
International Journal on Software Tools for Technology Transfer (2020) 22:333–347
https://doi.org/10.1007/s10009-019-00543-1

ABZ 2018

A formal refinement-based analysis of the hybrid ERTMS/ETCS level 3
standard

Amel Mammar1 ·Marc Frappier2 · Steve Jeffrey Tueno Fotso2,3 · Régine Laleau3

Published online: 26 October 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
This paper presents a formal model of the case study proposed for the ABZ2018 conference, which concerns the Hybrid
ERTMS/ETCS Level 3 Standard. This standard allows trains to communicate with a train supervisor to report their integrity
and positions, thanks to an onboard train integrity monitoring system. The supervisor assigns trains a movement authority to
control traffic and to avoid collisions. The standard also provides for trains that cannot communicate with the supervisor; these
trains are detected by sensors on tracks and obey traffic signals set by the supervisor along the trackside. Using communication
allows for a finer grain control of the tracks. Our model is derived using stepwise refinement with the Event- B method. We
take into account the main features of the case study (VSS management, timers, ERTMS and non-ERTMS trains). Our model
is decomposed into four refinements. All proof obligations have been discharged using the Rodin provers, except those related
to the computation of the VSS state machine, which was found to be ambiguous (nondeterministic). Our model has been
validated using ProB. The main safety property, which is that ERTMS trains do not collide, is proved. Our model focuses on
the discrete control logic aspects of the case study.

Keywords Hybrid ERTMS/ETCS level 3 standard · Event-B method · Formal modeling and verification · Proof

1 Introduction

This paper proposes an Event- B [1] model of the hybrid
ERTMS/ETCS level 3 case study [2–4] proposed for the
ABZ2018 conference. The European Train Control Sys-
tem (ETCS) is the signalling and control component of the
European Rail Traffic Management System (ERTMS). The
approach presented in this paper uses the refinement tech-
nique of Event- B to master the complexity of the system.
The different elements of the system are thus incremen-
tally introduced in order to focus on a specific aspect. We

B Amel Mammar
amel.mammar@telecom-SudParis.eu

Steve Jeffrey Tueno Fotso
stuenofotso@gmail.com

1 SAMOVAR, CNRS UMR 5157, Télécom SudParis, Institut
Polytechnique de Paris, Evry, France

2 GRIF, Département d’informatique, Faculté des sciences,
Université de Sherbrooke, Sherbrooke, QC, Canada

3 Université Paris-Est, LACL, UPEC, IUT Sénart
Fontainebleau, Fontainebleau, France

have used the Rodin platform1 [5], an Eclipse-based IDE for
Event- B that provides effective support for refinement and
mathematical proof. We have also used ProB2 [6], a model
checker/animator, to validate the specification by applying
some scenarios, especially those described in [4]. The use
of ProB proved very helpful, especially to detect some
inconsistencies either in the specification document or in our
understanding of it. After fixing the main errors, proof obli-
gations generated by the Rodin Platform according to the
Event- B method are discharged to prove properties of the
Event- B specification. These properties include invariant
preservation, deadlock freedom and event feasibility. Various
invariants are proved, the most important being the absence
of collision. Our model focuses on the discrete control logic
aspects of the case study.

The development team is composed of four members
(the authors of this paper). All authors have a good exper-
tise in the Event- B method. Moreover, the first author
has been involved in the formal specification and verifica-
tion of railway interlocking systems with the collaboration
of Thales and RATP. After a first discussion of the main

1 www.event-b.org.
2 www3.hhu.de/stups/prob.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-019-00543-1&domain=pdf
www.event-b.org
www3.hhu.de/stups/prob


334 A. Mammar et al.

aspects/objectives of the system that involved the first and
the third authors, the first author wrote an initial Event- B
specification which is then discussed with all the other mem-
bers, especially about the adequate structure for representing
the TDDs and the VSS. Once the data structure of the track
has been decided, the first author continued the design of the
Event- Bmodel without interacting with the rest of the team
except to discuss the invariant violations with respect to the
ambiguous/incorrect description of the VSS state changes.
The invariant violations have been pointed out by running
ProB and also by playing the scenarios provided in the speci-
fication document. The second author has participated to this
validation activity. The development of the model provided
in [7] took about onemonth and half, and its updating accord-
ing to the new specification document release took one more
month.

Regarding the paper published at the ABZ’18 confer-
ence [8], the present article introduces an updated Event- B
model according to the revised standard provided in [4]. This
new release corrected some of the inconsistencies pointed out
by the previous modelling approaches by updating mainly
the behaviour of the timers and also the description of the
transitions. Hence, the present paper brings the following
additional contributions/updates:

– a connected train sends information to the controller each
time its position changes: enters into the track, moves to
the next TTD/VSS, etc,

– a ERTMS train is allowed to enter into the track only if a
movement authority, which includes the first VSS of the
track, is assigned to it.

– more transitions are modelled according to the new
release,

– some inconsistencies pointed out in the previous mod-
elling were not applicable any more, but new ones have
been detected in the new release,

– as more transitions have been modelled, more scenarios
have been validated with the new model release.

This paper is structured as follows. In Sect. 2, we provide
a short introduction to Event- B and ProB. Our modelling
conventions are described in Sect. 3. In Sect. 4, we describe
our modelling strategy, explaining how we take into account
controller and environment characteristics. Section 5 pro-
vides an overview of our Event- B model; it describes the
refinement strategy, explaining the order in which various
features of the ERTMS were taken into account. In Sect. 6,
we present each refinement. In Sect. 7, we discuss how the
requirements and our specification of it have been verified.
We provide in Sect. 8 a brief comparison of our model with
others presented at ABZ2018. We conclude in Sect. 9 with
an appraisal of this work. In the sequel, we suppose that the

reader can access to the case study text, in order to avoid
unnecessary repetitions.

2 An overview of EVENT-B and ProB

2.1 EVENT-B

Event- B [1] was designed to support the incremental con-
struction of system specifications using stepwise refinement.
It is complementary to the B method [9], which can be
used to refine a system specification into an implementa-
tion. Event- B and B share the same mathematical notation,
but use different refinement relations. Event- B refinement
allows for the introduction of new events and strengthening
of event guards, whereas B only allows for data refinement
and precondition weakening.

The complexity of a system is mastered, thanks to the
refinement concept that allows to gradually introduce the
different parts that constitute the system, starting from an
abstract model to a more concrete one. An Event- B spec-
ification is made of two elements: context and machine. A
context describes the static part of anEvent- B specification;
it consists of constants and sets (user-defined types) together
with axioms that specify their properties:

CONTEXT
Cont

Sets
S

Constants
C

Axioms
A

END

The dynamic part of an Event- B specification is included in
a machine that defines variables V and a set of events E . The
possible values that the variables should hold are specified
using an invariant, denoted I nv, written using a first-order
predicate on the state variables:

MACHINE
Name

SEES
Cont

Variables
V

Invariants
Inv

Events
E

123



A formal refinement-based analysis of the hybrid ERTMS/ETCS level 3 standard 335

An event has the following form:

ANY
X

WHEN
G

THEN
Act

END

An event is said to be enabled when its guard G holds. A
machine transition consists in the execution of a single event,
among all enabled events. Action Act of an event describes
the modifications made to the state variables. In this paper,
we restrict ourselves to actions of the form x := e.

The execution of an event should maintain the invariant.
To this aim, proof obligations are generated. For each event,
we have to establish that:

∀S,C, X . (A ∧ G ∧ I nv ⇒ [Act]I nv)

The expression [Act]I nv denotes the actions Act applied as a
substitution to formula I nv; it denotes the weakest constraint
on the before state such that the execution of Act leads to an
after state satisfying I nv.

Refinement is a process of enriching or modifying a
model in order to augment the functionality being modelled,
or/and explain how some purposes are achieved. Contexts
and machines can be refined. A context can be extended by
defining new sets Sr and/or constants Cr together with new
axioms Ar . A machine is refined by adding new variables
and/or replacing existing variables by new ones (Vr ) that are
typed with an additional invariant I nvr . New events of a
machine M ′ that refines M are considered to refine the skip
event of M ; hence, they cannot modify a variable introduced
in M . Consequently, all events that need to modify a variable
v are introduced where v is first declared. In this paper, the
refined events have the same form as abstract events:

ANY
Xr

WHEN
Gr

THEN
Actr

END

To prove that a refinement is correct, we have to establish
the following two proof obligations:

– guard refinement: the guard of the refined event should
be stronger than the guard of the abstract one:

∀(S,C, Sr ,Cr , V , Vr , X , Xr ).

(A ∧ Ar ∧ I nv ∧ I nvr ⇒ (Gr ⇒ G))

– Simulation: the effect of the refined action should be
stronger than the effect of the abstract one:

∀(S,C, Sr ,Cr , V , Vr , X , Xr ).

(A ∧ Ar ∧ I nv ∧ I nvr ∧ [Actr ]I nvr ⇒ [Act]I nv)

To discharge the different proof obligations, the Rodin
platform offers an automated prover; other provers can also
be added as plug-ins, like SMTproversveriT [10] andCvC3
[11], and the provers of Atelier B,3 the main platform sup-
porting the B method, which we use in this work. The Rodin
and Atelier B provers offer an automatic and an interactive
mode to discharge the proof obligations.

2.2 ProB

ProB is an animator and explicit automatic model checker,
originally developed for the verification and validation of
software development based on the B language; it now
also supports several other languages (tla, csp, Alloy, z).
Developed at the University of Düsseldorf since 2003, ProB
implements an automatic model checking technique to check
LTL (linear temporal logic) [12] and CTL (Computational
Tree Logic) [13] properties against a B specification. The
core of ProB is written in Prologue; its purpose is to be a
comprehensive tool in the area of formal verification meth-
ods. Itsmain functionalities canbe summarisedup as follows:

1. ProB can find a sequence of operations which, starting
from a valid initial state of the machine, leads to a state
that violates its invariant,

2. giving a valid state, ProB can exhibit the operation that
make the invariant violated,

3. ProB allows the animation of a B/EventB specification
to allow the user to play different scenarios from a given
starting state that satisfies the invariant. Through a graph-
ical user interface implemented in Tcl/Tk, the animator
provides the user with: (i) the current state, (2) the his-
tory of the operation executions that has led to the current
state and (3) a list of all the enabled operations, along
with proper argument instantiations. In this way, the user
does not have to guess the right values for the operation
arguments.

4. ProB supports the model checking of LTL and CTL
assertions.

3 www.atelierb.eu.

123

www.atelierb.eu


336 A. Mammar et al.

3 Modelling conventions

We reuse the terminology introduced in [14]. A control
system interacts with its environment using sensors and actu-
ators. A sensor measures the value of some environment
characteristic m, called a monitored variable (e.g., train on a
track), and provides this measure (e.g., detection of an object
on the track) to the software controller as an input variable
i . In a perfect world, we have m = i , but a sensor may
fail. The software controller can influence the environment
by sending commands, called output variable o to actuators.
An actuator influences the value of some characteristics of
the environment, called a controlled variable c. Variables m
and c are called environment variables. Variables i and o
are called controller variables. Finally, a controller has its
own internal state variables to perform computations. In this
case study, we use Event- B state variables to represent both
environment and controller variables.

4 Requirements andmodelling strategy

The modelling, presented in the current paper, is based on
the new version of the standard [4], released in July 2018
(version 1C), after the ABZ’2018 conference. Note that [2]
is based on version 1A released in July 2017 [3].

The system consists of a train supervisor called the track-
side which is responsible for setting trackside signals and
also to communicate with trains. There are two types of
trains: ERTMS trains and non-ERTMS trains. ERTMS trains
can communicate with the train supervisor to report their
position and to receive a movement authority (MA), which
describes how far they can move. Non-ERTMS trains can-
not communicate with the supervisor; they are detected (but
not identified) by trackside sensors, and they obey trackside
signals to determine how far they can go. In addition, some
ERTMS trains are equipped with an onboard train integrity
monitoring system (TIMS) that can report the train integrity
to the supervisor. A train is said to be integer if all of its cars
are linked to the head of the train; a train is non-integer when
some of its cars are unlinked. This gives three types of trains:
(i) TIMS-ERTMS, (ii) ERTMS without TIMS and (iii) non-
ERTMS trains. We assume that trains move on one single
track, all in the same direction. We also take into account
trains that can enter and move on this track without reporting
their position to the supervisor (i.e., non-ERTMS trains or
disconnected trains).

The track is divided into sections called TTD (Trackside
Train Detection). A TTD is equipped with sensors that can
detect the presence of an object, which can be a train, or
something else; it cannot identify a train with this sensor. A
TTD is further divided into subsections called VSS (virtual
subsection). The TIMS can be used to determine the VSS

occupied by the train and the train’s integrity. A train can
lose its integrity by splitting into several parts.

The supervisor periodically computes a MA and sends it
to ERTMS Trains. A MA specifies the VSS that the train
can move up to, but never beyond, in order to avoid colli-
sion with another train ahead. As stated in the case study,
the computation of MAs is out of scope; we simply nonde-
terministically choose a MA that avoids a collision with the
trains ahead. Trains can be connected or disconnected with
the supervisor. When connected, a train reports its position
and integrity to the supervisor on a regular basis. Timers are
used to detect disconnected trains and tomanage ghost trains.
A ghost train is either a physical object or a non-ERTMS train
present on the track and detected by a TTD, but for which no
position report has been received, and a failure of the TTD
sensors which incorrectly report the presence of an nonexis-
tent object.

In a first step, wemodel train occupation and train location
in terms of TTDs. Occupation refers to the actual physical
position of a train, while location refers to the position known
by the supervisor. Occupation and location do not always
coincide (e.g., unconnected train or non-ERTMS Train).
Trainsmove freelywithout constraints; sensors report the sta-
tus of a TTD and trains report their location to the controller.
In a second step, we refine TTDs in terms of VSS occupation
and location. Finally, we add the timers and the movement
authority since some VSS states depend on them. In the real
world, the cycle duration of the controller is adapted such
that it can deal with any change in the environment (train
movement, timer expiration, etc.). To accurately model such
a behaviour, we give priority to controller events over other
events modelling the train movement and timers. Moreover,
as the Event- B language does not support timing aspects,
the values of the timers are not modelled; for us a timer is
only seen as active or not and as running or not. The coding of
the VSS state transition and the timers is achieved according
to their descriptions provided in the standard in a modular
manner, that is, a modelling element is associated with each
of them. It makes it easier to trace back an error detected in
the verification phase to the standard. In addition to calculat-
ing theVSS states, wemodel and verify a safety property that
specifies that two connected trains cannot occupy the same
VSS. In otherwords, this property ensures that ERTMS trains
do not collide. Table 1 summarises up the requirements of
the system we dealt with.

5 Model overview

Our model contains three contexts. Context C0 declares
constants related to the track. We consider a single track
which is represented by an interval of natural numbers
minTTD..maxTTD (Req 1). A stronger typing using an

123



A formal refinement-based analysis of the hybrid ERTMS/ETCS level 3 standard 337

Table 1 Summary of the ERTMS requirements

Req. No. Description

Req 1 The train track is partitioned into several fixed TTD
sections

Req 2 The system should accommodate three types of
trains: TIMS-equipped ERTMS, ERTMS not fitted
with TIMS and non-ERTMS

Req 3 Each TTD is partitioned into one or more fixed VSSs

Req 4 VSS can have one of the following statuses: free,
occupied, ambiguous, or unknown

Req 5 A TTD can be reported as free or occupied

Req 6 A TTD is reported as free if and only if there are no
trains or a part of a train located on the TTD.

Req 7 The trains travel along a straight line track and in the
same direction

Req 8 For ERTMS trains, their EoAs are defined in terms
of the VSSes

Req 9 For non-ERTMS trains, their EoAs are defined in
terms of TTD sections

Req 10 The MAs are disjoint, i.e., trains will be safe from
collision if they respect the provided MAs

Req 11 A mute timer is assigned to each train

Req 12 A wait integrity timer is assigned to each train

Req 13 A disconnected propagation timer is assigned to each
VSS

Req 14 A ghost train propagation timer is assigned to each
TTD

Req 15 ERTMS trains should not collide

abstract set T T D would be more type safe, but it makes the
proofs more cumbersome, as we have experienced in the first
drafts of our specification. This is why each TTD is repre-
sented by a natural number of this interval. TTDs are ordered
using their number. The set of trains is partitioned into trains
or cars (i.e., cars that have accidentally split from a train).
Constant trainKind indicates for each actual train whether it
is a TIMS train (TimErtms), an ERTMS train without TIMS
(Ertms) or a non-ERTMS train (NoErtms) (Req 2) . Only
TIMS and ERTMS trains can connect and send their infor-
mation to the supervisor.

CONTEXT C0
SETS
TRAINS StateTTD TrainKind

CONSTANTS
freeT occupiedT Ttds minTTD maxTTD trainKind
TimErtms Ertms NoErtms Trains Cars

AXIOMS
axm1 : f ini te(T RAI N S)
axm2 : parti tion(StateT T D, { f reeT }, {occupiedT })
axm3 : parti tion(T RAI N S, Trains,Cars)

axm4 : minTTD ∈ N1 ∧ maxTTD ∈ N1∧
minTTD ≤ maxTTD

axm7 : T tds = minTTD .. maxTTD
axm8 : parti tion(TrainK ind, {T imErtms},

{Ertms}, {NoErtms})
axm9 : trainK ind ∈ Trains → TrainK ind

Context C1 declares the VSSs, which are also modelled as
an interval of naturals. We use a total, monotonic, surjective
function TtdOfVss to associate a VSS with its TTD (Req 3).

axm4 : V ss = minV SS .. maxV SS
axm5 : T tdO f V ss ∈ V ss � T tds
axm6 : ∀v1, v2 · {v1, v2} ⊆ V ss ∧ v1 < v2 ⇒

T tdO f V ss(v1) ≤ T tdO f V ss(v2)

Context C2 declares an abstract set StateVSS = {freeV,
occupiedV, unknown, ambiguous} to represent the states of a
VSS from the supervisor viewpoint (Req 4). A VSS in state
freeV contains no train. A VSS in state occupiedV contains
a single train. State unknown denotes a VSS for which it
is unknown whether there is a train on it. State ambiguous
denotes a VSS which contains at least one train; it is not sure
whether there is more than one train.

The specification is structured into four refinement steps
(i.e., five machines). Machine M0 introduces the trains, the
supervisor and the unsupervised movements of trains on
TTDs. Machine M1 introduces the reporting of positions by
trains to the supervisor, but still without supervision of their
movement. Machine M2 introduces the VSS, still without
supervision. Machine M3 introduces movement supervision
with MAs and the computation of VSS states using timers
and other information. A final refinement M4 is introduced
to prove the main safety property, namely that trains do not
collide when followingMAs. Table 2 relates the components
of our model with these requirements and those listed in [2].

Table 2 Cross-reference between the components of our model, the
requirements of Table 1 and the requirements and assumptions of [2]

Component Reqs of Table 1 R & A of [2]

C0 1, 2 2, 4, 11

C1 3 3

C2 4 6

M0 5, 6, 7 1, 5, 6

M1

M2

M3 8 . . . 14 7 . . . 10, 12 . . . 36

M4 15

123



338 A. Mammar et al.

6 Refinements

In this section, we briefly describe each refinement. The com-
plete archive of the Event- B project is available in [8].

6.1 MachineM0: free movement on TTDs

This machine contains five variables. Controller variable
stateTTD faithfully represents the real state of TTDs (Req
5 and Req 6) (i.e., the case study assumes m = i for this
variable). Environment variables trainOccupationTTDRear
and trainOccupationTTDFront, respectively, denote the first
and last TTD occupied by a given train. Environment vari-
able isConnected denotes whether a train is connected to the
supervisor. This variable denotes a total function including
the trains that are not on track because someof themshould be
connected to receive the authorisation to enter on the track.
Boolean variable supervisor is used to guard train move-
ments to ensure that other events like train supervision are
interleaved with train movements. The following invariants
type these variables. Symbols “→” and “ 
→”, respectively,
denote a total function and a partial function.

inv1 : stateT T D ∈ T tds → StateT T D
inv2 : trainOccupationT T DFront ∈

T RAI N S 
→ T tds
inv3 : trainOccupationT T DRear ∈

dom(trainOccupationT T DFront) → T tds
inv4 : ∀tr ·tr ∈ dom(trainOccupationT T DFront) ⇒

trainOccupationT T DRear(tr) ≤
trainOccupationT T DFront(tr)

inv5 : isConnected ∈
trainK ind−1[{Ertms, T imErtms}]→

BOOL
inv6 : supervisor ∈ BOOL

The set of trains on the track is represented by the domain
of the function trainOccupationTTDFront (i.e., dom(train
OccupationT T DFront)). We consider events that model
the sensing of all the TTD states by the supervisor, the enter-
ing and exiting of a train on the track, the movement of a
train on the track, the connection and disconnection of a train
and also the sending of a position by a connected train. The
movement of a train is decomposed into three events to dis-
tinguish between the cases where the train moves within the
same TTD, the front of the train enters a new TTD and the
rear of the train leaves a TTD (Reqs 6, 7). This decomposes
the proofs for train movement into smaller ones. Trains move
freely, and collisions can occur at this level. The supervisor
does not know the position of a train; it only knows the states
of TTDs. Also, we have defined an event to split a train into
two parts, the train with the engine and the cars left behind,

to model the loss of integrity. As a simple illustration, we
provide below the specification of event trainSupervisor.

Event trainSupervisor =̂
any ttds active
where
grd1 : supervisor = T RUE
grd2 : t tds = (

⋃

tr ·tr ∈
dom(trainOccupationT T DFront) |

trainOccupationT T DRear(tr)..
trainOccupationT T DFront(tr))

grd3 : active ∈ BOOL
then
act1 : stateT T D := (t tds × {occupiedT })∪

((T tds \ t tds) × { f reeT })
act2 : supervisor := active

end

Guardgrd1 checkswhether it is the turn of the supervisor
to run. This guard aims at avoiding that the supervisor runs
indefinitely, for simulation and validation purposes. Guard
grd2 constrains event local variable ttds to the set of TTDS
which are occupied by trains. Action act1 updates TTD
states. Action act2 nondeterministically gives controls to
either the trains or the supervisor using the choice made in
guard grd3.

We also specify an event tomodel the expiration of a timer.
At this level, it only sets the variable supervisor to TRUE.
We specify this event in the first machine since it has to mod-
ify the variable supervisor to give control to the supervisor
to process the received information. Indeed, any event intro-
duced in next refinements cannot update the variables defined
before.

6.2 MachineM1: Trains reporting their positions

This machine adds the controller variables trainLocation-
TTDRear and trainLocationTTDFront to store train positions
as reported by ERTMS trains. The case study assumes that
reports are accurate. The following invariants provide the
types of these variables. Note that the location of a train on
a track may be unknown to the supervisor. Thus, trainLoca-
tionTTDFront is modelled as a partial function of the domain
of trainOccupationTTDFront, which denotes the real train
position. Invariant inv3 states that the rear is known only
for TIMS-ERTMS trains that have already provided their
front positions.

inv1 : trainLocationT T DFront ∈
dom(trainK ind−1[{T imsErtms, Ertms}] �

trainOccupationT T DFront) 
→ T tds

123



A formal refinement-based analysis of the hybrid ERTMS/ETCS level 3 standard 339

inv2 : trainLocationT T DRear ∈
dom(trainLocationT T DFront) 
→ T tds

inv3 : trainK ind−1[{T imErtms}] ∩
dom(trainLocationT T DFront)

= dom(trainLocationT T DRear)
inv4 : ∀tr ·tr ∈ dom(trainLocationT T DFront) ⇒

trainLocationT T DRear(tr) ≤
trainLocationT T DFront(tr)

To take these new invariants into account, the events
modelling train movements and train connection of a dis-
connected train are refined (extended) to report the position
of an ERTMS train. New actions are added to these events to
report the position of a train bymodifying controller variables
trainLocationTTDRear and trainLocationTTDFront using
the twoenvironment variables trainOccupationTTDRear and
trainOccupationTTDFront. Train integrity is nondeterminis-
tically chosen to reflect the possibility of loosing it at any
point. When train integrity is lost, the rear position of a train
is not updated, in order to ensure that its last known rear
position remains and to avoid collision with the preceding
train when computing the MA. However, there is no provi-
sion in M1 to avoid collision; this is introduced in M3. The
following action is added to the event modelling the update
of the rear position. Indeed, the rear of train is updated only
for connected TIMS trains with a confirmed integrity:

act: trainLocationT T DRear :=
{
T RUE 
→

trainLocationT T DRear�−{tr 
→ newRear},
FALSE 
→ trainLocationT T DRear

}(
bool(
tr 
→ T RUE ∈ isConnected ∧
trainK ind(tr) = T imErtms ∧
integ = T RUE)

)

Action act uses an expression that simulates a conditional
expression of the form

if c then e1 else e2,

which does not exist in Event- B. It is instead written in
the form {T RUE 
→ e1, FALSE 
→ e2}(bool(c)), which
evaluates the function {T RUE 
→ e1, FALSE 
→ e2} at
condition c.

6.3 MachineM2: IntroducingVSSs

Recall that a TTD is divided into VSSs. This data refine-
ment refines the train position variables based on TTDs

(i.e., trainOccupationTTDx and trainLocationTTDx) with
position variables based on VSSs. New environment vari-
ables trainOccupationVSSRear and trainOccupationVSS-
Front represent the real VSS position of a train. New
controller variables trainLocationVSSRear and trainLoca-
tionVSSFront represent the VSS positions computed by the
supervisor using train reports.

inv5 : trainLocationV SSFront ∈
dom(trainLocationT T DFront) → V ss

inv6 : trainLocationV SSRear ∈
dom(trainLocationV SSFront) → V ss

inv7 : trainOccupationV SSFront ∈
dom(trainOccupationT T DFront) → V ss

inv8 : trainOccupationV SSRear ∈
dom(trainOccupationV SSFront) → V ss

Four gluing invariants stating that the VSS positions and
the TTD positions are consistent, for both the controller and
the environment, using function TtdOfVss, are also added,
like the following one.

inv11 : ∀tr ·tr ∈ dom(trainOccupationV SSFront)⇒
T tdO f V ss(trainOccupationV SSFront(tr))

= trainOccupationT T DFront(tr)

No new event is added. The existing events are refined
to take into account these new variables. As in M1, train
collisions can occur in M2.

6.4 MachineM3: ComputingVSS states and
assigningMAs

6.4.1 Introducing new variables

This refinement is the most complex one. The state of each
VSS is computed, and MAs are assigned to trains. At this
level, the integrity and the length information of a train are
stored by two Boolean variables since they are used in the
VSS computation. Timers are introduced to detect discon-
nected trains, the loss of integrity and ghost trains.

As stated before, the management of the timers, MAs
and the calculation of VSS states have been updated in the
last release of the standard [4]. So, the modelling of these
concepts is quite different from that presented in [8]. For
instance, the MA for ERTMS trains is defined in terms of
VSS, while the MA of non-ERTMS trains is defined in terms
of TTD. The following three invariants are defined for the
new variables introduced to model the MA of an ERTMS
train (Req 8). Controller variables MATrainRearVSS and
MATrainFrontVSS define the MA of each ERTMS train. A
MA is an interval of VSSs. Invariant inv7 in Fig. 1 states

123



340 A. Mammar et al.

Fig. 1 Disjointness of MAs in
machine M3

Fig. 2 Disjointness of MAs in
machine M3 (a simplified
version)

that the MAs of two different trains are disjoint, to avoid col-
lisions (Req 10). It uses a conditional expression on the train
type: ERTMS trains have a MA based on VSS; non-ERTMS
trains have a MA based on TTD, and thus, we must convert
this TTDMA into a VSSMA, starting with the smallest VSS
of the TTD for the start position and the greatest VSS of the
TTD for the end position (Req 9).

As one can remark, invariant inv7 makes the specifica-
tion more complicated, especially for the expression of the
guards.We decided to simplify this by defining only two vari-
ablesMATrainFrontVSS andMATrainFrontVSS as described
in Fig. 2. Invariant inv4 ensures that non-ERTMS trains
have a MA that starts with the first VSS of a TTD and ends

with the last VSS of a TTD. Invariant inv5 states the dis-
jointness of MAs.

The next invariants introduce timers: timers related to
trains may be running or expired while those associated
with the VSS and TTDmay be running or expired but also
inactive (the three values are grouped in an enumerated set
T imerValues). Contrary to our previous modelling intro-
duced in [8], mute and integrity timers are associated with
each train even when a train is not located on the track yet.
The following invariants model the timers managed by the
system as described by the requirements Req 11-Req 14.

123



A formal refinement-based analysis of the hybrid ERTMS/ETCS level 3 standard 341

Fig. 3 State machine of VSS reproduced from Fig. 7 of [4]

inv5 : muteT imer ∈
trainK ind−1[{T imErtms, Ertms}] →

{running, expired}
inv6 : integri t yT imer ∈

trainK ind−1[{T imErtms, Ertms}] →
{running, expired}

inv7 : disconnectT imer ∈ V ss → T imerValues
inv8 : ghostT imer ∈ T tds → T imerValues

The muteTimer is used to detect that a train has failed
to report its position within the required time frame; in that
case, the state of the VSSs in front of that train and within
the train’s MA becomes unknown.

Finally, the following variables are introduced to compute
the VSS states.

inv9 : current StateV SS ∈ V ss → StateV SS
inv10 : previousFront ∈

dom(trainLocationV SSFront) 
→ V ss
inv11 : previousFront State ∈

dom(previousFront) 
→ StateV SS

Variables previousFrontState and previousFront, respec-
tively, record the previous value of currentStateVSS and the
previous front position of the trains. They are, respectively,
updated when the supervisor computes the states of the VSS
and when the train reports its position; they are needed in the
computation of some VSS state transitions.

6.4.2 Modelling VSS state machine transitions

The main complexity of this refinement is to compute the
VSS states, which depend on several conditions. These con-
ditions are described by a state machine in Figure 7 of [4] and
reproduced here in Fig. 3. The guards of its transitions are
described, using natural language, in Table 2 of [4]. This table
spans 3 pages (pp. 28–30). Figure 4 provides an excerpt of
this table. The guard of a transition i in Fig. 3 is given by the

disjunction of the guards labelled #i X in Fig. 4. For example,
the guard of transition 1 is #1A ∨ #1B ∨ . . . ∨ #1F; only
#1A and #1B are shown in Fig. 4. Some transitions have
priority over others (e.g., #2A has precedence over #3A).

Ideally, the computation of the state of each VSS should
be done in a single event, because the states must be all com-
puted before assigning MAs. It also ensures that Table 2 of
[4] is deterministic, i.e., well-defined. Furthermore, it allows
for taking into account the priority between transitions for a
given VSS. We have coded the state machine of Fig. 3 into
a single event, namely trainSupervisor. We use guard num-
bers (e.g., #1A) to name local variables of the event (e.g.,
vss1A). Such a variable is constrained to contain the new
state values for the VSSs satisfying the corresponding guard.
For instance, set vss1A contains the VSSs satisfying guard
#1A and their state will change from FREE to UNKNOWN.
The union of sets vss iX is used to update state variable cur-
rentStateVSS in event trainSupervisor.

To illustrate our approach,we provided in Fig. 5 an excerpt
of the guards of event trainSupervisor that models guards
#1A and #1B of Fig. 4. Guard grd4 of Fig. 5 represents
guard #1A. We use a quantified union to identify the VSSs
satisfying #1A. It reads as follows: a VSS must currently be
free, since transition 1 starts from state FREE; it must also
be on a TTD that becomes occupied (first conjunct of guard
#1A) and any VSS of this TTD must not be within a MA
or occupied by a train (second and third conjuncts of #1A).
Variable ttds denotes the occupied TTDs in the after state,
whereas stateTTD denotes the before value, which allows us
to determine that a TTD becomes occupied. The resulting
state of these VSSs is UNKNOWN as given by transition 1,
which is represented by taking the Cartesian product of the
VSSs returned by the quantified union with the singleton set
{unknown}. In summary, guard #1A says that the TTD sensor
detected an object, but the supervisor has no record of a train
on a VSS of that TTD; thus, its status is unknown.

Several ambiguities have been found. For instance, in the
description of transition #2, the third condition states that
“VSS where the train was located before it was located on
the evaluated VSS, was occupied” can be interpreted as an
implication, which means that the guard holds even when the
train does have a previous location.Or, it can be interpreted as
a conjunction,whichmeans that the train should have a previ-
ous position, for the guard to hold. For this specific transition,
we choose the second semantics as the first one increases the
nondeterminism with the other transitions. Moreover, as we
are not experts of the domain, we decided not to elicit further
these aspects, especially that similar expressions with differ-
ent semantics are used in other transitions, like the transition
#6.

123



342 A. Mammar et al.

Fig. 4 Excerpt of Table 2 in [4]

Fig. 5 Excerpt of the guards of event trainSupervisor corresponding to Fig. 4

7 Requirements verification andmodel
validation

This section describes the verifications carried out using the
provers of Rodin (Event- B’s development platform) and
the model checker/animator ProB [15] plug-in for Rodin.
Our strategy to verify the development and the requirements
is as follows. We used ProB mainly to discover possible
invariant violations prior to the proof phase that may be long
and complex. ProB has proved to be a useful and effective
tool to check the sequencing of the events. We have also used
it to play the scenarios provided in the case study to validate
our specification.

7.1 Proving the determinacy of the VSS state
machine

Recall that state variable currentStateVSS is typed as a func-
tion. The proof obligation generated by this typing invariant
ensures that each VSS state has a single new value; hence,
there is a single transition that updates it. This is equivalent
to prove that the VSS state machine described in the case
study is deterministic. This turns out to be fairly complex.
For each VSS state value (e.g., FREE), there are three outgo-
ing transitions to the other three possible VSS state values
(e.g., transitions 1, 2 and 3 of Fig. 3). To ensure determinacy,
we must prove that the guards of these three transitions are
mutually disjoint. Let ni be the number of disjuncts in the

disjunctive normal form of the guard of transition i . Then,
we have to consider ni ∗ n j cases in the proof of disjointness
of transitions i and j . Luckily, transitions priorities eliminate
a few cases to consider. In total, there are 47 high-level cases
to consider, which is a significant proof effort.

One way to simplify the handling of this proof in Rodin
would be to decompose event trainSupervisor into four
events, one for each VSS state value. That would still allow
us to prove the determinacy of the VSS state machine, but
we would lose the atomicity of VSS state computation. We
would then have to control the ordering of events to ensure
that these four events are computed before assigning MAs.
For the sake of simplicity and to ease the construction of the
overall specification, we have chosen to use a single event.

7.1.1 Using ProB to check the determinacy of the VSS state
machine

ProB can be used to find invariant violations with coun-
terexamples. We have used this feature extensively. The
counterexamples provided help in identifying the missing
guards and invariants required to prove invariant preserva-
tion. However, the state space ofmachineM3 is huge, with its
23 variables,most of them typed as functions.ProBwill only
check the reachable states, and when it does not terminate in
a reasonable time, one cannot determine which interesting
conditions have been explored, for instance, among the 47
cases of guard disjointness discussed earlier.

123



A formal refinement-based analysis of the hybrid ERTMS/ETCS level 3 standard 343

An alternative way to check the determinacy of the VSS
statemachine is to use the constraint satisfier of ProB, which
can find models for a formula. ProB uses it to find val-
ues of constants in an Event- B context. To specifically
check one case among the 47 cases for the determinacy
of the VSS state machine, we construct a new context that
declares the state variables, used in the guards of the VSS
state machine, as constants, and their related invariants as
axioms. We finally add to this context the local variables of
event trainSupervisor that computes new sets of VSS states
and we check that these two sets are not disjoint (e.g., check
that dom(vss1A)∩dom(vss2A) �= {}). If ProB finds amodel
for this context, it means that the corresponding transition
guards in the VSS state machine are not disjoint, given the
invariants used in our machine. It thus means that the invari-
ants are insufficient to prove the determinacy of theVSS state
machine and that they must be enriched or strengthened.

7.1.2 Dealing with inconsistencies of the VSS state machine

We have found several cases where the guards are not dis-
joint, whichmeans that one of the following three alternatives
holds: (i) our representation of the guards are incorrect, and
(ii) the case study text is incorrect, (iii) invariants are missing
to rule out these counterexamples (i.e., these Event- B states
are not reachable from the initial state of the system). Since
we are not experts of the ERTMS standard, it is hard for us
to determine which alternative holds. In a first model of the
system, ProB finds several counterexamples when searching
for invariant violations that lead to a state where two transi-
tions are not disjoint. Such traces are due, for instance, to the
expiration of several timers reported at the same moment as
the reporting of the train position. Thus, we do not know if the
case study is wrong, or if this trace is impossible in the real
world where the timers represent actual clocks with different
values or perhaps there are implicit assumptions in the case
study that we missed or we could not figure out by simply
reading it. To rule them out, we assume that the transitions
depending on the timers are dealt with last; priority is given
to those depending on the train position. From the Event-
B point of view, we use the overload operator to express it.
Moreover, as for the representation of the guards, we have
used a straight forward translation of the phrasal terms of the
natural language text into state variables, to simplify as much
as possible the translation of the guards. However, there is
still the possibility of misinterpreting the natural language
text. The term of “train location” is not very precise in the
standard: according to our first understanding, it corresponds
to the information sent by the train, but later at page 27, it is
stated that such an information is updated by the TTD infor-
mation without explaining how this is done. Another point
that is important is related to the conditions under which the
trains are allowed to enter into the track. At the beginning,

since no explicit condition is given, we thought that a train
cannot enter into the track without having aMA that includes
the first VSS, but the first step of Scenario 4 contradicts such
an assumption. In addition, at the end of the document, some
scenarios are provided in order to validate and illustrate the
update of the VSS state. We think that more details should
be provided at each step to understand how the transitions
are executed. It would be interesting to show how the state
of the VSS changes immediately when a train goes on a next
VSS. This is not clear on the provided figures that may imply
that the train jumps from a VSS to the next one. Moreover,
the scenarios use some terms that are not defined in the doc-
ument such as end of mission. Also, it is not clear which
kinds of trains (ERTMS, TIMS, No ERTMS) are considered
in the scenarios. Given the length of the case study, our lim-
ited expertise in the domain and the number of ambiguities
or missing (implicit) assumptions, we decided not to elicit
further these aspects, because there is no point in making
hypothetical (as opposed to “realistic”) assumptions in order
to prove the determinacy of the VSS state machine. The key
issue is more to be able to identify ambiguities, thanks to
formalisation, validation and verification. In a real context,
they can be resolved in a systematic manner using domain
experts. Moreover, since proof obligations can be indepen-
dently discharged, not proving the determinacy of the state
machine does not prevent us from proving the main safety
property; we can assume that the VSS state machine can
be made deterministic. In addition, the four VSS states can
be reduced to only two (free or occupied), since the other
two are used to manage potentially hazardous situations, as
noted in the case study (paragraph 3.2.1.1.1 of [4]). From a
refinement viewpoint, it would have been easier to start with
a simple state machine that contains only two states, prove
its determinacy and the absence of collision at this level and
then further refine into a state machine with four states.

7.2 Proving safety properties

We have stated one main safety property, which is that
two ERTMS trains cannot be on the same VSS, and thus,
ERTMS trains should not collide, but non-ERTMS trains
could (Req 15). This property is expressed in Fig. 6 using the
environment variables trainOccupationVSSRear and train-
OccupationVSSFront, which represent the real position of
the trains (not the position as known by the supervisor). This
proof was conducted in a new refinement machine M4, for
the sake of modularity. The guards of events that modify
these variables are based solely on the controller variables
and thus represent the fact that trains move according to their
MAs computed by the supervisor. If the invariant holds, it
means that trains following their MAs should not collide. To
prove this property, we needed to add and prove the aux-
iliary invariants presented in Fig. 7, which can be seen as

123



344 A. Mammar et al.

Fig. 6 Invariant representing
the absence of collision for
ERTMS trains

Fig. 7 Auxiliary invariants for
proving the absence of collision
for ERTMS trains

Table 3 Rodin proof statistics of the case study

Component PO Auto Manual Reviewed Undischarged

C0 0 0 0 0 0

C1 3 1 2 0 0

C2 0 0 0 0 0

Animation 0 0 0 0 0

M0 34 23 11 0 0

M1 60 16 44 0 0

M2 132 27 105 0 0

M3 125 26 91 0 8

M4 36 9 27 0 0

lemmas required for the main proof. Invariant inv2 states
that a ERTMS train can occupy only the VSS included in its
MA. Invariants inv3 and inv4 state that the position of a
train known by the supervisor is behind the real position of
the train. Recall that the case study assumes that the position
reported by trains is accurate.

Table 3 provides the proof statistics of the case study. It is
worth noting that the correctness of the proof carried out on
the machine M4 depends on the correctness of the 8 proof

obligations that remain to discharge in machine M3. These
proof obligations are related to the determinacy of the VSS
state machine, and they are hard to discharge, as we model
the VSS state changes in a single very complex event. The
problem can be resolved by splitting this event into several
ones, one per transition of the VSS state machine. In that
case, the execution of each event would correspond to the
firing of a unique transition of the VSS state machine. With
this approach, the safety property would still hold, because
the invariants used to prove the property would still be valid.
However, such a model is not faithful to the real system,
because it would not ensure the determinacy of the VSS state
machine. Proving the determinacy ensures that a single tran-
sition can be fired in a given state.

8 Comparison with other models

This section reports on the work that dealt with the same
case study and presented at the ABZ2018 conference. Dif-
ferent formal languages and verification approaches have
been used for that purpose. In [16], the system is mod-
elled in promela, and the verification is performed using

123



A formal refinement-based analysis of the hybrid ERTMS/ETCS level 3 standard 345

Table 4 Comparison of different approaches

Criteria Work

[16] [17] [18] [19] [20] [21,22]

Graphical modelling − − − − iuml- b SysML-Kaos

Formal Language promela B language Electrum Event- B Event- B Event- B

Verification method Model checking/spin ProB+Proofs Electrum analyser Proofs Proofs Proofs

Non-collision property Violated − − Assumed − −
Inconsistency report + + + − − −

the spin model checker. The authors make some restrictions
by considering, for instance, that a train can occupy at most
two VSSs. Moreover, the state of each VSS is calculated
independently of others and the behaviour of the timers is
nondeterministic. Such restrictions produce a less realistic
and generic model, especially that only two trains are con-
sidered as assumed in the scenarios of the standard. In [17],
the specification of the system is written in the B notation,
and the validation and the verification is performed using the
provers of AtelierB and ProB. Even if the update of the VSS
state is done in a loop, this loop is executed once on each
VSS, but the standard provides that the final value of a VSS
state may require several additional loops in order to take the
new VSS states on which it can depend. Also, no detail is
given about the modelling of the timers.

An Electrum specification of the system is provided in
[18]. Electrum is an extension of the Alloy language with
events that specifies a system in terms, among others, of sig-
natures for data types and assertions on state transitions. The
Electrum analyser can check the existence of a model that
satisfies the specification and checkproperties about the spec-
ification. The Electrum analyser also allows one to explore
the state transitions and traces of the specification. LTL for-
mulas can be used to construct the specification, as well as to
prove properties about a specification. Electrum supports
bounded model checking using SAT solvers and unbounded
model checking using SMV. Electrum does not allow for
refinement.

An Event- B specification, very similar approach to ours,
is presented in [19]. However, the assumptions used to sim-
plify the system make the resulting model more restrictive.
Indeed, only the mute timer is considered, but the other kinds
of timers also affect the VSS state. Moreover, assuming that
a train can only move to a free VSS is too strong and should
be in fact the safety property to demonstrate. An iuml- b
approach for modelling the case study is also developed in
[20]. The approach uses UML class and state machine dia-
grams tomodel the topology of the trackside and the dynamic
aspects of the system. These diagrams are then automati-
cally translated into Event- B using the iuml- b plug-in.
The authors do not give any detail about the possible incon-

sistencies they detect during the proof activity. Moreover, the
safety property they defined does not ensure the non-collision
of two trains as they assume that two MA trains may share
a common VSS. Let us note that most work also identified
several inconsistencies and ambiguities in the specification
of the VSS transitions.

In a companion paper, we explore the use of ontologies
and SysML/KAOS to model this case study [21,22]. The
approach is goal refinement oriented and starts with a global
property as the root goal of the SysML/KAOS goal model,
which is refined into more elementary goals using different
AND and OR refinement patterns. The data of the system are
specified by ontologies. The translation of these diagrams
into Event- B, according to rules defined in [23], permits to
produce a complete formal specification that can be validated
and verified under the Rodin tool. A more detailed compari-
son of these approaches is provided in this companion paper.

Table 4 summarises up the characteristics of the approaches
described above according to a set of criteria. Symbols “−”
and “+ ” indicate whether a characteristic is taken into
account (“+ ”) or not (“−”).

Let us recall that, in this paper, we do not deal with the
actual values of the timers. Indeed, we onlymodel their states
as active or not, without giving them any value. Thus, we
think that some counterexamples are due to this restriction
since a timer can expire at any moment even immediately
after it was launched. In the literature, some very suitable
models have been developed for the modelling of the timing
constraints like Alur and Dill’s timed [24] or Dutertre and
Sorea’s calendar automata [25]. A real-time Maude model
of ERTMS level 2 is proposed in [26]; discrete time is used
and model-checked using the real-time Maude tool. Note
that ERTMS level 2 is a different standard from the hybrid
ERTMS level 3.

Several approaches have been proposed to enrich the
Event- B language by introducing time constraints [27–29].
We do not explore these approaches since our initial objec-
tive is to experience the plain Event- B method on the case
study and to draw some conclusions on its applicability even
if we know in advance that no discrete neither real time is
directly supported in Event- B, especially that the descrip-

123



346 A. Mammar et al.

tion of the case study does not provide the values to which
the timers are set. Finally, it would be interesting to look
deeper into the existing structuring mechanisms proposed
for Event- B: decomposition [30] or modularisation [31], in
order to structure the specification into logical units to permit
operation calls like in the B method.

9 Conclusion

Our model covers the essential parts of the case study as
described in [4]. By making some additional assumptions on
the movement of the ERTMS trains for example, we were
able to prove the safety of ERTMS trains. It only remains to
prove the determinacy of theVSS statemachine, which could
not be completed because of the ambiguities of the case study
text. Understanding the case study itself was a challenge,
because of the difficulty to identify missing assumptions.
Determining the ordering of events was anything but trivial.
Domain experts typically write for other domain experts; it is
not natural for them to think of all the details that a non-expert
does not know.

We have found Event- B to be adequate to model this
case study even if some constraints of this method make the
obtained model more complex. For instance, the event that
manages the timers has been introduced in the first model
because a new event cannot modify existing variables. Also,
we modelled the movement of a train with three distinct
events in order to reduce the complexity of the proof activity
by generating more proof obligations but with a low com-
plexity. The use of the ProB model checker turned out to
be very useful for an early error detection by simulating dif-
ferent scenarios. In this paper, we deliberately chose not to
use any Event- B plug-ins (e.g., [32,33]) in order to be able
to compare our solution with solutions based on them (and
assuming that a paper using them would be submitted to
ABZ2018). Moreover, we think that the ProB plug-in of the
Rodin platform should be improved to allow users to replay
a stored scenario without being forced to do it step by step,
especially when scenarios are very long.

Acknowledgements This research was supported in part by NSERC
(Natural Sciences and Engineering Research Council of Canada) and
the FORMOSEproject funded by the FrenchNational ResearchAgency
(ANR).

References

1. Abrial, J.:Modeling inEvent-B.CambridgeUniversityPress,Cam-
bridge (2010)

2. Hoang, T.S., Butler, M.J., Reichl, K.: The hybrid ERTMS/ETCS
level 3 case study. In: Butler, M.J., Raschke, A., Hoang, T.S.,
Reichl, K. (eds.): Abstract State Machines, Alloy, B, TLA, VDM,
and Z—6th International Conference, ABZ 2018, Southampton,

UK, June 5-8, 2018, Proceedings. Volume 10817 of Lecture Notes
in Computer Science, pp. 251–261. Springer, Berlin (2018)

3. EEIG ERTMS Users Group: Hybrid ERTMS/ETCS Level 3:
Principles, Ref. 16E042 Version 1A. Technical report, Brussels,
Belgium (2017)

4. EEIG ERTMS Users Group: Hybrid ERTMS/ETCS Level 3:
Principles, Ref. 16E042 Version 1C. Technical report, Brussels,
Belgium (2018)

5. Voisin, L., Abrial, J.: TheRodin platformhas turned ten. In: Ameur,
Y.A., Schewe, K. (eds.) Abstract State Machines, Alloy, B, TLA,
VDM, and Z—4th International Conference, ABZ 2014, Toulouse,
France, June 2–6, 2014. Proceedings. Volume 8477 of Lecture
Notes in Computer Science, pp. 1–8. Springer, Berlin (2014)

6. Leuschel, M., Butler, M.J.: Prob: an automated analysis toolset for
the B method. STTT 10(2), 185–203 (2008)

7. Mammar, A., Frappier, M., Fotso, S.J.T., Laleau, R.: An Event-B
model of the hybrid ERTMS/ETCS level 3 standard. In: Butler,
M.J., Raschke, A., Hoang, T.S., Reichl, K. (eds.): Abstract State
Machines, Alloy, B, TLA, VDM, and Z—6th International Confer-
ence, ABZ 2018, Southampton, UK, June 5-8, 2018, Proceedings.
Volume10817ofLectureNotes inComputer Science, pp. 353–366.
Springer, Berlin (2018)

8. Mammar, A., Frappier, M., Fotso, S.J.T., Laleau, R.: An Event-B
Model of the Hybrid ERTMS/ETCS Level 3 Standard. http://info.
usherbrooke.ca/mfrappier/abz2018-ERTMS-Case-Study (2018).
Accessed Jan 2018

9. Abrial, J.: The B-Book—Assigning Programs to Meanings. Cam-
bridge University Press, Cambridge (2005)

10. Bouton, T., Oliveira, D.C.B.D., Déharbe, D., Fontaine, P.: veriT: an
open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.)
AutomatedDeduction—CADE-22, 22nd International Conference
on Automated Deduction, Montreal, Canada, August 2–7, 2009.
Proceedings. Volume 5663 of Lecture Notes in Computer Science,
pp. 151–156. Springer, Berlin (2009)

11. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.)
Computer Aided Verification, 19th International Conference, CAV
2007, Berlin, Germany, July 3–7, 2007, Proceedings. Volume 4590
of Lecture Notes in Computer Science, pp. 298–302. Springer
(2007)

12. Pnueli, A.: The temporal logic of programs. In: 18th Annual Sym-
posium on Foundations of Computer Science, Providence, Rhode
Island,USA,31October–1November 1977, pp. 46–57. IEEECom-
puter Society (1977)

13. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In: Grumberg,
O., Veith, H. (eds.) 25 Years ofModel Checking–History, Achieve-
ments, Perspectives. Volume 5000 of Lecture Notes in Computer
Science, pp. 196–215. Springer, Berlin (2008)

14. Parnas, D.L., Madey, J.: Functional documents for computer sys-
tems. Sci. Comput. Program. 25(1), 41–61 (1995)

15. Leuschel, M., Butler, M.J.: ProB: a model checker for B. In: Araki,
K., Gnesi, S., Mandrioli, D. (eds.) FME 2003: Formal Methods
Europe, Pisa, Italy, September 8–14, 2003. Volume 2805 of LNCS,
pp. 855–874. Springer, Berlin (2003)

16. Arcaini, P., Jezek, P., Kofron, J.: Modelling the hybrid
ERTMS/ETCS level 3 case study in spin. In: Butler, M.J., Raschke,
A., Hoang, T.S., Reichl, K. (eds.): Abstract State Machines, Alloy,
B, TLA, VDM, and Z—6th International Conference, ABZ 2018,
Southampton, UK, June 5-8, 2018, Proceedings. Volume 10817 of
Lecture Notes in Computer Science, pp. 277–291. Springer, Berlin
(2018)

17. Hansen, D., Leuschel, M., Schneider, D., Krings, S., Körner, P.,
Naulin, T., Nayeri, N., Skowron, F.: Using a formal B model at
runtime in a demonstration of the ETCS hybrid level 3 concept with
real trains. In: Butler, M.J., Raschke, A., Hoang, T.S., Reichl, K.
(eds.): Abstract State Machines, Alloy, B, TLA, VDM, and Z—6th

123

http://info.usherbrooke.ca/mfrappier/abz2018-ERTMS-Case-Study
http://info.usherbrooke.ca/mfrappier/abz2018-ERTMS-Case-Study


A formal refinement-based analysis of the hybrid ERTMS/ETCS level 3 standard 347

International Conference, ABZ 2018, Southampton, UK, June 5-8,
2018, Proceedings. Volume 10817 of Lecture Notes in Computer
Science, pp. 292–306. Springer, Berlin (2018)

18. Cunha, A., Macedo, N.: Validating the hybrid ERTMS/ETCS level
3 concept with electrum. In: Butler,M.J., Raschke, A., Hoang, T.S.,
Reichl, K. (eds.): Abstract State Machines, Alloy, B, TLA, VDM,
and Z—6th International Conference, ABZ 2018, Southampton,
UK, June 5-8, 2018, Proceedings. Volume 10817 of Lecture Notes
in Computer Science, pp. 307–321. Springer, Berlin (2018)

19. Abrial, J.: The ABZ-2018 case study with event-b. In: Butler,
M.J., Raschke, A., Hoang, T.S., Reichl, K. (eds.): Abstract State
Machines, Alloy, B, TLA, VDM, and Z—6th International Confer-
ence, ABZ 2018, Southampton, UK, June 5-8, 2018, Proceedings.
Volume10817ofLectureNotes inComputer Science, pp. 322–337.
Springer, Berlin (2018)

20. Dghaym, D., Poppleton, M., Snook, C.F.: Diagram-led formal
modelling using iUML-b for hybrid ERTMS level 3. In: Butler,
M.J., Raschke, A., Hoang, T.S., Reichl, K. (eds.): Abstract State
Machines, Alloy, B, TLA, VDM, and Z—6th International Confer-
ence, ABZ 2018, Southampton, UK, June 5-8, 2018, Proceedings.
Volume10817ofLectureNotes inComputer Science, pp. 338–352.
Springer, Berlin (2018)

21. Fotso, S.J.T., Frappier, M., Laleau, R., Mammar, A.: Modeling the
hybrid ERTMS/ETCS level 3 standard using a formal requirements
engineering approach. In: Butler, M.J., Raschke, A., Hoang, T.S.,
Reichl, K. (eds.): Abstract State Machines, Alloy, B, TLA, VDM,
and Z—6th International Conference, ABZ 2018, Southampton,
UK, June 5-8, 2018, Proceedings. Volume 10817 of Lecture Notes
in Computer Science, pp. 262–276. Springer, Berlin (2018)

22. Fotso, S.J.T., Frappier, M., Laleau, R., Mammar, A.: Mod-
eling the Hybrid ERTMS/ETCS Level 3 Implementation
through Goal Diagrams and Ontologies Using the FOR-
MOSE Approach. http://info.usherbrooke.ca/mfrappier/abz2018-
ERTMS-Case-Study-Formose (2018). Accessed Jan 2018

23. Fotso, S.J.T., Mammar, A., Laleau, R., Frappier, M.: Event-
B expression and verification of translation rules between
SysML/KAOS domain models and B system specifications. In:
Butler, M.J., Raschke, A., Hoang, T.S., Reichl, K. (eds.): Abstract
State Machines, Alloy, B, TLA, VDM, and Z—6th International
Conference, ABZ 2018, Southampton, UK, June 5-8, 2018, Pro-
ceedings. Volume 10817 of Lecture Notes in Computer Science,
pp. 55–70. Springer, Berlin (2018)

24. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput.
Sci. 126(2), 183–235 (1994)

25. Dutertre, B., Sorea, M.: Modeling and verification of a fault-
tolerant real-time startup protocol using calendar automata. In:
FORMATS/FTRTFT. Volume 3253 of Lecture Notes in Computer
Science, pp. 199–214. Springer, Berlin (2004)

26. Berger,U., James, P., Lawrence,A.,Roggenbach,M., Seisenberger,
M.: Verification of the european rail traffic management system in
real-time maude. Sci. Comput. Program. 154, 61–88 (2018)

27. Cansell, D.,Méry, D., Rehm, J.: Time constraint patterns for Event-
B development. In: B. Volume 4355 of Lecture Notes in Computer
Science, pp. 140–154. Springer, Berlin (2007)

28. Sarshogh, M.R., Butler, M.J.: Specification and refinement of dis-
crete timing properties in Event-B. ECEASST 46, 1–15 (2011)

29. Mammar, A., Laleau, R.:Modeling a landing gear system in Event-
B. STTT 19(2), 167–186 (2017)

30. Silva, R., Pascal, C., Hoang, T.S., Butler, M.J.: Decomposition tool
for Event-B. Softw. Pract. Exp. 41(2), 199–208 (2011)

31. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A.B.,
Varpaaniemi, K., Ilic, D., Latvala, T.: Supporting reuse in Event-B
development: Modularisation approach. In: ASM Volume 5977 of
Lecture Notes in Computer Science, pp. 174–188. Springer, Berlin
(2010)

32. Fathabadi, A.S., Butler, M.J., Rezazadeh, A.: Language and tool
support for event refinement structures In Event-B. Formal Asp.
Comput. 27(3), 499–523 (2015)

33. Said, M.Y., Butler, M.J., Snook, C.F.: A method of refinement in
UML-B. Softw. Syst. Model. 14(4), 1557–1580 (2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://info.usherbrooke.ca/mfrappier/abz2018-ERTMS-Case-Study-Formose
http://info.usherbrooke.ca/mfrappier/abz2018-ERTMS-Case-Study-Formose

	A formal refinement-based analysis of the hybrid ERTMS/ETCS level 3 standard
	Abstract
	1 Introduction
	2 An overview of Event-B and ProB
	2.1 Event-B
	2.2 ProB

	3 Modelling conventions
	4 Requirements and modelling strategy
	5 Model overview
	6 Refinements
	6.1 Machine M0: free movement on TTDs
	6.2 Machine M1: Trains reporting their positions
	6.3 Machine M2: Introducing VSSs
	6.4 Machine M3: Computing VSS states and assigning MAs
	6.4.1 Introducing new variables
	6.4.2 Modelling VSS state machine transitions


	7 Requirements verification and model validation
	7.1 Proving the determinacy of the VSS state machine
	7.1.1 Using ProB to check the determinacy of the VSS state machine
	7.1.2 Dealing with inconsistencies of the VSS state machine

	7.2 Proving safety properties

	8 Comparison with other models
	9 Conclusion
	Acknowledgements
	References




