into account the dynamically chang-
ing conditions. In the case of a reconfigurable ring, this
would require having the possibility of removing a compo-
nent which self-detects a failure and of adding it back after
recovery. Added components are subject to specific interac-
tion rules according to their type and their position in the
system. This is especially true for mobile components which
are subject to dynamic interaction rules depending on the
state of their neighbourhood.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00555-2&domain=pdf

438 R. D. Nicola et al.

The third aspect is related to the vision of “fluid archi-
tectures” [1] or “fluid software” [2] and builds on the idea
that applications and objects live in an environment (we call
it a motif) which corresponds to an architectural style that
enforces specific coordination and reconfiguration rules. Sys-
tems’ dynamicity is modelled by allowing applications and
objects to migrate among motifs; such dynamic migration
allows a disciplined and easy-to-implement management of
dynamically changing coordination rules. For instance, self-
organizing systems may adopt different coordination motifs
to adapt their behaviour in order to guarantee global proper-
ties.

The different approaches to architectural modelling and
the new trends and needs are reviewed in detailed surveys
such as [3–7]. Here, we consider two criteria for the clas-
sification of existing approaches: exogenous vs. endogenous
and conjunctive vs. disjunctive modelling.

Exogenous modelling assumes that components are
architecture-agnostic and guarantee a strict separation
between a component behaviour and its coordination. Coor-
dination is specified globally by rules applied to sets of
components. The rules involve synchronization of events
between components and associated data transfer. This
approach is adopted by Architecture Description Languages
(ADL) [5]. It has the advantage of providing a global view
of the coordination mechanisms and their properties.

Endogenous modelling requires adding explicit coordina-
tion primitives in the code describing components behaviour.
Components are composed through their interfaces, which
are used to expose their coordination capabilities. An advan-
tage of endogenous coordination is that it does not require
programmers to explicitly build a global coordinationmodel.
However, validating a coordination mechanism and studying
its properties becomes much harder without such a model.

Conjunctive modelling uses logics to express coordina-
tion constraints between components. In particular, it allows
modular description of compound systems as one can asso-
ciate with each component its coordination constraints. The
global coordination of a system can then be obtained as the
conjunction of individual constraints of its constituent com-
ponents.

Disjunctive modelling consists in explicitly specifying
system coordination as the union of the executable coordi-
nation mechanisms such as semaphores, function call and
connectors.

Merits and limitations of the two approaches are well
understood. Conjunctive modelling allows abstraction and
modular description but it is exposed to the risk of incon-
sistency in case there is no architecture satisfying the
specification.

This paper expands upon [8] by giving a more detailed
description of theDReAM theoretical framework;moreover it
introduces the Java executable implementation of the frame-

Fig. 1 Overview of a DReAM system

work and uses it on a number of illustrative case studies for
validation and early assessment.

DReAM uses a logic-based modelling language that
encompasses the four styles mentioned above as well as
the three mentioned features. A system consists of instances
of types of components organized in a collection of motifs.
Component instances canmigrate betweenmotifs depending
onglobal systemconditions. Thus, a given type of component
can be subject to different rules when it is in a “ring” motif or
in a “pipeline” one. Using motifs allows natural description
of self-organizing systems (see Fig. 1).

Coordination terms in a motif involve an interaction part
and an associated operation. The former is modelled as a
formula of the first-order Interaction Logic [9] used to spec-
ify parametric interactions between instances of types of
components. The latter enables transfer of data between the
components involved in the interaction. In this way, a para-
metric coordination between classes of components can be
specified. The rules built from these terms allow both con-
junctive and disjunctive specification styles. In the paper,
we will study to what extent a mathematical correspondence
can be established between the two styles. In particular, we
will see that conjunctive specifications can be translated into
equivalent disjunctive global specifications while the con-
verse is not true in general.

To enhance expressiveness of the different kinds of
dynamism, each motif is also equipped with a map, which is
a graph defining the topology of the interactions in the motif.
To parametrize coordination terms for the nodes of the map,
an addressing function@ is provided which defines the posi-
tion@ (c) in themap of any component instance c associated
with the motif. Additionally, each node is equipped with a
local memory that can be accessed by components and used
as a shared memory. Maps are also very useful to express
mobility, in which case the connectivity relation of the map
represents possible moves of components. Finally, our lan-
guage allows us tomodifymaps by adding or removing nodes

123

TheDReAM framework for dynamic reconfigurable architecture modelling: theory… 439

and edges, as well as to dynamically create and delete com-
ponent instances.

The rest of the paper is organized as follows.
Section 2 presents the Propositional Interaction Logic

(PIL) and shows how it can be used to model static architec-
tures when the involved components are transition systems.
It studies the relationship between conjunctive and disjunc-
tive styles and shows that for each conjunctive model there
exists an equivalent disjunctive model and vice-versa.

Section 3 lifts the results of the previous section to compo-
nents and interactionswith data. Coordination constraints are
expressed in the PILOps language whose terms are guarded
commands where guards are PIL formulas and commands
are operations on data. PILOps is the core language of the
DReAM framework.

Section 4 provides a formal definition of the DReAM
framework. Coordination constraints are expressed in a
first-order extension of PILOps which allows quantifica-
tion over component variables involved in rules and guards.
The section contains also the definition of the operational
semantics of DReAM models and an abstract syntax for a
domain-specific language encompassing the basic modelling
concepts.

Section 5 describes the prototype Java-based modelling
and execution framework and provides a number of illustra-
tive examples and some benchmarks.

Section 6 discusses related work and a brief account of
the relationships with the main representatives of existing
frameworks.

The concluding section summarizes the main results and
discusses directions for their further extension and applica-
tion to real-life dynamic systemswith a focus on autonomous
and self-modifying systems.

2 Static architectures: the PIL coordination
language

We introduce the Propositional Interaction Logic (PIL) [9]
used to model interactions between a given set of compo-
nents.

2.1 Components

A system model in PIL is the composition of interacting
components, which are labelled transition systems where
the labels are port names and the states are control loca-
tions. Components are completely coordination-agnostic, as
there is no additional characterization to ports and control
locations beyond their names (e.g. we do not distinguish
between input/output ports or synchronous/asynchronous
components).

Definition 1 (Component) Let P and S respectively be the
domain of ports and control locations. A component is a
transition system B = (S, P, T) with

– S ⊆ S: finite set of control locations;
– P ⊆ P: finite set of ports;
– T ⊆ S× P× S: finite set of transitions; p ∈ P is the port
offered for interaction, and each transition is labelled by
a different port.

Each component has one implicit loop transition {s idle−−→
s}s∈S for each control location s ∈ S over a dedicated port
idle ∈ P . It is assumed that the sets of ports and control
locations of different components are disjoint.

Transitions (s, p, s′) are also denoted by s
p−→ s′. Idle ports

have been introduced to simplify the theoretical development
of the framework. In the rest of the paper, the set of ports of
a component without the idle port will be referred as the set
of active ports P∗ = P \ {idle}.

A system specification is characterized by a set of com-
ponents Bi = (Si , Pi , Ti) for i ∈ [1, n]. The configuration γ

of a system is the set of the current control locations of each
constituent component:

γ = {si ∈ Si }i∈[1...n] (1)

Given the finite set of ports of a system P = ⋃
i∈[1...n] Pi , an

interaction a is any finite subset of P such that:

– every port pi ∈ a belongs to a component Bi of the
system;

– every component Bi participates in the interaction a with
exactly one port, i.e. Pi ∩a �= ∅ and if pi ∈ a and p j ∈ a,
then Bi �= Bj for i, j ∈ [1 . . . n].

The set of all interactions I (P) is a subset of 2P .
Given a set of components B1 . . . Bn and the set of inter-

actions Aγ allowed for the configuration γ = {s1, . . . , sn},
we can define a system Aγ (B1, . . . , Bn) using the following
operational semantics rule:

a ∈ Aγ ∀p ∈ a ∩ Pi : si p−→ s′
i

{si }[1...n] a−→ {
s′
i

}
[1...n]

(2)

where si is the current control location of component Bi ,
and a is an interaction containing exactly one port for each
component Bi . Components Bj not “actively” involved in
the interaction will participate with their idle port idle j and
their state will be unchanged, i.e. will have s′

j = s j .

123

440 R. D. Nicola et al.

2.2 Propositional Interaction Logic (PIL)

LetP andS be, respectively, the domains of ports and control
locations. Furthermore, let Γ be the set of all system con-
figurations. The formulas of Propositional Interaction Logic
PIL(P,S) are defined by the following syntax:

(PIL formula) Ψ : :=p ∈ P | π | ¬Ψ | Ψ1 ∧ Ψ2 (3)

where π : Γ �→ {true, false} is a state predicate. We use
logical connectives ∨ and ⇒ with the usual meaning.

The models of the logic are interactions on P for a con-
figuration γ . The semantics is defined by the following
satisfaction relation |�γ between an interaction a and a PIL
formula:

a |�γ true for any a

a |�γ p if p ∈ a

a |�γ π if π(γ) = true

a |�γ Ψ1 ∧ Ψ2 if a |�γ Ψ1 ∧ a |�γ Ψ2

a |�γ ¬Ψ if a �γ Ψ (4)

A monomial
∧

p∈I p ∧ ∧
p∈J ¬p with I ∩ J = ∅ char-

acterizes a set of interactions a such that:

1. the positive terms correspond to required ports for the
interaction to occur;

2. the negative terms correspond to inhibited ports to which
the interaction is “closed”;

3. the non-occurring terms are optional ports.

When the set of optional ports is empty, then the monomial
is a single interaction, and it is characterized by

∧
p∈a p ∧

∧
p/∈a ¬p.
Note that idle ports of components can appear in PIL for-

mulas. Given a component with active ports P∗ and idle port
idle, the following equivalences for PIL formulas hold:

idle ≡
∧

p∈P∗
¬p ¬idle ≡

∨

p∈P∗
p

Since we can describe sets of interactions using PIL for-
mulas, we can redefine the operational semantics rule (2) as
follows:

a |�γ Ψ ∀p ∈ a : si p−→ s′
i

{si }[1...n] a−→ {
s′
i

}
[1...n]

(5)

where Ψ is a PIL formula.

2.3 Disjunctive versus conjunctive specification
style

In [9] it is shown how to define a function β : I (P) →
P I L(P) which associates a characteristic PIL formula β(a)

to an interaction a.
For example, if P = {p, q, r , s, t} then for the interaction

{p, q}, we have β({p, q}) = p∧q ∧¬r ∧¬s ∧¬t1. For the
set of interactions A modelling the broadcast of p to ports q
and r , we have β(A) = p¬s¬t . For the set of interactions
A consisting of the singleton interactions p and q, we have
β(A) = (p¬q ∨ ¬pq) ∧ ¬r¬s¬t .

Please notice that the definition of function β requires
knowing P and that this function can be naturally extended
to sets of interactions A = {a1, . . . , an}; in this case we have
β(A) = β (a1) ∨ · · · ∨ β (an).

A set of interactions is specified in disjunctive style if it is
described by a PIL formulawhich is a disjunction ofmonomi-
als.A dual style of specification is the conjunctive stylewhere
the interactions of a system are the conjunction of PIL for-
mulas. Amethodology for writing conjunctive specifications
proposed in [9] considers that each term of the conjunction
is a formula of the form p ⇒ Ψp, where the implication is
interpreted as a causality relation: for p to be true, it is nec-
essary that the formula Ψp holds, and this defines interaction
patterns of other components in which the port p needs to be
involved.

For example, the interaction involving a strong synchro-
nization between p1, p2 and p3 is defined by the formula
f1 = (p1 ⇒ p2)∧(p2 ⇒ p3)∧(p3 ⇒ p1). Broadcast from
a sending port t towards receiving ports r1, r2 is defined by
the formula f2 = (true ⇒ t) ∧ (r1 ⇒ t) ∧ (r2 ⇒ t). The
non-empty solutions are the interactions {t}, {t, r1}, {t, r2}
and {t, r1, r2}.

Notice that, by applying this methodology, we can asso-
ciate to a component, with P∗ as set of active ports, a
constraint

∧
p∈P∗

(
p ⇒ Ψp

)
that characterizes the set of

interactions where some non-idle port of the component
may be involved. Thus, if a system consists of components
B1, . . . , Bn with sets of active ports P∗

1 , . . . , P∗
n respectively,

then the PIL formula
∧

i∈[1,n]
∧

p∈P∗
i

(
p ⇒ Ψp

)
expresses

a global interaction constraint. Such a constraint can be
put in a disjunctive form where monomials characterize
global interactions. Notice that the disjunctive form obtained
in this manner contains the monomial

∧
p∈P∗ ¬p, where

P∗ = ⋃
i∈[1...n] P∗

i , which is satisfied by the interaction
where every component performs the idle action. This triv-
ial remark shows that in the PIL framework it is possible to
express interaction constraints of each component separately

1 For the sake of conciseness, from nowonwewill omit the conjunction
operator on monomials.

123

TheDReAM framework for dynamic reconfigurable architecture modelling: theory… 441

Fig. 2 Broadcast example: disjunctive versus conjunctive specification

(a)

(b)

Fig. 3 master and slavei components

and compose them conjunctively to get global disjunctive
constraints.

It is also possible to put in conjunctive style a disjunctive
formulaΨ specifying the interactions of a system with set of
active ports P∗. To translateΨ into a form

∧
p∈P∗

(
p ⇒ Ψp

)

we just need to choose Ψp = Ψ [p = true] obtained from
Ψ by substituting true to p. Given the inherent property
of supporting the idle interaction, the translated conjunc-
tive formula will be equivalent to Ψ only if the latter allows
global idling. Consider broadcasting from port p to ports q
and r (Fig. 2). The possible interactions are characterized
by the active ports p, pq, pr , pqr and ∅ (i.e. idling). The
disjunctive-style formula is: ¬p¬q¬r ∨ p¬q¬r ∨ pq¬r ∨
p¬qr ∨ pqr = ¬q¬r ∨ p. The equivalent conjunctive for-
mula is: (q ⇒ p)∧(r ⇒ p) that simply expresses the causal
dependency of ports q and r from p.

The example below illustrates the application of the two
specification styles.

Example 1 (Master–Slaves) Let us consider a simple sys-
tem consisting of three components: master, slave1 and
slave2. Themaster performs two sequential requests to slave1
and slave2, and then performs some computation with
them.

Figure 3 provides a graphical representation of the activ-
ities of such components.

The set of allowed interactions γ for the set of components
{master, slave1, slave2} can be represented by the following
PIL formula using the disjunctive style, where we let idlesi
denote the idle port of component slavei :

Ψdis j = (
link1 ∧ bind1 ∧ idles2

) ∨ (
link2 ∧ bind2 ∧ idles1

)

∨ (work ∧ serve1 ∧ serve2)

Alternatively, the same interaction patterns can be modelled
using the conjunctive style:

Ψconj = (link1 ⇒ bind1) ∧ (link2 ⇒ bind2) ∧
(bind1 ⇒ link1) ∧ (bind2 ⇒ link2) ∧
(work ⇒ serve1 ∧ serve2) ∧ (serve1 ⇒ work) ∧
(serve2 ⇒ work)

The two formulas differ in the admissibility of the “no-
interaction” interaction. That is, the conjunctive formula
Ψconj allows all the components to not interact by perform-
ing a transition over their idle ports, while Ψdis j does not.
To allow it in the disjunctive case, we could instead consider
the following formula, where idlem denotes the idle port of
component master:

Ψ ′
dis j = Ψdis j ∨ idlem ∧ idles1 ∧ idles2

3 Static architectures with transfer of values:
the PILOps coordination language

We expand the PIL framework by introducing data exchange
between components. In order to do so, the definition of
componentwill be extendedwith local variables and the coor-
dination constraints will be expressed with PILOps, which
expands PIL with a notation that is inspired by guarded com-
mands. Finally, we extend the definitions for disjunctive and
conjunctive styles and study possible connections between
the two.

3.1 PILOps components

Definition 2 (PILOpsComponent) LetS be the set of all com-
ponent control locations, X the set of all local variables, and
P the set of all ports. A component is a transition system
B:=(S, X , P, T), where:

– S ⊆ S: finite set of control locations;
– X ⊆ X: finite set of local variables;
– P ⊆ P: finite set of ports;
– T ⊆ S× P× S: finite set of transitions; p ∈ P is the port
offered for interaction, and each transition is labelled by
a different port.

123

442 R. D. Nicola et al.

Each component has one implicit loop transition {s idle−−→
s}s∈S for each control location s ∈ S over a dedicated port
idle. P∗ = P \ {idle} will be used to denote the set of active
ports of a component.

It is assumed that the sets of ports, local variables and
control locations of different components are disjoint. Each

transition (s, p, s′) can also be denoted by s
p−→ s′.

A system specification includes a set of PILOps compo-
nents Bi = (Si , Xi , Pi , Ti) for i = [1, n]. The configuration
γ of a system is still described by the set of the current con-
trol locations of each constituent component, but now it also
includes the valuation function σ : X �→ V whichmaps local
variables to values:

γ = ({si ∈ Si }[1...n] , σ
)

(6)

We will use Γ and Σ to denote the set of all configurations
and the domain of valuation functions, respectively. Interac-
tions are still sets of ports belonging to different components.

3.2 Propositional interaction logic with operations
(PILOps)

Let P, X and S, respectively, be the domains of ports, local
variables and control locations.

The terms ofPILOps(P,X,S) are defined by the following
syntax:

(PILOps term) Φ : :=Ψ → Δ | Φ1 & Φ2 | Φ1 ‖ Φ2

(PIL formula) Ψ : :=p ∈ P | π | ¬Ψ | Ψ1 ∧ Ψ2

(set of ops.) Δ : :=∅ | {δ} | Δ1 ∪ Δ2 (7)

where:

– operators & and ‖ are associative and commutative, with
& having higher precedence than ‖;

– π : Γ �→ {true, false} is a state predicate;
– δ : Σ �→ Σ is an operation that transforms a valuation
functions σ ∈ Σ .

Themodels of the logic are still interactions a onP, where
the satisfaction relation is defined by the set of rules (4) for
PIL with the following extension:

a |�γ Ψ → Δ if a |�γ Ψ

a |�γ Φ1 & Φ2 if a |�γ Φ1 ∧ a |�γ Φ2

a |�γ Φ1 ‖ Φ2 if a |�γ Φ1 ∨ a |�γ Φ2 (8)

In other words, the conjunction and disjunction operators &
and ‖ for PILOps terms are equivalent to the logical ∧ and ∨
from the interaction semantics perspective.

Operations in Δ are treated in a different way: operations
associated with rules combined with “&” will be either per-
formed all together if the associated PIL formulas hold for
a, γ or not at all if at least one formula does not, while for
rules combined with the “‖” operator a largest union of oper-
ations satisfying the PIL formulas will be executed.

We indicate the set of operations to be performed for Φ

under a, γ as �Φ�a,γ , which is defined according to the fol-
lowing rules:

�Ψ → Δ�a,γ =
{

Δ if a |�γ Ψ

∅ otherwise

�Φ1 & Φ2�a,γ =
{

�Φ1�a,γ ∪ �Φ2�a,γ if a |�γ Φ1 ∧ a |�γ Φ2

∅ otherwise

�Φ1 ‖ Φ2�a,γ = �Φ1�a,γ ∪ �Φ2�a,γ (9)

Rules (9) allow to define a notion of semantic equivalence
between PILOps terms:

Φ1 = Φ2 iff �Φ1�a,γ = �Φ2�a,γ for any a, γ (10)

3.2.1 Axioms for PILOps

Given the equivalence relation (10), the following axioms
hold for PILOps terms:

& is associative, commutative and idempotent (11)

Ψ1 → Δ1 & Ψ2 → Δ2 = Ψ1 ∧ Ψ2 → Δ1 ∪ Δ2 (12)

Φ & true → ∅ = Φ (13)

‖ is associative, commutative and idempotent (14)

Ψ1 → Δ ‖ Ψ2 → Δ = Ψ1 ∨ Ψ2 → Δ (15)

Ψ → Δ1 ‖ Ψ → Δ2 = Ψ → Δ1 ∪ Δ2 (16)

false → Δ ‖ Φ = Φ (17)

Absorption: Φ1 ‖ Φ2 = Φ1 ‖ Φ2 ‖ (Φ1 & Φ2) (18)

Distributivity: (19)

Φ & (Φ1 ‖ Φ2) = (Φ & Φ1) ‖ (Φ & Φ2)

Normal disjunctive form (DNF):

Ψ1 → Δ1 ‖ Ψ2 → Δ2 =
Ψ1 ∧ ¬Ψ2 → Δ1 ‖ Ψ2 ∧ ¬Ψ1 → Δ2 ‖ Ψ1∧Ψ2 → Δ1∪Δ2

(20)

Note that PILOps strictly contains PIL as a formula Ψ can
be represented by Ψ → ∅. The operation & is the extension
of conjunction with neutral element true → ∅ and ‖ is the
extension of the disjunction with an absorption (18) and dis-
tributivity axiom (19). The DNF is obtained by application
of the axioms. Note some important differences with PIL: the
usual absorption axioms for disjunction and conjunction are

123

TheDReAM framework for dynamic reconfigurable architecture modelling: theory… 443

replaced by a single absorption axiom (18) and there is no
conjunctive normal form.

3.2.2 Operations

Operations δ in PILOps are assignments on local vari-
ables of components involved in an interaction of the form
x := f (y1, . . . , yk), where x ∈ X is the local variable subject
to the assignment and f : Vk �→ V, is a function on local
variables y1, . . . , yk (yi ∈ X) on which the assigned value
depends.

We can define the semantics of the application of the
assignment x := f to the valuation function σ as:

δ(σ) = (x := f) (σ) = σ [x �→ f (σ (y1) , . . . , σ (yk))]
(21)

The application of a set of operations Δ to a valuation

function σ produces a set of functions
{
σ ′
j

}

[1...m]
⊆ Σ . Each

function σ ′
j is the result of the application of an operation δ′

j
to σ , where δ′

j is obtained by the composition of all δi ∈ Δ

in a given order.
Formally, given Δ = {δi }[1...n], let the symmetric group

SΔ of all the n! permutations on the set of operations Δ be:

SΔ = {(
α j (δ1) · · · α j (δn)

)}
[1...n!]

where α j (δi) is the j th permutation of operation δi . Then,

the applicationΔ(σ) produces the set
{
σ ′
j

}

[1...n!] as follows:

Δ(σ) = {(
α j (δ1) ◦ · · · ◦ α j (δn)

)
(σ)

}
j∈[1...n!] (22)

where:

–
(
α j (δ1) · · · α j (δn)

) ∈ SΔ for j ∈ [1 . . . n!];
– the operator ◦ is the function composition (e.g. f ◦

g (x) = f (g (x))).

Having introduced the extended syntax of PILOps and for-
mally characterized the semantics of the operations, we can
define the operational semantics of the language by appro-
priately expanding rule (5).

A PILOps term Φ is a coordination mechanism that,
applied to a set of components B1 . . . Bn , gives a system
defined by the following rule:

a |�γ Φ ∀p ∈ a : si p−→ s′
i σ ′ ∈ �Φ�a,γ (σ)

({si }[1...n] , σ
) a−→

({
s′
i

}
[1...n] , σ

′
) (23)

where �Φ�a,γ (σ) is the set of valuation functions obtained
according to (22) by applying the operations Δ = �Φ�a,γ to
the valuation function σ .

Notice that the valuation function σ ′ is selected with no
specific criterion, therefore the effects of multiple operations
on system configurations are generally non-deterministic.
This behaviour can be mitigated by the adoption of a snap-
shot semantics for the valuation function update (i.e. every
local variable is evaluated using the same initial valuation
function), which prevents the inversion of access/update
operations from producing different outcomes. This limits
non-determinism in PILOps to the application of multiple
assignments on the same local variable.

3.3 Disjunctive versus conjunctive specification
style in PILOps

To define how the conjunctive specification style introduced
in Sect. 2.3 can be extended to PILOps, we associate with
p ⇒ Ψp an operation Δp to be performed when an interac-
tion involving p is executed according to this rule. We call
the PILOps term describing this behaviour the conjunctive
term:

p � Ψp → Δp = (¬p → ∅ ‖ p ∧ Ψp → Δp
)

(24)

Wewill refer to p in a conjunctive term as the dependent port
and to Ψp as the dependency.

The conjunction of terms of this form through the operator
& gives a disjunctive-style formula. Consider for instance,
the conjunction of two terms:

(
p � Ψp → Δp

)
&

(
q � Ψq → Δq

)

= (¬p → ∅ ‖ p ∧ Ψp → Δp
)
&

(¬q → ∅ ‖ q ∧ Ψq → Δq
)

= ¬p ∧ ¬q → ∅ ‖ p ∧ ¬q ∧ Ψp → Δp ‖
q ∧ ¬p ∧ Ψq → Δq ‖ p ∧ q ∧ Ψp ∧ Ψq → Δp ∪ Δq

The disjunctive form obtained from the application of the
distributivity axiom (19) is the union of four terms corre-
sponding to the canonical monomials on p and q and leading
to the execution of operationΔp,Δq , both or none. It is easy
to see that for a set of ports P the conjunctive form

&
p∈P

(¬p → ∅ ‖ p ∧ Ψp → Δp
)

is equivalent to the disjunctive form

�

I∪J=P

(∧

i∈I
pi ∧ Ψpi

∧

j∈J

¬p j →
⋃

i∈I
Δpi

)

where
⋃

i∈∅ Δpi = ∅.

123

444 R. D. Nicola et al.

The converse does not hold. Given a disjunctive specifica-
tion it is not always possible to get an equivalent conjunctive
one. If we have a term of the form

�
k∈K Ψ → Δk over a set of

ports P , it can be put in the canonical form, i.e. the union of
canonical terms of the form

∧
i∈I pi

∧
j∈J ¬p j → ΔI J . It

is easy to see that for this form to be obtained as a conjunction
of causal terms, a sufficient condition is that for each port pi
there exists an operation Δpi such that ΔI J = ⋃

i∈I Δpi .
This condition also determines the limits of the conjunc-
tive/compositional approach. That is, in order to express a
disjunctive term with a conjunctive equivalent, it must be
possible to deconstruct the set of operations of the former
term in subsets of operations associated with each dependent
port of the latter.

Example 2 (Master–Slaves) Let us expand the example sce-
nario introduced in Example 1 by including data transfer
between themaster component and the two slave1 and slave2
components. More specifically, we provide the master com-
ponent with a buffer local variable that will store the sum
of values in local variables mem1 and mem2 of the two
respective slaves when they all synchronize through the ports
work, serve1, serve2.

The set of allowed interactions γ is not going to change,
but adopting the PILOps coordination language, we can char-
acterize the desired behaviour using the disjunctive style as
follows:

Φdisj = link1 ∧ bind1 ∧ idle2 → ∅ ‖
link2 ∧ bind2 ∧ idle1 → ∅ ‖
work ∧ serve1 ∧ serve2

→ buffer:=mem1 + mem2

The conjunctive style version equivalent to Φdis j (except for
its allowance of the idling of all components) is the following:

Φconj = link1 � bind1 → ∅& link2 � bind2 → ∅&

bind1 � link1 → ∅& bind2 � link2 → ∅&

work � serve1 ∧ serve2

→ buffer:=mem1 + mem2 &

serve1 � work → ∅& serve2 � work → ∅

4 The DReAM framework

In this section, we present the DReAM framework, which
extends the static framework by introducing support for
parametric system specifications and dynamic reconfigura-
tion. In this context, components become instances of types
of components and their number can dynamically change.
Component instances are assigned to motifs, which describe
independent dynamic architectures. Coordination between

components in a motif, but also between the motifs consti-
tuting a system, is expressed by the DReAM coordination
language, a first-order extension of PILOps. In motifs, coor-
dination is parametrized by the notion of “map”, which is an
abstract relation used as a reference to model the topology
of the underlying architecture and component mobility.

4.1 Component types and component instances

The basic elements of DReAM systems are instances of com-
ponent types. Component types in DReAM correspond to
PILOps components (see Definition 2) without the require-
ment that their sets of ports, control location and local
variables be disjoint. Component instances are obtained from
a component type by renaming its control locations, ports and
local variables with a unique identifier.

To highlight the relationships between component types
and their defining sets we use a “dot notation”:

– b.S refers to the set of control locations S of component
type b (same for ports and variables);

– b.s refers to the control location s ∈ b.S (same for ports
and variables).

Definition 3 (Component instance) Let C be the domain of
instance identifiers c and B = 〈b1, . . . , bn〉 be a tuple of com-
ponent types where each element is bi = (Si , Xi , Pi , Ti).

A set of component instances of type bi is represented
by bi .C = {bi .c : c ∈ C}, for 1 ≤ i ≤ n and C ⊆ C, and
is obtained by renaming the set of control locations, ports
and local variables of the component type bi with c, that
is bi .c = (c.Si , c.Xi , c.Pi , c.Ti). Without loss of general-
ity, we assume that instance identifiers uniquely represent a
component instance regardless of its type.

The state of a component instance b.c is therefore defined
as the pair 〈c.s, c.σ 〉, where c.σ is the valuation function of
the variables c.X2. Σ denotes the domain of all valuation
functions, while we can refer to the set of all possible valu-
ation functions for component instance c with c.Σ . We use
the same notation to denote ports, control locations, states
and variables belonging to a given component instance (e.g.
c.p ∈ c.P). Given that, by construction, each instance iden-
tifier is uniquely associated with one component instance,
we have that sets of ports, control location and local vari-
ables of different component instances are still disjoint, i.e.
c.P ∩ c′.P = ∅ for c �= c′.

Transitions for component instances c.T are obtained
from the respective component type transitions T via port
name substitution, i.e. via the rule:

2 Notice that when writing, e.g. c.s, we are omitting the explicit refer-
ence to the component type b and using a shorter notation compared to
the complete one, e.g. b.c.s.

123

TheDReAM framework for dynamic reconfigurable architecture modelling: theory… 445

(s, p, s′) ∈ T

c.s
c.p−→ c.s′

(25)

4.2 Motif modelling

A motif characterizes an independent dynamic architecture
involving a set of component instances C subject to specific
coordination terms parametrized by a specific data structure
called map.

Definition 4 (Motif) Let C be the domain of component
instance identifiers. A motif is a tuple m:= 〈C, ρ,Map,@〉,
where C ⊆ C is the set of component instances assigned to
the motif, ρ is the coordination term regulating interactions
and reconfigurations among them, and Map,@ are the con-
figurations of the map associated with the motif and of the
address function.

We assume that each component instance is associated
with exactly one motif, i.e. m1.C ∩ m2.C = ∅.
A Map is a set of locations and a connectivity relation
between them. It is the structure over which computation
is distributed and defines a system of coordinates for com-
ponents. It can represent a physical structure, such as a
geographic map, or some conceptual structure, e.g. the cel-
lular structure of a memory. Additionally, each location
has a local memory that components can write to or read
from. Formally, a map in DReAM is specified as a graph
Map = (N , E, ω), where:

– N is a set of nodes or locations (possibly infinite);
– E is a set of (possibly directed) edges subset of N × N
that defines the connectivity relation between nodes;

– ω : N �→ V is a valuation function that associates nodes
to values, realizing the map memory.

If the map memory is empty, then the only available infor-
mation for a location is its name. Otherwise, the memory
can be shared by different components and used for their
coordination.

The relation E defines a concept of neighbourhood for
components, which is used in many applications to express
coordination constraints or directions for moving compo-
nents. When these additional topological relations are not
needed and E = ∅, the map can be still used as a simple
indexing structure.

Component instances C in a motif and its map are related
through the (partial) address function @ : C → N binding
each component in C to a node n ∈ N of the map.

As we mentioned, maps can be used to model a physical
environment where components are moving. If the map is an
array N = {(i, j)|i, j ∈ Integers} × { f , o}, the pairs (i, j)
represent coordinates and the symbols f and o stand, respec-
tively, for free and obstacle. We can model the movement of

b, such that @ (b) = ((i, j), f), to a position (i + a, j + b)
provided that there is a path from (i, j) to (i + a, j + b)
consisting of free cells.

The configuration γm of motif m is represented by the
tuple

γm = 〈Cm .s,Cm .σ ,Mapm,@m〉
≡ 〈{c.s}c∈m.C , {c.σ }c∈m.C ,m.Map,m.@

〉
(26)

By modifying the configuration of a motif we can model:

– Component dynamism: The set of component instances
C may change by creating/deleting or migrating compo-
nents;

– Map dynamism: The set of nodes or/and the connectivity
relationof amapmaychange.This is the case in particular
when an autonomous component, e.g. a robot, explores
an unknown environment and builds a model of it;

– Mobility dynamism: The address function @ changes to
express mobility of components.

Different types of dynamism can be obtained as the combina-
tion of these three basic types. More details on how they can
be implemented in DReAM will be discussed in Sect. 4.3.2
where reconfiguration operations are introduced.

4.3 TheDReAM coordination language

TheDReAM coordination language is essentially a first-order
extension of PILOps where quantification over sets of com-
ponents is introduced.

Given the domain of ports P and the set of all possible
system configurations Γ , the DReAM coordination language
is defined by the syntax:

(DReAMterm) ρ : :=Φ | D{
Φ

} | ρ1 & ρ2 | ρ1 ‖ ρ2

(declaration) D : :=∀c : m.b | ∃c : m.b | D1, D2

(PILOps term) Φ : :=Ψ → Δ | Φ1 & Φ2 | Φ1 ‖ Φ2

(PIL formula) Ψ : :=c.p ∈ P | π | ¬Ψ | Ψ1 ∧ Ψ2

(set of ops.) Δ : :=∅ | {δ} | Δ1 ∪ Δ2 (27)

where:

– Declarations define the context of the term by declaring
quantified (∀|∃) component variables (c) associated with
instances of a given type (b) belonging to a motif m;

– Operators & and ‖ are the same as the ones introduced in
(7) for PILOps;

– π : Γ �→ {true, false} is a state predicate on a system
configuration γ ∈ Γ ;

– δ : Γ �→ Γ is an operation that transforms a system
configuration γ in another γ ′, with γ, γ ′ ∈ Γ .

123

446 R. D. Nicola et al.

A DReAM coordination term is well formed if its PIL for-
mulas and associated operations contain only component
variables that are defined in its declarations. From now on,
we will only consider well-formed terms.

Notice that operations have now a more general definition
compared to (7), as they can alter the whole system config-
uration and not just valuation functions for local variables.
This allows DReAM to handle reconfiguration operations,
which will be discussed in more details in Sect. 4.3.2.

Given a system configuration, a coordination term can
be translated to an equivalent PILOps term by performing
a declaration expansion step, which expands the quantifiers
and replaces component variables with actual components.

4.3.1 Declaration expansion for coordination terms

Given that DReAM systems host a finite number of compo-
nent instances, first-order logic quantifiers can be eliminated
by enumerating every component instance of the type spec-
ified in each declaration. We thus define the declaration
expansion 〈ρ〉γ of ρ under configuration γ via the following
rules:

〈Φ〉γ = Φ

〈ρ1 & ρ2〉γ = 〈ρ1〉γ & 〈ρ2〉γ
〈ρ1 ‖ ρ2〉γ = 〈ρ1〉γ ‖ 〈ρ2〉γ
〈∀c : m.b

{
Φ

}〉
γ

= &
c∗∈m.b.C

Φ
[
c∗/c

]

〈∃c : m.b
{
Φ

}〉
γ

=
�

c∗∈m.b.C

Φ
[
c∗/c

]

〈
D1, D2

{
Φ

}〉
γ

=
〈
D1

{ 〈
D2

{
Φ

}〉
γ

}〉

γ

(28)

where m.b.C is the set of component instances of type b in
motif m, and

[
c∗/c

]
is the substitution of the symbol c with

the actual identifier c∗ in the associated term.
For the sake of conciseness, (27) and (28) do not mention

additional notations that can be used to ease declaration writ-
ing. For instance, explicit reference to the motif hosting the
instance variable can be omitted when the term is associated
with the motif itself. Similarly, if the associated PILOps term
has to apply to groups of instances regardless of their type,
the component type can be omitted in the declaration.

By applying (28), any term can be transformed into a
PILOps term, whose semantics is defined in Sect. 3.2.

4.3.2 Reconfiguration operations

In addition to the assignment operation introduced for PILOps
in Sect. 3.2.2,DReAM can now support more complex recon-
figuration operations which enable component, map, and

mobility dynamism by allowing transformations of a motif
configuration at runtime.
Component dynamism can be realized using the following
statements:

– create(b, n): creates an instance of type b at node n of
the relevant map;

– delete(c): deletes instance c.

Map dynamism can be realized using the following state-
ments:

– add(n): adds node n to the relevant map;
– remove(n): removes node n from the relevant map, along
with incident edges and components mapped to it;

– add(n1, n2): adds edge (n1, n2) to the relevant map;
– remove(n1, n2): removes edge (n1, n2) from the relevant

map.

Mobility dynamism can be realized using the following state-
ment:

– move(c, n): changes the position of c to node n in the
relevant map.

4.4 Operational semantics of motifs

As described in 4.2, motifs are equipped with terms ρ of the
coordination language which are used to compose the com-
ponent instances assigned to them. Motifs can evolve from
a configuration γm to another γ ′′

m by performing a transition
labelled with the interaction a and characterized by the appli-
cation of the set of operations �〈ρ〉γm �a,γm iff a |� 〈ρ〉γm .
Formally this is encoded by the following inference rule:

a |�γm 〈ρ〉γm γm
a−→ γ ′

m γ ′′
m ∈ �〈ρ〉γm �a,γm

(
γ ′
m

)

γm
a

γ ′′
m

(29)

where:

– γm
a−→ γ ′

m expresses the capability of the motif to evolve
to a new configuration through interaction a according to
the simple PIL semantics of (5). By expanding the motif
configuration, we have indeed:

∀c.p ∈ a : c.s c.p−−→ c.s′ with c ∈ m.C

〈Cm .s,Cm .σ ,Mapm ,@m〉 a−→ 〈
Cm .s′,Cm .σ ,Mapm ,@m

〉

(30)

– �〈ρ〉γm �a,γm

(
γ ′
m

)
is the set of motif configurations

obtained according to (22) by applying the operations
Δ = �〈ρ〉γm �a,γm to the motif configuration γ ′

m .

123

TheDReAM framework for dynamic reconfigurable architecture modelling: theory… 447

The considerations in Sect. 3.2.2 about the non-deterministic
effects of multiple operations to the valuation function of
PILOps components also apply to motif configurations as the
declaration expansion 〈ρ〉γm reducesDReAM terms toPILOps
terms.

4.5 System-level operational semantics

Definition 5 (DReAM system) Let B be a tuple of component
types and M a set of motifs. A DReAM system is a tuple
〈B, M, μ, γ0〉 where μ is a migration term and γ0 is the
initial configuration of the system.

The migration term μ is a coordination term where the oper-
ations δ are of the form migrate(c,m, n), which move a
component instance c to node n in the map of motif m.

The global configuration of a DReAM system is simply
the union of the configurations of the set of motifs M that
constitute it:

γ =
⊔

m∈M
γm =

〈
⋃

m

m.C .s,
⋃

m

m.C .σ,
⋃

m

m.Map,
⋃

m

m.@

〉

(31)

where we overloaded the semantics of the union operator to
combine different maps in a bigger one characterized by the
union of the sets of nodes, edges, and memory locations.

The system-level semantics is described by the following
inference rule:

γm
am

γ ′
m for m∈M a |�γ ′ 〈μ〉γ ′
γ ′′∈�〈μ〉γ ′�a,γ ′(γ ′)

γ
a−→ γ ′′ (32)

where:

– γ ′ = ⊔
m∈M γ ′

m ;
– am ⊆ a is a subset of the global interaction a containing

only ports of component instances belonging to motifm.

By performing interaction a, each motif first evolves on its
own according to its coordination term, and then the whole
system changes configuration according to the migration
term μ.

5 An executable implementation of DReAM

The ongoing implementation of the DReAM framework
involves two parts: a Java execution engine with an asso-
ciated API and a domain-specific language (DSL) with an
IDE for modelling in DReAM.

Fig. 4 Simplified class diagram of the main software elements of the
DReAM Java API

The centralized execution engine directly implements the
DReAM operational semantics. Components and maps are
defined as abstract classes that the programmer can extend
with custommethods forwhich a library of predefined imple-
mentations is provided. Furthermore, by using directly the
API, the programmer can enrich coordination terms and asso-
ciated operations with any Java code. Figure 4 illustrates the
main Java classes that realize the execution framework.

The IRule and IMap interfaces are implemented with
classes representing DReAM terms and actual map imple-
mentations, respectively.

The DSL implements the abstract syntax of DReAM using
XText, which also provides an integrated development envi-
ronment as an Eclipse plug-in with convenient features like
syntax highlighting and static checks.

Given the dynamic nature of themodelled systems and the
importance of the study of collective behaviours, we are also
realizing a pluggable component for the execution engine to
visualize the evolution of DReAM system configurations.

We provide an abstract syntax of DReAM, for a system
with a set of motifs M (with their respective component
instances) and migration term describing how components
can leave a motif and join another.
System {

B = {b1, . . . , bk} (the set of component types)
M = {m1, . . . ,mn} (the set of motifs)
μ (migration term)

}
Motif mi {

Mapi (definition and associated functions/predicates)
ρi (coordination term)

}
Bothmigration andmotif terms are expressions built using

operators &, ‖ and the following “basic” terms:

conjuctive term: ∀c : b ∈ m, D
{
c.p � φp → Δp

}
(33)

disjunctive term: D
{
φ → Δφ

}
(34)

123

448 R. D. Nicola et al.

restriction term: AtMost(n, b.p) (35)

where:

– b ∈ B is a component type in the system;
– D is a declaration as defined in (27);
– φp, φ are PIL formulas;
– Δp,Δφ are sets of operations;
– n ∈ N is a integer;
– p ∈ b.P∗ is an active port of component type b.

The conjunctive term (33) matches the one defined for
PILOps in Sect. 3.3. Its meaning is that any component
instance c of type b belonging to motif m interacts through
port p if φp holds, and the corresponding operation is
Δp.

The disjunctive term (34) is, in fact, a general DReAM
coordination term. It characterizes all the interactions satis-
fying the formula φ, and the corresponding operation is Δφ .

The restriction term (35) can be understood as a useful
macronotation for a more complex coordination term for-
bidding all interactions that involve more than n component
instances of type b interacting through port p. If no port p
is provided, then the restriction applies to every port of the
component type b.

Migration terms are built from the given basic rules where
operations Δp,Δφ involve only migration operations.

Coordination terms are built from the given basic rules
where operations Δp,Δφ involve only assignment and
reconfiguration operations. Since coordination terms are
defined within the scope of a single motif, the reference to
the motif m itself can be omitted.

5.1 Applications and benchmarks

We will now present how some simple application scenarios
can be modelled using the DReAM coordination language.
For validation purposes and to show possible venues of anal-
ysis, the following examples have also been implemented
and tested using the DReAM Java API.

Example 3 (Master–Slaves) Let us revisit the scenario of
Example 2 using theDReAM coordination language. The first
step is to generalize the components introduced in Example
1 to DReAM component types Master and Slave (Figure 5).
In this case, component types must also provide appropri-
ate local variables that will be used to store the instances to
which they get connected to perform the task (i.e. the set of
integers slaves for the Master type and the integer master
for the Slave type). To restore these local variables to their
initial value, we can associate operations δm = slaves:=∅
and δs = master:=0 respectively with ports work and serve.

(a)

(b)

Fig. 5 Master and Slave component types

The system only requires the definition of a single motif
with a trivial map characterized by a single node. The coor-
dination term characterizing the desired interaction pattern
can be expressed, for instance, using the conjunctive style as
follows:

ρ = AtMost(1,Master)&

AtMost(1, Slave.bind)&

AtMost(2, Slave.serve)&

∀m : Master, ∃s : Slave{

m.link � ‖m.slaves‖ < 2 ∧ s.bind

→ m.slaves:=m.slaves ∪ {s} }
&

∀s : Slave, ∃m : Master
{

s.bind � m.link → s.master:=m
}
&

∀m : Master, ∃s1, s2 : Slave{

m.work � s1 �= s2 ∧ ‖m.slaves‖ = 2 ∧
s1 ∈ m.slaves ∧ s2 ∈ m.slaves ∧ s1.serve ∧
s2.serve → m.buffer:=s1.mem + s2.mem

}
&

∀s : Slave, ∃m : Master
{

s.serve � s.master = m ∧ m.work → ∅}

The system model composed by the motif m characterized
by ρ and the component types {Master, Slave} can then be
initiated with an arbitrary number of component instances
of the available types assigned to m. The resulting system
will evolve through interactions that conform to the origi-
nal description of Example 2, meaning that each component
instance of typeMaster will connect with two different com-
ponent instances of type Slaves (uniquely bound to that same
instance of Master) and then they will synchronize to carry

123

TheDReAM framework for dynamic reconfigurable architecture modelling: theory… 449

Fig. 6 Runtime of 20 execution cycles of the implementation of Exam-
ple 3

out the computation. Notice that the restriction terms guar-
antee that only one Slave instance at a time can connect to
a single Master instance, and that no more than two Slave
instances can participate in an interaction with port serve.

We used the DReAM Java API to implement the system
described in Example 3 to study the performance of the
execution engine when varying the number of component
instances in the system. For this test we limited the number
of execution cycles performed to 20, and we measured the
runtime for systems characterized by 1 to 8 Masters and,
respectively, 2 to 16 Slaves.

The results are illustrated in Fig. 6. The exponential
growth in the runtime with the number of components is
caused by the fact that the current implementation of the
execution engine searches exhaustively over the set of all
possible interactions collecting all the maximal ones, and
then selects one at random.

Example 4 (Coordinating flocks of interacting robots) Con-
sider a system with N robots moving in a square grid, each
onewith given initial location and initialmovement direction.
Robots are equipped with a sensor that can detect other peers
within a specific range r and assess their direction: when this
happens, the robot changes its own direction accordingly.

We require that robots maintain a timestamp of their last
interaction with another peer: when two robots are within the
range of their sensors, their direction is updated with the one
having the highest timestamp. For the sake of simplicity we
also assume that the grid is, in fact, a torus with no borders.

To model these robots in DReAM we will define a Robot
component type as the one represented in Fig. 7.

Each Robot maintains a local clock that is incremented
by 1 through an assignment statement in δtick every time an
instance interacts with port tick.

Fig. 7 The Robot component type

A motif that realizes the described scenario can be
defined with the conjunction of two coordination terms: one
that enforces synchronization between every Robot instance
through port tick allowing information exchangewhen possi-
ble, and another that enables all Robot instances performing
a tick to move:

ρ =∀r : Robot{r .tick � true → move(r ,@ (r) + r .dir)
}

&

∀r1, r2 : Robot{r1.tick � r2.tick →
IF

(
r1 �= r2

)
THEN

(

IF
(
distance(@ (r1) ,@ (r2)) < r1.range ∧
(r1.ts < r2.ts ∨ (r1.ts = r2.ts ∧ r1 < r2))

)
THEN

(

r1.dir:=r2.dir; r1.ts:=r1.clock;
r2.ts:=r2.clock

))}

where:

– we use a map whose nodes are addressed via size-two
integer arrays [x, y];

– we are using a distance(n1, n2) function that returns
the euclidean distance between two points in an n-
dimensional space;

– in the inequality r1 < r2 we use instance variables r1, r2
in place of their respective integer instance identifiers.

The coordination term ρ, which adopts the conjunctive style,
can be intuitively understood breaking it into two parts:

1. every robot r can interact with its port r .tick, and if it does
it also moves according to its stored direction r .dir3;

2. for every robot r1 to interact with its port r1.tick, every
robot r2 must also participate in interaction with its port
r2.tick (i.e. interactions through port tick are strictly
synchronous). Furthermore, for every pair of distinct
(r1 �= r2) robots r1, r2 interacting through their respec-
tive tick ports: if they are closer than a given range
(r1.range) and either r1 has updated its direction less
recently (r1.ts < r2.ts) or they have updated their direc-
tions at the same time but r2 has a higher instance

3 Notice that if the direction of a robot is updated at a given time, the
robot will move according to this new direction only during the next
clock cycle because of the adopted snapshot semantics.

123

450 R. D. Nicola et al.

Fig. 8 Initial system configuration for grid size s = 9

identifier (r1.ts = r2.ts ∧ r1 < r2)4, then r1 will update
its direction and timestamp using r2’s.

We used the DReAM Java API to implement the system
described in Example 4 and study its behaviourwhile varying
the size of the grid and the communication range for a fixed
number of robots. Intuitively, we expect to observe a faster
convergence in the movement directions as the size of the
grid shrinks and/or as the communication range increases.

We fixed the number of robots in the system to 9, and we
chose a specific initial direction for each one of them.We also
chose the same range value for all robots. The mapping of
the robots to a grid of size s× s is realized in such a way that
they are uniformly spaced both horizontally and vertically.
We chose grid sizes proportional to 3 for uniformity.

An example of the initial configuration for a grid of size
s = 9 is shown in Fig. 8.

The graphs in Fig. 9 show the trend in the number of flocks
(i.e. the number of groups formed by robots moving in the
same direction) over time for different values of the given
range of communication.

Indeed, the results confirm our expectations: the adopted
initial setup procedure of the robot’s positions and directions
allows them to converge to an homogeneous flock within
20 clock ticks, a number which decreases as we increase
the communication range. There is also an opposite trend

4 Since all robots synchronize on the same “clock”,many of themmight
update their respective directions differently at the same time: adding
the “tiebreaker” on the instance identifier when timestamps are equal
allows data exchange even in these cases.

(a)

(b)

(c)

(d)

Fig. 9 Trends in the number of flocks over time at different communi-
cation ranges

when increasing the size of the grid, although it is interesting
to see that there are several exceptions to this rule (e.g. for
range = 3 convergence on the grid s = 6 takes more time
than on the grid s = 9; the same applies for s = 12 vs s = 15
and s = 18 vs s = 21).

Example 5 (Coordinating flocks of robots with stigmergy)
We consider a variant of the previous problem by using stig-
mergy [10].

123

TheDReAM framework for dynamic reconfigurable architecture modelling: theory… 451

Instead of letting robots sense each other, we will allow
them to “mark” their locations with their direction and an
associated timestamp. In this way, each time a robot moves
to a node in the map it will either update its direction with the
one stored in the node or update the one associated with the
node with the direction of the robot (depending on whether
the timestamp is higher than the last time the robot changed
its direction or not).

The Robot component type represented in Fig. 7 can still
be used without modifications (the range local variable will
be ignored).

The coordination term associatedwith themotif becomes:

ρ′ = ∀r : Robot{

r .tick →
IF

(
@ (r) .ts > r .ts

)
THEN

(

r .dir:=@ (r) .dir; r .ts:=r .clock;
@ (r) .ts:=r .clock

)
ELSE

(

@ (r) .ts:=r .clock; @ (r) .dir:=r .dir
);

move(r ,@ (r) + r .dir)
}

Notice that we are now adopting a disjunctive-style specifi-
cation for ρ′. We can interpret the term ρ′ as follows:

1. every robot r must participate in all interactions with its
port r .tick, and will move in the map according to its
stored direction r .dir;

2. every robot r either updates its direction with the one
stored in the node @ (r) if the latter is more recent (i.e.
if @ (r) .ts > r .ts) or overwrites the direction stored in
the node with its own otherwise.

Example 5 has also been implemented using the DReAM
Java API. For a comparison with Example 4, we fixed the
same parameters regarding number of robots, initial direc-
tions, set of tested grid sizes and mapping criterion.

We can reasonably expect a similar correlation between
convergence time and grid size as in the case for communicat-
ing robots. Indeed, this is confirmed by the graph in Fig. 10,
which shows the trends in the number of flocks for different
grid sizes.

It is worth observing that convergence time and grid size
are, again, not always directly proportional: here it is notice-
able how the robots converge to a single flock for grid sizes
equal to 15 and 21 in roughly half the time it takes for them
to converge on the smaller grid with s = 12.

The graphs in Fig. 11 compare directly the convergence
trends using the two approaches on grids of different sizes.
From these we can appreciate how the stigmergy-based solu-
tion performs roughly on-par with the interaction-based one

Fig. 10 Evolution of the number of flocks over time at different com-
munication ranges

for small maps, progressively losing ground to the latter as
the map becomes larger. This comparison also helps to bet-
ter visualize how the implementation not resorting on sensors
initially requires some time to populate the map with infor-
mation which is proportional with the size of the map itself.

Example 6 (Reconfigurable ring)Consider a systemofNodes
arranged in a ring topologywhere a passing token allows each
Node, in turns, to communicate with the next. This rather
simple coordination scheme is enriched with two dynamic
elements characterizing the system:

1. new Nodes are created and added to the ring constantly,
until it reaches a given size limit N ;

2. Nodes can fail and get removed from the ring at a rate
that increases with the ring size.

The Node component type is represented in Fig. 12. Each
Node has two local variables: payload, that holds the next
value to send, and buffer, that stores the last value received.
The payload variable is initialized via the operation δpl asso-
ciated with the transitions that change the control location of
a Node from empty to full. The out and in ports are used
intuitively to model the send and receive actions that a Node
can perform with its neighbours in the ring, while the init
port is used to handle more conveniently the bootstrapping
of the system when all Nodes are in the initial empty control
location.

Themotif that will model the system needs to be equipped
with an appropriate Map to represent the ring topology of
interest, which is essentially a cyclic directed graph with
just one cycle. The functions associated with this kind of
Map will have to allow adding and removing Map nodes by
also updating the set of edges in order to preserve the initial
properties of the graph. Furthermore, we assume that initially

123

452 R. D. Nicola et al.

(a)

(b)

(c)

(d)

Fig. 11 Comparison between the two approaches at different grid sizes

Fig. 12 The Node component type

Fig. 13 A representation of a ring with four Node instances and the
corresponding Map

each Node instance has a one-to-one correspondence with a
Map node. Figure 13 illustrates a graphical representation of
the ring with four Node instances, where the data flow and
relationship between component instances and locations of
theMap are highlighted in green.

Having these ingredients, we can define a coordination
term ρ that realizes the described behaviour adopting the
conjunctive style. This allows us to be compositional in our
design process, so we will make use of this advantage and
divide the problem of defining ρ into three simpler sub-
problems.

First,wewillmodel how the ring grows and shrinks as new
Node instances are created and removed. As we previously
mentioned, we will design the system in such a way that one
new Node is added to the ring as long as its size is less than
N . At the same time, any Node instance in the system can
terminate and get removed from the ring with probability

D
(
ring.size

N

)2
, where D ∈ [0, 1]. When this happens, the

ring will automatically reconfigure to preserve the overall
structure as illustrated in Fig. 14. To keep the example simple,
we encode the information required to model this behaviour
directly within the motif: the constants N and D will be
statically defined within the coordination term ρ, and the
current ring size will be obtained from a property of theMap
(i.e. the number of Map nodes).

We can encode this behaviour with the following term:

ρ1 = (ring.size < N) � true

→ create(Node, ring.newAddress)

&

∀n : Node{

rand < D (ring.size/N)2 � true

→ remove(@ (n)) ; delete(n)
}

where:

123

TheDReAM framework for dynamic reconfigurable architecture modelling: theory… 453

(a) (b)

Fig. 14 How the system handles Node deletion

– ring.newAddress is a function of the Map that creates a
new location and returns its address;

– rand ∈ [0, 1] is a random number.

Next, wewill define how components interact and transfer
data. Communication is binary between neighbouringNodes
in the ring: a Node ni can send data to a Node n j only if the
edge

(
@ (ni) ,@

(
n j

))
belongs to the ring Map (which we

express with the predicate @ (ni)→@
(
n j

)
). Additionally,

the Node sending data and the one receiving it have to par-
ticipate in the interaction with ports out and in, respectively.
We can encode these constraints in the following way:

ρ2 = ∀n1, n2 : Node{

n1.out � @ (n1)→@ (n2) ∧ n2.in → ∅}
&

∀n1, n2 : Node{

n1.in � @ (n2)→@ (n1) ∧ n2.out

→ n1.buffer:=n2.payload
}

Lastly, we need to handle the transient situations when
all Nodes are in the empty (initial) control location. We can
model a system with a single passing token by defining a
coordination term that allows just one Node instance to per-
form an init provided that every otherNode instance is empty
and stays idle:

ρ3 =∀n1, n2 : Node{

n1.init � n1 = n2 ∨ (n2.empty ∧ n2.idle) → ∅}

This term will come into play after the creation of the very
first Node instance in the ring and in the event that the Node
instance holding the token gets removed from the ring.

The overall coordination term ρ of the motif modelling
the system will be the conjunction of the given terms:

ρ = ρ1 & ρ2 & ρ3

Table 1 Growth probability at
varying ring sizes for N = 20
and D = 0.5

Ring.size Growth prob. (%)

1 99.8750

2 99.0025

3 96.6628

4 92.2368

5 85.3215

6 75.8613

7 64.2465

8 51.3219

9 38.2605

10 26.3076

11 16.4656

12 9.2420

13 4.5731

14 1.9555

15 0.7058

16 0.2090

17 0.0490

18 0.0087

19 0.0011

20 0.0001

We executed Example 6 using the DReAM Java API. Like
with Examples 4 and 5, we monitored a simple metric of the
system to see how it behaves overall, but in this casewe chose
the size of the ring (i.e. the number of activeNode instances).
Choosing the system parameters N = 20 and D = 0.5, the
probability that the ring will grow in size at each iteration
can be easily computed as pg(n) = (1 − pd (n))n , where n
is the current size of the ring and pd(n) = 0.5 · (n/20)2 is
the probability that at least oneNodewill get deleted. Table 1
displays the values of pg for n ranging from 1 to N .

Figure 15 visualizes the results produced by the first
200 iterations of the execution engine. The graph shows a
behaviour that is in line with what we could expect from the
system with the given N and D: the probability of the ring to
steadily grow towards the size cap falls below 25% once the
population of Nodes surpasses 10, and the likelihood that the
growth is going to be negated by at least one Node instance
getting deleted exceeds 95% when the size of the ring
reaches 13.

6 Related work

DReAM allows both conjunctive and disjunctive-style mod-
elling of dynamic reconfigurable systems. It inherits the
expressiveness of the coordination mechanisms of BIP [9] as
it directly encompasses multiparty interaction and extends
previous work on modelling parametric architectures [11]

123

454 R. D. Nicola et al.

Fig. 15 Evolution of the number of Nodes in the ring

in many respects. In DReAM interactions involve not only
transfer of values but also encompass reconfiguration and
self-organization by relying on the notions of maps and
motifs.

When the disjunctive style is adopted,DReAM can be con-
sidered as an exogenous coordination language, e.g. anADL.
A comparison with the many ADL’s is beyond the scope of
the paper. Nonetheless, to the best of our knowledge DReAM
surpasses existing exogenous coordination frameworks in
that it offers a well-thought and methodologically complete
set of primitives and concepts.

When conjunctive style is adopted, DReAM can be used
as an endogenous coordination language comparable to pro-
cess calculi to the extent they rely on a single associative
parallel composition operator. InDReAM this operator is log-
ical conjunction. It is easy to show that for existing process
calculi parallel composition is a specialization of conjunc-
tion in Interaction Logic. For CCS [12] the causal rules are
of the form true ⇒ p ∧ true ⇒ p̄, where p and p̄ are
input and output port names corresponding to port symbol
p. In this context, strong synchronization can also be mod-
elled without resorting to restriction by using causal rules
like p ⇒ p̄ ∧ p̄ ⇒ p. For CSP [13], the interface parallel
operator parametrized by the shared channel a can be mod-
elled in PIL by defining a set of ports A implementing a and
using causal rules of the form ai ⇒ ∧

a j∈A a j for all ai ∈ A.
Also other richer calculi, such as π -calculus [14], that

offer the possibility of modelling dynamic infrastructure
via channel passing can be modelled in DReAM with its
reconfiguration operations. Formalisms with richer com-
munication models, such as AbC [15], offering multicast
communications by selecting groups of partners according
to predicates over their attributes, can also be rendered in
DReAM. Attribute based interaction can be simulated by our

interaction mechanism involving guards on the exchanged
values and atomic transfer of values.

DReAM was designed with autonomy in mind. As such
it has some similarities with languages for autonomous sys-
tems in particular robotic systems such as Buzz [10,16]. Our
framework is more general as it does not rely on assumptions
about the timed synchronous cyclic behaviour of compo-
nents. Nonetheless, we are investigating the possibility of
introducing the notion of time explicitly as this will be use-
ful when specifying some types of dynamic systems.

The relationships between our approach and graph based
architectural description languages such as ADR [17] and
HDR [18] will be the subject of future work.

Finally, DReAM shares the same conceptual framework
with DR-BIP [19]. The latter is an extension of BIPwith com-
ponent dynamism and reconfiguration. As such it adopts an
exogenous and imperative approach based on the use of con-
nectors. A detailed comparison between DReAM and DR-BIP
will be the object of a forthcoming publication.

7 Discussion

We have proposed a framework for the description of
dynamic reconfigurable systems supporting their incremen-
tal construction according to a hierarchy of structuring
concepts going from components to sets of motifs forming
a system. Such a hierarchy guarantees enhanced expressive-
ness and incremental modifiability thanks to the following
features:

Incremental modifiability of models at all levels: The
interaction rules associated with a component in a motif can
be modified and composed independently. Components can
be defined independently of themaps and their context of use
in a motif. Self-organization can be modelled by combining
motifs, i.e. system modes for which particular interaction
rules hold.

Expressiveness: This is inherited from BIP as the possibil-
ity to directly specify any kind of static coordination without
modifying the involved components or adding extra coor-
dinating components. Regarding dynamic coordination, the
proposed language directly encompasses the identified lev-
els of dynamicity by supporting component types and the
expressive power of first-order logic. Nonetheless, explicit
handling of quantifiers is limited to declarations that link
component names to coordinates.

Abstract Semantics: The language relies on an opera-
tional semantics that admits a variety of implementations
between two extreme cases. One consists in pre-computing a
global interaction constraint applied to an unstructured set of
component instances and choosing the enabled interactions
and the corresponding operations for a given configuration.

123

TheDReAM framework for dynamic reconfigurable architecture modelling: theory… 455

The other consists in computing separately interactions for
motifs or groups of components and combining them.

The results about the relationship between conjunctive
and disjunctive styles show that while they are both equally
expressive for interactions without data transfer, the disjunc-
tive style is more expressive when interactions involve data
transfer. We plan to further investigate this relationship to
characterize more precisely this limitation that seems to be
inherent to modular specifications.

All results are still recent andmany open research avenues
need to be explored. The language and its tools should
be evaluated against real-life mobile applications such as
autonomous transport systems, swarm robotics or telecom-
munication systems.

References

1. Garlan, D.: Software architecture: a travelogue. In: Proceedings of
the on Future of Software Engineering, pp. 29–39. ACM (2014)

2. Taivalsaari, A., Mikkonen, T., Systä, K.: Liquid software mani-
festo: the era of multiple device ownership and its implications
for software architecture. In: Proceedings of the 38th Computer
Software and Applications Conference, pp. 338–343. IEEE (2014)

3. Bradbury, J.S.: Organizing definitions and formalisms for dynamic
software architectures, Technical Report, vol. 477 (2004)

4. Oreizy, P., et al.: Issues in modeling and analyzing dynamic soft-
ware architectures. In: Proceedings of the International Workshop
on the Role of Software Architecture in Testing and Analysis,
pp. 54–57 (1998)

5. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.:What
industry needs from architectural languages: a survey. IEEE Trans.
Softw. Eng. 39(6), 869–891 (2013)

6. Butting, A., Heim, R., Kautz, O., Ringert, J.O., Rumpe, B.,
Wortmann, A.: A classification of dynamic reconfiguration in
component and connector architecture description languages. In:
Pre-proceedings of 4th International Workshop on Interplay of
Model-Driven and Component-Based Software Engineering, p. 13
(2017)

7. Medvidovic, N., Dashofy, E.M., Taylor, R.N.: Moving architec-
tural description from under the technology lamppost. Inf. Softw.
Technol. 49(1), 12–31 (2007)

8. De Nicola, R., Maggi, A., Sifakis, J.: Dream: dynamic reconfig-
urable architecture modeling. In: Margaria, T., Steffen, B. (eds.)
Leveraging Applications of Formal Methods, Verification and Val-
idation. Distributed Systems, pp. 13–31. Springer, Cham (2018)

9. Bliudze, S., Sifakis, J.: The algebra of connectors: structuring inter-
action in BIP. IEEE Trans. Comput. 57(10), 1315–1330 (2008)

10. Pinciroli, C., Lee-Brown, A., Beltrame, G.: Buzz: An extensible
programming language for self-organizing heterogeneous robot
swarms. arXiv preprint arXiv:1507.05946 (2015)

11. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic
architectures using Dy-BIP. In: Software Composition, pp. 1–16.
Springer, Berlin (2012)

12. Milner, R.: A calculus of communicating systems (1980)
13. Brookes, S.D., Hoare, C.A., Roscoe, A.W.: A theory of communi-

cating sequential processes. J. ACM 31(3), 560–599 (1984)
14. Milner, R., Parrow, J.,Walker, D.: ACalculusOfMobile Processes,

I. Inf. Comput. 100(1), 1–40 (1992)
15. Alrahman, Y. Abd, Nicola, R. De, Loreti, M.: On the power of

attribute-based communication. In: Proceedings of the Formal
Techniques for Distributed Objects, Components, and Systems—
FORTE 2016—36th IFIP WG 6.1 International Conference

16. Pinciroli, C., Beltrame, G.: Buzz: an extensible programming
language for heterogeneous swarm robotics. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
2016, pp. 3794–3800, IEEE (2016)

17. Bruni, R., Lafuente, A. L., Montanari, U., Tuosto, E.: Style based
reconfigurations of software architectures, Universita di Pisa, Tech.
Rep. TR-07-17, (2007)

18. Bruni, R., Lluch-Lafuente, A., Montanari, U.: Hierarchical design
rewriting with maude. Electron. Notes Theor. Comput. Sci. 238(3),
45–62 (2009)

19. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Four exercises
in programming dynamic reconfigurable systems: methodology
and solution in DR-BIP. In: ISoLA 2018, vol. 11246. Springer
(2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1507.05946

	The DReAM framework for dynamic reconfigurable architecture modelling: theory and applications
	Abstract
	1 Introduction
	2 Static architectures: the PIL coordination language
	2.1 Components
	2.2 Propositional Interaction Logic (PIL)
	2.3 Disjunctive versus conjunctive specification style

	3 Static architectures with transfer of values: the PILOps coordination language
	3.1 PILOps components
	3.2 Propositional interaction logic with operations (PILOps)
	3.2.1 Axioms for PILOps
	3.2.2 Operations

	3.3 Disjunctive versus conjunctive specification style in PILOps

	4 The DReAM framework
	4.1 Component types and component instances
	4.2 Motif modelling
	4.3 The DReAM coordination language
	4.3.1 Declaration expansion for coordination terms
	4.3.2 Reconfiguration operations

	4.4 Operational semantics of motifs
	4.5 System-level operational semantics

	5 An executable implementation of DReAM
	5.1 Applications and benchmarks

	6 Related work
	7 Discussion
	References

