
International Journal on Software Tools for Technology Transfer (2021) 23:1–29
https://doi.org/10.1007/s10009-019-00544-0

GENERAL

Regular Paper

Learning Moore machines from input–output traces

Georgios Giantamidis1,2 · Stavros Tripakis3 · Stylianos Basagiannis1

Published online: 6 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The problem of learning automata from example traces (but no equivalence or membership queries) is fundamental in
automata learning theory and practice. In this paper, we study this problem for finite-state machines with inputs and outputs,
and in particular for Moore machines. We develop three algorithms for solving this problem: (1) the PTAP algorithm, which
transforms a set of input–output traces into an incomplete Moore machine and then completes the machine with self-loops;
(2) the PRPNI algorithm, which uses the well-known RPNI algorithm for automata learning to learn a product of automata
encoding aMooremachine; and (3) theMooreMI algorithm,which directly learns aMooremachine using PTAP extendedwith
state merging. We prove that MooreMI has the fundamental identification in the limit property. We compare the algorithms
experimentally in terms of the size of the learned machine and several notions of accuracy, introduced in this paper. We also
carry out a performance comparison against two existing tools (LearnLib and flexfringe). Finally, we compare with OSTIA,
an algorithm that learns a more general class of transducers and find that OSTIA generally does not learn a Moore machine,
even when fed with a characteristic sample.

Keywords Finite state machine · Moore machine · Mealy machine · Automata learning · Passive learning · Characteristic
sample

1 Introduction

An abundance of data from the Internet, sensors, and other
sources is revolutionizing many sectors of science, technol-
ogy, and ultimately our society. At the heart of this revolution
lie machine learning and data mining, a broad spectrum of
techniques to derive information from data. Traditionally,
objects studied by machine learning include classifiers, deci-
sion trees, and neural networks, with applications to fields
as diverse as artificial intelligence, marketing, finance, or
medicine [1].

This work was partially supported by the Academy of Finland and the
U.S. National Science Foundation (Awards #1329759 and #1139138).
This work was partially supported by the Irish Development Agency
(IDA) for UTRC Ireland related to Network of Excellence in
Aerospace Cyber Physical Systems.

B Georgios Giantamidis
GiantaGE@utrc.utc.com

1 United Technologies Research Centre Ireland, Cork, Ireland

2 Aalto University, Otaniemi, Finland

3 Northeastern University, Boston, MA, USA

In the context of systemdesign, an important problemwith
numerous applications is the automatic generation of mod-
els from data [2,3]. There are many variants of this problem,
depending on what types of models and data are consid-
ered as well as other assumptions or restrictions. Examples
include, but are by no means limited to, the classic field of
system identification [4] as well as more recent works on
synthesizing programs, controllers, or other artifacts from
examples [3,5–10]. Model learning is also closely related to
program debugging [11].

In this paper, we consider a basic problem, that of learning
aMoore machine from a set of input–output traces. AMoore
machine is a type of finite-state machine (FSM) with inputs
and outputs, where the output always depends on the cur-
rent state, but not on the current input [12]. Moore machines
are typically deterministic and complete, meaning that for
given state and input, the next state is always defined and is
unique; for given state, the output is also always uniquely
defined. Such machines are useful in many applications, for
instance, for representing digital circuits or controllers. In
this paper, we are interested in learning deterministic and
complete Moore machines.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-019-00544-0&domain=pdf

2 G. Giantamidis et al.

We want to learn a Moore machine from a given set of
input–output traces. One such trace is a sequence of inputs,
ρin , and the corresponding sequence of outputs, ρout , that
the machine must produce when fed with ρin . As in standard
machine learning methods, we call the set of traces given
to the learning algorithm the training set. Obviously, we
would like the learned machine M to be consistent w.r.t. the
training set R, meaning that for every pair (ρin, ρout) ∈ R,
M must output ρout when fed with ρin . But in addition to
consistency, we would like M to behave well w.r.t. several
performance criteria, including complexity of the learning
algorithm, size of the learned machine M (its number of
states), and accuracy of M , which captures how well M per-
forms on a testing set of traces, different from the training
set.

Even though this is a basic problem, it appears not to have
received much attention in the literature. In fact, to the best
of our knowledge, this is the first paper which formalizes and
studies this problem. This is despite a large body of research
on grammatical inference [13] which has studied similar, but
not exactly the same problems, such as learning determinis-
tic finite automata (DFA), which are special cases of Moore
machines with a binary output, or subsequential transducers,
which are more general than Moore machines.

Our contributions are the following:

1. We define formally the LMoMIO problem (learning
Moore machines from input–output traces). Apart from
the correctness criterion of consistency (that the learned
machine be consistent with the given traces), we also
introduce several performance criteria including size and
accuracyof the learnedmachine, and computational com-
plexity of the learning algorithm.

2. We adapt the notion of characteristic sample, which is
known for DFA [13], to the case of Moore machines.
Intuitively, a characteristic sample of a machine M is
a set of traces which contains enough information to
“reconstruct” M . The characteristic sample requirement
(CSR) states that, when given as input a characteristic
sample, the learning algorithm must produce a machine
equivalent to the one that produced the sample. CSR is
important, as it ensures identification in the limit: This is
a key concept in automata learning theory which ensures
that the learning algorithm will eventually learn the right
machine when provided with a sufficiently large set of
examples [14].

3. We develop three algorithms to solve the LMoMIO
problem and analyze them in terms of computational
complexity and other properties. We show that although
all three algorithms guarantee consistency, only the most
advanced among them, called MooreMI, satisfies the
characteristic sample requirement. We also show that
MooreMI achieves identification in the limit.

4. We report on aprototype implementationof all three algo-
rithms and experimental results. The experiments show
that MooreMI outperforms the other two algorithms not
only in theory, but also in practice.We also adapt our best
algorithm (MooreMI) to learn Mealy machines, com-
pare with two existing tools that learn Mealy machines,
LearnLib [15] and flexfringe [16] and find that our imple-
mentation outperforms both in terms of running time and
memory consumption.

5. We show that the well-known transducer-learning algo-
rithm OSTIA [17] cannot generally learn a Moore
machine, even in the case where the training set is a char-
acteristic sample of a Moore machine. This implies that
an algorithm to learn a more general machine (e.g., a
transducer) is not necessarily good at learning a more
special machine and therefore further justifies the study
of specialized learning algorithms for Moore machines.

An earlier version of this work has appeared as conference
paper [18]. The additional contributions of this journal paper
with respect to the earlier work are: (1) an extensive descrip-
tion of our learning algorithms, including pseudocode; (2)
proofs of the main results, and additional results (lemmas)
used in those proofs; (3) a new subsection on performance
optimizations (Sect. 5.5); (4) a more detailed complexity
analysis (Sect. 5.6); (5) a significantly revised and extended
section on implementation and experimental results (Sect. 6);
(6) a new section on performance comparison with exist-
ing tools (Sect. 7); and (7) an extended bibliography and
related work discussion. In particular, Sect. 6 constitutes
one of the principal novel contributions of this paper, as
it describes in detail our implementation and experimental
setups, including information on random machine genera-
tion and trace generation, and provides results on randomly
generated machines as well as on benchmarks from the lit-
erature. We also present a new and improved random trace
generation method (Sect. 6.4).

2 Related work

There is a large body of research on learning automata and
state machines. In a nutshell, this research can be classified
into active and passive learning, and within passive learning,
into exact and heuristic approaches. Our work falls into the
passive, heuristic category. More details are provided below.
Automata learning is an active area of research which is cur-
rently seing a resurgence (e.g., see [3,19–25]). An excellent
recent survey of classic works such as [26,27] as well as
recent results, applications and case studies can be found
in [2].

Automata and state machine learning can be divided into
two broad categories: learning with (examples and) queries

123

Learning Moore machines from input–output traces 3

(active learning) and learning only from examples (passive
learning). A seminal work in the first category is Angluin’s
work on learning DFAs with membership and equivalence
queries [28]. This work has been subsequently extended to
other types of machines, such as Mealy machines [29], sym-
bolic / extendedMealy machines [30,31], I/O automata [32],
register automata [33,34], or hybrid automata [35]. These
works are not directly applicable to the problem studied
in this paper, as we explicitly forbid both membership and
equivalence queries. Therefore, our work is about passive
learning. In practice, performing queries (especially com-
plete equivalence queries) is often infeasible.

In the domain of passive learning, a seminalwork isGold’s
study of learning DFAs from sets of positive and negative
examples [14,36]. In this line of work, we must distinguish
algorithms that solve the exact identification problem, which
is to find a smallest (in terms of number of states) automaton
consistent with the given examples, from those that learn
not necessarily a smallest automaton1 (Let us call them
heuristic approaches.) Gold showed that exact identification
is NP-hard for DFAs [36]. Several works solve the exact
identification problem by reducing it into Boolean satisfia-
bility [37,38].

Heuristic approaches are dominated by state merging
algorithms like Gold’s algorithm for DFAs [36], RPNI [39]
(also for DFAs), for which an incremental version also exists
[40], and derivatives, like EDSM [41] (which also learns
DFAs, but unlike RPNI does not guarantee identification in
the limit), OSTIA [17] (which learns subsequential trans-
ducers) and others [42–44]. This line of work also includes
gravitational search algorithms [45], genetic algorithms [46],
ant colony optimization [47], rewriting [48], as well as state
splitting algorithms [49]. [45] learns Moore machines, but
unlike our work does not guarantee identification in the
limit. [46–49] all learn Mealy machines.

All algorithms developed in this paper belong to the
heuristic category in the sense that we do not attempt to find
a smallest machine. However, we would still like to learn
a small machine. Thus, size is an important performance
criterion, as explained in Sect. 5.1. LikeRPNI and other algo-
rithms, MooreMI is also a state-merging algorithm.

[50] is close to our work, but the algorithm described there
does not always yield a deterministic Moore machine, while
our algorithms do. This is important because we want to
learn systems like digital circuits, embedded controllers (e.g.,
modeled in Simulink), etc., and such systems are typically
deterministic. The k-tails algorithm for finite-state machine

1 The term smallest automaton is used in the exact identification prob-
lem, instead of the more well-known term minimal automaton. Among
equivalent machines, one with the fewest states is called minimal.
Among machines which are all consistent with a set of traces but not
necessarily equivalent, one with the fewest states is called smallest.

inference [51]may also result in non-deterministicmachines.
Moreover, this algorithm does not generally yield smallest
machines, since the initial partition of the input words into
equivalence classes (which then become the states of the
learned machine) can be overly conservative.2

The work in [52] deals with learning finite-state machine
abstractions of nonlinear analog circuits. The algorithm
described in [52] is very different from ours and uses the
circuit’s number of inputs to determine a subset of the states
in the learned abstraction. Also, identification in the limit is
not considered in [52].

Learning from “inexperienced teachers”, i.e., by using
either (1) only equivalence queries or (2) equivalence plus
membership queries that may be answered inconclusively,
has been studied in [53,54].

Related but different from our work are approaches which
synthesize state machines from scenarios and requirements.
Scenarios can be provided in various forms, e.g., message
sequence charts [9,10], event sequence charts [55], or simply,
input–output examples [56]. Requirements can be temporal
logic formulas as in [9,10,56], or other types of constraints
such as the scenario constraints used in [55]. In this paper,
we have examples, but no requirements.

Also related but different from ours is work in the areas
of invariant generation and specification mining, which
extract properties of a program or system model, such as
invariants [57–60], temporal logic formulas [61,62] or non-
deterministic finite automata [63].

FSM learning is related to FSM testing [64]. In particular,
notions similar to the nucleus of an FSM and to distinguish-
ing suffixes of states, which are used to define characteristic
samples, are also used in [65,66]. The connection between
conformance testing and regular inference is made explicit
in [67] and [64] describes how an active learning algorithm
can be used for fault detection.

3 Preliminaries

3.1 Finite-state machines and automata

A finite-state machine (FSM) is a tuple M of the form M =
(I , O, Q, q0, δ, λ), where:

2 We have implemented the k-tails algorithm and applied it on the
characteristic sample for the Moore machine in Fig. 5a, described in
Sect. 4.1. Using k = 0, we get a non-deterministic machine of three
Footnote 2 continued
states. Using any k > 0, we get a deterministic machine of eight states.
This excessive number of states is due to the way the k-tails equiva-
lence relation is defined. In particular, in order for two input words to
be considered equivalent, they must have successors in the training set
with the same letters. This implies that a word with no successors in the
training set can never be equivalent with a word with some successors,
even if both words represent the same state in the target machine.

123

4 G. Giantamidis et al.

(a)

(b)

Fig. 1 Examples of finite-state machines

– I is a finite set of input symbols.
– O is a finite set of output symbols.
– Q is a finite set of states.
– q0 ∈ Q is the initial state.
– δ : Q × I → Q is the transition function.
– λ is the output function, which can be of two types:

– λ : Q → O , in which case the FSM is a Moore
machine.

– λ : Q × I → O , in which case the FSM is a Mealy
machine.

If both δ and λ are total functions, we say that the FSM is
complete. If any of δ and λ is a partial function, we say that
the FSM is incomplete. Examples of a Moore and a Mealy
machine are given in Fig. 1. Both FSMs are complete.

We also define δ∗ : Q × I ∗ → Q as follows (X∗ denotes
the set of all finite sequences over some set X ; ε ∈ X∗ denotes
the empty sequence over X ;w ·w′ denotes the concatenation
of two sequences w,w′ ∈ X∗): for q ∈ Q, w ∈ I ∗, and
a ∈ I :

– δ∗(q, ε) = q.
– δ∗(q, w · a) = δ(δ∗(q, w), a).

We also define λ∗ : Q × I ∗ → O∗. The rest of this paper
focuses on Moore machines; thus, we define λ∗ only in the
case where M is aMoore machine (the adaptation to aMealy
machine is straightforward):

– λ∗(q, ε) = λ(q)

– λ∗(q, w · a) = λ∗(q, w) · λ(δ∗(q, w · a))

(a)

(b)

Fig. 2 Examples of finite-state automata

Two Moore machines M1, M2, with Mi = (Ii , Oi , Qi ,

q0_i , δi , λi) are said to be equivalent iff I1 = I2, O1 = O2,
and ∀w ∈ I ∗

1 : λ∗
1(q0_1, w) = λ∗

2(q0_2, w).
A Moore machine M = (I , O, Q, q0, δ, λ) is minimal if

for any other Moore machine M ′ = (I ′, O ′, Q′, q ′
0, δ

′, λ′)
such that M and M ′ are equivalent, we have |Q| ≤ |Q′|,
where |X | denotes the size of a set X .

Notice that in the case two Moore machines are minimal,
testing equivalence is reduced to a graph isomorphism test.

A deterministic finite automaton (DFA) is a tuple A =
(Σ, Q, q0, δ, F), where:

– Σ (the alphabet) is a finite set of letters.
– Q is a finite set of states.
– q0 ∈ S is the initial state.
– δ : Q × Σ → Q is the transition function.
– F ⊆ Q is the set of accepting states.

A DFA can be seen as a special case of a Moore machine,
where the set of input symbols I is Σ , and the set of output
symbols is binary, say O = {0, 1}, with 1 and 0 corre-
sponding to accepting and non-accepting states, respectively.
The concepts of complete and incomplete DFAs, as well as
the definition of δ∗, are similar to the corresponding ones
for FSMs. Elements of Σ∗ are usually called words. A
DFA A = (Σ, Q, q0, δ, F) is said to accept a word w if
δ∗(q0, w) ∈ F .

A non-deterministic finite automaton (NFA) is a tuple A =
(Σ, Q, Q0,Δ, F), whereΣ , Q, and F are as in a DFA, and:

– Q0 ⊆ Q is the set of initial states.
– Δ ⊆ Q × Σ × Q is the transition relation.

Examples of aDFAand anNFAare given in Fig. 2.Accepting
states are drawn with double circles.

123

Learning Moore machines from input–output traces 5

Given two NFAs, A1 = (Σ, Q1, Q1
0,Δ1, F1) and A2 =

(Σ, Q2, Q2
0,Δ2, F2), their synchronous product is the NFA

A = (Σ, Q1×Q2, Q1
0×Q2

0,Δ, F1×F2),where ((q1, q2), a,

(q ′
1, q

′
2)) ∈ Δ iff (q1, a, q ′

1) ∈ Δ1 and (q2, a, q ′
2) ∈ Δ2. The

synchronous product of automata is used in several algo-
rithms presented in the sequel.

3.2 Input–output traces and examples

Given sets of input and output symbols I and O , respec-
tively, a Moore (I , O)-trace is a pair of finite sequences
(x1x2 · · · xn, y0y1 · · · yn), for some natural number n ≥ 0,
such that xi ∈ I and yi ∈ O for all i ≤ n. That is, a
Moore (I , O)-trace is a pair of a input sequence and an out-
put sequence, such that the output sequence has length one
more than the input sequence. Note that n may be 0, in which
case the input sequence is empty (i.e., has length 0), and the
output sequence contains just one output symbol.

Given aMoore (I , O)-traceρ = (x1x2 · · · xn, y0y1 · · · yn)
and a Moore machine M = (I , O, Q, q0, δ, λ), we say that
ρ is consistent with M if y0 = λ(q0) and for all i = 1, . . . , n,
yi = λ(qi), where qi = δ(qi−1, xi).

Similarly to the concept of a Moore (I , O)-trace, we
define a Moore (I , O)-example as a pair of a finite input
symbol sequence and an output symbol: (x1x2 · · · xn, y),
where xi ∈ I , for i = 1, . . . , n, and y ∈ O . We say
that a Moore machine M = (I , O, Q, q0, δ, λ) is consis-
tent with a Moore (I , O)-example ρ = (x1x2 · · · xn, y) if
λ(δ∗(q0, x1x2 · · · xn)) = y.

Since a DFA can be seen as the special case of a Moore
machine with a binary output alphabet, the concept of a
Moore (I , O)-example is naturally carried over to DFAs,
in the form of positive and negative examples. Specifically, a
finite wordw is a positive example for a DFA if it is accepted
by the DFA, and a negative example if it is rejected. View-
ing a DFA as aMoore machine with binary output, a positive
examplew corresponds to theMoore example (w, 1), while a
negative example corresponds to the Moore example (w, 0).

3.3 Prefix tree acceptors and prefix tree acceptor
products

Given a finite and non-empty set of positive examples over
a given alphabet Σ , S+ ⊆ Σ∗, we can construct, in a non-
unique way, a tree-shaped, incomplete DFA, that accepts all
words in S+ and rejects all others. Such a DFA is called a
prefix tree acceptor [13] (PTA) for S+. For example, a PTA
for S+ = {b, aa, ab} is shown in Fig. 3. The reason why the
construction is non-unique is because we can always extend
the tree with non-accepting branches. For example, the state
qaa in Fig. 4a could be removed without changing the set of
words accepted by that PTA.

Fig. 3 A PTA for S+ = {b, aa, ab}

We extend the concept of PTA to Moore machines. Sup-
pose that we have a set SI O of Moore (I , O)-examples. Let
N = ⌈

log2 |O|⌉ be the number of bits necessary to represent
an element of O . Then, given a function f thatmaps elements
of O to bit tuples of length N , we can map SI O to N pairs of
positive and negative example sets, {(S1+, S1−), (S2+, S2−),
. . ., (SN+, SN−)}. In particular, for each pair (w, y) ∈ SI O ,
if the i-th element of f (y) is 1, then Si+ should contain w

and Si− should not. Similarly, if the i-th element of f (y) is
0, then Si− should contain w and Si+ should not.

We can subsequently construct a prefix tree acceptor prod-
uct (PTAP), which is a collection of N PTAs (one for each
positive example set, Si+, for i = 1, . . . , N) that have the
same state-transition structure. An example of a PTAP con-
sisting of two PTAs is given in Fig. 4.

4 Characteristic samples

An important concept in automata learning theory is that of
a characteristic sample [13].3 A characteristic sample for a
DFA is a set of words that captures all information about
that automaton’s set of states and behavior. In this paper,
we extend the concept of characteristic sample to Moore
machines.

4.1 Characteristic samples for Mooremachines

Let M = (I , O, Q, q0, δ, λ) be a minimal Moore machine.
Let < denote a total order on input words, i.e., on I ∗, such
that w < w′ iff either |w| < |w′|, or |w| = |w′| but w comes
before w′ in lexicographic order. (|w| denotes the length of
a word w.) For example, b < aa and aaa < aba.

Given a state q ∈ Q, we define the shortest prefix of q as
the shortest input word which can be used to reach q:

SP (q) = min<{w ∈ I ∗ | δ∗(q0, w) = q}.
3 Note that there are generally different kinds of characteristic samples
for different learners [13]. In this paper, our definition of the character-
istic sample is designed with our MooreMI algorithm in mind, which
is the natural extension for Moore machines of the RPNI algorithm.

123

6 G. Giantamidis et al.

Fig. 4 A PTAP for
SI O = {(b, 0), (aa, 1), (ab, 2)},
with I = {a, b}, O = {0, 1, 2},
and f = {0
→ (0, 0), 1
→
(0, 1), 2
→ (1, 0)}. The positive
and negative example sets are:
S1+ = {ab}, S1− = {b, aa},
S2+ = {aa}, S2− = {b, ab}

(a) (b)

Notice that M is minimal, which implies that all its states
are reachable. (otherwise, we could remove unreachable
states.) Therefore, SP (q) is well-defined for every state q
of M .

Next, we define the set of shortest prefixes of M , denoted
SP (M), as:

SP (M) = {SP (q) | q ∈ Q}

We can now define the nucleus of M which contains the
empty word and all one-letter extensions of words in SP (M):

NL(M) = {ε} ∪ {w · a | w ∈ SP (M), a ∈ I }.

We also define the minimum distinguishing suffix for two
different states qu and qv of M , as follows:

MD(qu, qv) = min<{w ∈ I ∗ | λ∗(qu, w) �= λ∗(qv, w)}.

MD(qu, qv) is guaranteed to exist for any two states qu, qv

because M is minimal.
LetW be a set of input words,W ⊆ I ∗. Pre f (W) denotes

the set of all prefixes of all words in W :

Pre f (W) = {x ∈ I ∗ | ∃w ∈ W , y ∈ I ∗ : x · y = w}.

Definition 1 Let SI O be a set of Moore (I,O)-traces, and let
SI be the corresponding set of input words: SI = {ρI ∈ I ∗ |
(ρI , ρO) ∈ SI O}. SI O is a characteristic sample for a Moore
machine M iff:

1. NL(M) ⊆ Pre f (SI).
2. ∀u ∈ SP (M) : ∀v ∈ NL(M) : ∀w ∈ I ∗ :

δ∗(q0, u) �= δ∗(q0, v) ∧ w = MD(δ∗(q0, u), δ∗(q0, v))

⇒ {u · w, v · w} ⊆ Pre f (SI).

For example, consider theMooremachineM1 fromFig. 1.
We have: SP (q0) = ε, SP (q1) = x2, SP (M1) = {ε, x2}, and
NL(M1) = {ε, x1, x2, x2x1, x2x2}. The following set is a
characteristic sample for M1:

SI O = { (x1, y1y1), (x2x1, y1y2y1), (x2x2, y1y2y2) }.

While it is intuitive that a characteristic sample should
contain input words that in a sense cover all states and tran-
sitions of M (Condition 1 of Definition 1), it may not be
obvious why Condition 2 of Definition 1 is necessary. This
becomes clear if we look at machines having the same output
on several states. For example, consider the Moore machine
M in Fig. 5a. The set of (I , O)-traces S1I O = {(aa, 020),
(ba, 012), (bb, 012), (aba, 0222), (abb, 0222)} satisfies
Condition 1 but not Condition 2 (because SP (q2) = a,
ba ∈ NL(M), δ∗(q0, ba) = q3, MD(q2, q3) = a, but no
input word in S1I O has baa as a prefix) and therefore is not a
characteristic sample of themachine of Fig. 5a. If we use S1I O
to learn a Moore machine, we obtain the machine in Fig. 5b.
(This machine was produced by our MooreMI algorithm,
described in Sect. 5.3.3.) Clearly, the two machines of Fig. 5
are not equivalent. For instance, the input word baa results
in different outputs when fed to the two machines. The rea-
son why the learning algorithm produces the wrong machine
is that the set S1I O does not contain enough information to
clearly distinguish between states q2 and q3.

Instead, consider the set S2I O = {(aa, 020), (baa, 0122),
(bba, 0122), (abaa, 02220), (abba, 02220)}. S2I O satisfies
both Conditions 1 and 2 and therefore is a characteristic sam-
ple. Given S2I O as input, our MooreMI algorithm is able to
learn the correct machine, i.e., the machine of Fig. 5a. In this
case, the minimum distinguishing suffix of states q2 and q3
is simply the letter a, since δ(q2, a) = q0, δ(q3, a) = q2 and
λ(q0) = 0 �= 2 = λ(q2). Notice that S2I O can be constructed
from S1I O by extending with the letter a the input words of
the latter that land on q2 or q3.

The intuition, then, behind Condition 2 is that states in M
that have the same outputs cannot be distinguished by just
those (outputs); additional suffixes that differentiate them are
required.

4.2 Computation, minimality, size, and other
properties of characteristic samples

It is easy to see that adding more traces to a characteris-
tic sample preserves the characteristic sample property, i.e.,
if SI O is a characteristic sample for a Moore machine M
and S′

I O ⊇ SI O , then S′
I O is also a characteristic sam-

123

Learning Moore machines from input–output traces 7

(a)

(b)

Fig. 5 Example illustrating the need for Condition 2 of Definition 1

ple for M . Also, arbitrarily extending the input word of an
existing (I , O)-trace in SI O and accordingly extending the
corresponding output word, again yields a new characteristic
sample for M . The questions are raised, then, whether there
exist characteristic samples that are minimal in some sense,
how many elements they consist of, what are the lengths of
their elements, and how can we construct them.

In the following, we outline a simple procedure that, given
aminimalMooremachineM , returns a characteristic sample
SI O that is minimal in the sense that removing any (I , O)-
trace from it or dropping any number of letters at the end of an
input word in it (and accordingly adjusting the corresponding
output word) will result in a set that is not a characteristic
sample. By doing so, we also constructively establish the
existenceof at least one characteristic sample for anyminimal
Moore machine M .

Let M = (I , O, Q, q0, δ, λ) be a minimal Moore
machine, SI an initially empty set of input words and SI O
the set of (I , O)-traces formed by the elements of SI and
the corresponding output words. We compute SP (M) and
NL(M) and add the elements of the latter to SI . Then, for
each pair of words (u, v) ∈ SP (M) × NL(M) leading to
different states qu = δ∗(q0, u), qv = δ∗(q0, v), we compute
MD(qu, qv) and add it to SI . Now, SI O already is a charac-
teristic sample. However, it may contain redundant elements

that can safely be removed. We can do this by simply con-
sidering each element of SI and removing it if it is a prefix
of another element. (This step can be sped up by choosing
an appropriate data structure to represent SI , e.g., using a
trie, we would simply just keep the words represented by the
leaf nodes.) Note that since the prefix relation on words is
a partial order, and therefore transitive, the order in which
we remove the redundant elements does not affect the final
result. It is easy to see now that, after this step, (1) no element
of SI is the prefix of another, (2) SI O is still a characteristic
sample, and (3) removing any element from SI or dropping
any number of letters at the and of it will result in SI O not
being a characteristic sample.

By definition, there is a 1 − 1 correspondence between
the elements of SP (M) and the states of M . Therefore,
|SP (M)| = |Q|. It follows that |NL(M)| ≤ |SP (M)| ·
|I | + 1 = |Q| · |I | + 1 and, consequently, |SI O | = |SI | ≤
|NL(M)| + |SP(M)| · |NL(M)| = (|Q| · |I | + 1) · (|Q| + 1).
In other words, the size of SI O is O(|Q|2|I |).

We now provide bounds on the lengths of the elements
of SI O . The lengths of shortest prefixes are bounded by the
longest non-looping path in M , which in turn is bounded
by |Q|. It follows that the nucleus element lengths are
bounded by |Q| + 1. Let now qu and qv be different
states of M and consider M1 = (I , O, Q, qu, δ, λ) and
M2 = (I , O, Q, qv, δ, λ), i.e., M1 and M2 have qu and
qv as initial states, respectively, but are otherwise identi-
cal to M . Finding a (minimum) distinguishing suffix of
qu and qv is now reduced to finding a (minimum) input
word that leads to different output words when transduced
by M1 and M2. To find such a word, we first construct a
DFA A = (I , Q × Q, (qu, qv), δA, F), where ∀(q1, q2) ∈
Q × Q : ∀a ∈ I : δA((q1, q2), a) = (δ(q1, a), δ(q2, a)) and
F = {(q1, q2) ∈ Q × Q | λ(q1) �= λ(q2)}. A word accepted
by this DFA is a distinguishing suffix of qu and qv , and it is
easy to see that we only need to test words of length up to
|Q×Q| in order to find one.We can conclude from the above
that the sum of lengths of elements in SI O is O(|Q|4|I |).

5 LearningMooremachines from
input–output traces

5.1 Problem definition

The problem of learningMoore machines from input–output
traces (LMoMIO) is defined as follows.Given an input alpha-
bet I , an output alphabet O , and a set Rtrain of Moore
(I , O)-traces, called the training set, we want to synthe-
size automatically a deterministic, complete Moore machine
M = (I , O, Q, q0, δ, λ), such that M is consistent with
Rtrain, i.e., ∀ (ρI , ρO) ∈ Rtrain : λ∗(ρI) = ρO . (Rtrain is
assumed to be itself consistent, in the sense it does not con-
tain two different pairs with the same input word.)

123

8 G. Giantamidis et al.

In addition to consistency, we would like to evaluate
our learning technique w.r.t. various performance criteria,
including:

– Size of M , in terms of number of states. Note that, con-
trary to the exact identification problem [36], we do not
require M to be the smallest (in terms of number of states)
machine consistent with Rtrain.

– Accuracy ofM , which, informally speaking, is a measure
of howwell M performs on a set of traces, Rtest, different
from the training set. Rtest is called the test set. Accuracy
is a standard criterion in machine learning.

– Complexity (e.g., running time) of the learning algorithm
itself.

In the rest of this paper, we present three learning algo-
rithms which solve the LMoMIO problem and evaluate them
w.r.t. the above criteria. Complexity of the algorithm and
size of the learned machine are standard notions. Accuracy
is standard in machine learning topics such as classification,
but not in automata learning. Thus, we elaborate on this con-
cept next.

There are more than one ways to measure the accuracy
of a learned Moore machine M against a test set Rtest.
We call an accuracy evaluation policy (AEP) any func-
tion that, given a Moore (I , O)-trace (ρI , ρO) and a Moore
machine M = (I , O, Q, q0, δ, λ), will return a real num-
ber in [0, 1]. We will call that number the accuracy of M
on (ρI , ρO). In this paper, we use three AEPs which we call
strong, medium, and weak, defined below. Let (ρI , ρO) =
(x1x2 · · · xn, y0y1 · · · yn) and z0z1 · · · zn = λ∗(q0, ρI).

– Strong: if λ∗(q0, ρI) = ρO then 1 else 0.
– Medium: 1

n+1 · |{i | y0y1 · · · yi = z0z1 · · · zi }|.
– Weak: 1

n+1 · |{i | yi = zi }|.

The strongAEPsays that the output of the learnedmachine
M must be identical to the output in the test set. The medium
AEP returns the proportion of the largest output prefix that
matches. The weak AEP returns the number of output sym-
bols that match. For example, if the correct output is 0012
andM returns 0022 then the strong accuracy is 0, themedium
accuracy is 2

4 , and the weak accuracy is 3
4 . Ideally, we want

the learned machine to achieve a high accuracy with respect
to the strong AEP. However, the medium and weak AEPs are
also useful, because they allow to distinguish, say, a machine
which is “almost right” (i.e., outputs the right sequence
except for a few symbols) from a machine which is always
or almost always wrong. In fact, the medium and weak AEPs
were inspired, respectively, by the hierarchical loss and ham-
ming loss criteria, which appear in multi-label classification
problems in the machine learning community [68].

Given an accuracy evaluation policy f and a test set Rtest,
we define the accuracy ofM on Rtest as the averaged accuracy
of M over all traces in Rtest, i.e.,

∑
(ρI ,ρO)∈Rtest

f ((ρI , ρO), M)

|Rtest| .

It is often the case that the test set Rtest contains traces
generated by a “black box”, for which we are trying to
learn a model. Suppose this black box corresponds to an
unknown machine M?. Then, ideally, we would like the
learned machine M to be equivalent to M?. In that case, no
matter what test set is generated by M?, the learned machine
M will always achieve 100% accuracy. Of course, achieving
this ideal depends on the training set: If the latter is “poor”
then it does not contain enough information to identify the
original machine M?. A standard requirement in automata
learning theory states that when the training set is a charac-
teristic sample of M?, then the learning algorithm should be
able to produce a machine which is equivalent to M?. We
call this the characteristic sample requirement (CSR). CSR
is important, as it ensures identification in the limit, a key
concept in automata learning theory [14]. In what follows,
we show that among the algorithms that will be presented
in Sect. 5.3, only MooreMI satisfies CSR.

5.2 Trace preprocessing

Before proceeding, we remark that a given Moore (I , O)-
trace (ρI , ρO) = (x1x2 · · · xn, y0y1 · · · yn) can be repre-
sented as a set of n + 1 Moore (I , O)-examples, specifically
{(ε, y0), (x1, y1), (x1x2, y2), . . ., (x1x2 · · · xn, yn)}. Because
of this observation, in all approaches discussed below, there
is a preprocessing step to convert the training set, first into an
equivalent set of Moore (I , O)-examples, and second, into
an equivalent set of N pairs of positive and negative exam-
ple sets. (The latter conversion was described in Sect. 3.3.)
During the latter conversion, we also construct a partial map-
ping g from bit tuples to output letters, which we make
use of later in the algorithms. As an example of how this
is computed, consider Fig. 4. In this case, g would sim-
ply be the inverse of the function f , i.e., we would have
g = {(0, 0)
→ 0, (0, 1)
→ 1, (1, 0)
→ 2}. This example
also illustrates that the mapping is partial, since the bit tuple
(1, 1) is unmapped. The partial mapping g is referred to as
bits_to_output_func in all pseudocode snippets.

5.3 Algorithms to solve the LMoMIO problem

5.3.1 The PTAP algorithm

This algorithm is a rather straightforward one (Fig. 6). The set
of Moore (I , O)-examples obtained after the preprocessing

123

Learning Moore machines from input–output traces 9

Fig. 6 The PTAP algorithm

step described above (Sect. 5.2) is used to construct a PTAP,
as described in Sect. 3.3. Recall that a PTAP is a collection of
N PTAs having the same state-transition structure. The syn-
chronous product of these N PTAs is then formed, completed,
and returned as the result of the algorithm. Note that a PTA is
a special case of an NFA: The PTA is deterministic, but it is
generally incomplete. The synchronous product of PTAs is
therefore the same as the synchronous product of NFAs. The
product of PTAs is deterministic, but also generally incom-
plete and therefore needs to be completed in order to yield
a complete DFA. Completion in this case consists in adding
self-loops to states that are missing outgoing transitions for
some input symbols. The added self-loops are labeled with
the missing input symbols.

Although the PTAP algorithm is relatively easy to imple-
ment and runs efficiently, it has several drawbacks. First,
since no state minimization is attempted, the resultingMoore
machine can be unnecessarily large. Second, andmost impor-
tantly, the produced machines generally have poor accuracy
since completion is done in a trivial manner.

5.3.2 The PRPNI algorithm

Again, consider the N pairs of positive and negative exam-
ple sets obtained after the preprocessing step of Sect. 5.2.
The PRPNI algorithm (Fig. 7) starts by executing the RPNI
DFA learning algorithm [39] on each pair, thus obtaining N
learned DFAs. For completion, RPNI is recalled in Fig. 8.
The zip function turns two lists into a list of pairs (e.g.,
zip([1, 2, 3], [a, b, c]) = [(1, a), (2, b), (3, c)]). Once the
N DFAs have been obtained, their synchronous product is
formed, completed, and returned as the algorithm result. As
in the case of the PTAP algorithm, the synchronous product
of the DFAs in the PRPNI algorithm is deterministic, but
generally not complete.

In the case of PRPNI, an additional post-processing step
(called fix_invalid_codes in the pseudocode) follows the
completion step (make_complete). The reason is that the
synchronous product of the learnedDFAsmay contain reach-

Fig. 7 The PRPNI algorithm

Fig. 8 The RPNI algorithm. The merge procedure is shown in Fig. 9
and discussed in Sect. 5.3.3. The pick_next function returns the small-
est state of the blue set, according to the order defined in Sect. 5.3.3.
is_consistent simply checks whether the given DFA rejects all words
in the given negative example set. If so, it returns true. Otherwise, it
returns false

able states whose bit encoding does not correspond to any
valid output in O . For example, suppose O = {0, 1, 2},

123

10 G. Giantamidis et al.

Fig. 9 The merge procedure

so that we need 2 bits to encode it, and thus N = 2 and
we use RPNI to learn 2 DFAs. Suppose the encoding is
0
→ 00, 1
→ 01, 2
→ 10. This means that the code 11
does not correspond to any valid output in O . However, it
can still be the case that in the product of the two DFAs there
is a reachable state with the output 11, i.e., where both DFAs
are in an accepting state. Note that this problem does not arise
in the PTAP algorithm, because all PTAs there are guaran-
teed to have the same state-transition structure, which is also
the structure of their synchronous product.

To solve this invalid code problem, we assign all invalid
codes to an arbitrary valid output. In our implementation, we
use the lexicographic minimum. In the above example, the
code 11 will be assigned to the output 0.

Compared to the PTAP algorithm, the PRPNI algorithm
has the advantage of being able to learn a minimal Moore
machine when provided with enough (I , O)-traces. How-
ever, it can also perform worse in terms of both running time

and size (number of states) of the learned machine, due to
potential state explosion while forming the DFA product.
The PTAP algorithm does not have this problem because, as
explained above, the structure, and therefore also the number
of states, of the product is identical to those of the component
PTAs.

5.3.3 The MooreMI algorithm

As explained above, both PTAP and PRPNI have several
drawbacks. In this section, we propose a novel algorithm
called MooreMI, which remedies these. Moreover, we prove
that MooreMI satisfies CSR. In fact, as we shall see in
Sect. 5.4, MooreMI is the only one among these three algo-
rithms that satisfies CSR.

The MooreMI algorithm (Fig. 10) begins by building a
PTAP represented as N PTAs, as in the PTAP algorithm.
Then, a merging phase follows, where a merge operation
is accepted only if all resulting DFAs are consistent with
their respective negative example sets. In addition, a merge
operation is either performed on all DFAs at once or not at
all. Finally, the synchronous product of the N learned DFAs
is formed, completed by adding self-loops for any missing
input symbols, as in the PTAP algorithm, and returned. The
pseudocode of the algorithm is given below.

The main MooreMI procedure calls the merge function
as a subroutine. merge computes the result of merging the
given red and blue states of the given DFA component. It
also performs additional potentially necessary state merges
to preserve determinism.

After the initial preprocessing step (line 6), the algorithm
builds a prefix tree acceptor product (line 10) and then repeat-
edly attempts to merge states in it, in a specific order (line
16). While not appearing in the original RPNI algorithm, the
convention of marking states as red or blue was introduced
later in [41]. States marked as red represent states that have
been processed and will be part of the resulting machine.
States marked as blue are immediate successors of red states
and represent states that are currently being processed. Ini-
tially, the set of red states only contains the initial state qε ,
and the set of blue states contains the one-letter successors
of qε (lines 13, 14). Unmarked states will eventually become
blue (lines 38, 43), and then either merged with red ones
(lines 27, 36) or become red states themselves (line 42).

Most of the auxiliary functions whose implementations
are not shown in the pseudocode have self-explanatory
names. For instance, the push and pop functions push and
pop, respectively, elements to / from a stack, and the func-
tions in lines 3, 4 (Fig. 9) compute the unique parent of
and corresponding input symbol leading to the given blue
state. (Uniqueness of both is guaranteed by the tree-shaped
nature of the initial PTA.) The function pick_next , however,
deserves some additional explanation. Notice first that after

123

Learning Moore machines from input–output traces 11

Fig. 10 The MooreMI algorithm

the prefix tree acceptor product is constructed and before
the merging phase of the algorithm begins, each state can
be reached by a unique input word which is used to iden-
tify that state. For example, the state reached by the word
abba is referred to as state qabba . The word used to iden-
tify a state may change during merging operations. The total
order on words < defined in Sect. 4.1 can now naturally
be extended on states of the learned machine as follows:
qu < qv ⇐⇒ u < v, in which case we say that qu is
smaller than qv . The pick_next function simply returns the
smallest state of the blue set, according to the order we just
defined.

MooreMI is able to learn minimalMoore machines, while
avoiding the state explosion and invalid code issues of
PRPNI. To see this, notice first that, at every point of the
algorithm, the N learnedDFAs are identical in terms of states
and transitions, modulo the marking of their states as final.
Indeed, this invariant holds by construction for the N initial
prefix tree acceptors, and the additional merge constraints
make sure it is maintained throughout the algorithm. There-
fore, the product formed at the end of the algorithm can be
obtained by simply “overlaying” the N DFAs on top of one
another, as in the PTAP approach, which implies no state
explosion. The absence of invalid output codes is also easy
to see. Invalid codes generally are results of problematic state
tuples in the DFA product, that cannot appear in MooreMI
due to the additionalmerge constraints. Indeed, if a state tuple
occurs in the final product, it must also occur in the initial
prefix tree acceptor product, and if it occurs there, its code
cannot be invalid.

5.4 Properties of the algorithms

All three algorithms described above satisfy consistency
w.r.t. the input training set. For PTAP and PRPNI, this is
a direct consequence of the properties of PTAs, of the basic
RPNI algorithm, and of the synchronous product. The proof
forMooreMI is somewhatmore involved, therefore the result
for MooreMI is stated as a theorem:

Theorem 1 (Consistency) The output of the MooreMI algo-
rithm is a complete Moore machine, consistent with the
training set. Formally, let SI O be the set of Moore (I , O)-
traces used as input for the algorithm, and let M =
(I , O, Q, q0, δ, λ) be the resulting Moore machine. Then,
δ and λ are total functions and ∀ (ρI , ρO) ∈ SI O :
λ∗(q0, ρI) = ρO.

Proof The fact that δ and λ are total is guaranteed by the
final step of the algorithm (line 49). Consistency with the
training set can be proved inductively. Let N denote the num-
ber of DFAs learned by the algorithm, which is equal to the
number of bits required to represent an element of O . By
definition, the Moore machine implicitly defined (by means
of a synchronous product) by the N prefix tree acceptors ini-
tially built by the algorithm is consistent with the training
set. Assume that, before a merge operation is performed, the
Moore machine implicitly defined by the (possibly incom-
plete) DFAs learned so far is consistent with the training set.
It suffices to show that the result of the next merge operation
also has this property. Suppose it does not. This means that
there exists a (ρI , ρO) ∈ SI O , such that λ∗(q0, ρI) �= ρO ,
which implies that in at least one of the learned DFAs, at
least one state was added to the corresponding set of final
states, while it should not have been. (Note that performing
a merge operation on a DFA always yields a result accepting

123

12 G. Giantamidis et al.

a superset of the language accepted prior to the merge.) In
other words, there is at least one learned DFA that is not con-
sistent with its corresponding projection of the training set.
However, due to the additional merge constraints that were
introduced, this cannot happen, since all DFAs must be com-
patible with a merge in order for it to take place (line 29).

��

We now show that MooreMI satisfies the characteristic
sample requirement, i.e., if it is fed with a characteristic sam-
ple for a machine M , then it learns a machine equivalent to
M . If M is minimal then the learned machine will in fact be
isomorphic to M . We first introduce some auxiliary defini-
tions and notation and make some observations which are
important for the proof of the result.

Let M = (I , O, Qm, q0_m, δm, λm) be the minimal
Moore machine from which we derive a characteristic sam-
ple, then given as input to the MooreMI algorithm. Let
MA = (I , O, QA, qε, δA, λA) be the machine produced by
the algorithm. We will use plain Q and δ to denote the state
set and possibly partial transition function of the learned
machine in an intermediate step of the algorithm.

It can be seen in the pseudocode of the merge function
(line 16) that when two states qu , qv are merged in order
to preserve determinism, the input word used to identify
the resulting state is min<{u, v}, where < is the total order
defined in Sect. 4.1. When we say that qu is smaller than qv

or qv bigger than qu , we will mean u = min<{u, v}. We
remark that when a blue state is merged with a red one, the
latter is always smaller. This is a direct consequence of the
tree-shaped nature of the initial prefix tree acceptor product,
the fact that blue states are one-letter successors of red ones,
and the specific order in which blue states are considered
during the merging phase.

By saying that a state qu ∈ Q corresponds to a shortest
prefix of M , we mean that u ∈ SP (M). By saying that a
state qv ∈ Q corresponds to an element in NL(M), we mean
that the state qv can be reached from qε using an element in
NL(M).

red and blue refer to the sets of red and blue states, as
in the pseudocode of MooreMI. Given a red state qu , we will
use Merged(qu) to denote the set of states that have been
merged with / into qu .

In the following, we assume that the training set used as
input to the MooreMI algorithm is a characteristic sample
for a minimal Moore machine M .

Lemma 1 (a) Each red state corresponds to an element of
SP (M) and as a consequence, to a state in M.

(b) Each blue state corresponds to an element of NL(M).
(c) ∀qu ∈ red : ∀qv ∈ Merged(qu) : δ∗

m(q0_m, v) =
δ∗
m(q0_m, u).

Proof By induction. Initially,red = {qε},blue ⊆ {qa |a ∈
I }, and (a), (b), (c) all hold trivially. We assume they hold
for the current sets of red, blue and unmarked states and will
show they still hold after all possible operations performed
by the algorithm:

(1) If a state qv ∈ blue is merged into a state qu ∈ red,
then (a) trivially holds: The red state set remains the
same, and the successors of qv are marked blue. Since
they now are successors of a state corresponding to a
shortest prefix (the red state qu), they correspond to ele-
ments in the nucleus of M , so (b) holds too. Suppose
now that (c) does not hold, i.e., it is δ∗

m(q0_m, v) �=
δ∗
m(q0_m, u). Since, by the induction hypothesis, u ∈
SP (M) and qv corresponds to an element in NL(M), by
the characteristic sample definition, there exist (I , O)-
traces that distinguishqv andqu and prohibit theirmerge.
But qv and qu were successfully merged; therefore,
δ∗
m(q0_m, v) = δ∗

m(q0_m, u) and (c) holds.
(2) If a state qv ∈ blue is promoted to a red state, then it

is distinct from all other red states. Moreover, since (i)
the algorithm considers blue states in a specific order and
(ii) whenever we perform amerge between two states qx
and qy to preserve determinism the result is identified
as qmin<(x,y), qv is the smallest state distinct from the
existing red states; therefore, it corresponds to a shortest
prefix. Its successors are now marked blue and since
qv corresponds to a shortest prefix, they correspond to
states in NL(M). Also, since the newly promoted red
state is a shortest prefix distinct from the previous ones, it
corresponds to a unique, different state in M . The above
imply that (a) and (b) hold. Moreover, (c) trivially holds
too.

(3) Regarding the additional state merges possibly required
to maintain determinism after (1), they can occur
between a red and a blue state, in which case the same as
in (1) hold, between a blue state and a state that is either
blue or unmarked, in which case we have what we want
by the induction hypothesis, and between two unmarked
states, in which case we do not need to show anything.
However, we should mention here that for every pair of
states being merged to preserve determinism, the two
states involved necessarily represent the same state in
M . Suppose, without loss of generality that after merg-
ing states qu and qv as in (1), states qua = δ∗(qu, a)

and qva = δ∗(qv, a) need to also be merged to pre-
serve determinism. If qua and qva do not represent the
same state in M , their minimum distinguishing suffix
w = MD(qua, qva) exists. But then, a · w is a distin-
guishing suffix for qu and qv , whichmeans that qu and qv

represent different states in M . However, this cannot be,
because, since by the induction hypothesis u ∈ SP (M)

and qv corresponds to an element in NL (M), by the char-

123

Learning Moore machines from input–output traces 13

acteristic sample definition, if qu and qv were different
states, (I , O)-traces prohibiting their merge would be
present in the algorithm input. Therefore, qua and qva

represent the same state in M . The same argument can
now be made if, e.g., states quab and qvab need to be
merged to preserve determinism after qua and qva are
merged, and so on. ��

Lemma 2 |Qm | ≤ |QA|.
Proof Suppose that |Qm | > |QA|, i.e., there exists q ∈ Qm

such that there is no equivalent of q in QA. However, by the
definition of the characteristic sample, the shortest prefix of
q appears in the algorithm input, and, according to Lemma
1, it must eventually form a red state on its own. Therefore,
there is no such state as q, and |Qm | ≤ |QA| holds. ��
Corollary 1 The previous lemmas imply the existence of
a bijection fiso : QA → Qm such that fiso(qu) =
δ∗
m(q0_m, u).

Lemma 3 ∀qu ∈ QA : λA(qu) = λm(fiso(qu)).

Proof We have shown that qu ∈ QA corresponds to a unique
state in M , specifically δ∗

m(q0_m, u). We have also shown
that the algorithm is consistent with the training examples.
This implies λA(qu) = λm(δ∗

m(q0_m, u)). Now, since, by
definition, fiso(qu) = δ∗

m(q0_m, u), we havewhatwewanted.
��

Lemma 4 ∀qu ∈ QA : ∀a ∈ I : δm(fiso(qu), a) =
fiso(δA(qu, a)).

Proof Let δA(qu, a) = δ∗
A(qε, u · a) = qv ∈ QA. By def-

inition, we have fiso(qu) = δ∗
m(q0_m, u) and fiso(qv) =

δ∗
m(q0_m, v). In addition, δ∗

m(fiso(qu), a) = δm(δ∗
m(q0_m, u),

a) = δ∗
m(q0_m, u · a). But δ∗

A(qε, u · a) = qv = δ∗
A(qε, v),

therefore, from Lemma 1 (c) we have δ∗
m(q0_m, u · a) =

δ∗
m(q0_m, v). Finally, δm(fiso(qu), a) = δm(q0_m, u · a) =

δm(q0_m, v) = fiso(qv) = fiso(δA(qu, a)), as we wanted. ��
Theorem 2 (Characteristic sample requirement) If the input
to MooreMI is a characteristic sample of a minimal Moore
machine M, then the algorithm returns a machine MA that
is isomorphic to M.

Proof Follows from Corollary 1, Lemmas 3, 4 and the obser-
vation that fiso(qε) = q0_m . The bijection fiso constitutes a
witness isomorphism between M and MA. ��

Finally, we show that the MooreMI algorithm achieves
identification in the limit.

Theorem 3 (Identification in the limit) Let M = (I , O, Q,

q0, δ, λ) be a minimal Moore machine. Let (ρ1
I , ρ

1
O), (ρ2

I ,

ρ2
O), . . . be an infinite sequence of (I , O)-traces generated

from M, such that ∀ρ ∈ I ∗ : ∃i : ρ = ρi
I (i.e., every input

word appears at least once in the sequence). Then there exists
index k such that for all n ≥ k, theMooreMI algorithm learns
a machine equivalent to M when given as input the training
set {(ρ1

I , ρ
1
O), (ρ2

I , ρ
2
O), . . . , (ρn

I , ρ
n
O)}.

Proof Let SnI O = {(ρ1
I , ρ

1
O), (ρ2

I , ρ
2
O), . . . , (ρn

I , ρ
n
O)}, for

any index n. Since M is a minimal Moore machine,
there exists at least one characteristic sample SI O =
{(r1I , r1O), (r2I , r

2
O), . . . , (r NI , r NO)} for it. By the hypothe-

sis, ∀ j ∈ {1, . . . , N } : ∃i j such that ρ
i j
I = r j

I . Let
then k = max j∈{1,...,N }i j . It is easy to see now that
SkI O = {(ρ1

I , ρ
1
O), (ρ2

I , ρ
2
O), . . . , (ρk

I , ρ
k
O)} is a character-

istic sample (as a superset of SI O). From the properties of
characteristic samples, it also follows that for any n ≥ k,
SnI O is also a characteristic sample. (Since in that case
SnI O ⊇ SkI O .) Finally, from Theorem 2, when MooreMI is
given SnI O , for any n ≥ k, as input, it will output a Moore
machine isomorphic, and therefore equivalent, to M . ��

What about the PTAP and PRPNI algorithms? Do they
achieve identification in the limit? It is easy to see that PTAP
does not achieve identification in the limit in general. The
reason for this error is due to the trivial completion method
that PTAP uses (i.e., self-loops in the leaves of the PTA).
For example, consider the input alphabet {a} and a binary
output alphabet, so that Moore machines reduce to DFAs.
Suppose we want to learn the regular language (aa)∗. Every
word with an even number of a’s belongs to this language,
whereas every word with an odd number of a’s does not.
Note that since the output alphabet is binary, the PTA prod-
uct computed by PTAP contains a single PTA. Also note
that, no matter what training set we use, this PTA has the
form of a “chain” of states linked with a-labeled transitions.
After completion, the last state in this chain has an a-labeled
self-loop. Regardless of whether the last state in the chain is
accepting or rejecting, the self-loop implies that the learned
automaton will incorrectly accept / reject some words. Since
this happens no matter how large a training set we use, PTAP
does not identify in the limit.

As for PRPNI, even if it identifies in the limit, it does
not satisfy the CSR property. This is demonstrated for exam-
ple in Table 1 in the experimental section that follows. As
we can see in that table, both PTAP and PRPNI achieve
≤ 1% strong accuracy, even though a characteristic sam-
ple is used as the training set. Note that this does not mean
that PRPNI does not admit a different kind of characteris-
tic sample—it only means that a characteristic sample as
defined in Sect. 4.1 is not enough for PRPNI to identify the
correct machine. Indeed, since PRPNI is unable to take into
account merge consistency information across the individ-
ually learned DFAs, this information needs to come in the
form of additional training traces. Therefore, while it is pos-
sible that PRPNI also admits a different kind of characteristic

123

14 G. Giantamidis et al.

sample, it is expected that this will generally be larger than
(perhaps a superset of) the one defined in this paper.

5.5 Performance optimizations

Compared to the pseudocode, our implementation includes
several optimizations. First, to limit the amount of copying
involved in performing a merge operation, we perform the
required state merges in-place, and at the same time record
the actions needed to undo them in case the merge is not
accepted.

Second, the merge function needs to know the unique
(due to the tree-shaped nature of PTAs) parent of the blue
state passed to it as an argument. The naive way of doing this,
simply iterating over the states until we reach the parent, can
seriously harm performance. Instead, in our implementation,
we build during PTA construction, and maintain throughout
the algorithm, amappingof states to their parents, and consult
this when needed.

Third, in the negative examples consistency test, many of
the acceptance checks involved are redundant. For example,
suppose that starting from the initial state it is only possible
to reach red states (i.e., not blue or unmarked ones) within
n steps (transitions). Then, there is no need to include neg-
ative examples of length less than n in the consistency test.
Our implementation optimizes such cases by integrating the
consistency test with the merge operation. In particular, we
construct the initial PTAs based not only on positive but also
on negative examples, and mark states not only as accepting
but also as rejecting when appropriate, as described in [69].
Then, during the merge operation, if an attempt to merge
an accepting state with a rejecting one occurs, the merge is
rejected.

Finally, note that the decomposition of Moore (I , O)-
traces into positive and negative examples, described in
Sect. 5.2, while necessary for the PRPNI algorithm, is not
needed for PTAP orMooreMI. The last two canwork directly
on a set of Moore (I , O)-traces, translating it into PTAs
augmented with state output on every node. In turn, this out-
put information can be used in the consistency check during
merging. In order to keep the presentation of the algorithms
uniform and prevent the reader from context switching, we
decided to make use of said decomposition in the presenta-
tion of all three algorithms. However, in our implementation
both PTAP and MooreMI operate directly on the given set
of Moore (I , O)-traces, which also provides a nice perfor-
mance boost.

5.6 Complexity analysis

In order to build a prefix tree acceptor, we need to consider
all prefixes of words in the set of positive examples S+. This
yields a complexity of O(

∑
w∈S+ |w|), where |w| indicates

the length of thewordw. A prefix tree acceptor product is rep-
resented by N prefix tree acceptors that have the same state
transition structure, where N is the number of bits required
to represent an output letter. Therefore, constructing a pre-
fix tree acceptor product having 2N−1 < |O| ≤ 2N distinct
output symbols, requires O(N · ∑

w∈Sall+ |w|) work, where
Sall+ denotes the union of the N positive example sets, Si+.
(We need to consider all for each PTA, because we want the
PTAs to have the same state-transition structure.)

During the main loop of the basic RPNI algorithm,
at most |QPT A|2 merge operations are attempted, where
QPT A denotes the set of states in the PTA. Each merge
operation (including all additional state merges required
to maintain determinism) requires O(|QPT A|) work. After
every merge operation, a compatibility check is performed
to determine whether it should be accepted or not, requir-
ing O(

∑
w∈S− |w|) work. Bearing in mind that |QPT A| is

bounded by
∑

w∈S+ |w|, all this amounts for a total work in

the order of O((
∑

w∈S+ |w|)2 · (∑w∈S+ |w|+∑
w∈S− |w|)).

In the PRPNI algorithm, the basic RPNI loop is repeated
N times in sequence, which amounts for a total complexity
of O(

∑N
i=1(

∑
w∈Si+ |w|)2 · (

∑
w∈Si+ |w| + ∑

w∈Si− |w|)).
In the MooreMI approach, N DFAs are learned in par-
allel, and the total work done is O(N · (

∑
w∈Sall+ |w|)2 ·

(
∑

w∈Sall+ |w| + ∑
w∈Sall− |w|)), where Sall− , similarly to Sall+ ,

denotes the union of the N negative example sets, Si−.
Note here that since the sets Si+ (resp. Si−) are not disjoint
in general,

∑
w∈Sall+ |w| (resp. ∑

w∈Sall− |w|) is bounded by
∑N

i=1
∑

w∈Si+ |w| (resp. ∑N
i=1

∑
w∈Si− |w|).

Forming the DFA product to obtain a Moore machine
requires O(N · |QPT A|) work for the PTAP and MooreMI
algorithms, but O(N · ∏N

i=1 |Qi
PT A|) work for the PRPNI

approach. Similarly, completing the resultingMooremachine
requires O(|I | · |QPT A|) work for the PTAP and MooreMI
algorithms, and O(|I | · ∏N

i=1 |Qi
PT A|) work for PRPNI,

where I is the input alphabet (which can be inferred from
the training set).

Note that the above hold in the case we do not apply the
final performance optimization. If we do, the terms corre-
sponding to consistency checks (

∑
w∈Si− |w|, ∑

w∈Sall− |w|)
are removed, and, since the prefix tree acceptors are now built
using both positive and negative examples, S+ and Sall+ are
replaced by S+ ∪ S− and Sall+ ∪ Sall− , respectively.

Summarizing the above, let I and O be the input and
output alphabets, and let SI O be the set of Moore (I , O)-
traces provided as input to the learning algorithms. Let
N = �log2(|O|)� be the number of bits required to encode
the symbols in O . Let S1+, S1−, . . . , SN+, SN− be the
positive and negative example sets obtained by the pre-
processing step at the beginning of each algorithm. Let
m+ = ∑N

i=1
∑

w∈Si+ |w|, m− = ∑N
i=1

∑
w∈Si− |w|, and

123

Learning Moore machines from input–output traces 15

k = ∑
(ρI ,ρO)∈SI O |ρI |2. The time required for the pre-

processing step is O(N · k) and is the same for all three
algorithms. The time required for the rest of the phases of
each algorithm is O((N +|I |) ·m+) for PTAP, O((N +|I |) ·
mN+ + N · m2+ · (m+ + m−)) for PRPNI, and O((N + |I |) ·
m+ + N · m2+ · (m+ + m−)) for MooreMI. It can be seen
that the complexity of MooreMI is no more than logarith-
mic in the number of output symbols, linear in the number
of inputs, and cubic in the total length of training traces.
This polynomial complexity does not contradict Gold’s NP-
hardness result [36], since the problem we solve is not the
exact identification problem (see also Sect. 2).

6 Implementation and experiments

All three algorithms presented in Sect. 5.3 have been imple-
mented in the programming language D [70]; the source
code is available online at https://github.com/ggiorikas/
FSM-learning

6.1 Experimental evaluation overview

The three algorithms were evaluated on a series of experi-
ments. Each experiment consisted of the following steps:

1. a Moore machine (called the generator machine) was
used to generate training and test traces;

2. the learning algorithms were run on the training traces;
3. the resulting learned machines were tested on the test

traces.

Someof the generatormachines used in the experimentswere
randomly generated. Other generator machines were adapted
from case studies used in previous works: In the sequel we
refer to these as the benchmark machines. As training traces
we used characteristic samples aswell as randomly generated
traces. For the randomly generated traces, several settings
with increasing total trace length were used, to illustrate how
the results of the algorithms improve whenmore information
is provided.All experimentswere run on amachinewith a 2.6
GHz Intel Core i5 processor and 16 GB of RAM.We did not
set a time limit, however, in order to avoid excessive memory
consumption (in particular during product computation of
PRPNI), in the case of PRPNI we limited the number of
states in the learned machine to one million and triggered an
out-of-memory error whenever this number was exceeded.

6.2 Randommachine generation

We randomly generated several minimal Moore machines
of sizes 50 and 150 states, and input and alphabet sizes
|I | = |O| = 25. The random generation procedure (inspired

by the one used in the Abbadingo One DFA learning com-
petition [22]) takes as inputs a random seed, the number of
states, and the sizes of the input and output alphabets of the
machine. Two intermediate steps are worth mentioning: (1)
After assigning a random output to each state, we fix a ran-
dom permutation of states and assign the i-th output to the
i-th state. This ensures that all output symbols appear in the
machine. (2) After assigning random destination states to
each (state, input symbol) pair, we fix a random permutation
of states that begins with the initial state and add transitions
with random letters from the i-th to the (i + 1)-th state. This
ensures that all states in the machine are reachable. Finally,
a minimization algorithm is employed to minimize the gen-
erated machine if necessary.

6.3 Benchmarkmachines

The benchmark finite-statemachines were adapted from case
studies in previous works: the Text Editor, JHotDraw and
CVS models from [71], and the Elevator Door Controller
model from [72]. The original machines were highly incom-
plete Mealy machines, so we converted them to complete
Moore machines before using them for our experiments. By
highly incompletewemean that, fromeach state of amachine,
only a few inputs are typically legal, and transitions for the
remaining illegal inputs are missing. We converted these
Mealy machines toMoore machines by (i) introducing a new
initial state to account for the additional initial output exhib-
ited in the behavior of a Moore machine, and (ii) pushing
outputs from transitions to states. Note that we did not have
to introduce additional states in this second step as, in all
machines, all incoming transitions to a given state occur with
the same output symbol. We then completed the resulting
Moore machines by adding a sink error state as the destina-
tion of all missing transitions.We also introduced new output
symbols INIT for the initial state and ERROR for the error
state.

The Text Editor machine (Fig. 11) describes valid action
sequences for a simple text editor, where a new document
can be loaded only after the currently loaded document is
closed, and where a document can only be saved after it
has been edited. The inputs of the machine represent user
actions, and the outputs indicate whether the corresponding
input sequence is valid or not. All missing transitions lead
to the error state and are ommitted to avoid visual clutter (in
this and other machine figures).

JHotDraw4 is a GUI (Graphical User Interface) frame-
work for Java. The machine of Fig. 12 represents (from a
user action perspective) the process of adding figures and
text boxes in JavaDraw, a sample application included in the
JHotDraw distribution.

4 https://sourceforge.net/projects/jhotdraw/.

123

https://github.com/ggiorikas/FSM-learning
https://github.com/ggiorikas/FSM-learning
https://sourceforge.net/projects/jhotdraw/

16 G. Giantamidis et al.

Fig. 11 The text editor machine. The machine is complete. All missing
transitions lead to the ERROR state and are not shown for the sake of
readability

The Jakarta Commons Net project5 provides a variety of
low level network protocol implementations. On top of them,
Lo et al. [73] implemented a CVS (Concurrent Versions Sys-
tem) client, an adaptation of which is shown in Fig. 13.

Figure 14 shows a machine modeling an elevator door
controller [72]. The input and output symbols correspond to
sensor input and controller outputs. Specifically, e11 and e12
indicate “open doors” and “close doors” inputs, e2 signals
to the controller that the doors were successfully opened,
e3 that an obstacle prevents the doors from closing, and e4
that the doors are jammed. Regarding outputs, z1 and z2
correspond to opening and closing the doors, and z3 is a call
to the emergency service.

6.4 Trace generation

The characteristic sample generation procedure has been out-
lined in Sect. 4.2. In the following, we describe the random
trace generation procedures that we used in our experiments.

In the earlier conference version of this paper [18], we
chose a naive randomized algorithm for generating both

5 https://jakarta.apache.org/.

Fig. 12 The JHotDraw/JavaDraw machine

training and test sets. Below, we illustrate a problem with
this naive method, and propose a new and improved method.

6.4.1 A naive method: fixed-word-length trace generation

The input to this method is a Moore machine M , a random
seed (for reproducibility), the number of input–output traces
to be generated, N , as well as the desired length of each of
these traces, L . First, N words of length L each are generated,
using letters from the input alphabet ofM . Then, eachof these
input words are fed into M to generate the corresponding
output words.

This method is simple, but may fail to generate “high-
quality traces”, as we illustrate with an example. Suppose
we provide as input to the naive trace generation algorithm

123

https://jakarta.apache.org/

Learning Moore machines from input–output traces 17

Fig. 13 The CVS machine

N = 4, L = 10 and a Moore machine with input alphabet
I = {a, b, c, d}. One set of input traces consistent with the
requested size is:

{aaaaaaaaaa, aaaaaaaaab, aaaaaaaaac, aaaaaaaaad}.

The total length of the set is 40 characters and represents 14
different input histories: ε = a0, a = a1, a2, · · · , a10, a9b,
a9c, a9d. Now, consider another set of input traces, also con-
sistent with the requested size:

{aaaaaaaaaa, baaaaaaaab, caaaaaaaac, daaaaaaaad}.

Although this set also has total length 40, it represents 41
different input histories. We can expect that the more input
histories a trace set represents the better, as the more likely
it is that different input histories cover different states of the
machine.

As this example shows, the total length of a set of traces
is not a good measure of the “quality” of the set in terms of
coverage of input histories. A better measure is the size of
the corresponding input-history tree that the set represents,
in terms of number of nodes in the tree. This tree is very
much like the prefix tree acceptor that we have seen already.
In the example above, the size of the tree of the first set is
13, whereas of the second set it is 40. The new random trace
generation algorithm that we present below generates a tree
of a given size in the sense above.

An additional problem in our case that renders high-
quality trace generation more difficult for the benchmark
machines is that, as mentioned above, they are highly incom-
plete. This means that they only have very few legal inputs
at each state, which results in a high percentage of fixed-
word-length randomly generated input traces leading to the
ERROR state, thus providing virtually no information about
the rest of the machine. This issue of naive random trace

123

18 G. Giantamidis et al.

Fig. 14 The elevator door controller machine

generation algorithms being inadequate for realistic models
representative of software behavior had also come up in the
StaMInA [23] automata learning competition and led to the
adoption of a randomwalk based approach. Drawing inspira-
tion from this, our new trace generation algorithm, described
next, also incorporates random walk elements to accommo-
date for high-quality trace generation for our benchmark
machines.

6.4.2 Tree trace generation

The input to the tree trace generation algorithm is a Moore
machine M , a random seed, and the desired tree node count,
L . The algorithm builds a tree of size L . Every path in the tree
from the root to a leaf corresponds to an input trace. As in the
fixed-word-length algorithm, the input traces are transduced
by M to yield the corresponding output traces.

The algorithm builds the tree by repeatedly performing
randomwalks on M starting from the initial state. The length
of each random walk is determined using a normal distribu-
tion with a mean of twice the diameter6 of M and a standard
deviation of half the diameter of M . This length is extended
(one step at a time) if the generated input trace has appeared
before. (This can be checked very efficiently by querying

6 The diameter of M is the smallest number of transitions needed to
reach any state of M starting from the initial state.

the tree we have built so far.) During each random walk, the
probability of selecting a state to be visited next is inversely
proportional to the number of times it has been visited so far
relative to the rest of the alternatives at that point. After each
random walk, the generated input trace is used to expand the
tree and once the tree size reaches L the procedure stops.

6.4.3 Generating training and test sets for experimental
evaluation

In all experiments (both for randomly generated and bench-
mark machines), we used two types of trace sets for training:
(1) characteristic samples, and (2) trace sets generated by the
tree algorithm described above. In the case of traces gen-
erated by the tree algorithm, various trace set sizes were
considered with the following property: for a given machine
and sizes L1 < L2, the tree produced for L1 is a subtree of
the tree produced for L2. (This was achieved by using the
same seed for the random number generator in the imple-
mentation.)

For the trace sets used for testing, we used the tree algo-
rithm, both for the randomly generated and for the benchmark
machines. In order to be able to (1) measure the ability of
the learning algorithms to actually generalize and not simply
memorize the training set and (2) meaningfully compare the
learning results for different training set sizes, we decided to
use one big fixed-size test set for each generator machine.
The tree size parameter was fixed to 2 · 106 for the randomly
generated machines and 2 ·105 for the benchmark machines.

6.5 Results on randomly generatedmachines

The results of the experimental evaluation for the randomly
generated machines are shown in Tables 1, 2, 3, 4 and 5.
Each row represents the average (avg), median (mdn) or stan-
dard deviation (sdv) of results for 10 randomly generated
Moore machines, for the corresponding algorithm. Dashed
entries mean that all 10 corresponding experiments ran out
of memory. Note that in non-dashed entries none of the 10
experiments ranout ofmemory.The captionof each table lists
the settings of the corresponding experiment: which train-
ing set generation method was used (characteristic sample
or tree), average (over 10 Moore machines) training set size
((I , O)-trace count) and average input word length for each
case. As described in Sect. 6.4.3, all test sets were generated
using the tree algorithm.

As expected, MooreMI generally outperforms the other
two algorithms in all metrics, and in some cases significantly
so. PTAP’s inability to identify in the limit is also reflected
in the results (notice that the number of learned states is the
same as the tree size parameter used)—the rise in accuracy
is merely due to the training set size approaching the test set
size.

123

Learning Moore machines from input–output traces 19

Table 1 Method: characteristic sample, avg training set size: 1275.8 (50 states), 4451.3 (150 states), avg input word len: 3.4286 (50 states), 3.8929
(150 states)

Algorithm 50 states 150 states

Time (s) States Accuracy (%) Time (s) States Accuracy (%)

Strong Medium Weak Strong Medium Weak

PTAP avg 0.0165 2315.7 0.008 33.832 36.541 0.0544 8199.8 0.009 29.881 32.618

mdn 0.0138 2324.5 0.01 33.97 36.595 0.0544 8205 0.01 29.955 32.7

sdv 0.0057 41.3958 0.004 0.5271 0.5045 0.0024 155.204 0.003 0.2996 0.2526

PRPNI avg 4.2798 82,277.1 0.017 34.311 36.809 – – – – –

mdn 4.3025 84,159.5 0.02 34.58 37.045 – – – – –

sdv 1.3125 20,882.5 0.0046 0.5819 0.6231 – – – – –

MooreMI avg 0.0519 50 100 100 100 0.4536 150 100 100 100

mdn 0.0511 50 100 100 100 0.4414 150 100 100 100

sdv 0.0048 0 0 0 0 0.0338 0 0 0 0

Table 2 Method: tree 1000, avg training set size: 140.9 (50 states), 109.0 (150 states), avg input word len: 8.0513 (50 states), 10.0227 (150 states)

Algorithm 50 states 150 states

Time (s) States Accuracy (%) Time (s) States Accuracy (%)

Strong Medium Weak Strong Medium Weak

PTAP avg 0.0059 1000 0.031 25.614 28.785 0.0067 1000 0.04 20.18 23.339

mdn 0.0058 1000 0.03 25.545 28.765 0.0062 1000 0.04 20.265 23.43

sdv 0.0008 0 0.003 0.2731 0.3421 0.001 0 0 0.2297 0.276

PRPNI avg – – – – – – – – – –

mdn – – – – – – – – – –

sdv – – – – – – – – – –

MooreMI avg 0.0218 65.9 0.534 31.938 35.374 0.0277 93.3 0.04 21.158 24.408

mdn 0.0199 65.5 0.515 31.885 35.42 0.0273 92 0.04 21.24 24.475

sdv 0.0035 2.8089 0.0684 0.4904 0.408 0.0024 5.1391 0 0.2906 0.3032

Table 3 Method: tree 10,000, avg training set size: 1594.4 (50 states), 1184.7 (150 states), avg input word len: 8.0028 (50 states), 10.0325 (150
states)

Algorithm 50 states 150 states

Time (s) States Accuracy (%) Time (s) States Accuracy (%)

Strong Medium Weak Strong Medium Weak

PTAP avg 0.0752 10,000 0.371 34.737 37.492 0.0688 10,000 0.399 27.547 30.413

mdn 0.0701 10,000 0.37 34.705 37.49 0.0678 10,000 0.4 27.585 30.41

sdv 0.0146 0 0.003 0.0986 0.1179 0.0031 0 0.003 0.1116 0.1341

PRPNI avg – – – – – – – – – –

mdn – – – – – – – – – –

sdv – – – – – – – – – –

MooreMI avg 0.1911 125.5 51.989 79.065 80.207 1.1478 354.2 0.489 31.123 34.16

mdn 0.1825 126 52.95 79.635 80.71 1.1425 352 0.49 31.145 34.16

sdv 0.0443 13.025 9.1848 4.5481 4.2777 0.051 5.2498 0.0094 0.304 0.311

123

20 G. Giantamidis et al.

Table 4 Method: tree 100,000, avg training set size: 18,104.9 (50 states), 13,019.5 (150 states), avg input word len: 8.0061 (50 states), 10.0076
(150 states)

Algorithm 50 states 150 states

Time (s) States Accuracy (%) Time (s) States Accuracy (%)

Strong Medium Weak Strong Medium Weak

PTAP avg 0.8065 100,000 4.131 45.378 47.605 0.7858 100,000 4.366 36.522 39.03

mdn 0.755 100,000 4.13 45.385 47.64 0.7801 100,000 4.36 36.555 39.01

sdv 0.1354 0 0.0104 0.0935 0.1763 0.0342 0 0.0162 0.1211 0.1621

PRPNI avg 3.5585 24,651.7 98.637 99.562 99.683 – – – – –

mdn 2.2394 3073 98.88 99.66 99.745 – – – – –

sdv 3.9425 68,215.5 1.4605 0.4823 0.3457 – – – – –

MooreMI avg 0.3631 50 100 100 100 1.1815 220.4 95.923 98.439 98.508

mdn 0.3622 50 100 100 100 1.0768 223.5 95.84 98.4 98.47

sdv 0.0144 0 0 0 0 0.3627 34.1532 2.0841 0.7941 0.76

Table 5 Method: tree 1,000,000, avg training set size: 210,700.0 (50 states), 144,881.0 (150 states), avg input word len: 8.0059 (50 states), 9.9993
(150 states)

Algorithm 50 states 150 states

Time (s) States Accuracy (%) Time (s) States Accuracy (%)

Strong Medium Weak Strong Medium Weak

PTAP avg 10.2782 1,000,000 47.558 74.448 75.448 10.9528 1,000,000 48.463 69.195 70.392

mdn 9.9208 1,000,000 47.55 74.445 75.44 10.7495 1,000,000 48.46 69.195 70.4

sdv 1.8331 0 0.0352 0.0655 0.0953 2.4395 0 0.0215 0.0385 0.0673

PRPNI avg 27.8298 50 100 100 100 30.8077 11,420 99.941 99.98 99.987

mdn 27.5391 50 100 100 100 29.7683 150 100 100 100

sdv 3.3386 0 0 0 0 3.819 13,846 0.0779 0.0261 0.0168

MooreMI avg 3.5939 50 100 100 100 4.2064 150 100 100 100

mdn 3.5039 50 100 100 100 4.1011 150 100 100 100

sdv 0.2197 0 0 0 0 0.2373 0 0 0 0

An interesting observation is that, while it runs out of
memory quite often, PRPNI manages to yield good results
when enough information is provided. There is a simple
explanation for this. First, in all cases where PRPNI ran out
of memory the reason was state explosion during product
computation of the learned DFAs. When the training set size
is small, the individually learned DFAs are very likely to
have different state-transition structure, which leads to state
explosion during product computation, apparent in the num-
ber of states learned by PRPNI in Table 1. However, since
the training set is small enough there, the product is also
small enough for the computation not to run out of memory.
When the training set size is big enough for all individually
learnedDFA to have the same state-transition structure, prod-
uct computation is as fast as in the other two algorithms (no
state explosion). This behavior is apparent in Table 5. For
intermediate training set sizes, product computation is too
resource demanding and the algorithm runs out of memory
(e.g., Tables 2, 3, 4 for the 150 states machines).

6.6 Results on benchmarkmachines

The experimental results for these machines are summarized
in Tables 7, 8, 9, 10 and 11 and Figs. 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26 and 27. Table 11 summarizes the results of
the experiments in which characteristic samples were used
as the training set. The results of the experiments where the
tree algorithm was used for training set generation are sum-
marized in Tables 7, 8, 9 and 10 and Figs. 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26 and 27. There is one table and three
figures for each benchmarkmachine. Each row in a table rep-
resents results (running times and learned states for all three
algorithms) on a specific training set. The Size column shows
the size parameter given as input to the tree algorithm for the
training set generation. The Time and States columns show,
respectively, running times and numbers of learned states for
all three algorithms (A1 corresponds to PTAP, A2 to PRPNI
and A3 to MooreMI).

123

Learning Moore machines from input–output traces 21

Table 6 Performance
comparison results with existing
tools that learn Mealy machines

Tool Time (s) Peak memory usage (GB)

Parsing Learning Total

LearnLib 3.851 7.143 11.994 1.8

flexfringe 13.806 181.032 194.838 2.8

MealyMI 3.062 2.891 5.953 1.1

Table 7 Text editor (Figs. 16, 17, 18)

Size Time (s) States

A1 A2 A3 A1 A2 A3

100 0.000394 0.000615 0.000366 100 13 5

200 0.000662 0.001182 0.000594 200 22 6

300 0.000997 0.001412 0.001057 300 22 6

400 0.001236 0.001895 0.000999 400 20 6

500 0.002728 0.002804 0.001486 500 20 6

Table 8 JHotDraw (Figs. 19, 20, 21)

Size Time (s) States

A1 A2 A3 A1 A2 A3

250 0.001125 0.001856 0.000554 250 27 7

500 0.001700 0.004272 0.002054 500 37 8

750 0.003153 0.006055 0.002313 750 47 8

1000 0.003409 0.006001 0.002893 1000 52 9

Table 9 Elevator door controller (Figs. 22, 23, 24)

Size Time (s) States

A1 A2 A3 A1 A2 A3

200 0.000701 0.002247 0.000526 200 53 7

400 0.001390 0.003930 0.000720 400 55 7

600 0.001970 0.003279 0.001080 600 37 7

800 0.002760 0.004421 0.001331 800 38 7

The three figures for each benchmark machine show
results (accuracy scores) obtained by the three different algo-
rithms. Each figure contains three plots representing values
for accuracy metrics measured on machines learned with
training sets of various sizes. Solid lines correspond to the
strong accuracy metric, dashed lines to the medium, and dot-
ted lines to the weak one.

For each benchmark machine, we kept increasing the
training set size until MooreMI learned the correct machine.
PTAP never learns the correct machine, which is expected,
since it does not identify in the limit. Neither does PRPNI
ever learn the correct machine, which serves as an additional
indication that even if it identifies in the limit the characteris-

Table 10 CVS (Figs. 25, 26, 27)

Size Time (s) States

A1 A2 A3 A1 A2 A3

20,000 0.125104 0.137925 0.054600 20,000 114 20

40,000 0.321886 0.536724 0.115188 40,000 92 23

60,000 0.394782 1.009475 0.172411 60,000 106 19

80,000 0.535994 0.563334 0.237576 80,000 90 19

Table 11 Results for benchmark machines where characteristic sam-
ples are used as training sets

FSM Time (s) States Accuracy (%)

Strong Medium Weak

PTAP

Editor 0.000214 47 53.97 81.58 87.59

JHotDraw 0.000417 98 57.59 84.62 86.63

Elevator 0.000197 36 43.32 66.15 67.81

CVS 0.002326 400 49.07 85.79 87.04

PRPNI

Editor 0.000487 11 29.39 74.33 86.13

JHotDraw 0.001061 17 48.42 78.97 89.35

Elevator 0.000982 27 5.26 49.02 73.10

CVS 0.035927 37 72.93 89.73 97.81

MooreMI

Editor 0.000260 6 100 100 100

JHotDraw 0.000643 9 100 100 100

Elevator 0.000225 7 100 100 100

CVS 0.005695 19 100 100 100

tic sample it requires is generally larger than the one defined
in this paper.

The general conclusion from all experiment results (on
both random and benchmark machines) is that MooreMI is
clearly the best option of the three algorithms, as, in contrast
to PTAP, it identifies in the limit and never exhibits the state
explosion problems encountered with PRPNI.

123

22 G. Giantamidis et al.

Fig. 15 The transducer learned byOSTIA given a characteristic sample
for the Moore machine in Fig. 5a as input

7 Performance comparison with existing
tools

In this section, we compare our best algorithm against similar
existing implementations. Specifically, we compare against
LearnLib [15] and flexfringe [16], both of which provide

(among other things) passive learning algorithms for learning
Mealy machines.

7.1 MealyMI

The similarity ofMoore andMealymachines naturally raises
the question towhat extent methods to learnMooremachines
can be used to learn Mealy machines (and vice versa). A
thorough study of this question is beyond the scope of the
current paper. Nevertheless, in order to be able to com-
pare our results with LearnLib [15] and flexfringe [16], we
adapted our best algorithm,MooreMI, so that it can also learn
Mealy machines; we call the resulting algorithm MealyMI.
The adaptation consists of several adjustments: (i) We mod-
ified the core data structures representing Moore machines
and (Moore-style) prefix tree acceptors to associate outputs
with transitions instead of states and also got rid of the ini-
tial output, (ii) we modified the random machine generation,
trace generation and input parsing algorithms accordingly to
correctly handle these new representations, and last but not

Fig. 16 Text editor (Table 7)—PTAP

Fig. 17 Text editor (Table 7)—PRPNI

123

Learning Moore machines from input–output traces 23

Fig. 18 Text editor (Table 7)—MooreMI

Fig. 19 JHotDraw (Table 8)—PTAP

Fig. 20 JHotDraw (Table 8)—PRPNI

least, (iii) we correspondingly modified the learning algo-
rithm itself (all phases—prefix tree building, state merging
and completion); for example, the consistency checkbetween
two states in MealyMI examines whether the corresponding

outputs for each input symbol are equal, while in MooreMI
it simply examines whether the two states have the same
output.

123

24 G. Giantamidis et al.

Fig. 21 JHotDraw (Table 8)—MooreMI

Fig. 22 Elevator door controller (Table 9)—PTAP

Fig. 23 Elevator door controller (Table 9)—PRPNI

Results ofMealyMI are presented in Sect. 7.2 that follows.
A formal analysis of MealyMI is left for future work. Future
work also includes investigation of alternative ways to learn
Mealymachines, e.g., by usingMooreMI as a black box. This

could be done, for example, by encoding a Mealy machine
as a DFA over the cartesian product of the Mealy machine’s
input and output alphabets. However, such transformations
are likely to (i) lead to suboptimal approaches w.r.t perfor-

123

Learning Moore machines from input–output traces 25

Fig. 24 Elevator door controller (Table 9)—MooreMI

Fig. 25 CVS (Table 10)—PTAP

Fig. 26 CVS (Table 10)—PRPNI

mance of the core learning loop and (ii) potentially require
additional pre-/post-processing steps of appropriately encod-
ing the given (Mealy) input traces and translating the learned
Moore machine back into a Mealy machine. Future work

includes investigation of the opposite direction as well: to
what extent canMealymachine learning algorithms and tools
be used as black boxes for learning learn Moore machines.
Again, we believe that this black box approach is not appro-

123

26 G. Giantamidis et al.

Fig. 27 CVS (Table 10)—MooreMI

priate, for a number of reasons: first, the input–output traces
for a Moore machine are not directly compatible with Mealy
machines, and therefore need to be transformed somehow;
second, the learnedMealymachinemust also be transformed
into a Moore machine. The exact form of such transforma-
tions and their correctness remain to be demonstrated. Such
transformations may also incur performance penalties which
make a learning method designed specifically for Moore
machines more attractive in practice.

7.2 Comparison approach and results

Since all tools we compare here implement essentially the
same approach from a theoretical point of view (application
of the red-blue state merging framework on Mealy machine
learning—note thatwhile flexfringe also offers exact identifi-
cation functionality through a SAT solverwe do notmake use
of this here), we only focused on measuring implementation
efficiency (i.e., running time and memory consumption).

To do this, we evaluated the three approaches on learn-
ing a randomly generated Mealy machine with 30 states, 10
input symbols and 20 output symbols, using a set of 400K
(I , O)-traces (more than enough for the correctmachine to be
identified). Both the machine and the traces used were gener-
ated using adaptations of our respective Moore machine and
trace generation algorithms (outlined in Sect. 7.1).

We have separated each algorithm into input parsing and
learning phases and report results for these individually, as
the input parsing phase for LearnLib was implemented by
us (the library does not provide such functionality), and it
would not be fair to take it into account in our comparison
(even though we strived for an efficient implementation there
as well).

As the input format for the traces we decided to use the
one proposed by flexfringe, so that we do not have to modify
flexfringe in this respect. However, note that we did perform

some trivial performance optimizations on flexfringe for our
comparison (e.g., commented out code that prints to standard
output and error streams during learning, commented out
printing of the initial PTA to afile, compiled all fileswith -O3,
the maximum level of speed related compiler optimizations
etc.)

A summary of the results is reported in Table 6. Note
that in all cases the same (correct) machine was learned. The
results show clearly that MealyMI outperforms both existing
implementations by a largemargin. Specifically, our learning
core is more than two times faster than the one in LearnLib
and more than an order of magnitude faster than the one in
flexfringe. Peak memory usage is also better in our case.

These results are not really surprising. Regarding Learn-
Lib, since it is implemented in Java, a 2x-3x difference from
a natively compiled language like D is expected. Regarding
flexfringe, one should keep in mind that the implementation
was written with genericity and extensibility in mind; e.g., it
is able to learn not onlyMealy machines, but also, depending
on the options provided, DFAs with different merge heuris-
tics (not just RPNI), probabilistic automata, etc. In order to
accommodate for these goals a sacrifice in efficiency is not
something unexpected. For example, since some of themerge
heuristics require computation of scores for all available red-
blue state pairs (for a given blue state) before selecting which
one to merge, this is hardcoded behavior in flexfringe and
happens even when options that induce RPNI-like behavior
(e.g., shallowfirst=1) are used (in which case it would
suffice to only check the pairs until the first compatiblemerge
is found, as LearnLib and MealyMI do).

8 Comparison with OSTIA

OSTIA [17] is a well-known algorithm that learns onward
subsequential transducers, a class of transducers more gen-

123

Learning Moore machines from input–output traces 27

eral than Moore and Mealy machines. Then, a question
arising naturally is whether it is possible to use OSTIA for
learning Moore machines. In particular, we would like to
know what happens when the input to OSTIA is a set of
Moore (I,O)-traces: will OSTIA learn a Moore machine?

The answer here is negative, as indicated by an experiment
we performed.We constructed a characteristic sample for the
Moore machine in Fig. 5a and ran the OSTIA algorithm on
it. (We used the open source implementation described in
[74].) The resulting machine is depicted in Fig. 15. Notice
that there are transitions whose corresponding outputs are
words of length more than 1 (e.g., transition label b/0122),
or even the empty word (output of initial state q0). We con-
clude that, as is the case with PRPNI, in general OSTIA
needs more information than MooreMI to correctly identify
a Moore machine from example traces. In particular, OSTIA
cannot learn a Moore machine, even when the training set is
a characteristic sample as defined in this paper (Sect. 4.1).
This is not unexpected; since OSTIA is tailored to learn a
more general transducer variant, enforcing the constraint of
one output symbol per input symbol on transitions can only
be achieved by incorporating additional appropriate example
traces in the training set.

9 Conclusion and future work

We formalized the problem of learning Moore machines for
input–output traces and developed three algorithms to solve
this problem. We showed that the most advanced of these
algorithms, MooreMI, has desirable theoretical properties:
In particular it satisfies the characteristic sample requirement
and achieves identification in the limit.We also compared the
algorithms experimentally and showed that MooreMI is also
superior in practice.

Future work includes: (1) extending the study of infer-
ence for Mealy and other types of state machines; although
there exist several tools that learn machines of type Mealy
and others, e.g., [15,16,44], to our knowledge, the theoretical
background (e.g., characteristic sample definition, identifi-
cation in the limit, etc.) is still missing from this work; (2)
developing incremental versions of the learning algorithms
presented here; (3) further implementation and experimen-
tation; and (4) application of the methods presented here for
learning models of various types of black box systems.

References

1. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York
(1997)

2. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95
(2017)

3. Tripakis, S.: Data-driven and model-based design. In: 1st IEEE
International Conference on Industrial Cyber-Physical Systems
(ICPS) (2018)

4. Ljung, L.: System Identification: Theory for the User, 2nd edn.
Prentice Hall, Upper Saddle River (1999)

5. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495
(2013)

6. Gulwani, S.: Automating string processing in spreadsheets using
input-output examples. In: 38th POPL, pp. 317–330 (2011)

7. Seshia, S.A.: Sciduction: combining induction, deduction, and
structure for verification and synthesis. In: DAC, pp. 356–365
(2012)

8. Ray, B., Posnett, D., Filkov, V., Devanbu, P.: A large scale study
of programming languages and code quality in github. In: ACM
SIGSOFT, FSE’14 (2014)

9. Alur, R., Martin, M., Raghothaman, M., Stergiou, C., Tripakis, S.,
Udupa, A.: Synthesizing finite-state protocols from scenarios and
requirements. In: HVC, Volume 8855 of LNCS. Springer (2014)

10. Alur, R., Tripakis, S.: Automatic synthesis of distributed protocols.
SIGACT News 48(1), 55–90 (2017)

11. Zeller,A.:WhyProgramsFail—AGuide toSystematicDebugging,
2nd edn. Academic Press, Cambridge (2009)

12. Kohavi, Z.: Switching and Finite Automata Theory, 2nd edn.
McGraw-Hill, New York (1978)

13. de la Higuera, C.: Grammatical Inference: Learning Automata and
Grammars. CUP, Cambridge (2010)

14. Gold, E.M.: Language identification in the limit. Inf. Control 10(5),
447–474 (1967)

15. Raffelt, H., Steffen, B.: Learnlib: a library for automata learning
and experimentation, vol. 3922, pp. 377–380 (2006)

16. Verwer, S., Hammerschmidt, C.: flexfringe: a passive automaton
learning package, pp. 638–642 (2017)

17. Oncina, J., García, P., Vidal, E.: Learning subsequential transducers
for pattern recognition interpretation tasks. IEEE Trans. Pattern
Anal. Mach. Intell. 15(5), 448–458 (1993)

18. Giantamidis, G., Tripakis, S.: Learning Moore machines from
input–output traces. In: Fitzgerald, J.S., Heitmeyer, C.L., Gnesi,
S., Philippou, A. (eds.) 21st International Symposium on Formal
Methods (FM 2016), Volume 9995 of LNCS, pp. 291–309 (2016)

19. Mens, I.-E., Maler, O.: Learning regular languages over large
ordered alphabets. Log. Methods Comput. Sci. 11(3) (2015).
https://doi.org/10.2168/LMCS-11(3:13)2015

20. Argyros, G., Stais, I., Kiayias, A., Keromytis, A.D.: Back in black:
towards formal, black box analysis of sanitizers andfilters. In: IEEE
Symposium on Security and Privacy, SP 2016, pp. 91–109 (2016)

21. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Tools
and Algorithms for the Construction and Analysis of Systems—
23rd International Conference, TACAS 2017, volume 10205 of
LNCS, pp. 173–189 (2017)

22. Lang,K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo
one dfa learning competition and a new evidence-driven statemerg-
ing algorithm. In: Honavar, V., Slutzki, G. (eds.) Grammatical
Inference. Springer, Berlin (1998)

23. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont,
P.: Stamina: a competition to encourage the development and
assessment of software model inference techniques. Empir. Softw.
Eng. 18(4), 791–824 (2013)

24. Verwer, S., Eyraud, R., Higuera, C.: Pautomac: a probabilistic
automata and hidden markov models learning competition. Mach.
Learn. 96(1), 129–154 (2014)

25. Jasper, M., Mues, M., Murtovi, A., Schlüter, M., Howar, F., Stef-
fen, B., Schordan, M., Hendriks, D., Schiffelers, R., Kuppens, H.,
Vaandrager, F.W.: Rers 2019: combining synthesis with real-world
models. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.)
Tools and Algorithms for the Construction and Analysis of Sys-
tems, pp. 101–115. Springer International Publishing,Cham (2019)

123

https://doi.org/10.2168/LMCS-11(3:13)2015

28 G. Giantamidis et al.

26. Moore, E.F.: Gedanken-experiments on sequential machines. In:
Automata Studies, number 34. Princeton University Press (1956)

27. Gill, A.: State-identification experiments in finite automata. Inf.
Control 4, 132–154 (1961)

28. Angluin, D.: Learning regular sets from queries and counterexam-
ples. Inf. Comput. 75(2), 87–106 (1987)

29. Shahbaz, M., Groz, R.: Inferring mealy machines. In: FM 2009,
pp. 207–222 (2009)

30. Jonsson, B.: Learning of automata models extended with data. In:
SFM 2011, Advanced Lectures, pp. 327–349 (2011)

31. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning extended
finite state machines. In: SEFM 2014, Proceedings, pp. 250–264
(2014)

32. Aarts, F., Vaandrager, F.: Learning I/O automata. In: CONCUR.
Springer, pp. 71–85 (2010)

33. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical
register automata. In: VMCAI 2012, Proceedings, pp. 251–266
(2012)

34. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.W.:
Learning register automata with fresh value generation. In: The-
oretical Aspects of Computing—ICTAC, volume 9399 of LNCS,
pp. 165–183 (2015)

35. Medhat, R., Ramesh, S., Bonakdarpour, B., Fischmeister, S.: A
framework for mining hybrid automata from input/output traces.
In: Embedded Software (EMSOFT), pp. 177–186 (2015)

36. Gold, E.M.: Complexity of automaton identification from given
data. Inf. Control 37(3), 302–320 (1978)

37. Heule, M.J., Verwer, S.: Software model synthesis using satisfia-
bility solvers. Empir. Softw. Eng. 18(4), 825–856 (2013)

38. Ulyantsev, V., Zakirzyanov, I., Shalyto, A.: BFS-based symme-
try breaking predicates for DFA identification. In: Language and
Automata Theory and Applications (LATA), volume 8977 of
LNCS. Springer, pp. 611–622 (2015)

39. Oncina, J., Garcia, P.: Identifying regular languages in polynomial
time. In: Advances in Structural and Syntactic Pattern Recognition,
pp. 99–108 (1992)

40. Dupont, P.: Incremental regular inference. In: ICGI-96, pp. 222–
237 (1996)

41. Lang,K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo
one DFA learning competition and a new evidence-driven state
merging algorithm. In: ICGI-98, pp. 1–12 (1998)

42. Beschastnikh, I., Brun, Y., Ernst, M.D., Krishnamurthy, A.: Infer-
ring models of concurrent systems from logs of their behavior with
csight. In: Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014. ACM, New York, NY, USA,
pp. 468–479 (2014)

43. Verwer, S., de Weerdt, M., Witteveen, C.: A likelihood-ratio test
for identifying probabilistic deterministic real-time automata from
positive data. In: Sempere, J.M., García, P. (eds.) Grammatical
Inference: Theoretical Results and Applications, pp. 203–216.
Springer, Berlin (2010)

44. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite
state machine models from software executions. Empir. Softw.
Eng. 21(3), 811–853 (2016). https://doi.org/10.1007/s10664-015-
9367-7

45. Spichakova, M.: An approach to inference of finite state machines
based on gravitationally-inspired search algorithm. Proc. Estonian
Acad. Sci. 62(1), 39–46 (2013)

46. Aleksandrov, A.V., Kazakov, S.V., Sergushichev, A.A., Tsarev,
F.N., Shalyto, A.A.: The use of evolutionary programming based
on training examples for the generation of finite state machines for
controlling objects with complex behavior. J. Comput. Sys. Sc. Int.
52(3), 410–425 (2013)

47. Buzhinsky, I.P., Ulyantsev, V.I., Chivilikhin, D.S., Shalyto, A.A.:
Inducing finite state machines from training samples using ant
colonyoptimization. J.Comput. Sys. Sc. Int.53(2), 256–266 (2014)

48. Meinke, K.: CGE: a sequential learning algorithm for mealy
automata. In: Sempere, J.M., García, P. (eds.) Grammatical Infer-
ence: Theoretical Results and Applications, 10th International
Colloquium, ICGI 2010, Valencia, Spain, September 13–16, 2010.
Proceedings, volume 6339 of LNCS. Springer, pp. 148–162 (2010)

49. Veelenturf, L.P.J.: Inference of sequential machines from sample
computations. IEEE Trans. Comput. 27(2), 167–170 (1978)

50. Takahashi, K., Fujiyoshi, A., Kasai, T.: A polynomial time algo-
rithm to infer sequentialmachines. Syst. Comput. Jpn. 34(1), 59–67
(2003)

51. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state
machines from samples of their behavior. IEEE Trans. Comput.
21(6), 592–597 (1972)

52. Karthik, A.V., Ray, S., Nuzzo, P., Mishchenko, A., Brayton,
R., Roychowdhury, J.: ABCD-NL: approximating continuous
non-linear dynamical systems using purely Boolean models for
analog/mixed-signal verification. In: ASP-DAC, pp. 250–255
(2014)

53. Grinchtein, O., Leucker, M.: Learning finite-state machines from
inexperienced teachers. In: ICGI, pp. 344–345 (2006)

54. Leucker, M., Neider, D.: Learning minimal deterministic automata
from inexperienced teachers. In: ISoLA, pp. 524–538 (2012)

55. Heitmeyer, C.L., Pickett, M., Leonard, E.I., Archer, M.M., Ray, I.,
Aha, D.W., Trafton, J.G.: Building high assurance human-centric
decision systems. Autom. Softw. Eng. 22(2), 159–197 (2015)

56. Ulyantsev,V., Buzhinsky, I., Shalyto,A.: Exact finite-statemachine
identification from scenarios and temporal properties. STTT 20(1),
35–55 (2018)

57. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as
constraint solving. In: PLDI’08. ACM, pp. 281–292 (2008)

58. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant
generation using non-linear constraint solving. In: CAV. Springer,
pp. 420–432 (2003)

59. Gupta, A., Rybalchenko, A.: Invgen: an efficient invariant genera-
tor. In: Computer Aided Verification, CAV. Springer, pp. 634–640
(2009)

60. Ackermann, C., Cleaveland, R., Huang, S., Ray, A., Shelton, C.,
Latronico, E.: Automatic requirement extraction from test cases.
In: Runtime Verification, RV’10 (2010)

61. Jin, X., Donz, A., Deshmukh, J.V., Seshia, S.A.: Mining require-
ments from closed-loop control models. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 34(11), 1704–1717 (2015)

62. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification
mining. In: Automated Software Engineering (ASE), pp. 81–92
(2015)

63. Ammons, G., Bodík, R., Larus, J.R.: Mining specifications. In:
POPL’02. ACM, pp. 4–16 (2002)

64. Lee, D., Yannakakis, M.: Principles and methods of testing finite
state machines—a survey. Proc. IEEE 84(8), 1090–1123 (1996)

65. Chow, T.S.: Testing software design modeled by finite-state
machines. IEEE Trans. Softw. Eng. 4(3), 178–187 (1978)

66. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A.R., Yevtushenko,
N.: Fsm-based conformance testing methods: a survey annotated
with experimental evaluation. Inf. Softw. Technol. 52(12), 1286–
1297 (2010)

67. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H.,
Steffen, B.: On the correspondence between conformance testing
and regular inference. In: FASE, volume 3442 of LNCS. Springer,
pp. 175–189 (2005)

68. Sorower, M.S.: A literature survey on algorithms for multi-label
learning. Technical report (2010)

69. Coste, F., Nicolas, J.: ICGI-98, chapter How considering incom-
patible state mergings may reduce the DFA induction search tree.
Springer, pp. 199–210 (1998)

70. The D Programming Language. https://dlang.org/

123

https://doi.org/10.1007/s10664-015-9367-7
https://doi.org/10.1007/s10664-015-9367-7
https://dlang.org/

Learning Moore machines from input–output traces 29

71. Walkinshaw, N., Bogdanov, K.: Inferring finite-state models with
temporal constraints. In: ASE, pp. 248–257 (2008)

72. Tsarev, F., Egorov, K.: Finite state machine induction using genetic
algorithm based on testing and model checking. In: 13th Annual
Genetic and Evolutionary Computation Conference, GECCO, pp.
759–762 (2011)

73. Lo, D., Khoo, S.-C.: Smartic: towards building an accurate, robust
and scalable specification miner. In: FSE. ACM, New York, NY,
USA, pp. 265–275 (2006)

74. Akram, H.I., de la Higuera, C., Xiao, H., Eckert, C.: Grammatical
inference algorithms inmatlab. In: ICGI’10. Springer, pp. 262–266
(2010)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Learning Moore machines from input–output traces
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Finite-state machines and automata
	3.2 Input–output traces and examples
	3.3 Prefix tree acceptors and prefix tree acceptor products

	4 Characteristic samples
	4.1 Characteristic samples for Moore machines
	4.2 Computation, minimality, size, and other properties of characteristic samples

	5 Learning Moore machines from input–output traces
	5.1 Problem definition
	5.2 Trace preprocessing
	5.3 Algorithms to solve the LMoMIO problem
	5.3.1 The PTAP algorithm
	5.3.2 The PRPNI algorithm
	5.3.3 The MooreMI algorithm

	5.4 Properties of the algorithms
	5.5 Performance optimizations
	5.6 Complexity analysis

	6 Implementation and experiments
	6.1 Experimental evaluation overview
	6.2 Random machine generation
	6.3 Benchmark machines
	6.4 Trace generation
	6.4.1 A naive method: fixed-word-length trace generation
	6.4.2 Tree trace generation
	6.4.3 Generating training and test sets for experimental evaluation

	6.5 Results on randomly generated machines
	6.6 Results on benchmark machines

	7 Performance comparison with existing tools
	7.1 MealyMI
	7.2 Comparison approach and results

	8 Comparison with OSTIA
	9 Conclusion and future work
	References

