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Abstract
In this article, we present a concrete realisation of the ETCS hybrid level 3 concept, whose practical viability was evaluated
in a field demonstration in 2017. Hybrid level 3 introduces virtual subsections as sub-divisions of classical track sections
with trackside train detection. Our approach introduces an add-on for the radio block centre (RBC) of Thales, called virtual
block function (VBF), which computes the occupation states of the virtual subsections using the train position reports, train
integrity information, and the track occupation states. From the perspective of the RBC, the VBF behaves as an interlocking
that transmits all signal aspects for virtual signals introduced for each virtual subsection to the RBC. We report on the
development of the VBF, implemented as a formal B model executed at runtime using ProB and successfully used in a field
demonstration to control real trains.
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1 Introduction

1.1 ETCS levels 1–3

The European Train Control System (ETCS) provides three
progressively advanced levels for controlling trains. In ETCS
level 1 the track is fitted with Eurobalises. When trains pass
over those balises, they obtain precise position information
and (statically precomputed) movement authorities. Optical
signals are still necessary in level 1 and need to be obeyed
by the train driver. Level 1 also requires trackside detection
devices which detect whether a portion of track is free of any
train. In practice this is done using either track circuits or
axle counters. The latter count the number of axles entering
and leaving a track section; if no axles remain, a portion of
track is considered to be free.

In ETCS level 2 movement authorities are provided by
a radio block centre (RBC) which communicates by radio
with the trains. The trains send regular position reports to
the RBC. These reports provide an alternate means to locate
trains (with some delay and imprecision and obviously only
for those trains that do send messages). While optical signals
are no longer required, Eurobalises are still used as refer-
ence points for train positioning, and trackside detection is
also necessary, e.g., to deal with non-talkative trains. ETCS
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level 2 still operates with so-called fixed blocks, which are
considered either completely free or fully occupied.

Trackside detection can be quite expensive and does not
provide details about which trains are occupying a particular
track section. InETCS level 3 one can dispensewith trackside
detection: there no longer are fixed track sections that are
marked as free or occupied. Instead, every train is surrounded
by an envelope (moving block) which is reserved for just this
train. An important concept in ETCS level 3 is train integrity:
in principle a train can lose its integrity, e.g., lose some of
its wagons. This can pose a risk to trains which follow such
a train, in particular if there is no trackside detection. If a
train is not guaranteed to have full integrity, it is thus not safe
to release track sections behind the train. ETCS level 3 thus
requires trains to have built-in train integrity detection, and
may require “sweeping” the track if integrity is lost.

1.2 Hybrid level 3

The new specification “Hybrid ERTMS/ETCS Level 3”
(HL3) [1] describes a novel train control concept, incorpo-
rating classical trackside train detection, radio-based position
reports, and train integrity information.

Indeed, the absence of trackside detection in ETCS level 3
can lead to degraded performancewhen a train loses integrity
or can no longer communicate with the RBC. The motiva-
tion of hybrid level 3 (HL3) is to combine the advantages of
ETCS level 2 and 3. When present, existing trackside detec-
tion can be used by HL3 to deal with non-talkative trains or
with situations where trains lose integrity. Also, HL3 does
not use full moving blocks, but divides sections into virtual
subsections. These virtual subsections act like fixed blocks,
but with a much finer granularity than in ETCS level 2. This
can be seen in Fig. 1: at the bottom there are two sections
with trackside detection, which are divided each into three
virtual subsections. The occupancy status of a virtual sub-
section is derived from train position reports in combination
with trackside detection information. Hence, one can obtain
more throughput (fit more trains on the track), while reusing
ETCS level 2 equipment to a large extent. Also, in contrast
to a solution without any trackside train detection (pure level
3), not all trains need to be equipped with an ETCS on-board
unit and a TIMS (Train integrity monitoring system).

1.3 Virtual block function for HL3

In June 2017 the Heinrich Heine University Düsseldorf
(HHU) was asked by Thales Deutschland GmbH to con-
tribute to a field demonstration of feasibility of the ETCS
hybrid level 3 principles. The call for tender was initiated
by ProRail Netherland, with a demonstration planned on a
test track at the ETCS National Integration Facility (ENIF),
provided by Network Rail (UK) for December 2017.
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Fig. 1 The role of the virtual block function (VBF)

This resulted in the present cooperation between Thales
and HHU, with additional support provided by ClearSy. The
goal was to develop an executable version of the HL3 spec-
ification, called virtual block function (VBF), which is an
add-on for the existingThales radio block centre (RBC)with-
out adapting the RBC core functionalities. The main idea is
that the VBF partitions each trackside train detection section
(TTD) into virtual subsections (VSS). For the RBC, the track
is thus decomposed into finer-grained sections compared to
the TTDs. The VBF computes the occupation status of each
VSS by using the TTD occupation status and train position
reports including train integrity information.

As mentioned, in Fig. 1 you can see that we have two
areas at the bottom each with a trackside detection device.
The VBF knows that the left one is occupied and the right
one is free. However, for the RBC it simulates the exis-
tence of six areas and six trackside detection devices. Based
on the train position information, the VBF can already free
part of the occupied left track for following trains, enabling
higher throughput without having to install additional track-
side equipment.As far as theRBC is concerned, theVBF thus
mimics an interlocking (IXL), providing an impression of a
finer-grained track layout with additional trackside detection
devices.1

Tools used Systemmodellingwas achieved using decompo-
sition into components using the classical B syntax and struc-
turing mechanisms (e.g., including or extending machines).
The validation was done using the ProB animator andmodel
checker [2], along with custom visualisations developed in
JavaFX and Tcl/Tk. The final prototype was executed using
the ProB animation engine, controlled by ProB Java API
along with Java and C code to interface with the various
trackside components at runtime.

1 Note that an interlockingmanages not just trackside detection devices
and signals but also routes and points. In our initial experiments, the
topologywas linear, so therewere no points and just one route tomanage
by the IXL.
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Fig. 2 Using the formal model for real-life demonstrations

Distinctive features The complete principles HL3 specifi-
cation was modelled in a formal language. We uncovered
several dozen important issues with the existing principles
HL3 specification, leading to multiple changes which found
their way into two new, updated versions of the reference
document [1].

Note that the parts of the model shown in this paper and
the issues that are discussed are based on version 1A of the
HL3 specification.

The formal B model was executed without code genera-
tion, as illustrated in Fig. 2. It was run in real time using the
ProB interpreter alongside either Thales simulators or real
trains and interlockings. To our knowledge, this is the first
time that a formal model was used at runtime as a prototype
for a safety critical system. There are other uses of formal
models as prototypes (see, e.g., [3]); here we use the formal
model embedded in a real-world setting to conduct tests in
real-time with actual hardware (real trains being controlled
by the VBF in conjunction with real subcomponents such as
the RBC and IXL and on-board units).

This is an extended version of the conference article [4],
providingmuchmore details about themodelling, the choices
made and the validation conducted along with the issues
found.

2 Formal language and tools used

The B-method [5] is a formal method that arose out of Z
[6], with a focus on tool support and successive refinement
to derive provably correct implementations out of high-level
specifications. The B-method is arguably one of the indus-
trially more successful formal methods. The initial industrial

use of B was for line 14 in Paris [7], whose product has been
adapted for many other metro lines worldwide (e.g., [8]).
This initial version of B, as laid out in [5] and supported by
Atelier- B, is now called classical B or also “B for soft-
ware”.

Out of the experience with classical B, Abrial developed
a successor eventually called Event-B. The main addition
though is a more flexible refinement concept targeted at sys-
tems modelling. Event-B is supported by the rodin platform
[9]. It is maybe less known that Atelier- B also supports
an Event-B dialect. Another less known fact is that one can
also make use of classical B for systems modelling, using
B’s inclusion mechanism to decompose a system into com-
ponents. This is what we have done in this paper, and justify
our choice later in Sect. 7.2.

In this paper we mainly use the animator and model
checkerProB [2],which supports both classicalBandEvent-
B, and also has support for theAtelier- Bdialect ofEvent-B.
ProB also provides a few extensions to the core B language,
which have not yet made their way into rodin or Atelier-
B. In this paper we have used some of these extensions and
also explain why we have done so.

2.1 Some background about B

A formal B model is composed of a variety of B machines.
Each machine may contain any of the following items:

– new base sets.
– constants along with axioms (aka PROPERTIES) which
describe the types and allowed values for the constants.

– variables along with invariants which describe the type
and allowed values for the variables.
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Table 1 Important B operators
used in the model fragments

Symbol Math Meaning

! ∀ Universal quantification

# ∃ Existential quantification

& ∧ Conjunction

or ∨ Disjunction

=> ⇒ Implication

= = Equal

/= �= Not equal

: ∈ Set membership

/: /∈ Not in set

<: ⊆ Subset

{} ∅ Empty set

{x|P} {x | P} Set defined by predicate P

\/ ∪ Set union

/\ ∩ Set intersection

\ \ Set difference

UNION
⋃

Quantified union

|-> 
→ Pair constructor

dom(r) Domain of a function or relation r

ran(r) Range of a function or relation r

f(x) Application of a function f to x

size(s) Length of a sequence

INTEGER ZZ Set of mathematical integers

NATURAL IN Set of natural numbers (≥ 0)

POW(S) P(S) All subsets of S

<-> ↔ Relation

--> → Total function

+-> →+ Partial function

seq(S) Set of sequences over S

iseq(S) Set of injective sequences over S (i.e., no repetitions)

– operations which can change the values of the variables
of the machine. Operations can take parameters and may
have guards, i.e., predicates which state when they are
enabled and can be executed. In the context of systems
modelling operations are typically called events.

A machine may refine another machine, and may include
any number of other subsidiary machines.

Table 1 contains the important B operators, that are
required to understand the fragments presented in this article.

Here is a smallBmachine thatmanages trains and integrity
information. The machine introduces two new base sets:
TRAIN and REPORTED_TRAIN_INTEGRITY. The first
one is called a deferred set: its members are left open and
can be specified at a later point in time. The second one
is fixed and called an enumerated set: all its members are
provided. The machine has no constants but two variables
along with invariants. The variable registered is a sub-
set of TRAIN and the variable status is a total function

from the registered trains to their integrity status. The opera-
tion register_train adds a new train to registered
and sets its status tono_integrity_information. The
operation is enabled when there exists a train trwhich is not
yet registered. The body of the operation is executed atomi-
cally, resulting in a final state where both registered and
status are updated and the invariant holds.

MACHINE Trains
SETS TRAIN ;

REPORTED_TRAIN_INTEGRITY =
{confirmed_integrity,
no_integrity_information,
lost_integrity}

VARIABLES registered, status
INVARIANTS

registered <: TRAIN &
status : registered --> REPORTED_TRAIN_

INTEGRITY
OPERATIONS

register_train(tr) = SELECT not(tr:registered)
THEN
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registered := registered \/ {tr} ||
status(tr) := no_integrity_information

END
...
END

3 Core concepts of HL3

In HL3 a track consists of various sections, each with their
own train detection device (TTD). Each TTD can either be
free or occupied. Note that a faulty TTD can mark a track
section to be occupied, even though it is in fact free. The
converse is assumed to be impossible.2

Each TTD is divided into one or more virtual subsections
(VSS). A VSS can have four different states, which describe
its occupancy status:

– free: the VSS is guaranteed to be free;
– occupied: the VSS is occupied by a communicating train
and nothing else;

– unknown: the VSS is not occupied by a communicating
train, but may be occupied by other non-communicating
trains or obstacles;

– ambiguous: : the VSS is occupied by a communicat-
ing train, and may also be occupied by other non-
communicating trains or obstacles.

The HL3 specification describes 12 (4 × 3) transition of
a VSS state to another state. Each transition is divided into
various cases (#1A, #1B,…), and each case has various con-
ditions associated with it. Table 2 shows the two variations of
transition 9 from ambiguous to free and the associated con-
ditions. Observe that some transitions have priorities over
other transitions. For example, the transition #9B has prior-
ity over all transitions 10 from ambiguous to unknown: if the
conditions for #9B and any variant of #10 are satisfied, only
transition #9B will be performed.

The transitions take into account changes in the TTD sta-
tus, new position reports from the trains, but also various
timers which can expire. For example, there are timers which
expire when a train has not sent a position report for too long.
More details about HL3 can be found in the introduction to
this special issue. In particular the precise notion of ghost
trains and shadow trains, and the associated timers. Para-
phrasing [1], a ghost train is either a real physical object or a
train occupying a TTD, but which is unknown (i.e., it is not
sending position reports). It may also be a virtual artefact,
which seems to occupy a TTD, but is caused by a failure of
the TTD. A shadow train is a ghost train that is following a
known train.

2 Each TTD is a SIL4 device, i.e., on average one dangerous failure per
10,000 operating years.

4 Requirements andmodelling strategy

Due to the strict deadline for the HL3 field demonstration
(in December 2017) and the very short time span for the
project, it was decided to use off-the-shelf RBC and inter-
locking systems and use a formal B model [5] of the VBF
as an executable demonstrator. More precisely:

– The Thales RBC core was to be used as is, without mod-
ifications for HL3. (Thales owns a product line for the
RBC software to configure the generic software to the
project specific requirements).

– The interlocking was used as is, without modifications
for HL3.3

– The VBF had to be developed from scratch as an add-on
for the RBC, which was to mimic an interlocking and
transmit the signal aspects for the virtual signals to the
RBC. The VBF contains a VSS state machine, with four
possible states (free, occupied, unknown and ambiguous)
for each VSS, exactly as required by the HL3 specifica-
tion.

The following main tasks are the focus of this project:

T1: Providing evidence that the HL3 principles are consis-
tent and complete to handle possible hazards and to
allow the desired operational behaviour.

T2: Implementation of the VBF as an independent software
unit by supporting the given interfaces to the other com-
ponents. The implementation should conform to the
HL3 principles.

To accomplish the first task, we decided to derive a for-
mal B model from the HL3 specification. The decision was
based on diverse work (e.g., [7,10–15]) which provided evi-
dence that B is well suited for the railway domain. Moreover,
first experiments were very promising: in a few days it was
possible to model some simpler transitions of the HL3 spec-
ification.

For task T2, we intended to implement all interfaces
(boundaries) to other components by hand and to use a clas-
sical testing approach to ensure their correct functioning. To
reuse the formal model from task T1 for task T2, we had
three options:

1. Using the model as a template to implement the VBF
core by hand.

2. Generating code from the model and combine this code
and the handwritten boundaries.

3. Executing the model at runtime by incorporating the exe-
cution engine and the handwritten boundaries.

3 Except for the TTD occupation status which has to be sent from the
IXL to the VBF/RBC.
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Table 2 Definition of transition 9 from ambiguous to free in [1]

# Condition Priority over Section ref.

#9A (TTD is free) 3.1.1.5

#9B (integer train has reported to have left the VSS) #10 4.5.1.7

AND (the shadow train timer A of the TDD was not expired at the moment of

the time stamp in the position report)

The first option would require us to maintain both the
model and the code. This could be time-consuming if there
were changes to the specification (due to feedback from Pro-
Rail, the specification was changed considerably). With the
second approach, we would have to use an existing code
generator (there was no time to develop our own) and thus
have to refine our abstract B model down to implementa-
tion level B0—also time-consuming. Concerning the third
option, we had already gained some experience of integrating
ProB [16] as the execution engine in different software prod-
ucts [17,18]. Given our time constraints, the third option was
the only feasible option, but it also posed the biggest research
challenge: using a formal model at runtime interacting with
various hardware and software components.
Model structure The VBF model (without environment)
consists of 13 B Machines, 14 definition files and has 45
constants and 33 variables.

We used package pragmas to put topology independent
parts separate from test data and from tests. We used ProB’s
package pragmas, which allow different machines to be put
into different folders. The contents of a package X can be
found in the folder of the same name X, while the contents of
a package X.Y can be found in the folder Y within the folder
X.

The main, topology independent machines were found in
the main package and the associated main directory:

/*@package main */
MACHINE VSS_Constants
...

The environment model, still topology independent, was
in another directory, test/environment:

/*@package test.environment */
/*@import-package main */
MACHINE ENV_Model
SEES

VSS_TTD_Constants
...

Finally, the topology dependent machines were to be
found various sub-folders of test/environment, such
as test/environment/ENIF for the on-site field tests:

/*@package test.environment.ENIF */
/*@import-package test.environment */
/*@import-package main */

MACHINE ENV_Model_ENIF_LeftToRight
EXTENDS

ENV_Model
...

We have various instances of our model in these sub-
directories:

– a very simple topology,
– the topology from the HL3 specification (HL3),
– the actual topology to be used for the on-site field tests
(ENIF).

The topology data was put into XML files, which were
read using ProB’s external library for reading XML. We
reused parts of our Rubin engineering rules [17] to process
the XML and turn it into B datavalues.

Traceability The names of the VSS state machine transitions
have been used within the model:

– as the name of B operations. For example, the transition
9A fromambiguous to free ismodelled by theBoperation
VSS_Ambiguous_Free_9A.

– some higher-level operations, which collect updates to
the various VSS, return the track name and transition
number (such as 9A) as return result, which can be
inspected in the ProB animation interface.

We also used ProB’s pragmas to include text from the
HL3 specification, sometimes verbatim, along with elab-
orations/descriptions. This text is available when reading
the model, but also in ProB’s user interface. Indeed, ProB
allows using two kinds of pragmas that helpwith traceability:

– label pragmas that precede predicates. This is useful for
requirements identifiers or links to sections in the require-
ments document. The syntax of this kind of pragma is:

/*@label “LABEL” */ Predicate.

– description pragmas that follow predicates and identi-
fiers. This is useful for longer justifications or explana-
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tions. Such a pragma looks like the following:

Formula /*@desc “DESC” */.

The labels are shown byProB e.g., in the state view.Also,
when invariant violations occur, ProB can give the user the
label of the false predicates. Descriptions can be shown by
right-clicking on elements in the ProB animator.

An example use of labels is visible in the following excerpt
from our model, to which we will return to later:

DEFINITIONS
Guard9A(vss) == vss:VSS & vss_state(vss) =
ambiguous
& /*@label "(TTD is free)" */

ttd_state(vss_ttd(vss)) = free
...
OPERATIONS
VSS_Ambiguous_Free_9A(vss) =

SELECT Guard9A(vss) THEN ... END
...

5 Model details

Below, we present different aspects of our B model along
with some source code snippets.

5.1 Basic datatypes

The modelling of the track was relatively straightforward,
which is not surprising since B’s relations can be used to
represent graphs and B provides many convenient operators
on relations and functions, which are just a special case of
graphs (see, e.g., Chapter 14 of “Modeling in Event-B" [19]).

However, for pragmatic reasons, we did not use Event-B
[19] but rather classical B [5] for modelling the VBF. For
example, we identify the VSSs, TTDs and trains using clas-
sical B strings. For simulation and execution purposes, we
had to read topology and configuration data from XML files
and thus could not populate enumerated sets beforehand. The
conversion of theXMLfile into B data structures for the VBF
model is also done in classical B using records and strings.4

Finally, we have used other features, such asmachine compo-
sition and operation calls (see Sect. 5.2), not readily available
in Event-B. More details can be found in Sect. 7.2.

Below, we try to give a flavour of our modelling by show-
ing some derived data structures for the track topology. First,
let us examine a part of a topology independent B machine
in our development.

PROPERTIES
VSS : POW(STRING)

4 The conversion is not shown in this paper since the XML data format
is proprietary.

& TTD : POW(STRING)
& VSS /\ TTD = {}
& next_vss : VSS +-> VSS
& vss_ttd: VSS --> TTD // maps VSS to their TTD
& TTD_STATE = {free,occupied}

// TTDs only have these two states
& next_ttd : TTD +-> TTD
& last_vss: TTD --> VSS
& /*@label "the last vss is part of its TTD" */

!t.(t:TTD => vss_ttd(last_vss(t)) = t)
& /*@label "a successor of a last vss is

in another TTD" */
!(t,n).(t:TTD & last_vss(t)|->n : next_vss

=> vss_ttd(n) /= t)
...

For example, the next_vss constant is a partial function
which links VSS to their successor VSS. The direction of the
track is thus constant for any given execution run.5 However,
the direction of the track can be toggled after executing a
scenario, since the conversion of the XML data is param-
eterised. Below we show how the next_vss constant is
derived in another B machine. Observe that we allow the IF-
THEN-ELSE to be applied to expressions and use an external
B function (see Section 6.3 in [17]) to read in the track data
from an XML file.

PROPERTIES
TRACK_DATA = READ_XML("./resources/prj_ENIF_

01@STR.xml")
...
& C_VSSSequence = DeriveVSSSequence(TRACK_DATA)
...
& next_vss = UNION(i, ii).(

i : dom(C_VSSSequence) &
ii : dom(C_VSSSequence) & ii = i + 1
| {IF RUNNING_DIRECTION = "LEFT_TO_RIGHT"

THEN C_VSSSequence(i) |-> C_VSSSequence
(ii)

ELSE C_VSSSequence(ii) |-> C_VSSSequence
(i) END

} )
...

5.1.1 Train status

Modelling the integrity state of trains revealed some ambi-
guities and inaccuracies within the HL3 specification. The
concept “integer” (for a train) is used in different contexts
within the specification. We try to explain the differences
with the aid of our model:

SETS
REPORTED_TRAIN_INTEGRITY =

{lost_integrity, confirmed_integrity,

5 Every scenario in the HL3 specification only has a single linear track
with trains running in one direction. Points are not considered by the
current version of the HL3 specification and they were not required for
the field tests at ENIF.
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no_integrity_information}
; INTERNAL_TRAIN_INTEGRITY = {integer, not_

integer}
PROPERTIES
TRAIN_INTEGRITY_MAPPING = {
"TRAIN_INTEGRITY_CONFIRMED_BY_INTEGRITY_

MONITORING_DEVICE"
|-> confirmed_integrity,

"TRAIN_INTEGRITY_CONFIRMED_BY_DRIVER"
|-> confirmed_integrity,

"NO_TRAIN_INTEGRITY_AVAILABLE"
|-> no_integrity_information,

"TRAIN_INTEGRITY_LOST"
|-> lost_integrity}

...

INVARIANT
registeredTrains : POW(STRING) &

& train_reportedTrainIntegrity
: registeredTrains --> REPORTED_TRAIN

_INTEGRITY
& train_integrity

: registeredTrains --> INTERNAL_TRAIN
_INTEGRITY
...

According to the ERTMS/ETCS specifications [20], a
train can send four possible integrity status values within a
train position report, which are represented by the domain
of the constant TRAIN_INTEGRITY_MAPPING. How-
ever, the HL3 specification only distinguishes between
three values, which are represented by the enumerated
set REPORTED_TRAIN_INTEGRITY. The surjective func-
tion TRAIN_INTEGRITY_MAPPING defines the respective
mapping bridging the gap between these two specifica-
tion documents. Note, that this is not the only possible
mapping as an infrastructure manager could require to
map TRAIN_INTEGRITY_CONFIRMED_BY_DRIVER to
no_integrity_information to exclude human fail-
ure.

Moreover, the HL3 specification defines, in Sect. 3.5,
a further integrity state by using the terms “integer” and
“not integer” which is represented by the enumerated set
INTERNAL_TRAIN_INTEGRITY in our model.6 The con-
ditions of the state machine in the HL3 specification are
referring to this integrity state. Yet, an unambiguousmapping
from the reported train integrity to the internal train integrity
is missing in Sect. 3.5. Thus, we were forced to find a sensi-
ble interpretation; we defined the following two conditions
as triggers for the transition from “integer” to “non-integer”:

– “train reports ‘lost integrity’ ”
– “PTD [Positive Train Detection] with no integrity infor-

mation is received outside of the integrity waiting period”

6 The term “internal” train integrity refers to the internal state of the
VBF.

Both conditions are part of the transitions #7B and #8A [1,
Section 5.1.1.6]. The change of the train length (the remain-
ing condition of #7B and #8A) does not affect the internal
integrity status of a train but can have a consequence for VSS
states as it triggers the “train integrity propagation timer” of
the VSSs where the train is located.

The following operation manipulates the internal train
integrity variable in our model:

Train_SetIntegrityStatus(train, status) =
PRE status : REPORTED_TRAIN_INTEGRITY
THEN

train_reportedTrainIntegrity(train) :=
status ||

IF status = lost_integrity
THEN train_integrity(train) :=

not_integer
ELSIF status = confirmed_integrity
THEN StartTimerDelta(train|->WAIT_

INTEGRITY_TIMER)
|| train_integrity(train) :=

integer
ELSIF // no information available

train |-> WAIT_INTEGRITY_TIMER :
expiredTimers

THEN train_integrity(train) := not_
integer

END
END

However, the model checker ProB directly reported
an invariant violation. This is because a train does not
register itself by a train position report; thus, the vari-
able train_reportedTrainIntegrity is not a total
function with the registered trains as its domain. As a conse-
quence, we had to make a further decision by treating a train
as non_integer before the VBF receives the first position
report (interpretation to the safe side). We always tried to
avoid partial functions as it would mostly introduce handling
of special cases. Moreover, the description in the HL3 spec-
ification is imprecise regarding when to start the first “wait
integrity timer”: “A ‘wait integrity timer’ runs continuously
for every train […]” [1, Section 3.4.1.3.1]. We decided to
start the timer with first train position reported but not with
the registration.

We found a further inaccuracy with regard to the integrity
status in the specification:“For an integer train the confirmed
rear end location of the train is derived from […]” [1, Section
3.3.3.1]. Here, the term “integer train” is used which corre-
sponds to the internal train integrity of our model. However,
in Section 3.3.3.4 it is stated that “the confirmed rear end of
the train location is never updated by position reports with
integrity status ‘Lost’ or ‘No information available”’ [1,
Section 3.3.3.4]. Thus, Section 3.3.3.1 of the specification
should rather start with “For a train which reports confirmed
integrity” since a train can be integer while reporting “No
integrity information available”.
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5.1.2 Train location

Another essential concept in HL3 specification is the def-
inition of the train location (in our case the image of the
train location seen by the VBF) which is frequently referred
within the state machine transitions of the HL3 specification.
We mapped each registered train to a set of VSS within our
model:

INVARIANTS
...
& train_location : registeredTrains -->

POW(VSS)
...

In most cases, we just want to know if a certain train is
located on a certain VSS. For these cases, the data structure
for train_location as a total function from registered
trains to sets of VSS is very convenient. Alternatively, we
could have used a relation from trains to VSS, but we gener-
ally preferred functions over relations. One exception is the
next_vss constant binary relation between VSS, which is
frequently inverted in our model and can be obtained using
B’s relational inverse operator: next_vss∼.7 The order of
the VSS associated to a train is not incorporated into the
train_location definition, as this information is already
contained in the next_vss constant relation. The condi-
tion that a train location must not have any gaps (which is
not explicitly mentioned in the HL3 specification) can also
easily be expressed with the aid of next_vss as follows:

/*@label The train location must not have
any gaps */

!loc.(loc: ran(train_location)
=> #s.(s : iseq(loc)

& !i.(i : 1..size(s-1)
=> s(i) |-> s(i + 1) :

next_vss)))

More precisely, we state that that for every train loca-
tion loc corresponding to a set of VSSs, there must exist
an ordering of the VSSs (i.e., an element of iseq(loc))
such that these are chained together by the next relation (i.e.,
next_vss). Remember that Table 1 contains a brief expla-
nation of the B operators used in this article.

While the modelling of the train location data structures
was relatively straightforward, the updates to this variable
are, in our opinion, the most underspecified part of the HL3
specification. Some issues referring to the location are:

– Minor: “As long as the TTD where the max safe front
end is reported is free, the train location is not extended
onto the VSS which are part of this free TTD” [1, Section
3.3.2.1.2]. This is imprecise as the condition should be:

7 Inverting a function in VSS --> POW(VSS) is more cumbersome in
B.

only if the max safe front is reported to be on the next
free TTD but not the estimated front of the train.

– Fundamental: “[…] the train location is derived from the
estimated front end [...] of the last position report […]
as well as from TTD information […].” Is the train loca-
tion only updated/changed by processing train position
reports (in this case theTTD informationwill of course be
considered)? Or does a single TTD change event without
a train position report also update the train location? We
had tried both alternatives and in the end we decided to
use a train position report as the only trigger to update the
train location (as used by thefirst demonstrator inDecem-
ber 2017). The other alternative would have forced us to
adapt several transitions in order to be able to replay all
scenarios of the HL3 specification (version 1A). Note,
that the authors of the HL3 specification then decided on
the other alternative in version 1B which was released in
April 2018. As it was a fundamental change, it resulted in
a lot of inconsistencies between the statemachine and the
scenarios which were not solved until version 1C (also
thanks to our comments). But in the end, we think the
authors’ decision was the right one.

5.2 State machine transitions and priorities

We decided to model each VSS state machine transition in
the HL3 specification document as a B operation. For each
variation of the 12 possible transitionswe have one individual
B operation, with at least the affected VSS as parameter.
Some events also have the affected train as parameter.

The HL3 specification contains a table summarising all
12 transitions and their conditions. Table 2 shows the con-
ditions for the variations of transition 9 from ambiguous to
free. Below, we show the B translation of the state machine
transition (#9A) of the HL3 specification.

MACHINE VSS_StateMachine
...
DEFINITIONS
Guard9A(vss) == vss:VSS & vss_state(vss) =

ambiguous
& /*@label "(TTD is free)" */

ttd_state(vss_ttd(vss)) = free
...
OPERATIONS
VSS_Ambiguous_Free_9A(vss) =

SELECT
Guard9A(vss)

THEN
vss_state(vss) := free ||
// state of the virtual signal which

protects the vss
vss_signalState(vss) := PROCEED ||
...

END
...

123



324 D. Hansen et al.

Observe that the operation has the VSS under considera-
tion as parameter. Our model contains an outer loop which
ensures that all enabled transition operations for all VSSs are
processed; see Sect. 5.2.

For early validation (see, e.g., Sect. 6.3.1) it was useful to
have an individual operation for each transition. In ProB’s
animation view we can see at a glance which transitions are
enabled, and by inspecting the guard predicates we can anal-
yse the reason a transition is enabled or not enabled (see
traceability in Sect. 4).

However, in the model of the VBF, we need to exe-
cute in a given cycle all enabled VSS transitions, until no
more are applicable. We assume that the order of processing
the VSS updates is not significant (see [21] which studies
just this question). We also need to encode the priorities,
i.e., execute the transitions with a higher priority first. We
have experimented with various ways of encoding the pri-
orities, and have finally pursued a solution based on using a
large IF-THEN-ELSE with the guards as conditions, calling
respective operations of a subsidiary machine. More pre-
cisely, to solve this issue, we used the following approach:

1. extract the guard of each transition into a B definition,
so that we can reuse it. Above you see the definition
Guard9A which captures the conditions under which
transition 9A is applicable.

2. write aBmachine (VSS_Statemachine_Step)which
includes VSS_StateMachine and which encodes the
priorities using a nested IF-THEN-ELSE statement using
the guard definitions.

3. write a Bmachine (VSS_Statemachine_Run) which
includes VSS_Statemachine_Step and executes all
update steps until completion using a WHILE loop.

The IF-THEN-ELSE in step 2 ensures that the priorities of
the transitions are respected, e.g., that transition 2A has pri-
ority over 3, as requested by [1]. A return variableout stores
the exact VSS transition taken for debugging and analysis.
Here we show part of the corresponding operation:

MACHINE VSS_Statemachine_Step
INCLUDES VSS_Statemachine
...
out <-- VSSUpdateStep(vss) = PRE vss : VSS

THEN
IF Guard1A(vss) THEN

VSS_Free_To_Unknown_1A(vss) || out :=
"1A"

ELSIF Guard1B(vss) THEN
VSS_Free_To_Unknown_1B(vss) || out :=

"1B"
...
ELSIF #train.(train : registeredTrains &

Guard11B(vss, train)) THEN
ANY train
WHERE train : registeredTrains &

Guard11B(vss, train)
THEN

VSS_Ambiguous_Occupied_11B(vss,
train)

|| out := "11B"
END

ELSE
out := "NONE"

END
END

...

Execution of all VSS updates in a VBF cycle is done by
a B WHILE loop calling VSSUpdateStep.8 Again, the
output changes is for debugging with ProB, to be able to
see the VSSs that have changed their status and which HL3
transition was applied to perform the change.

MACHINE VSS_Statemachine_Run
INCLUDES VSS_Statemachine_Step
...
changes <-- VSSUpdateRun =

VAR vssSet IN
vssSet := VSS; changes := [];
WHILE vssSet /= {} DO

VAR currentVss, rule IN
currentVss := CHOOSE(vssSet);
vssSet := vssSet \ {currentVss};
rule <-- VSSUpdateStep(currentVss);
IF rule /= "NONE" THEN

changes := changes <- (currentVss
|-> rule)

END
END

INVARIANT vssSet <: VSS
VARIANT card(vssSet)
END

END
...

5.3 Modelling of time

We had a dedicated B machine (GenericTimer) to keep track
of the timers and the current time, modelled as an integer
B variable currentTime. The progress of time is mod-
elled by calling anoperationUpdateCurrentTimewhich
obtains the new time as an input and also updates the set of
expired and running timers. It is the only way time can be
modified in our model. During actual execution of our B
model, the surrounding Java program was responsible for
regularly calling the UpdateCurrentTime operation with the
current system time in milliseconds as parameter.

The GenericTimer machine provides various facilities to
add new timers and to inspect the status of the existing timers.

8 CHOOSE is the Hilbert operator which returns a designated element
for any given set. Note that CHOOSE is deterministic and is a mathe-
matical function, i.e., it will always return the same element given the
same set. It is an external function provided by ProB.
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It is also possible to query the machine for the earliest dead-
line.

/*@package main */
MACHINE GenericTimer(TimerNameDomain)
VARIABLES

timerDomain,
timerDeadline,
timerDefaultDelay,
expiredTimers,
runningTimers,
currentTime

INVARIANT
timerDomain <: Domain &
timerDeadline : timerDomain --> INTEGER &
timerDefaultDelay : timerDomain --> INTEGER &
currentTime : NATURAL &
expiredTimers <: timerDomain &
runningTimers <: timerDomain &
runningTimers /\ expiredTimers = {}

DEFINITIONS
ACTIVE_DEADLINES == ran({at,dd | at:

timerDomain &
dd=timerDeadline(at) & dd >= 0 &

currentTime < dd})
...

OPERATIONS
AddTimerFor(d,default) =
PRE d:Domain & d/: timerDomain & default:

INTEGER THEN
timerDomain := timerDomain \/ {d} ||
timerDeadline(d) := NOT_RUNNING ||
timerDefaultDelay(d) := default

END;
...
UpdateCurrentTime(newCurTime) =

PRE newCurTime>=currentTime
THEN

currentTime := newCurTime
|| expiredTimers :=

{t|t:timerDomain & TIMER_EXPIRED(t,
newCurTime)}

|| runningTimers :=
{t|t:timerDomain & TIMER_RUNNING(t,

newCurTime)}
END;

res <-- EarliestDeadline =
IF ACTIVE_DEADLINES = {}

THEN
res := NOT_RUNNING

ELSE
res := min(ACTIVE_DEADLINES)

END
...

6 Validation and verification

6.1 Animation of scenarios

The HL3 document describes a number of scenarios in addi-
tion to theVSS statemachine.We used these scenarios as test

specifications, i.e., to check that these scenarios are feasible
in our model.

To animate the scenarios with ProB, we developed an
environment model and composed it with the VBF core
model (software model) to obtain a system model. The
environment model has knowledge of the “real” (physical)
position of a train, which allows it to move the train and
to send train positions reports which are inputs of the VBF.
Belowwe showsomeparts of thismodel. The invariant shows
the relevant “real” state of the environment, as opposed to the
view of the VBF (and the VSS statemachine).

/*@package test.environment */
/*@import-package main */
MACHINE ENV_Model
...
INVARIANT

ENV_train_estimatedFEPosition : STRING +->
INTEGER
& ENV_train_length : STRING +-> NATURAL
& ENV_ttd_state : TTD --> TTD_STATE
& ENV_time : NATURAL
...

OPERATIONS
ENV_moveTrain(train, meter) =

SELECT
train : dom(ENV_train_estimatedFEPosition)
& meter : {10, 100, 500}

THEN
ENV_train_estimatedFEPosition(train) :=
IF RUNNING_DIRECTION = "LEFT_TO_RIGHT"

THEN
ENV_train_estimatedFEPosition(train) +

meter
ELSE
ENV_train_estimatedFEPosition(train) -

meter
END

; ENV_SET_TTD_STATE
END;

out <-- ENV_Train_register(train) =
SELECT

train : dom(ENV_train_estimatedFEPosition)
& train /: registeredTrains

THEN
...

Figure 3 shows a system state where the “real” position
differs from the train position within the VBF. In this case,
the physical train has already moved to VSS21 and the VBF
still sees the train in VSS12. Note that this is a very common
situation as trains usually only send its position cyclically
(e.g., each 6 s). Otherwise, this state can be seen as the sit-
uation where Train1 has already sent its position report, but
the VBF has not yet received it due to the delays of the com-
munication interface.

In summary, with the environment model it is possible to
trigger all interfaces of the VBF by generating the following
inputs:
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Fig. 3 Environment model: “physical” train position ($Train1) versus
train position image in the VBF (Train1)

– Train position reports including train integrity informa-
tion

– Train registrationmessage (i.e., “Start ofMission” in [1])
– Train deregistration message (i.e., “End of Mission” in
[1])

– Train data message (includes the train length)
– TTD occupation status
– Movement Authorities (MA) for trains

The environment model can make use of different tracks.
For example, we used the track snippet from the HL3 spec-
ification to validate its scenarios and used the real track for
on-site execution and to define a test plan for on-site execu-
tion.

While animating the scenarios of the HL3 specification,
we detected more issues.9 One issue, which is easy to under-
stand but hard to find without tool support, is the following:
in scenario 4 (Start of Mission/End of Mission) at step 8, it is
stated that all VSS of TTD 20 go to “unknown” because the
disconnect propagation timer of VSS 22 has expired. This
is wrong because after the deregistration (end of mission)
of the train in step 7, the train will be immediately treated
as a ghost train and the corresponding transition #1A will
apply. The result for the remaining VSSs of TTD20 is the
same but at a different point in time; the VSSs go directly
to “unknown” and not just after the disconnect propagation
timer (of VSS22) has expired.

As an aside, we think that transition #1A is erroneous, too:
there should be an “and” instead of the “or” in “(no FS MA
is issued or no train is located on this TTD)”. Otherwise,
a connected train (with a FS MA) which physically enters a
free TTDwould always be treated as a ghost train because the
TTD occupation usually arrives before a new train position
report. In this case, the second condition “no train is located
on this TTD” would be fulfilled which would allow applying
transition #1A. Moreover, transition #1A contains a further
ambiguity: “no FS MA is issued” could be interpreted as “no
FS MA is issued on this VSS” or as “no FS MA is issued on
this TTD”. We opted for the second interpretation based on
the scenarios we investigated.

Replaying the other scenarios also revealed a number of
inconsistencies compared to the state machine. For example

9 Overall we detectedmore than 30 issues which we reported to authors
of the HL3 specification.

in scenario 9 at step 5, the state of VSS31went to “unknown”
instead of “free” during the animation. According to the sce-
nario description, transition #9B should have been applied,
but its second condition “the ‘shadow train timer A’ of the
TTD was not expired at the moment of the time stamp in the
position report” was not satisfied. That is because the condi-
tion refers to the “shadow train timer A” of the wrong TTD. It
should refer to “shadow train timer A” of the TTD in REAR.
By investigating step 5 of this scenario more thoroughly we
saw some similarities of the transitions #9B and #11A as they
are both executed in the same state machine run (caused by
the rear-end update) and both refer to the shadow train timer
A. Of course they produce different state machine transitions
(“ambiguous” to “occupied” vs. “ambiguous” to “free”) so
their first two conditions differ, but both transitions are used
to exclude the shadow train risk. From a logical point of view
we can infer the following implication (**):

If transition #9B is applied to a VSS, then transition
#11A should be applied to the next VSS (if we neglect
the fact that #9B could also be applied to the next VSS).

The problem with transition #11A is that it contains an addi-
tional third condition which is not part of transition #9B:
“the reported min-safe-rear-end of this train is within the
distance that can be covered at the reported speed within the
“shadow train timer A” from the TTD limit”. If this condi-
tion is not satisfied, our logical implication (**) stated above
will not hold. In the scenario, this violation of the impli-
cation would lead to the case that VSS32 would not go to
“occupied” but to “ambiguous” while VSS31 would still go
to “free”. While “ambiguous” means that there is a shadow
train risk, “free” means that there is no shadow train risk
and the VSS is released for following trains. We eliminated
this inconsistency by adding the third condition of transi-
tion #11A to transition #9B because it provides an additional
check against shadow trains.

Besides that, we detected an inaccuracy in this check. The
condition says that the min-safe-rear-end of the train must be
“within the distance that can be covered [...] from the TTD
limit”. Thus, our interpretation was that the min-safe-rear-
end must be beyond the TTD border but in some situations
the min-safe-rear-end can be in rear of the TTD border due to
a large confidence interval. In these cases the transition #11A
(as well as #9B) should also be applied. In theory, this issue
could have been found by the model checker if we had varied
the value of the safe train length (reported by the train) in the
environment model. However, we only observed the problem
in later simulation runs with a train simulator used by Thales
but we investigated and solved the problem by replaying the
simulation run in the animator.

Besides the validation of the scenarios, the environment
model permitted us to investigate system-level safety prop-
erties. For example, the system state shown in Fig. 4 should
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Fig. 4 Invalid system state: non-connected train ($Train2) is located
on a VSS with state “free”

never occur. Here, a physical train ($Train2), which is not
connected, is located on a VSS which is seen as “free”. The
threat in this situation is that another train (not displayed in
the figure) in rear of the non-connected train could receive
a movement authority (FS MA) for VSS31 and VSS32. We
were able produce a scenario which finally led to this state:
Assume we have the start situation as displayed in Fig. 5.
$Train2 has a FS MA up to the end of VSS31. Due to a
communication failure $Train2 will not report its position
by a train position report while moving to VSS 31. Note
that all VSS on TTD2 in Fig. 6 will not change their state
even if TTD2 becomes occupied because train2 is within its
MA and is not yet a ghost train (note, that we have already
integrated the fix for transition #1A as stated above). If now
$Train2 is on VSS31 and its mute timer expires, only VSS13
(last reported train location) will go to unknown (according
to 4.2.1.3 of HL3 specification: “As the train with a commu-
nication failure could have used its MA completely, all the
VSS in advance of the last train location which are part of the
MA sent to that train shall also be set to ’unknown’ immedi-
ately, but only up to the first TTD which is free.”, here the
textual description is inconsistent with transition #1B). Even
if the ghost train propagation timer expires (which is started
by the expired mute timer), the VSSs of TTD3 will not be
affected as can be seen in Fig. 7 (according to 4.2.1.4 of HL3
specification, here the textual description is inconsistent with
transition #1D).

6.2 Tooling enhancements

The chosen technology influenced the modelling to the
extent, that we developed a constructive version of the speci-
fication. The modelling activities also influenced the tooling.
Below we elaborate on some extensions.

6.2.1 Replaying recorded runs with ProB

We added a feature in ProB to write all executed B opera-
tions in a log file (see Fig. 2). This enabled the VBF to log
simulations runs (with On-Board-Unit simulators) as well as
demonstration runs (with real trains). These runs could then
be replayed later in the ProB animator. This was vital, as
it allowed us to analyse defects without inspecting (huge)
RBC, IXL and Java log files. Log replay was also used to
define timer values of the HL3 specification.

6.2.2 HTML export

We implemented a feature to export ProB’s history as an
HTML file, showing the individual events and a graphical
representation of all the steps. This was useful to examine
a scenario offline (on paper, by external persons), without
having to run the animator.

6.3 Further validation activities

6.3.1 Constraint-based analysis

In the initial stages of the development of the formalBmodel,
we used the ProB constraint solver to look for loops in the
VSS state machine. The constraint solver detected issues in
the initial versions of our models, where a series of transi-
tions could fire indefinitely, from the same starting position
without any outside events.

For this, we generated a new high-level analysis model,
which includes the B machine encoding the VSS state tran-
sitions (see Sect. 5.2). This high-level model contained 38
combined events such as the following one, capturing a cycle
over transitions 5A and 10B (from unknown to ambiguous
back to unknown), using the sequential composition operator
“;”.10 If the combined event is enabled, it can thus be applied
infinitely often.

loop_5A_10B(vss) = PRE vss : VSS THEN
VSS_Unknown_Ambiguous_5A(vss);
VSS_Ambiguous_To_Unknown_10B(vss)

END;

We then used ProB to check feasibility of these events,
i.e., is there a state that satisfies the invariant and enables the
event under consideration. This analysis produced counter
example states for early, faulty versions of our model. In the
current version of the model, no such loops are detected by
the constraint solver.

6.3.2 Model checking

Another early validation activity was to check commutativity
of the VSS state transition wrt the order in which events
arrived at the VBF. For example, when a train leaves a TTD,
the VBF could first receive a position report outside of a
TTDor the updatedTTDstatus information. TheTTDupdate
also consists of two events: freeing the previous TTD and
occupying the following TTD. There again, we wanted to
check whether our model was commutative wrt the order in
which these updates were received.

This validation was done using focussed model check-
ing, by hard-coding a scenario (e.g., a scenario from HL3

10 As such this is not an event allowed by pure Event-Bor rodin.
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Fig. 5 Invalid system state: start situation

Fig. 6 Invalid system state: physical $Train2 is moving without sending a position report

Fig. 7 Invalid system state: VSSs of TTD3 are not affected by the disconnecting Train2
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Fig. 8 Checking commutativity of the VSS state machine using model
checking

specification), but allowing different interleavings to occur
for the above-mentioned update events. This produced small
state spaces such as the one in Fig. 8. The initial state of
the scenario is at the top, and two possible outcomes are at
the bottom of the figure. As one can see, this model was not
commutative, due to the presence of two distinct possible
final states, depending on the order of the events. The val-
idation was useful in understanding HL3 specification and
improving our model.

6.4 Visualisation

One requirement for the actual on-site field demonstra-
tion was to provide a visualisation for checking the correct
functioning of the VBF. Additionally, our experience has
shown [22–24] that a visualisation combined with an inter-
active animator can be especially useful in early stages of the
development such as the modelling and analysis stage.

Thus, our intention was to develop one visualisation that
could be used in the early stages and during the field demon-
stration. As a consequence, the visualisation was developed
as a separate software component with clearly defined inter-
faces for it to be integrated both into the ProB-Animator and
the final VBF product. In both cases, the state information is
extracted from the same (core) model. The only difference is
that within the ProB-Animator the model is interactively
controlled by a human (typically a domain expert using
ProB) and in the final VBF software, the model is controlled
via the real interfaces of the VBF.

Having the visualisation in the early stages of the project
provided the following benefits:

– We quickly spotted mistakes in the specification and the
model.

– We used the visualisation to communicate the model
within our team and to the domain experts.

– We were able to replay the scenarios in the HL3 speci-
fication and detected inconsistencies between them and
the state machine description.

– The visualisation enabled us to let a domain expert act
as a tester by interactively inspecting the model (Figs. 9,
10).
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Fig. 9 Screenshot of the visualisation running as a ProB-Animator
plugin

Fig. 10 Formal B model being executed in real time with Thales train
simulators

6.5 On-site field tests

Building upon the Thales domain knowledge, the formal B
model was developed from July until the end of October
(including the embedding application), with fine-tuning per-
formed afterwards. A first integration with the Thales RBC
was carried out in the beginning of November. The field
demonstrations were carried out in November and December
2017.

Later another field test was conducted together with the
Deutsche Bahn in September 2018, resulting in a video11 for
the Innotrans trade fair.

7 Other observations

7.1 Roles of ProB

ProB had two different roles in our project. Its first role was
the execution engine for our Bmodel. From the formal meth-

11 https://www.youtube.com/watch?v=K6mS6akRmvA.

ods perspective, it is interesting to note that the B model can
be used to control simulated and real trains in real time.More-
over, despite the complexity of the model and the fact that all
states and transitions were stored, no problems with ProB
occurred at runtime, performance and memory consumption
were no issues.12 In addition, the ProB Java API turned out
to be a flexible way to link a formal model to external data
sources or components.

In its second, more common role, ProB was the central
tool in the validation process of the model and specification.
Animation combined with visualisation were crucial for the
success of the project, in particular to replay and validate the
scenarios of the HL3 specification. We think this approach,
of using animation and custom visualisations at every stage
of development—especially the early ones—should be more
widely used for safety critical (e.g., SIL 4) projects in indus-
try. For example, the specification engineer can take over
some work of the testing team as he or she is able to inter-
actively derive test cases from the model,13 which are much
more precise and consistent compared to the description of
the scenarios contained in the HL3 specification.

7.2 B versus event-B

A good summary of the differences between B and Event-
B can be found in [25]. From a scientific perspective it is
interesting to analysewhywedid not useEvent-Bas provided
by the Rodin platform [9], as opposed to, e.g., [26] or four
case study contributions at ABZ’18 (see Sect. 8).

First, our B model had to be run with real track data and
real train data. As such we needed data structures such as
strings and string manipulation. These are not available in
Rodin. Also, to process train location reports and read the
topology XML files, we needed to write intricate conversion
procedures. These are easier to write in classical B syntax
using ProB’s extensions such as IF-THEN-ELSE or LET for
expressions (see [17]), as well as string manipulation func-
tions. Also, parts of our model used WHILE loops, e.g., to
repeatedly apply changes to the VSSs (see Sect. 5.2) or for
computing topology information (during VBF startup). This
would have been more involved in Event-B, requiring the
specification of an event scheduler or using the code gener-
ation rules from Chapter 15 of [19].

Concerning systems modelling, it turns out that the clas-
sical B machine composition primitives (like SEES and
INCLUDES) are sometimes sufficient to decompose a sys-

12 For example, in one 6-min run ProB’s response time was—with
one exception—between 0.02 and 0.14 s per event. One event required
0.38, one 0.31 and one 0.27 s, probably due to garbage collection being
triggered.
13 Note that we talk here about product and system-level tests and not
just unit tests.
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tem into components. Synchronisation by events can then be
achieved by amainmachine which calls the operations of the
included machines in an appropriate manner. The following
sketches how a systemmachine can include two components
and then synchronise events between these two components.

MACHINE ComponentA
OPERATIONS EventA
...

END
MACHINE ComponentB
OPERATIONS EventB
...

END
MACHINE System
INCLUDES ComponentA, ComponentB
...
OPERATIONS

SystemUpdate = ... EventA || EventB ....
END

Finally, from a pragmatic point of view, it is still easier
to work as a team on models with textual representation as
offered by Atelier-B rather than the XML database of Rodin.
The textual representations can be more easily shared and
versioned (e.g., using git) and refactored using standard text
editors. The use of directories to structure our development
(see Sect. 4) was also helpful to manage model evolution.

8 Comparison

Four other case studies presented at ABZ’18 used Event-B:

1. The Event-B model [21] by Ammar et al. focussed on
proof and trying to establish determinacy of theVSS state
machine (which is related to our commutativity analysis
in Sect. 6.3.2). The model used four refinements to prove
a safety property. ProB was used to validate the model.
In contrast to our model, the operations acted on all VSSs
in one go; we have one VSS as parameter for each tran-
sition (see Sect. 5.2). The model has 10 constants and 26
variables.

2. The article [27] is a companion paper to [21] and focusses
on requirements modelling using SysML and KAOS.
This issue is orthogonal to our paper.

3. The model [28] by Abrial focusses on proof on a simpli-
fied version of the HL3 specification. It is a “green field”
development of the concept and does not use refinement.
The model has 5 constants and 15 variables.

4. [29] used iUML translated to Event-B; has a refinement
strategywith 5 refinements. The last level has 13variables
and 9 constants and can be animated with ProB.

Note that our model is the largest with 45 constants and
33 variables, but we did not conduct any proof. It is inter-
esting to note that the above Event-B developments all used
Rodin,whilewe did not (see Sect. 7.2).We pursued a bottom-
up approach, starting from VSSs and TTDs up to modelling
trains andVSSupdate cycles. Some approaches above started
top-down, from an obviously safe system and adding details
via refinement. This is certainly a viable approach for prov-
ing the safety of a system. However, we ourselves do not yet
have enough understanding of HL3 specification to under-
stand why it is safe and how a proof and refinement strategy
should look like. Developing a system-level proof of HL3
specification is worthy of another research project, and can
get inspiration from successful use of Event-B for similar
demonstrations for the Flushing line in New York [14] or the
Octys line in Paris [15].

Two other solutions were presented at ABZ’18, one using
Spin [30] and one using Alloy/Electrum [31]. The latter is
interesting as it uses Alloy’s magic layout feature to obtain a
visual representation of the state of the model. Visualisation
was extremely useful for our model, and helped to commu-
nicate with domain experts. It is interesting to note that [30]
mentioned that visualisationwas onemissing feature of Spin.

An important factor is that our model is a complete, exe-
cutable realisation of HL3 specification. The differences in
the model and the methodology partly stems from the fact
that we had been given a clear goal, outside of the case study:
to get a complete VBF implementation ready by December
2018 for on-site field testing. On the one hand, we thus had
access to a larger team, with domain experts, that helped us
unravel the obscure parts of HL3 specification. On the other
hand, we had a given budget and tight deadline, leaving little
room for activities such as proof and refinement.

9 Conclusions

As we implemented a full executable application based on
the HL3 case study rather than being concerned with proving
the model, we gained additional insights in the usefulness of
tool support. For example, logging all B events (see Fig. 2)
during the field tests proved to be vital: due to communica-
tion between several components, a single runwas inherently
non-deterministic. Full logs of events and parameters allows
replaying and analysing the trace later on, e.g., in fully
controlled environments like an animator on a machine inde-
pendent of the field-test system.

Another useful feature would be a test suite that is hooked
up to an animator. Much time was spent on replaying the
scenarios from the specification after changing the model.
It would be greatly appreciated if specified scenarios could
be replayed automatically on change, and, if applicable,
differences in encountered states are immediately reported.
Therefore, in the future, we plan to put more focus on tool-
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ing for scenario replay and Bmodel regression tests (see also
[32]).

From the project, we can conclude that formal models
can be useful and cost-effective for demonstrators. Anima-
tion with forward/backward stepping and visualisation were
extremely useful in the development process.Wewere able to
develop a complete formalisation of the HL3 specification:
the B formal model can now serve as an executable refer-
ence specification, for understanding the HL3 principles, for
deriving test cases from it or possibly to generate code using
Atelier-B.
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