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Abstract
Program termination is a fundamental research topic in program analysis. In this paper, we present a new complete polynomial-
time method for the existence problem of linear ranking functions for single-path loops described by a conjunction of linear
constraints, when variables range over the reals (or rationals). Unlike existing methods, our method does not depend on
Farkas’ Lemma and provides us with counterexamples to existence of linear ranking functions, when no linear ranking
function exists. In addition, we extend our results established over the rationals to the setting of the integers. This deduces an
alternative approach to deciding whether or not a given SLC loop has a linear ranking function over the integers. Finally, we
prove that the termination of bounded single-path linear-constraint loops is decidable over the reals (or rationals).

Keywords Software reliability · Program termination · Linear ranking functions · Farkas’ lemma

1 Introduction

Proving termination of loops in programs is an important
problem whose solutions can broadly improve software reli-
ability. A standard technique to prove the termination of
a loop is to find a ranking function, which maps program
states to elements of some well-founded ordered set, such
that the value descends whenever the loop completes an iter-
ation. Several methods for synthesizing ranking functions
have been suggested [2,4,5,8,10–13,17,20,22,26]. And the
complexity of the linear ranking function problem for linear-
constraint loops is discussed in [3,5].

In this paper, we focus on single-path linear-constraint
loops (SLC loops for short), which are specified by a con-
junction of linear constraints. For SLC loops, inequalities in
their loop bodies may arise due to abstraction. We now take
an example from [5] to describe such loops. The loop with
two integer variables x1, x2,
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while (4x1 ≥ x2 ∧ x2 ≥ 1) do

{x1 := (2x1 + 1)/5; x2 := x2},

whose loop body consists of deterministic update statements,
can be represented by linear constraints:

while (4x1 ≥ x2 ∧ x2 ≥ 1) do

{5x ′
1 ≤ 2x1 + 1; 5x ′

1 ≥ 2x1 − 3; x ′
2 = x2}. (1)

The latter is usually called an SLC loop, where the loop
body is interpreted as expressing a relation between the new
values (x ′

1, x
′
2) and the previous values (x1, x2). Generally,

this representation allows nondeterminism. Obviously, the
aboveSLC loop is specified by a systemof linear inequalities:

{4x1≥ x2, x2≥1, 5x ′
1≤2x1+1, 5x ′

1 ≥ 2x1 − 3, x ′
2= x2}.

More examples of programs with nondeterministic update
statements can be found in [2,5,8,13].

As a special class of ranking functions, linear ranking
functions (LRFs) are widely used in termination analysis
of SLC loops. In this case, such a function has the form
ρ(x1, . . . , xn) = a1x1+· · ·+anxn +a0.A formal definition
will be given in Sect. 2.3. It is well known that for a given
SLC loop, if it has an LRF, then the loop must be terminat-
ing [15,26,29]. And the problem of synthesizing LRFs can be
reduced to a linear programming (LP) problem. Algorithms
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to synthesize LRFs of SLC loops using linear programming
are given in [2,11,15,26,29]. However, not all terminating
loops have LRFs. Lexicographic ranking functions [4,5,8]
and multiphase ranking functions [4,20] are natural exten-
sion of LRFs, which can be used to handle loops having
no LRF. Bagnara and Mesnard [2] describes the notion of
eventual linear ranking functions (ELRFs) and establishes
algorithms to detect such ranking functions. In fact, ELRFs
are multiphase ranking functions (with up to two phases) [4].

Existing methods, relying on Farkas’ Lemma, usually
decide the existence of LRFs by attempting to construct one.
However, if one just wants to decide the existence of LRFs
but not to get an LRF, it is not necessary to synthesize LRFs.
Especially, when a given SLC loop has no LRF, the methods
based on Farkas’ Lemma cannot provide us with counterex-
amples, i.e., evidences to why LRFs cannot exist for the loop.
In the paper, we focus on the existence problem of LRFs for
SLC loops and present a new complete method for checking
if an SLC loop has LRFs over the reals, the rationals and the
integers. The new approach enables us to decide the exis-
tence of LRFs without computing a concrete LRF. Unlike
the existing methods based on the famous Farkas’ Lemma,
our method does not depend on Farkas’ Lemma. Besides, we
prove that for bounded SLC loops, i.e., each variable occur-
ring in SLC loops is bounded, their termination problem over
the reals (or rationals) can be determined by checking if such
loops have fixed points. In [21], Leike et al. establish a similar
result too, which relates the termination of a bounded SLC
loop to its fixed points, by constructing a Cauchy sequence.
However, our proof is completely distinct from theirs. This
will be discussed in Theorem 8 and its corollaries.

The rest of the paper is organized as follows. Section 2
gives some basic background necessary for this work. Sec-
tion 3 gives a new complete polynomial-time method for
deciding if a given SLC loop has an LRF, presents an alterna-
tive method for deciding existence of LRFs over the integers
and shows that a bounded SLC loop is nonterminating over
the reals (or rationals) iff it has a fixpoint. Section 4 con-
cludes.

2 Preliminaries

In this section, some basic definitions on polyhedra, Farkas’
Lemma and linear ranking functions will be introduced.

2.1 Polyhedra

The following concepts of polyhedron, cone and polytope
can be found in [28].

Polyhedra A convex polyhedron P ⊆ R
n is the set of

solutions of a system of linear inequalities Ax ≥ b, i.e.,

P = {x ∈ R
n : Ax ≥ b}. In other words, convex polyhedra

defined as above are the intersection of finitely many closed
half-spaces. This means that convex polyhedra are closed.
In addition, if Ax ≥ b has real solutions, we say that P is
defined by Ax ≥ b. Especially, when A ∈ Q

m×n is a rational
matrix of n columns and m rows, x ∈ Q

n and b ∈ Q
m are

column vectors of n and m rational values, respectively, for
convenience, we callPQ = {x ∈ Q

n : Ax ≥ b} the rational
polyhedron. It is well known that

Proposition 1 For a given polyhedronP ⊆ R
n specified by

a rational matrix A and a rational vector b, P �= ∅ if and
only if its corresponding rational polyhedron PQ �= ∅.

Proposition 1 tells us that for a given system of linear
inequalities with rational coefficients, it has a real solution if
and only if it has a rational solution.

For a given rational polyhedronPQ ⊆ Q
n , let I (PQ) =

{x ∈ Z
n : x ∈ PQ},which is exactly the set of integer points

ofPQ. For a rational polyhedron PQ defined as above, the
integer hull ofPQ, denoted byP Int

Q
, is defined as the convex

hull of I (PQ).

Proposition 2 ([5,19])With the above notion. We have

(1) Every rational point ofP Int
Q

is a convex combination of
integer points;

(2) P Int
Q

is also a rational polyhedron;

(3) P Int
Q

⊆ PQ;

(4) I (P Int
Q

) = I (PQ).

Especially, an integer polyhedron is a rational polyhedron
PQ such that PQ = P int

Q
. In that case, we say that PQ is

integral.

Cones A nonempty set C of points in an Euclidean space
is called a cone if ux + vy ∈ C whenever x, y ∈ C and
u, v ≥ 0. A cone C is polyhedral if C = {x ∈ R

n : Ax ≥ 0}
for somematrix A. Clearly, any polyhedral cone contains the
origin.

Recession directions Given a nonempty convex set D, a
vector d is a recession direction, if the following condition
is satisfied:

x + λd ∈ D, ∀x ∈ D,∀λ ≥ 0.

Denote by RD the set of recession directions of D . In par-
ticular, the set of recession directions of a polyhedron P
defined by Ax ≥ b is the set RP = {y ∈ R

n : Ay ≥ 0}. It
is easy to see that RP is a polyhedral cone.
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Polytopes A set Q of vectors is a convex polytope if it is
the convex hull of finitely many vectors.

Theorem 1 ([28] Decomposition theorem for polyhedra) A
set P of vectors in Euclidean space is a convex polyhedron
if and only ifP = Q + C for some convex polytopeQ and
some polyhedral cone C .

Remark 1 In FormulaP = Q+C ,P is called an algebraic
sum of Q and C . Here, we define the algebraic sum A + B
to be {a + b : a ∈ A, b ∈ B} for subsets A and B of a vector
space. Since C is a polyhedral cone, C contains the origin.
So, we have that Q ⊆ P. Especially, the decomposition
theorem is also true for a rational polyhedron PQ ⊆ Q

n

[28].

Theorem 1 implies the following generator representation
of convex polyhedra.

Generator representation Convex polyhedra can also be
expressed by vertices and rays, as follows:

P = convhull{x1, . . . , xm} + cone{y1, . . . , yt } (2)

where xi ∈ R
n are vertices and yi ∈ R

n are rays. Formula
(2) shows that P specified by Ax ≥ b can be generated by
the points x1, . . . , xm ∈ P and by the recession directions
y1, . . . , yt ∈ RP ,wherem < +∞, t < +∞. That is,P =
Q + RP , where Q � convhull{x1, . . . , xm} and RP �
cone{y1, . . . , yt }. In other words, x ∈ P if and only if x =
xB + dx where xB ∈ Q and dx ∈ RP . Furthermore, x ∈
P(� Ax ≥ b) if and only if x = ∑m

i=1 ui ·xi +
∑t

j=1 v j ·y j

for some ui , v j ≥ 0, where
∑m

i=1 ui = 1. By the above
arguments, we get that

P �

⎧
⎨

⎩

m∑

i=1

ui · xi +
t∑

j=1

v j · y j ∈ R
n : ∀ui , v j ≥ 0,

m∑

i=1

ui = 1

⎫
⎬

⎭
. (3)

Note that PQ and P int
Q

have the similar Generator Repre-
sentation as in (3), as follows:

PQ �

⎧
⎨

⎩

m∑

i=1

ui · xi +
t∑

j=1

v j · y j ∈ Q
n : ∀ui , v j ∈ Q

+,

m∑

i=1

ui = 1

⎫
⎬

⎭
(4)

where xi ∈ Q
n is vertex for i = 1, . . . ,m and y j ∈ Q

n is ray
for j = 1, . . . , t and Q

+ is the set of nonnegative rational
numbers, and

P int
Q �

⎧
⎨

⎩

m∑

i=1

ui · xi +
t∑

j=1

v j · y j ∈ Q
n : ∀ui , v j ∈ Q

+,

m∑

i=1

ui = 1

⎫
⎬

⎭
(5)

where xi ∈ Z
n is vertex for i = 1, . . . ,m and y j ∈ Z

n is ray
for j = 1, . . . , t .

The following theorem tells us that convex polytopes are
bounded.

Theorem 2 ([28] Finite basis theorem for polytopes). A set
Q is a convex polytope if and only ifQ is a bounded convex
polyhedron.

For a convex polyhedron P = Q + C , we know Q is
a closed, bounded and convex set, i.e., compact convex set.
Moreover, since C = RP and RP = {y ∈ R

n : Ay ≥ 0}
which is closed and convex, by the above arguments, we have

Proposition 3 LetP = Q+C be a convex polyhedron. We
haveQ is a compact convex set andC is a closed convex set.

2.2 Single-path linear-constraint loops

A single-path linear-constraint loop (SLC for short) over n
variables x1, . . . , xn has the form

while (Bx ≥ c) do Hx + H ′x′ ≥ v, (6)

where x, x′ ∈ R
n, B ∈ Q

p×n, c ∈ Q
p, H ∈ Q

q×n , H ′ ∈
Q

q×n, v ∈ Q
q . The constraints Bx ≥ c and Hx+ H ′x′ ≥ v

are the loop condition and the loop body, respectively. And
the loop body is interpreted as expressing a relation between
the new values x′ and the previous values x. The update
is called deterministic if for a given x (satisfying the loop
condition), there is at most one x′ satisfying the update con-
straint. Otherwise, such update is called nondeterministic.
For example, the affine linear update x′ = Dx+ b is a deter-
ministic update, since when the value of x is fixed, x′ has
only one value. It is easy to see that the single-path linear-
constraint loop defined as in (6) can always be characterized
by the system of linear inequalities

Ax + A′x′ ≥ b, (7)

where A =
(
B
H

)

∈ Q
(p+q)×n , A′ =

(
0
H ′

)

∈ Q
(p+q)×n ,

b =
(
c
v

)

∈ Q
(p+q).

An SLC loop as in (6) can be identified with its corre-
sponding system of linear inequalities. In what follows, for
convenience, we always write SLC loops with their corre-
sponding systems of linear inequalities.
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Transition For an SLC loop defined by (7), we say that there
is a transition from a state (current state) x to a state (next
state) x′, if (x, x′) satisfies the system Ax + A′x′ ≥ b. For
simplifying the presentation, define

Ω = {(x, x′) ∈ R
2n : Ax + A′x′ ≥ b}.

Obviously, Ω is a convex polyhedron. It is also closed. Let

ΩQ = {(x, x′) ∈ Q
2n : Ax + A′x′ ≥ b}

be the rational polyhedron.

2.3 Linear ranking functions

It is well known that termination problem is undecidable.
The dominantmethod for termination analysis is based on the
synthesis of ranking functions. For a given loop, the existence
of ranking functions implies that the loop is terminating. Let
πx : K

2n → K
n , K ∈ {R, Q, Z}, be a projection map-

ping, i.e., πx(x, x′) = x. Clearly, πx is a linear mapping. The
definitions of termination, nontermination and linear ranking
functions are as follows.

Definition 1 (Termination and nontermination) Given an
SLC loop P specified by Ω ⊆ R

2n , we say that Loop P
is terminating over the reals, if there does not exist an infi-
nite sequence {xi }+∞

i=0 ⊆ R
n such that Axi + A′xi+1 ≥ b for

any i ≥ 0. We say that Loop P is nonterminating over the
reals, if such an infinite sequence exists.

Definition 2 Given an SLC loop P defined by Ω , let ρ(x) =
aT x+c be a linear function, where a ∈ Q

n and c ∈ Q. Then,
ρ(x) is a linear ranking function over the reals for P if the
following formula holds

∀(x, x′) ∈ Ω ⇒ (ρ(x) ≥ 0 ∧ ρ(x) − ρ(x′) ≥ 1). (8)

Remark 2 Note that ∀(x, x′) ∈ Ω ⇒ ρ(x) ≥ 0 is equivalent
to ∀x ∈ πx(Ω) ⇒ ρ(x) ≥ 0, where πx is a projection
mapping from R

2n to R
n . It is very easy to see that if we

replace Ω in Formula (8) with ΩQ (resp. I (ΩQ)), then we
get the definition of ranking functions over the rationals (resp.
the integers).

Proposition 4 Given an SLC loop P defined by Ω, there
exists a linear ranking function over the reals for P if and
only if there exists a linear ranking function over the rationals
for P.

Proof It is clear that P has an LRF over the reals implies that
P has an LRF over the rationals. We next show the converse
is true. Suppose that P has an LRF over the rationals, i.e.,

∀(x, x′) ∈ ΩQ ⇒ (ρ(x) ≥ 0 ∧ ρ(x) − ρ(x′) ≥ 1). (9)

Since Ω is closed, ΩQ ⊆ Ω and the rationals are dense
in the reals, for any (x̂, x̂′) ∈ Ω , there exists a sequence
{(x j , x′

j )}∞j=0 ⊆ ΩQ, such that (x j , x′
j ) → (x, x′), as j goes

to infinity. By (9), we have ρ(x j ) ≥ 0 ∧ ρ(x j ) − ρ(x′
j ) ≥ 1

for all j = 1, 2, 3, . . .. Therefore, when j tends to infinity,
we get ρ(x̂) ≥ 0 ∧ ρ(x̂) − ρ(x̂′) ≥ 1. Since (x̂, x̂′) is taken
arbitrarily from Ω , we get Formula (8) is true. ��
Remark 3 Proposition 4 tells us that seeking a linear ranking
function over Ω ⊆ R

2n is equivalent to seeking an LRF over
ΩQ ⊆ Q

2n .

Farkas’ Lemma plays an important role in termination
analysis, especially in the synthesis of LRFs for linear-
constraint loops. It is known that Farkas’ Lemma is true not
only over the reals, but also over the rationals. So, it can be
used to synthesize ranking functions not only over the reals,
but also over the rationals. Existing methods of synthesiz-
ing LRFs for linear-constraint loops usually utilize Farkas’
Lemma to transform the generated ∃∀-constraint into an ∃-
constraint. Let I ⊆ R

n (or Q
n) be a nonempty set defined by

a system of linear inequalities, i.e.,

I :
⎧
⎨

⎩

a11x1 + · · · + a1nxn + b1 ≥ 0
· · · + · · · + · · · + · · · ≥ 0

am1x1 + · · · + amnxn + bm ≥ 0

Farkas’ Lemma states that the equivalence of

∀(x1, . . . , xn) ∈ I ⇒ c1x1 + · · · + cnxn + d ≥ 0

and

∃λ1 ≥ 0, . . . , ∃λm ≥ 0
⎛

⎝

(

d ≥
m∑

i=1

λi bi

)

∧
n∧

j=1

(

c j =
m∑

i=1

λi ai j

)⎞

⎠ .

We next take an example to illustrate how to decide if an
SLC loop has an LRF via the existing methods depending on
Farkas’ Lemma.

Example 1 Consider the SLC loop

Loop : {x1 ≥ 0, x1 − x2 ≥ 1, x ′
1 = x1 − 1, x ′

2 ≤ x1} (10)

LetΩ = {(x1, x2, x ′
1, x

′
2) ∈ R

4 : x1 ≥ 0, x1−x2 ≥ 1, x ′
1 =

x1 − 1, x ′
2 ≤ x1}. Predefine an LRF template ρ(x1, x2) =

ax1 + bx2 + c. By Definition 2, we need to check if the
following ∃∀-constraint (11) is satisfiable,

∃a∃b∃c∀(x1, x2, x
′
1, x

′
2) ∈ Ω ⇒ ax1 + bx2 + c ≥ 0

∧ a(x1 − x ′
1) + b(x2 − x ′

2) ≥ 1. (11)
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By Farkas’ Lemma, one can extract the ∃-constraint below,

∃a∃b∃c.⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = λ11 + λ12 + λ13 − λ14 + λ15
b = −λ12
0 = −λ13 + λ14
0 = −λ15
c ≥ −λ12 − λ13 + λ14
a = λ21 + λ22 + λ23 − λ24 + λ25
b = −λ22
−a = −λ23 + λ24
−b = −λ25
−1 ≥ −λ22 − λ23 + λ24
λ1i ≥ 0, λ2i ≥ 0, i = 1, . . . , 5

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

from the ∃∀-constraint in (11). Next, it remains to determine
if ∃-constraint (12) is satisfiable. Solving (12) by LP solver,
we obtain a solution:

a = 1, b = 0, c = 0, λ11 = 1, λ12 = 0, λ13 = 0, λ14 = 0,

λ15 = 0, λ21 = 0, λ22 = 0, λ23 = 1, λ24 = 0, λ25 = 0.

This immediately implies that the loop in (10) indeed has an
LRF ρ(x1, x2) = x1. Therefore, the loop is terminating.

From the above arguments, we can see that the existing
methods usually convert the existence problem of LRFs to
a synthesis problem of LRFs, since solving the ∃-constraint
obtained by Farkas’ Lemma implies an LRF can be con-
structed if the constraint derived is feasible. In Sect. 3, we
will present a new method to extract an ∃-constraint from
a given SLC loop. Such the ∃-constraint obtained by our
method has two features:

– an SLC loop has an LRF iff the ∃-constraint obtained by
our method is not feasible

– when the ∃-constraint obtained by ourmethod is feasible,
one can construct a set of witnesses for nonexistence of
LRFs from the ∃-constraint.

The above two features are clearly distinct from the ∃-
constraint derived by the existing methods depending on
Farkas’ Lemma. This is because, for an SLC loop, the corre-
sponding ∃-constraint obtained by Farkas’ Lemma is feasible
iff the loop has an LRF. More importantly, once the ∃-
constraint generated by Farkas’ Lemma is not feasible, one
just knows that the loop has no LRF, but does not know the
reason why it has no LRF. In Sect. 3, we will discuss this
issue.

3 Termination of SLC loops

In this section, we consider the termination of SLC loops
defined in (7). We first give a new complete method for
checking if an SLC loop has an LRF over the reals. Such
method can be naturally extended to the setting of the ratio-
nals, according to Propositions 1 and 4. And then, we present
an alternative approach to decide if an SLC loop has an LRF
over the integers. Especially, for a bounded SLC loop, we
show that it is nonterminating over the reals (or rationals) if
and only if it has a fixed point.

Let us restrict the considered field to be the field R of
real numbers. That is, we first restrict our attention to the
termination over the reals of SLC loops. This is because, the
separating hyperplane theorem is built over R, which is very
useful for us to establish the desired results on termination
analysis of SLC loops. By Proposition 4, for an SLC loop, it
has an LRF over the reals if and only if it has an LRF over
the rationals. However, it should be pointed out that an SLC
loop that is nonterminating over the reals may be terminating
over the integers. For instance, let us consider Loop (1) from
Sect. 1. The loop is clearly nonterminating on the point ( 14 , 1).
But, the loop is indeed terminating over the integers, since it
has an LRF ρ(x1, x2) = x1 − 1 over the integers [5]. For the
existence problem of LRFs over the integers for SLC loops,
more details will be given later.

Let P be an SLC loop specified by Ω . Let

FixΩ = {(x, x′) ∈ R
2n : Ax + A′x′ ≥ b, x = x′}.

Let πx(FixΩ) = {x ∈ R
n : Ax+ A′x′ ≥ b, x = x′}, where

πx is the projection mapping defined as before.

Definition 3 (Fixed points of SLC loops) For Loop P defined
byΩ , ifπx(FixΩ) is not empty, then each point ofπx(FixΩ)

is called a fixed point of P.We call πx(FixΩ) the set of fixed
points of P.

Definition 4 (Bounded SLC loops) Let P be an SLC loop
specified by Ω . We say that Loop P is a bounded SLC
loop, if each variable occurring in Ω is bounded, i.e., there
exists a positive number γ , such that for all (x, x′) ∈ Ω ,
(−γ, . . . ,−γ ) ≤ x, x′ ≤ (γ, . . . , γ ).

In general, the image of a closed set under a linearmapping
is not necessarily closed. This can be seen by the following
example.

Example 2 Let D = {(x1, x2) ∈ R
2+ : x1x2 ≥ 1}, and let

T (x1, x2) = x1, where R+ is the set of nonnegative real
numbers. Clearly, D is closed and T is a linear mapping. But
the image T (D) = R++ of D under T is open, where R++
is the set of positive real numbers.
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However, in the following, we will show that for a linear
mapping T and a convex polyhedron P defined as before,
the image T (P) of P under T is a closed convex set. This
result will be used in the proof of Theorem 4.

Proposition 5 Let T : R
u → R

v be a linear mapping. Let
P = Q + C be a convex polyhedron. The image T (P) of
P under the linear mapping T is a closed convex set.

Proof Since P is a convex polyhedron, by Formula (3), we
have

P �

⎧
⎨

⎩

m∑

i=1

ui · xi +
t∑

j=1

v j · y j ∈ R
n : ∀ui , v j ≥ 0,

m∑

i=1

ui = 1

⎫
⎬

⎭
.

Since T is a linear mapping, by its linearity, we get

T (P) �

⎧
⎨

⎩

m∑

i=1

ui · T (xi ) +
t∑

j=1

v j · T (y j ) : ∀ui , v j ≥ 0,

m∑

i=1

ui = 1

⎫
⎬

⎭
. (13)

By Formula (13), the image T (P) is generated by the
vertices T (xi )’s and the rays T (y j )’s. By Theorem 1 and
generator representation of polyhedra, we know the image
T (P) is a convex polyhedron. Therefore, T (P) is clearly a
closed convex set. ��
Lemma 1 [7] Let U and V be two convex sets of R

n, which
do not intersect, i.e., U ∩ V = ∅. Then there exist a �= 0
and b such that aTx ≤ b for all x ∈ U and aTx ≥ b for all
x ∈ V .

ByLemma1, ifU andV are twodisjoint nonempty convex
subsets, then there exists an affine function aTx − b that is
nonpositive on U and nonnegative on V . Such a hyperplane
{x : aTx = b} is called a separating hyperplane forU and V .

Additionally, we say that the affine function aTx− b strictly
separatesU and V , if aTx < b for all x ∈ U and aTx > b for
all x ∈ V . Although disjoint convex sets cannot necessarily
be strictly separated by a hyperplane, the following lemma
tells us that in the special case whenU is a closed convex set
and V is a single-point set, there indeed exists a hyperplane
which can strictly separate U and V .

Lemma 2 [7]LetU ⊆ R
u be a closed convex set andx0 /∈ U.

Then, there exists a hyperplane that strictly separates x0 from
U.

Lemma 3 [19] Let f : R
u → R be a linear mapping, and

let U ⊆ R
u be a nonempty convex polyhedron. Let δ :=

sup{ f (u) : u ∈ U } < ∞. Then, there exists a vector z ∈ U
with f (z) = δ.

Lemma 3 shows us that if the supremum of the linear
function f (u) over a nonempty polyhedron is finite, then its
supremum can be attained. By Lemma 3, we have

Lemma 4 Let f : R
u → R be a linear mapping, and let

U ⊆ R
u be a nonempty convex polyhedron. If f (u) �= 0 for

all u ∈ U , then there exists a positive number δ such that
either f (u) ≥ δ for all u ∈ U , or f (u) ≤ −δ for all u ∈ U .

Proof SinceU is a closed connected set and f (u) �= 0 for all
u ∈ U , there will be two cases: (i) f (u) < 0 for all u ∈ U .

(ii) f (u) > 0 for all u ∈ U . Next, we will show that if Case
(i) occurs, i.e., f (u) < 0 for all u ∈ U , then there exists a
positive number δ such that f (u) ≤ −δ for all u ∈ U . For
Case (i), set γ = sup{ f (u) : u ∈ U }. Since f (u) < 0 for all
u ∈ U , we have γ ≤ 0. Next, we further show that γ �= 0.
Suppose that γ = 0. Then, since γ ≤ 0 < ∞, by Lemma
3, there must exist z ∈ U , such that f (z) = γ = 0. This
clearly contradicts with the hypothesis that f (u) �= 0 for all
u ∈ U . Hence, γ < 0. Let δ = −γ > 0. Then, we have
f (u) ≤ −δ for all u ∈ U . For Case (ii), let g = − f . Then,
an similar analysis as above is applicable to Case (ii). ��

In the following, we will consider the existence problem
of LRFs, and further show that if P has no LRFs, then there
must exist a subset of Ω which makes P have no LRF. So,
any point in such subset is a witness for nonexistence of
LRFs. More importantly, such subset can be characterized
by a certain system of linear inequalities. This also naturally
relates the existence of LRFs for SLC loops to feasibility
of systems of linear inequalities. Next, we first establish the
following result.

Theorem 3 Let Ω = {(x, x′) ∈ R
2n : Ax + A′x′ ≥ 0}

be a convex polyhedron and let ΩH = {(dx, dx′) ∈ R
2n :

Adx + A′dx′ ≥ 0} be the set of recession directions of Ω .
Then

∃k(∀(x, x′) ∈ Ω ⇒ (aTx ≥ k ∧ aT(x − x′) ≥ 1)) (14)

is equivalent to

(∀(x, x′) ∈ Ω,∀(dx, dx′) ∈ ΩH ) ⇒ aT(x − x′ + dx) ≥ 1.

(15)

Proof (14)⇒ (15). Because ΩH is the set of recession direc-
tions ofΩ , by the property of recession directions mentioned
in Sect. 2.1, for any (dx, dx′) ∈ ΩH , any (x, x′) ∈ Ω , and
any λ ≥ 0, we have

(x, x′) + λ(dx, dx′) ∈ Ω. (16)
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By (14) and (16), since aTx ≥ k for all (x, x′) ∈ Ω and
(x+λdx, x′+λdx′) ∈ Ω for any (dx, dx′) ∈ ΩH , any (x, x′) ∈
Ω , and any λ ≥ 0, it follows that

aT(x + λdx) ≥ k (17)

for any (dx, dx′) ∈ ΩH , any (x, x′) ∈ Ω , and any λ ≥ 0.
Next, we will show that Formula (17) implies that

aT dx ≥ 0 (18)

for any (dx, dx′) ∈ ΩH . Suppose that there exists a recession
direction (d̂x, d̂x′) ∈ ΩH such that aTd̂x < 0. Then, take
arbitrarily a point (x̂, x̂′) from Ω . Clearly,

(x̂ + λd̂x, x̂′ + λd̂x′) ∈ Ω (19)

for any λ ≥ 0, since (d̂x, d̂x′) is a recession direction. In
addition, since aTx ≥ k for all (x, x′) ∈ Ω , by (19), we get
aT(x̂ + λd̂x) ≥ k for any λ ≥ 0. But, as λ → +∞, aT(x̂ +
λd̂x) → −∞, since aTd̂x < 0. This contradicts Formula
(17). Therefore, Formula (18) holds for any (dx, dx′) ∈ ΩH .
Moreover, by Formula (14), for all (x, x′) ∈ Ω , we have

aT(x − x′) ≥ 1. (20)

Hence, adding Formulas (18)–(20), we get that Formula (15)
is true.

(15)⇒ (14). By Formula (15), we know aT(x−x′ +dx) ≥
1 for any (x, x′) ∈ Ω , and any (dx, dx′) ∈ ΩH .Since (0, 0) ∈
ΩH , we have

aT(x − x′ + 0) = aT(x − x′) ≥ 1 (21)

for any (x, x′) ∈ Ω . So, the remaining thing is to prove that
aTx ≥ k for all (x, x′) ∈ Ω.Because the setΩH of recession
directions of Ω is a cone, we get λ(dx, dx′) ∈ ΩH for any
λ ≥ 0 and any (dx, dx′) ∈ ΩH . Hence, by Formula (15), it
follows that aT(x − x′ + λdx) ≥ 1 for any (x, x′) ∈ Ω , any
λ ≥ 0 and any (dx, dx′) ∈ ΩH . We next will claim that

aTdx ≥ 0 (22)

for any (dx, dx′) ∈ ΩH . Suppose that there exists (ďx, ďx′) ∈
ΩH such that aTďx < 0. Then, take arbitrarily a point (x̌, x̌′)
from Ω . Since λ(ďx, ďx′) ∈ ΩH for any λ ≥ 0, in terms of
Formula (15), we have

aT(x̌ − x̌′ + λďx) ≥ 1 (23)

for anyλ ≥ 0.But, sinceaTďx < 0,whenλ → +∞,wehave
aT(x̌− x̌′+λďx) → −∞,which clearly contradicts Formula
(15). Therefore, Formula (22) holds for any (dx, dx′) ∈ ΩH .

Finally, we will show that there exists a constant k such that
aTx ≥ k for any (x, x′) ∈ Ω. Since Ω is convex polyhe-
dron, by Theorem 1 and Generator Representation, we have
Ω = Q + RΩ, where Q = convhull{x1, . . . , xm}, xi ∈ Ω

for i = 1, . . . ,m, is a convex polytope and RΩ = ΩH .

By Theorem 2 and Proposition 3, Q is a closed, bounded
and convex set. Since Ω = Q + RΩ, by the definition
of algebraic sum, (xT, x′T)T ∈ Ω if and only if there exist
(xTB, x′T

B)T ∈ Q and (dTx , dTx′)T ∈ ΩH such that

(
x
x′

)

=
(
xB
x′
B

)

+
(
dx
dx′

)

(24)

Let us construct an auxiliary linear function

�(z, z′) = (aT, 0)
(
z
z′

)

.

Since �(z, z′) is continuous and Q is a bounded and closed
set, there must exist a constant k, such that �(xB, x′

B) ≥ k
for all (xB, x′

B) ∈ Q. Furthermore, by (22), since aTdx ≥ 0
for any (dx, dx′) ∈ ΩH , we get

�(dx, dx′) = (aT, 0)
(
dx
dx′

)

≥ 0

for all (dx, dx′) ∈ ΩH . By the above arguments and Formula
(24), for any (x, x′) ∈ Ω,

�(x, x′) = �(xB, x′
B) + �(dx, dx′) ≥ k.

This means that aTx ≥ k for all (x, x′) ∈ Ω.Hence, Formula
(14) is true. This completes the proof of the theorem. ��
Remark 4 Note that in Formula (15), ∀(x, x′) ∈ Ω,∀(dx,
dx′) ∈ ΩH can also be rewritten as ∀(x, x′, dx, dx′) ∈ Ω ×
ΩH .

Theorem 3 establishes an equivalence relation between
Formulas (14) and (15), when Ω is a convex polyhedron. In
particular, for an SLC loop P defined by Ω , Formula (14)
indicates ρ(x) = aTx − k is exactly an LRF for P. Hence,
Theorem 3 tells us that P has an LRF ρ(x) = aTx − k
over the reals if and only if aT(x − x′ + dx) ≥ 1 for all
(x, x′, dx, dx′) ∈ Ω × ΩH ⊆ R

4n .

Let (Ω × ΩH )Q = {(x, x′, dx, dx′) ∈ Q
4n : Ax + A′x′ ≥

b, Adx + A′d ′
x ≥ 0}. By the proof of Proposition 4, we know

Formula (14) is equivalent to

∃k(∀(x, x′) ∈ ΩQ ⇒ (aTx ≥ k ∧ aT(x − x′) ≥ 1)). (25)

In addition, adopting the similar strategy in the proof of
Proposition 4, we get that Formula (15) is equivalent to
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(∀(x, x′, dx, dx′) ∈ (Ω × ΩH )Q ⇒ aT(x − x′ + dx) ≥ 1.

(26)

By the above arguments, we have

Corollary 1 LetΩ ,ΩQ,Ω ×ΩH and (Ω ×ΩH )Q be defined
as before. We have (25) ⇔ (26).

Proof Since (14) is equivalent to (25) and (15) is equivalent
to (26), by Theorem 3, (25) is equivalent to (26). ��
Theorem 4 Let Ω be defined as before. Let ΩH be the set of
recession directions of Ω , and let P be an SLC loop defined
by Ω . Define

Δ � x − x′ + dx = 0 ∧ Adx + A′dx′ ≥ 0
︸ ︷︷ ︸

ΩH

∧ Ax + A′x′ ≥ b
︸ ︷︷ ︸

Ω

to be a system of inequalities. Then, the systemΔ has no real
solutions if and only if P has a linear ranking function over
the reals.

Proof Suppose that Δ has no real solutions. Let

U (x, x′, dx, dx′) = x − x′ + dx.

Clearly,U is a linearmapping fromR
4n toR

n . LetΩ×ΩH =
{(x, x′, dx, dx′) : Ax + A′x′ ≥ b ∧ Adx + A′dx′ ≥ 0}.
Obviously, the set Ω × ΩH ⊆ R

4n is a convex polyhedron.
Let U (Ω × ΩH ) = {U (x, x′, dx, dx′) : (x, x′, dx, dx′) ∈
Ω × ΩH }. Thus, since U (x, x′, dx, dx′) is a linear mapping
and Ω × ΩH is a convex polyhedron, by Proposition 5, the
imageU (Ω ×ΩH ) of Ω × ΩH under the linear mappingU
is also a closed convex set. Thus, Δ has no real solutions, is
equivalent to,

(∀(x, x′) ∈ Ω,∀(dx, dx′) ∈ ΩH ) ⇒ x − x′ + dx �= 0.

This clearly implies that 0 /∈ U (Ω × ΩH ). Because U (Ω ×
ΩH ) is a closed convex set and 0 /∈ U (Ω × ΩH ), in terms
of Lemma 2, there exists a hyperplane aTu = e strictly sep-
arating the origin 0 ∈ R

n from U (Ω × ΩH ) ⊆ R
n . That

is, aTu �= e for any u ∈ U (Ω × ΩH ). Since aTu = e
strictly separates the origin 0 from U (Ω × ΩH ), the hyper-
plane aTu = 0 passing through the origin and parallel to
aTu = e, must be disjoint fromU (Ω × ΩH ). Therefore, we
have aTu �= 0 for any u ∈ U (Ω ×ΩH ). By the definition of
U (Ω × ΩH ), we further have that aT(x − x′ + dx) �= 0
for any (x, x′) ∈ Ω and any (dx, dx′) ∈ ΩH (i.e., any
(x, x′, dx, dx′)∈Ω×ΩH ), since u is taken fromU (Ω×ΩH ).
Let f (x, x′, dx, dx′) = aT(x − x′ + dx). Since f is linear,
Ω × ΩH is a convex polyhedron and aT(x − x′ + dx) �= 0
for all (x, x′, dx, dx′) ∈ Ω × ΩH , according to Lemma 4,
there must exist a positive number δ such that either (i)

aT(x− x′ + dx) ≥ δ for all (x, x′, dx, dx′) ∈ Ω ×ΩH , or (ii)
aT(x − x′ + dx) ≤ −δ for all (x, x′, dx, dx′) ∈ Ω × ΩH .
If Case (i) occurs, then aT

δ
(x − x′ + dx) ≥ 1 for all

(x, x′, dx, dx′) ∈ Ω × ΩH . Then, by Theorem 3, we have

∀(x, x′) ∈ Ω ⇒
(
aT

δ
x ≥ k ∧ aT

δ
(x − x′) ≥ 1

)

(27)

for a certain constant k. This indicates that ρ(x) = aT
δ
x is

exactly an LRF for P . If Case (ii) occurs, then − aT
δ

(x−x′ +
dx) ≥ 1 for all (x, x′, dx, dx′) ∈ Ω × ΩH . This implies

∀(x, x′) ∈ Ω ⇒
(

−aT

δ
x ≥ k ∧ −aT

δ
(x − x′) ≥ 1

)

(28)

according to Theorem 3. That is, ρ(x) = − aT
δ
x is an LRF

for P . To sum up, if the system Δ has no real solutions, then
P has an LRF.

The remaining thing is to show that if the system Δ has
real solutions, then P has no LRF. It is trivial to prove this.
This is because, once the system Δ has real solutions, i.e.,
there exists a point (x̃, x̃′, d̃x, d̃x′) ∈ Ω × ΩH , such that
x̃ − x̃′ + d̃x = 0, we have aT(x̃ − x̃′ + d̃x) ≡ 0 � 1 for any
vector aT ∈ R

n . Hence, Formula (15) cannot hold for any
fixed vector aT ∈ R

n . This means that Formula (14) cannot
hold for any fixed vector aT ∈ R

n and any k ∈ R by Theorem
3. Therefore, by Theorem 3 and its remark, P has no LRF.
This completes the proof of the theorem. ��
Remark 5 Theorem 4 provides us with a new method for
determining the existence of LRFs of SLC loops without
synthesizing an LRF. Let Sol(Δ) ⊆ R

4n be the solution set
of the system Δ. Let πx(Sol(Δ)) be the projection on x of
the polyhedron Sol(Δ). It is easy to see that πx(Sol(Δ)) �= ∅
iff Sol(Δ) �= ∅. And each point in πx(Sol(Δ)) is a witness
for nonexistence of LRFs, when πx(Sol(Δ)) is not empty.

For a given SLC loop P defined by Ω , one can establish
an ∃-constraint below by Theorem 4,

∃x∃x′∃dx∃dx′

(x − x′ + dx = 0 ∧ Adx + A′dx′ ≥ 0 ∧ Ax + A′x′ ≥ b).

(29)

Since the expressions in the above ∃-constraint are all linear,
linear programming (LP) methods, which have polynomial-
time complexity, can be directly applied to solve such
∃-constraints in polynomial time. Therefore, Theorem 4 pro-
vides a complete polynomial-time method to decide whether
or not an SLC loop has LRFs over the reals. By Proposition 1,
we get that Δ has no real solution iff Δ has no rational solu-
tion, since A, A′ and b are all rational. So, by Proposition 4
and Theorem 4, we have
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Corollary 2 With the above notion. Given an SLC loop P
defined by Ω , Δ has no rational solution if and only if P has
a linear ranking function over the rationals.

Remark 6 Corollary 2 tells us that Δ has no rational solution
iff there is an LRF over ΩQ. The latter means that P has an
LRF over the rationals.

With the above arguments, we have the following result.

Theorem 5 Given an SLC loop P, one can check if P has lin-
ear ranking functions over the rationals (or reals) in PTIME.
Also, one can find a witness for nonexistence of LRFs in
PIME, if there is no LRF for P.

We next take an example to demonstrate how to use The-
orem 4 to decide the existence of LRFs of SLC loops.

Example 3 Consider the SLC loop

Loop : {x ≥ 0, x ′ ≤ x + y, y′ ≤ y − 1, y′ ≥ −2}. (30)

By the above arguments, construct the ∃-constraint by (29):

∃x∃y∃x ′∃y′∃dx∃dy∃dx ′∃dy′ .

(x − x ′ + dx = 0 ∧ y − y′ + dy = 0 ∧ x ≥ 0∧
x ′ ≤ x + y ∧ y′ ≤ y − 1 ∧ y′ ≥ −2 ∧ dx ≥ 0∧
dx ′ ≤ dx + dy ∧ dy′ ≤ dy ∧ dy′ ≥ 0).

(31)

By quantifier elimination technique, we find Formula (31) is
false. This immediately implies the loop indeed has an LRF
by Theorem 4.

For an SLC loop P defined by Ω , we next show how to
reduce equivalently the existence of LRFs over I (ΩQ) to that
of LRFs over Ω int

Q
.

Theorem 6 Let ΩQ ⊆ Q
2n,I (ΩQ) ⊆ Z

2n be defined as
before. LetΩ int

Q
⊆ Q

2n be the integer hull ofΩQ. Then, there

is a linear ranking function over the set Ω int
Q

if and only if

there is a linear ranking function over the set I (ΩQ) ⊆ Z
2n.

Proof It is clear that if there is an LRF over Ω int
Q
, then there

must exist an LRF over I (ΩQ), since I (ΩQ) ⊆ Ω int
Q
. Next,

we show the converse. Suppose ρ(x) = aTx − k is an LRF
over I (ΩQ). Then, we have

∃k(∀(x, x′) ∈ I (ΩQ) ⇒ (aTx ≥ k ∧ aT(x − x′) ≥ 1)).

(32)

By Formula (5), Ω int
Q

has the following generator repre-
sentation:

Ω int
Q �

⎧
⎨

⎩

m∑

i=1

ui · (xi , x′
i ) +

t∑

j=1

v j · ((dx) j , (dx′) j ) ∈ Q
2n :

∀ui , v j ∈ Q
+,

m∑

i=1

ui = 1

}

(33)

where (xi , x′
i ) ∈ Z

2n is vertex for i = 1, . . . ,m and
((dx) j , (dx′) j ) ∈ Z

2n is ray for j = 1, . . . , t . Clearly, any
point of the form (xi , x′

i ) + λ((dx) j , (dx′) j ) with integer
λ > 0, for i = 1, . . . ,m and for j = 1, . . . , t , is a point
in I (ΩQ). When λ goes to infinity, we have Formula (32)
implies

aT(dx) j ≥ 0 ∧ aT((dx) j − (dx′) j ) ≥ 0, (34)

for i = 1, . . . ,m and for j = 1, . . . , t .
By Proposition 2, we know (xi , x′

i ) ∈ I (ΩQ), for i =
1, . . . ,m, since (xi , x′

i ) ∈ I (Ω int
Q

) and I (Ω int
Q

) ⊆ I (ΩQ).
Since (xi , x′

i ) ∈ I (ΩQ), for i = 1, . . . ,m, by (32), it follows
that

aTxi ≥ k ∧ aT(xi − x′
i ) ≥ 1, (35)

for i = 1, . . . ,m. So, for any point (x, x′) ∈ Ω int
Q
, by (33),

there exist nonnegative rational numbers ui ’s and v j ’s with∑m
i=1 ui = 1, such that

(x, x′) =
m∑

i=1

ui · (xi , x′
i ) +

t∑

j=1

v j · ((dx) j , (dx′) j ).

Thus, by (32), (34) and (35), we get

aTx =
m∑

i=1

ui · aTxi +
t∑

j=1

v j · aT(dx) j ≥ k, (36)

for any point (x, x′) ∈ Ω int
Q
. Likewise, (32) and (34) imply

that

aT(x − x′) =
m∑

i=1

ui · aT(xi − x′
i )

+
t∑

j=1

v j · aT((dx) j − (dx′) j ) ≥ 1 (37)

for any point (x, x′) ∈ Ω int
Q
. So, by (36) and (37), ρ(x) =

aTx − k is clearly an LRF over Ω int
Q
. ��
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We notice that a result similar to Theorem 6 is mentioned
already in [15]. Similar to Theorem 4, for the integer setting,
we have

Theorem 7 Let Ω , ΩQ, Ω int
Q

be defined as before, and let

(Ω int
Q

)H be the set of recession directions of Ω int
Q
. Let P be

an SLC loop defined by Ω . Define

Δint
Q � x − x′ + dx = 0 ∧ (x, x′)

∈ Ω int
Q ∧ (dx, dx′) ∈ (Ω int

Q )H .

P has a linear ranking function over the integers if and only
if Δint

Q
has no rational solution.

Proof SinceΩ int
Q

is a rational polyhedron, by Theorem 4 and

Corollary 2, there exists an LRF over Ω int
Q

if and only if Δint
Q

has no rational solution. By Theorem 6, there exists an LRF
over Ω int

Q
if and only if there exists an LRF over I (ΩQ). So,

P has an LRF over the integers if and only if Δint
Q

has no
rational solution. ��
Remark 7 Different from the method in [5], which equiva-
lently reduces the nonexistence of LRFs over the integers to
theunsatisfiability of a systemof linear inequalities, Theorem
7 presents an alternative method, which equivalently reduces
the nonexistence of LRFs over the integers to the satisfiabil-
ity of a system of linear inequalities, to check if an SLC loop
has an LRF over the integers. Also, Δint

Q
characterizes the

set of witnesses for nonexistence of LRFs over the integers.
Both [5]’s method and ours depend heavily on the computa-
tion of integer hulls of polyhedra. Since the computation of
the integer hull of a polyhedron defining an SLC loop may
require exponential time, our method due to Theorem 7 is
not a polynomial-time algorithm.

Example 4 Consider the integer SLC loop from [5]:

Loop : {x1 ≥ 0 ∧ x ′
1 = x1 + x2 ∧ x ′

2 = x2 − 1}. (38)

The generator representation of Ω int
Q

is

Ω int
Q = conhull{(x1, x′

1)}
+ cone{((dx)1, (dx′)1), ((dx)2, (dx′)2),

((dx)3, (dx′)3)}, (39)

where (x1, x′
1) = (0, 1, 1, 0)T, ((dx)1, (dx′)1) = (0,−1,

−1,−1)T, ((dx)2, (dx′)2) = (0, 1, 1, 1)T, ((dx)3, (dx′)3) =
(1,−1, 0,−1)T. By Theorem 7, the loop has an LRF over
the integers iff Δint

Q
has no rational solution. By the above

generator representation,

(x, x′) = (x1, x′
1) + u11((dx)1, (dx′)1)

+ u12((dx)2, (dx′)2) + u13((dx)3, (dx′)3), (40)

where u11, u12, u13 ∈ Q
+, and

(dx, dx′) = u21((dx)1, (dx′)1)

+ u22((dx)2, (dx′)2) + u23((dx)3, (dx′)3), (41)

where u21, u22, u23 ∈ Q
+. Substituting (40) and (41) toΔint

Q
,

we get :

SΔint
Q = [u13 − 1 + u11 − u12 + u23 = 0,

1 + 2 u12 − u21 + u22 − u23 = 0, 0 ≤ u11,

0 ≤ u12, 0 ≤ u13, 0 ≤ u21, 0 ≤ u22, 0 ≤ u23].

Note that SΔint
Q

consists of linear expressions and just
involves with the variables: u11, u12, u13, u21, u22, u23.
Therefore, to check if Δint

Q
has a rational solution is equiv-

alent to check if SΔint
Q

has a rational solution. Using linear
programming (LP) algorithm, we obtain u11 = 1, u12 =
0, u13 = 0, u21 = 1, u22 = 0, u23 = 0, which means that
Δint

Q
has a rational solution. So, the loop has no LRF over the

integers by Theorem 7.

Example 5 Consider Loop (1) from Sect 1. By the similar
analysis as in the above example, the corresponding SΔint

Q
is

obtained as follows:

SΔint
Q = [3 r1 + r2 + r3 + r4 + 3 r5 + r6 + 3 u11 + 3

u12 + 5 u21 + 5 u22 = 0, 20 u22 = 0,

r1 + r2 + r3 + r4 + r5 + r6 = 1,

0 ≤ r1, 0 ≤ r2, 0 ≤ r3, 0 ≤ r4, 0 ≤ r5,

0 ≤ r6, 0 ≤ u11, 0 ≤ u12, 0 ≤ u21, 0 ≤ u22].

By verification, SΔint
Q

has no rational solution. This implies
Loop (1) has an LRF over the integers by Theorem 7.

It is a reasonable assumption in practice that the systems
of linear inequalities defining SLC loops are bounded. The
following result immediately follows from Theorem 4. It
indicates that termination of bounded SLC loops over the
reals is decidable. Let πx(Ω) = {x ∈ R

n : Ax + A′x′ ≥ b},
where πx is a projection mapping defined as in Sect. 2.3.

Theorem 8 Let Ω and ΩH be defined as before. Let P be
an SLC loop defined by Ω . If πx(Ω) is bounded, i.e., there
exists a positive number γ, such that (−γ, . . . ,−γ ) ≤ x ≤
(γ, . . . , γ ) for all x ∈ πx(Ω), then loop P is nonterminating
over the reals iff P has at least one fixed point.

Proof By the definition of ΩH , we have ΩH = {(dx, dx′) :
Adx + A′dx′ ≥ 0}. Then, we will claim that for any d =
(dx, dx′) ∈ ΩH , dx must be zero, i.e., dx ≡ 0,when πx(Ω) is
bounded. First, let (x̂, x̂′) be a point taken arbitrarily from Ω

and let d = (dx, dx′) be a recession direction taken arbitrarily
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fromΩH . Then, by the definition of recession directions, for
any λ ≥ 0, we have

(x̂, x̂′) + λ(dx, dx′) = (x̂ + λdx, x̂′ + λdx′) ∈ Ω.

Clearly, x̂ + λdx ∈ πx(Ω) for any λ ≥ 0. Suppose that
dx �= 0. Then, it is easy to see that

|x̂ + λdx| → +∞, (as λ → +∞).

This immediately implies πx(Ω) is unbounded, which
clearly contradictswith thehypothesis thatπx(Ω) is bounded.
So, we have dx = 0 for any d ∈ ΩH . This implies that the
system Δ in Theorem 4 can be further written as

Δ � x − x′ = 0 ∧ A′dx′ ≥ 0 ∧ Ax + A′x′ ≥ b (42)

since dx ≡ 0, when πx(Ω) is bounded. More importantly, it
is not difficult to see that Formula (42) has a real solution if
and only if the following system

Δ̃ � x − x′ = 0 ∧ Ax + A′x′ ≥ b (43)

has a real solution. This is because, in Formula (42), one
always can set dx′ = 0. By Definition 3, we know that Δ̃

is exactly corresponding to the set FixΩ , whose projection
πx(FixΩ) on x is the set of fixed points of Loop P . There-
fore, if Δ̃ has a real solution, then P has a fixed point, which
implies P is nonterminating. Otherwise, if Δ̃ has no real
solution, then Δ has no real solution, too. This immediately
means that P has an LRF over the reals, according to Theo-
rem 4. ��

Theorem 8 gives a method to decide the termination prob-
lem of a class of SLC loops. Given an SLC loop P defined
by Ω , compute its πx(Ω) first. If πx(Ω) is bounded, then by
Theorem 8, to check if P terminates over the reals is equiv-
alent to check if P has a fixed point.

It is easy to see thatwhen P is a bounded SLC loop,πx(Ω)

is bounded, too. Therefore, the following corollary directly
follows from Theorem 8.

Corollary 3 Let P be a bounded SLC loop specified by Ω .
Then, P is nonterminating over the reals iff P has at least
one fixed point.

Corollary 4 With the above notion. Let P be a bounded SLC
loop specified by Ω . Then, P is nonterminating over the
rationals iff P has at least one fixed point.

Proof The proof is completely similar to the proof of Theo-
rem 8. By Proposition 1, Formula (43) has a real solution if
and only if it has a rational solution. Similarly, the same con-
clusion also holds for Formula (42). So, by the arguments

presented in the proof of Theorem 8, we get that Formula
(43) has a rational solution if and only if Formula (42) has
a rational solution. Suppose P has at least one real fixed
point, i.e., πx(FixΩ) �= ∅. Since πx(FixΩ), which is the
projection of Δ̃ on x, is also a polyhedron, we have Δ̃ has a
real solution. It immediately implies that Formula (43) must
have a rational solution by Proposition 1. This means that
P has at least one rational fixed point. Hence, P is nonter-
minating over the rationals. Suppose P has no rational fixed
point. This means that πx(FixΩ) has no rational solution.
Furthermore, by Proposition 1, we get πx(FixΩ) has no real
solution, i.e., πx(FixΩ) = ∅. Then, we have Formula (43)
has no real solution. This further implies Δ has no real solu-
tion. By Theorem 4, P must have a LRF over the reals. This
also means that P is terminating over the rationals. ��
Example 6 Consider the SLC loop

Loop :{2x1 − x2 ≥ 1, x2 ≤ 1, x1 − x2 ≤ 0,

− x ′
1 − x1 + x ′

2 ≥ 0, x2 − x ′
2 ≥ 0} (44)

Let Ω = {(x1, x2, x ′
1, x

′
2) : 2x1 − x2 ≥ 1, x2 ≤ 1, x1 − x2 ≤

0, −x ′
1 − x1 + x ′

2 ≥ 0, x2 − x ′
2 ≥ 0} and let FixΩ =

{(x1, x2) : 2x1 − x2 ≥ 1, x2 ≤ 1, x1 − x2 ≤ 0,−x ′
1 − x1 +

x ′
2 ≥ 0, x2 − x ′

2 ≥ 0, x1 = x ′
1, x2 = x ′

2}. Eliminating x ′
1, x

′
2

from the system defining Ω by quantifier elimination (QE)
technique, we obtain π(x1,x2)(Ω) = {(x1, x2) : 2x1 − x2 −
1 ≥ 0, x1 − x2 ≤ 0, x2 − 1 ≤ 0}. π(x1,x2)(Ω) is indeed
bounded. Therefore, by Theorem 8, determining if the SLC
loop is nonterminating is equivalent to determining if it has
a fixed point. To do this, we first need to compute the set
π(x1,x2)(FixΩ) of fixed points of the loop. For the example,
we get π(x1,x2)(FixΩ) = ∅. This indicates that loop P has
no fixed points. Thus, P is terminating over the reals by
Theorem 8. Notice that the above loop is not a bounded SLC
loop, since not all variables involved can be bounded by a
positive number. Hence, Corollary 3 is not applicable to the
loop in (44).

By Theorem 8, we have established a necessary and suf-
ficient criterion for the termination of a special class of SLC
loops, which relates the termination problem of such SLC
loops to the computation of fixed points. However, for SLC
loops which do not satisfy its hypothesis, Theorem 8 is not
applicable.

4 Conclusion

In this paper, we have analyzed the existence of LRFs of
SLC loops and have given a new complete polynomial-time
method for checking if a given SLC loop has LRFs over
the reals (or rationals). Additionally, for a rational SLC loop
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specified by a rational polyhedron ΩQ, introducing the inte-
ger hull Ω int

Q
of ΩQ, we equivalently reduce the existence

of LRFs over the integers to that of LRFs over the rationals.
Finally, for a special class of SLC loops, we have shown
that their termination problem is decidable over the reals (or
rationals).
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