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Published online: 6 August 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We present an improved version of the memory safety verification approach implemented in Symbiotic 5, the winner of the
MemSafety category at the Competition on Software Verification (SV-COMP) 2018. The approach can verify programs for
standard errors in memory usage like invalid pointer dereference or memory leaking. It is based on instrumentation, static
pointer analysis extended to consider memory deallocations, static program slicing, and symbolic execution. The improved
version brings higher precision of the extended pointer analysis and further optimizations in instrumentation. It is implemented
in the current version of Symbiotic, which contains also some improvements in program slicing and symbolic execution. We
explain the approach in theory, describe implementation of selected components, and provide experimental results showing
the impact of particular components.

Keywords Memory safety · Instrumentation · Program slicing · Symbolic execution · Symbiotic

1 Introduction

At SPIN 2018, we presented a successful approach [7] for
checking memory safety of imperative programs. More pre-
cisely, the approach checks sequential (no multi-threading or
exceptions) imperative programs for the following types of
errors:

invalid dereference – an operation reading from or writ-
ing to a byte in the memory that is
not allocated (includes, for exam-
ple, null pointer dereference and
use-after-free),

invalid deallocation – an operation deallocating a mem-
ory block via a non-null pointer
that does not point at the begin-
ning of a memory block allocated
on the heap (includes, for example,
double-free),
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memory leak – a situation when a program returns
from the main function without
prior deallocation of all memory
blocks allocated on the heap.

The approach combines static pointer analysis, instrumen-
tation, static program slicing, and symbolic execution. It is
implemented in Symbiotic 5 [8], a tool for verification of
sequential C programs. With this approach, Symbiotic 5
won theMemSafety category of the recognized Competition
on Software Verification (SV-COMP) 2018.

All techniques employed in the approach are well-known
and routinely used for verification of various program prop-
erties including memory safety. The particular combination
of techniques is in the context of memory safety checking to
our best knowledge original, although some similar combina-
tions appeared before, and we mention them later in related
work. What we consider as the main contribution of this
research is the specific way we use the results of pointer
analysis to reduce instrumentation,which in turn enables pro-
gram slicing to remove more program instructions than with
use of basic instrumentation. Indeed, our experiments show
that slicing applied after reduced instrumentation produces
roughly half-sized programs compared to slicing with basic
instrumentation. The smaller size of sliced programs brings
significant increase in performance of the whole verification
approach.
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Fig. 1 General workflow of our
approach program

staged
instrumentation

extended
pointer analysis

static
program slicing

symbolic execution

– no error
– error found:

– invalid dereference
– invalid deallocation
– memory leak

– other (unknown, timeout, . . . )

instrumentation needed?

yes/no

In this paper, we present an improved version of the
approach, which includes in particular a more precise pointer
analysis and a more efficient instrumentation. The changes
are explicitly mentioned in the paper. The improved version
of the approach is implemented in the current version of
Symbiotic, which also brings slight improvements in slicing
and symbolic execution. The experimental results presented
in this paper are therefore completely new. While the con-
ference paper [7] focuses mainly on theoretical description
of the approach and experimental results, in this paper we
also discuss more closely the implementation of individual
components except the symbolic executorKlee [5], which is
the only part of Symbiotic not written by us. Note that the
code for instrumentation, static pointer analysis, and static
program slicing are designed to be easily reusable.

In general, our verification approach combines a static
data-flow analysis with compile-time instrumentation. Static
data-flow analyses for memory safety checking [15,19,46]
proved to be fast and efficient. However, they usually work
with under- or over-approximation and thus tend to produce
false alarms ormiss some errors if they are applied as a stand-
alone verification technique. Instrumentation, typically used
for runtime monitoring, extends the program with code that
tracks the memory allocated by the program and that checks
correctness of memory accesses and the absence of memory
leaks. If a check fails, the instrumented program reaches an
error location.Our approach combines a static data-flowanal-
ysis with instrumentation and static program slicing to get a
small instrumented program that contains a reachable error
location if and only if the original program contained amem-
ory safety error. Finally, we run a reachability analysis on the
instrumented and sliced program to reveal possible errors in
memorymanipulation contained in the original program. The
last step is typically the most expensive part of our approach.

The basic workflow of our approach is shown in Fig. 1.
First, the program is instrumented. In principle, the inserted
code tracks allocated memory and checks that memory

accesses and deallocations touch only the allocated memory.
With the help of a data-flow analysis, namely an extended
form of pointer analysis, we optimize the instrumentation
process to reduce the amount and complexity of inserted
code. The optimizations can be divided into the following
two classes reflecting whether they reduce inserted checks
(RC) or the code tracking allocated memory (RT):

(RC) These optimizations reduce the number and complex-
ity of inserted checks. First of all, we do not insert a
check before a pointer dereference if the pointer analy-
sis guarantees that the operation is safe. For example,
when the pointer analysis says that a given pointer
always refers to the beginning of a global variable and
a dereference via this pointer does not use more bytes
than the size of the global variable, we know that the
dereference is safe and we do not insert any check
before it. Further, it may happen that the pointer anal-
ysis says that a pointer refers to some of the allocated
memory blocks, but it cannot guarantee safety of the
pointer dereference as it is not sure that the dereference
is within bounds of the pointed block. In this case, we
can sometimes use a simpler check than the general
one. Finally, if the pointer analysis finds that a deref-
erence is definitely invalid, we insert code jumping to
an error location.

(RT) We reduce the code for tracking allocated memory
such that it will track only information about the mem-
ory blocks that can be potentially used by some of the
inserted checks.

These optimizations require a pointer analysis with slightly
nonstandard properties. Since typical pointer analyses do not
care whether a memory block was freed or its lifetime has
ended, a standard pointer analysis could mark some parts of
programs as safe even when they are not (e.g., dereferencing
a freedmemory). For this reason,we extend a pointer analysis
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such that it takes into account also instructions freeing heap-
allocated memory and the lifetime of local variables. Due to
(RT), we perform the instrumentation in two stages. During
the first stage,we insert checks and rememberwhichmemory
blocks are relevant for these checks. The second stage inserts
the code that tracks information about the relevant blocks.

In the next step, the instrumented program is statically
sliced in order to remove the parts that are irrelevant for
the reachability of inserted error locations. Finally, we use
symbolic execution to perform the reachability analysis.

In our approach, we instrument the program with a real
working code instead of inserting calls to place-holder func-
tions interpreted by a verifier tool. In this way, the program is
extended in a tool-independentmanner, and any tool working
with the same program representation can be used to per-
form the reachability analysis. Moreover, the instrumented
program can be even compiled and run (provided the orig-
inal program was executable). The disadvantage is that the
reachability analysis tools that have problems with precise
handling of complicated heap-allocated data structures may
strugglewith handling the inserted functions since these typi-
cally use structures like linked lists or search trees for tracking
the state of allocated memory blocks.

The presented verification approach is implemented in
the tool Symbiotic, which builds upon the llvm frame-
work [28,44]. Hence, each analyzed C program is compiled
into llvm before the instrumentation starts. llvm is an inter-
mediate representation language on the level of instructions
that is suitable for verification for its simplicity. Examples
contained in this paper are also in llvm, which is slightly
simplified to improve readability. For the needs of presenta-
tion, we explain a few of the llvm instructions:

– alloca instruction allocates memory of the given size
on the stack and returns its address,

– load reads a value from the address given as its operand,
– storewrites a given value to thememory on the address
given as the second operand,

– call instruction is used to call a given function. Func-
tion malloc allocates memory of the given size on the
heap and returns its address. Function free deallocates
memory on the given address allocated on the heap.

When there is any other instruction used in the paper, its
semantics is described at a relevant place in the text.

In its theoretical part, the paper focuses mainly on the
instrumentation and the extension of pointer analysis, as
we use a standard static program slicing based on depen-
dency graphs [17] and a standard symbolic execution [26]
implemented in Klee [5]. More precisely, Sect. 2 describes
the basic version of code instrumentation for checking
memory safety that does not use any pointer analysis. Sec-
tion 3 then introduces the extended pointer analysis and

explains the instrumentation optimizations (RC) and (RT).
The implementation of individual components employed by
the approach (except the symbolic executor Klee [5]) is
discussed in Sect. 4. In particular, we introduce a tool for
configurable instrumentation of llvm bitcode supporting
instrumentation in stages, a library providing several differ-
ent pointer analyses of llvm bitcode, and an llvm bitcode
slicer. Section 5 presents experimental results comparing
Symbiotic with state-of-the-art tools for memory safety
checking and illustrating the contribution of instrumentation
optimizations and program slicing to the overall perfor-
mance. Section 6 summarizes advantages and disadvantages
of our approach. Related work is discussed in Sect. 7.

2 Basic instrumentation

The basic version of instrumentation inserts code that tracks
all allocatedmemory blocks (including global and stack vari-
ables) and checks correctness of all memory accesses and
deallocations just before their execution. Similarly as Jones
andKelly [25], for every allocated block ofmemorywemain-
tain a record with its address and size. The records are stored
in three linked lists:

– HeapList for blocks allocated on the heap,
– StackList for blocks allocated on the stack,
– GlobalsList for global variables.

Additionally, we maintain DeallocatedList for blocks on the
heap that were already deallocated. This list can be safely
omitted as it serves only to provide better error descriptions.
More precisely, the information in this list enables us to dis-
tinguish double-free from generic invalid deallocation, or
use-after-free from vague invalid dereference error. In the
following, we focus on the core functionality of inserted code
and thus our presentation does not mention the maintenance
and utilization of DeallocatedList.

To maintain the lists that track the state of the mem-
ory, we call the function remember_heap(addr, size) or
remember_stack(addr, size) after each memory allo-
cation on the heap or stack, respectively. Also, we call
remember_global(addr, size) at the beginning of the
main function for each global variable. As recently allocated
blocks tend to be accessed more often than the older blocks,
we add new records to the beginning of the lists. Before every
deallocation, we call function handle_free(addr) that
checks that addr is either null or it refers to the beginning
of amemory block allocated on the heap. If the answer is pos-
itive, it removes the corresponding record from HeapList. If
the check fails, we jump to an error location and report invalid
deallocation. Allocations on the stack are destroyedwhen the
corresponding function finishes. To reflect this behavior, we
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Fig. 2 Instrumentation of a
code with an invalid pointer
dereference on line 7. The code
on the left is instrumented by the
basic instrumentation, while the
code on the right is instrumented
using the optimizations (RC)
described in Sect. 3. We assume
that the width of a pointer is 8
bytes and the width of an integer
(in llvm denoted as the type
i32) is 4 bytes

1. %p = alloca i32*
call remember stack(%p, 8)
call check pointer(%p, 8)

2. store null to %p
3. %addr = call malloc(20)

call remember heap(%addr, 20)
call check pointer(%p, 8)

4. store %addr to %p
call handle free(%addr)

5. call free(%addr);
call check pointer(%p, 8)

6. %tmp = load %p
call check pointer(%tmp, 4)

7. store i32 1 to %tmp

%p = alloca i32*
call remember stack(%p, 8)

store null to %p
%addr = call malloc(20)
call remember heap(%addr, 20)

store %addr to %p
call handle free(%addr)
call free(%addr);

%tmp = load %p
call check fail()
store i32 1 to %tmp

use functions fun_entry() and fun_exit(). When-
ever we enter a function, we call fun_entry() that adds a
mark at the beginning of StackList. Before returning from a
function, we call fun_exit() that removes the latest mark
and all the records added to StackList after thismark. Further,
before every instruction loading or storing n bytes from/to the
address addr, we call functioncheck_pointer(addr, n)
to check that the memory operation is safe. This function
goes through the lists and looks for a record of the mem-
ory block containing the accessed n bytes. If there is no
such record (which includes the case when some record con-
tains only part of the n accessed bytes), we jump to an error
location and report invalid dereference. Finally, we insert
check_leaks() before each return from the main func-
tion to check thatHeapList is empty. If the list contains some
record, we jump to an error location and report the memory
leak corresponding to the record.

In contrast to the instrumentation presented in the confer-
ence paper [7], the current version also supports allocations
on the stack that are local to a scope other than the scope
of a function. In llvm, such explicit scope of memory
is delimited by the functions llvm.lifetime.start
and llvm.lifetime.end with arguments pointing to
the relevant memory. Instead of allocating more memory
blocks with non-overlapping lifetimes, llvm can allocate
one memory block and use llvm.lifetime.start and
llvm.lifetime.end repeatedly on this block. Hence,
after every call of llvm.lifetime.end, we remove the
corresponding record from the StackList by calling function
remove_stack. Further, after every
llvm.lifetime.start, we call remember_stack
that checks whether StackList contains the corresponding
record and if not, it adds it.

During runtime, there can be situations when a pointer is
incorrectly shifted to a different valid object in memory (e.g.,
when two arrays are allocated on the stack one next to the
other, a pointer may overflow from the first one to the sec-
ond one). In this case, the checking function finds a record
for the object pointed to by the pointer and it does not raise
any error even though the pointer points outside of its base
object. To overcome this problem, some approaches instru-

ment also every pointer arithmetic operation [13,25,40]. We
do not instrument pointer arithmetic operations as we do
not execute the code but pass it to a verification tool that
keeps strict distinction between objects in memory. There-
fore, a pointer derived from an object cannot overflow to a
different object.

An example of a basic instrumentation is provided in
Fig. 2 (left). Allocations on lines 1 and 3 are instrumented
with calls to remember_stack and remember_heap,
respectively. The variable %addr keeps the address of the
memory allocated by the call to malloc on line 3. Sub-
sequently, this address is stored to the memory pointed to
by %p. The memory pointed to by %addr is then freed
on line 5 and handle_free is called before this event.
Function check_pointer is called before each load and
store instruction. The call of check_pointer before
line 7 reveals use-after-free error as the value loaded from
the address %p on line 6 is the address of the memory allo-
cated on line 3 and freed on line 5.

The presented basic instrumentation correctly transforms
real memory safety errors into reachable error locations in
the following sense.

Theorem 1 A given program has a run containing an invalid
dereference error if and only if the programafter basic instru-
mentation has a run reaching an error location and reporting
the invalid dereference error. The same holds for invalid deal-
locations and memory leaks.

Proof (Sketch) The statements for invalid dereferences and
deallocations follow from several facts. First, instrumenta-
tion does not change the order in which the original program
instructions are executed. Moreover, the inserted code does
not modify the data manipulated by the original instructions.
Hence, every run of the original program exactly corresponds
to a run of the instrumented program (which in addition
executes some inserted code), and vice versa. However, the
inserted code can stop a run by jumping to an error location
if some inserted check fails.

Second, the information stored inHeapList, StackList, and
GlobalsList is valid in the sense that it represents exactly the
memory blocks that are currently allocated. More precisely,
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if some instruction of the original program creates or destroys
a memory block, this change is reflected in the lists before
the next original instruction is executed.

Finally, the basic instrumentation inserts a check in front
of every original instruction performing a pointer dereference
or a deallocation. As these checks work with valid infor-
mation in the lists and check exactly the correctness of the
upcoming dereference or deallocation, a run jumps to an error
location and reports the invalid dereference or deallocation if
and only if the upcoming pointer dereference or deallocation
would be invalid.

The statement for memory leaks also comes from the fact
that the information in the lists is valid, the check formemory
leaks is called at every return from the main function, and
it checks whether some block allocated on the heap is not
explicitly deallocated, which is exactly memory leaking. ��

Themain disadvantage of the basic instrumentation is that
it tracks all memory allocations and instruments all derefer-
ences and deallocations. The amount of inserted function
calls is therefore usually very large. As these calls use vari-
ables of the original programas arguments,many instructions
of the original code can have a potential effect on the reacha-
bility of inserted error locations and thus cannot be removed
by slicing.

3 Optimized instrumentation

All suggested instrumentation optimizations rely on an
extended pointer analysis. Hence, we first recall the standard
pointer analysis and describe its extension.

3.1 Extended pointer analysis

Roughly speaking, a standard pointer analysis computes a
points-to set for each pointer variable. A points-to set of a
pointer variable contains all memory locations to which the
variable may point to. Here, a memory location is an abstrac-
tion of a concrete object located inmemory during runtime.A
frequent choice used also by our analysis is to abstract these
objects by instructions that allocated them. For example, the
object allocated on line 3 in Fig. 2 is represented by themem-
ory location3:malloc(20) reflecting the line number and
the allocation function. Note that one memory location can
represent several objects in the case that the program can
execute the allocation instruction multiple times. This can
happen, for example, when the allocation is within a program
loop or in a recursive function. Besides memory locations,
points-to sets can also contain two special elements: null
if the pointer’s value may be null, and unknown if the
analysis fails to establish information about some referenced
memory location.

The precision of pointer analysis can be tuned in several
directions. A pointer analysis is called flow-sensitive [21] if
it takes into consideration the flow of data in the program
and computes specific points-to information for every con-
trol location in the program. On the contrary, flow-insensitive
analyses ignore the execution order of instructions and com-
pute summary information about pointers that holds at any
control location in the program. For instance, in Fig. 2 a flow-
insensitive analysis would tell us that %tmpmay point either
to null or to the memory location 3:malloc(20) due to
the assignments on lines 2 and 4. The flow-sensitive analysis
can tell us that %tmp may point only to 3:malloc(20).
In the context of standard programming languages, one has
to specify a control location when asking a flow-sensitive
pointer analysis for the points-to set of some pointer variable.
When working with llvm, we do not do that as llvmmain-
tains variables (also called register in this context) in SSA
form [12] where each variable is set by a single instruction
only.Whenwe refer to a points-to set of a pointer variable, we
thus mean the points-to set immediately after the instruction
setting the variable.A pointer analysis is called field-sensitive
if it differentiates between individual elements of arrays and
structures. We achieve field-sensitivity by refining informa-
tion in points-to sets with offsets (e.g., a pointer variable p
points to memory location A at offset 4).

Standard pointer analyses ignore information whether a
memory block was freed or whether the lifetime of a local
variable has ended because of the end of its scope. Even
though such events do not change pointer values, they are
crucial if we want to use pointer analysis to optimize the
instrumentation process. Consider the dereference on line
7 in Fig. 2. Usual flow- and field-sensitive pointer anal-
ysis tells us that the pointer %tmp points to the location
3:malloc(20) at offset 0 and thus writing 4 bytes to that
memory seems to be safe. However, it is not as this memory
has been already freed on line 5.

There exist sophisticated forms of pointer analysis that can
model the heap and the stack and provide information about
deallocation and ceased lifetime of memory objects (e.g.,
shape analysis [16,21,37]), but these are relatively expensive
for our use case. Instead, we extended a simple flow- and
field-sensitive inclusion-based [1,22] pointer analysis so that
it can track whether a pointer variable can possibly point to
an invalidated memory (i.e., a memory that was explicitly
freed or its lifetime ended).

For every pointer variable p, the extended pointer analysis
computes a points-to set

ptset(p) ⊆ (Mem × Offset) ∪ {null,unknown,

invalidated},

where Mem is the set of memory locations, Offset =
N0 ∪ {?} is the set of nonnegative integers extended with
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the special element ‘?’ denoting an unknown offset, and
invalidated is the new special memory location rep-
resenting memory that has been deallocated or destroyed
as its lifetime ended. We also assume that ptset(p) �= ∅
for any pointer variable p. Should it be the case, we set
ptset(p) = {unknown}.

To compute points-to sets for pointer variables, our anal-
ysis actually computes points-to set ptset(M,C) for each
memory location M storing a pointer and each control loca-
tion C of the program. The computation of these points-to
sets proceeds as a standard data-flow analysis: ptset(M,C)

is derived from sets ptset(M,C ′) for control locations C ′
immediately preceding the control location C and from the
effect of the instruction corresponding to C . Computation of
all these points-to sets at all control locations repeats until a
fixpoint is reached.

Pointer analyses often use onlyweak updates, whichmean
that ptset(M,C) is set to be the union of all ptset(M,C ′)
for C ′ preceding C enlarged according to the effect of the
instruction associated with C . The rationale for weak update
is that M can represent more than one memory object during
runtime and the analysis does not know which of the objects
is changed by the current instruction. However, if an instruc-
tion changes a memory location that represents a single
memory object, we can apply strong update which com-
putes the points-to set just from the effect of the instruction
(i.e., strong update overrides the information from preceding
control locations). We say that a memory location is single-
instance if it never represents two or more allocated memory
objects at the same time. In particular, every allocation func-
tion or instruction that is executed at most once during every
run corresponds to a single-instance memory location. Our
extended pointer analysis aims to identify single-instance
memory locations and applies strong updates when possi-
ble.

For the measurements presented in the conference paper
[7], we used an extended pointer analysis that applies strong
update only for pointer assignments. Now, we apply strong
update in two additional cases.

(a) When a single-instance memory location representing
an object on the stack is destroyed because of the
end of its scope, we replace this memory location by
invalidated in all points-to sets associated to the cur-
rent control location. Note that we cannot do this when
the memory location is not single-instance (e.g., when it
represents some local variable of a recursive function) as
only the newest object represented by the memory loca-
tion is destroyed. In this case, we apply weak update that
adds invalidated to all points-to sets containing the
memory object.

(b) If the function free is applied to a pointer whose points-
to set contains a single-instance memory location as the

only element, we know that the object represented by
this memory location is deallocated. Thus, we replace
the memory location by invalidated in all points-to
sets associated to the current control location.

The new applications of strong update improve the preci-
sion of the extended pointer analysis. For example, con-
sider the call free(%addr) on line 5 of Fig. 2. As the
points-to set of %addr contains only the single-instance
memory location 3:malloc(20), we replace this memory
location by invalidated in all points-to sets. In partic-
ular, the points-to set of 1:alloca i32* contains just
invalidated after this deallocation, while it would con-
tain both invalidated and 3:malloc(20) if we apply
weak update only. Thanks to the improved precision, the
extended pointer analysis immediately implies that the deref-
erence on line 7 performs an invalid dereference as %tmp
points to invalidated memory.

3.2 Reduction of checks (RC)

The function check_pointer(addr, n) used by our
instrumentation approach to check validity of memory
accesses is not cheap. It searches the lists of records (Stack-
List, HeapList, and GlobalsList) for the one that represents
the memory block where addr points to. Hence, it has linear
complexity with respect to the number of records in the lists.
Here, we present improvements that can completely omit
some unnecessary checks and replace some of the remaining
checks with simpler ones.

The extended pointer analysis can often guarantee that
each possible memory dereference performed by a partic-
ular instruction is safe. Let us assume that an instruction
reads or writes n bytes from/to the memory referenced by a
pointer variable p. The extended pointer analysis guarantees
its safety if ptset(p) contains neither null nor unknown
nor invalidated, and for every (A, offset) ∈ ptset(p), it
holds that every object represented by the memory location
A contains at least offset + n bytes. Formally, we know that
the access is safe if

– ptset(p)∩{unknown,null,invalidated} = ∅ and
– for each (A, offset) ∈ ptset(p) it holds that offset �= ?

and offset + n ≤ size(A),

where size(A) denotes the size of the memory objects rep-
resented by A if it is known at compile time, otherwise it
denotes 0 (and thus the condition does not hold as n ≥ 1).
Hence, before instrumenting a memory access with a check,
we query the extended pointer analysis. If the analysis says
that the memory access is safe, the check is not inserted. For
example, in Fig. 2, the dereferences of the variable %p on
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1. %array = alloca [10 x i32]
call remember stack(%array, 10*4)

2. %m = call input()
3. %tmp = getelementptr %array, %m

call check bounds(%tmp, 4, %array, 0, 40, 0, 40)
4. store 1 to %tmp

Fig. 3 Acode instrumentedwithcheck_bounds. Recall the assump-
tion that the width of an integer (i32) is 4 bytes

lines 2, 4, and 6 are safe and thus need not be instrumented
with any check.

If the extended pointer analysis does not guarantee safety
of a memory access, we need to instrument the access. How-
ever, in many cases, we can call some of the following func-
tions which are cheaper than the generic check_pointer
function:

– check_fail
– check_bounds
– check_heap
– check_stack
– check_globals

Now, we describe the semantics of these functions and situ-
ations when they replace the generic check.

We start with the function check_fail. The extended
pointer analysis may also detect that a memory access
via a pointer variable p has to be invalid as ptset(p) ⊆
{invalidated,null}. Note that the instruction perform-
ing an invalid access may be unreachable and thus we do not
report the invalid dereference immediately. Instead of calling
the generic check, we insert a call to check_fail() that
jumps to an error location. For example, this happens for the
dereference on line 7 in Fig. 2, where the pointer analysis
tells us that %tmp may point only to invalidated memory.

The function check_bounds is more involved. Let us
again assume that there is an instruction accessing n bytes
in the memory via a pointer variable p1 and such that the
extendedpointer analysis cannot guarantee its safety. Further,
assume that the value of p1 has been computed as a pointer
p0 shifted by some number of bytes. Figure 3 provides a
simple code where such situation arises. In this example,
an array of ten integers is allocated on line 1. The function
input() called on line 2 reads user input. The instruc-
tion %tmp = getelementptr %array, %m on line 3
returns the address of the mth element of the array, i.e., the
address %array increased by 4m bytes. Line 4 stores inte-
ger 1 on this address. The extended pointer analysis cannot
determine the offset of this address as it depends on the user
input, and thus a check needs to be called before line 4 is
executed. However, in situations like this, we may be able to
insert a call to the simpler check_bounds function instead
of the complex check_pointer.

We use the function check_bounds instead of the
generic check if p0 can point only to memory blocks of sizes
known at compile time and all potential offsets of p0 are
also known. Formally, we insert an optimized check before
a potentially unsafe dereference of p1 if

– ptset(p0) ∩ {unknown,null,invalidated} = ∅
and

– for each (A, offset) ∈ ptset(p0) it holds that offset �= ?
and size(A) is known at compile time.

Under these conditions, we can easily compute lower and
upper bounds on the number of bytes allocated to the left
and to the right of p0 as illustrated by the example in Fig. 4
(left). The bounds are computed as follows:

min− = min{offset | (A, offset) ∈ ptset(p0)}
max− = max{offset | (A, offset) ∈ ptset(p0)}
min+ = min{size(A) − offset | (A, offset) ∈ ptset(p0)}
max+ = max{size(A) − offset | (A, offset) ∈ ptset(p0)}
Now we can insert the call of check_bounds(p1, n, p0,
min−,min+,max−,max+) to check validity of the mem-
ory access to n bytes pointed by p1. The function computes
the difference o = p1 − p0 and checks whether the access is

– within the lower bounds, i.e., −min− ≤ o and o + n ≤
min+, and thus safe, or

– exceeds the upper bounds, i.e., o < −max− or o + n >

max+, and thus invalid.

If none of the two checks succeeds, the generic
check_pointer(p1, n) is called. Notice that when
min− = max− and min+ = max+, which is the case
depicted in Fig. 4 (right), one of the two checks against
bounds always succeeds and the generic check is never
called. This is also the case of Fig. 3, where pointer
analysis determines that %array points to the begin-
ning (i.e., at offset 0) of the block of size 40. Therefore
min− = max− = 0 and min+ = max+ = 40 and
the call to check_bounds(%tmp, 4, %array, 0,
40, 0, 40) is inserted.

The function check_heap is inserted when
check_fail or check_bounds are not applicable, but
the extended pointer analysis guarantees that the derefer-
enced pointer p points to the heap, i.e.,

– unknown /∈ ptset(p) and
– for each (A, offset) ∈ ptset(p), A represents memory

allocated on the heap.

The function check_heap directly searches just HeapList
instead of searching all the lists. A typical application is
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A
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min− min+

max− max+

?

p0 p1 p1+n

min− min+

max− max+

?

p0 p1 p1+n

Fig. 4 Figure on the left depicts the case that ptset(p0) =
{(A, 6), (B, 3), (C, 8), (D, 3)} and the sizes of memory locations
A, B,C, D are 12, 11, 12, 7, respectively. Assume that the pointer
analysis cannot guarantee safety of an instruction accessing n bytes
at the address given by p1, but we know that p1 is derived

from p0. Instead of check_pointer(p1, n), we can insert
check_bounds(p1, n, p0,min−,min+,max−,max+). The figure
on the right depicts the special case where min− = max− and
min+ = max+

1. %n = call input()
2. %array = call malloc(%n)

call remember heap(%array,%n)
3. %tmp = getelementptr %array, 10

call check heap(%tmp, 4)
4. store 1 to %tmp

Fig. 5 A code instrumented with check_heap which searches only
HeapList

shown in Fig. 5. Line 2 allocates an array of n bytes
on the heap. The instruction %tmp = getelementptr
%array, 10 on line 3 returns the address of the tenth
element of the array. Line 4 stores integer 1 on this
address. As the extended pointer analysis cannot deter-
mine the size of %array, check_bounds cannot be
used. However, the analysis has the information that we
are dereferencing a pointer that points to the heap. There-
fore, a call to check_heap is inserted instead of the usual
check_pointer.

Analogously, we use the function check_stack or
check_globals if the pointer analysis implies that p
points to stack or to some global variable, respectively.

Note that the original version of our approach [7] uses
check_bounds as the only simpler check. Moreover,
the original approach actually uses a simpler version of
check_bounds applicable only if min− = max− and
min+ = max+, which is the situation depicted in Fig. 4
(right).

3.3 Reduction of memory-tracking code (RT)

Although the previous optimizations simplify or eliminate
checks of dereference safety, the approach still tracks all
memory blocks. However, it is sufficient to track only mem-

ory blocks that are relevant for some check. For example, the
code in Fig. 2 (right) remembers records for both allocations
on lines 1 and 3, but no record corresponding to the allocation
on line 1 is ever used: handle_free(%addr) searches
only HeapList and the extended pointer analysis tells us that
the dereference of %tmp on line 7 is invalid. Hence, the call
to remember_stack inserted after line 1 can be safely
omitted.

In general,we always track all blocks allocated on the heap
as they are relevant for checking memory leaks. Further, we
track all memory blocks if the points-to set of some derefer-
enced pointer contains the element unknown meaning that
the pointer can point anywhere. Otherwise, we do not track
global variables and memory objects allocated on stack that
are not relevant for any inserted check. An object is relevant
for check_pointer(addr, n) if ptset(addr) contains a
memory location corresponding to the object. The same prin-
ciple applies to check_stack and check_globals.
Recall that check_heap searches only blocks allocated on
the heap and these are all tracked anyway. The situation for
check_bounds(p1, n, p0,min−,min+,max−,max+) is
more interesting as we do not need to track all blocks in
ptset(p1). We can safely ignore the blocks corresponding
to a memory location A if (A, offset) ∈ ptset(p0) holds
only for one offset and this offset satisfies offset = min−
and size(A) − offset = min+. Indeed, checking validity of
the dereference of p1 against the tracked information would
have exactly the same effect as the check against the lower
bounds min− and min+, which is done as the first step of
check_bounds. For example, the blocks corresponding to
the memory location D in Fig. 4 (left) are not relevant for the
check_bounds exactly for this reason. The same holds for
all blocks in Fig. 4 (right).

In fact, our instrumentation process has two stages.
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1. In the first stage, checks are inserted as described before.
Additionally, for every inserted call to
check_pointer, check_stack, and
check_globals, we remember the memory loca-
tions contained in the points-to set of their first argu-
ment, which is the pointer variable being derefer-
enced. We also remember unknown if it is con-
tained in the points-to set. For every inserted call
to check_bounds(p1, n, p0,min−,min+,max−,

max+), we remember all memory locations A such
that (A, offset) ∈ ptset(p1) and offset > min− or
size(A) − offset > min+. In the first stage, we also
insert all calls to remember_heap, handle_free,
fun_entry, fun_exit, and remove_stack.

2. The second stage inserts calls to remember_global
and remember_stack if the memory location repre-
senting the allocated global variable or block on stack
has been remembered in the first stage or if unknown
has been remembered in the first stage. Further, we insert
the call to check_leaks at the end of main function
only if some call to remember_heap was inserted in
the first stage.

In Figs. 2 (right) and 3, the instrumentation with (RT) opti-
mization would not insert any call to remember_stack.

3.4 Correctness

The instrumentation optimized eitherwith the (RC) reduction
or both (RC) and (RT) reductions still correctly transforms
memory safety errors to reachable error locations assuming
that it gets valid points-to sets. A points-to set of a pointer
variable p is valid if it satisfies the following conditions dur-
ing all runs of the program:

– If p was derived from the address of a (still) allo-
cated block, the ptset(p) contains (A, offset) or (A, ?)
or unknown, where A is the memory location repre-
senting the block and offset is the relative offset to the
base address of the allocated block.

– If p does point into a block of deallocated memory or
memory that was never allocated, then ptset(p) contains
invalidated or unknown.

– If p has the value null, then ptset(p) contains null or
unknown.

– If the value of pwas loaded from previously uninitialized
memory, then ptset(p) contains unknown.

We decided to put validity of points-to sets as a precondition
rather than proving it because we describe pointer analyses
only on an intutive level.

Theorem 2 Assume that we are given a program and a valid
ptset(p) for each pointer variable of the program. The pro-
gram has a run containing an invalid dereference error if
and only if the program after instrumentation optimized with
(RC) reduction has a run reaching an error location and
reporting the invalid dereference error. The same holds for
invalid deallocations and memory leaks.

Proof (Sketch) The instrumentation optimized with (RC)
reduction behaves like the basic instrumentation with the dif-
ference that it omits some checks and uses simpler checks
before some dereferences. However, a check is omitted only
before a dereference whose validity is guaranteed by the
(valid) points-to set of the dereferenced variable. Further,
every inserted simpler check has the same effect as the
generic check_pointer if the relevant points-to set is
valid.

The statements for deallocations andmemory leaks follow
directly from Theorem 1 as (RC) reduction changes only
instrumentation of dereferences. ��

Theorem 3 Assume that we are given a program and a valid
ptset(p) for each pointer variable of the program. The pro-
gram has a run containing an invalid dereference error if
and only if the program after instrumentation optimized with
(RC) and (RT) reductions has a run reaching an error loca-
tion and reporting the invalid dereference error. The same
holds for invalid deallocations and memory leaks.

Proof (Sketch)Thechecks of dereferencevalidity are inserted
in the same way as by the instrumentation optimized with
(RC) reduction. The change introduced by (RT) reduction is
that we do not track global variables andmemory blocks allo-
cated on the stack that are not relevant for any of these checks
according to the corresponding points-to sets. The statement
for invalid dereferences thus follows fromTheorem 2 and the
assumption that points-to sets are valid.

Regarding deallocations and memory leaks, the only rel-
evant change introduced by (RT) reduction is that we do
not insert chect_leaks to programs that do not allocate
memory on the heap. Hence, validity of the statements for
deallocations and memory leaks follows from Theorem 2. ��

In general, inserting fewer calls to functions that create
records has a positive effect on the speed of reachability
analysis since StackList and GlobalsList are shorter. All the
described extensions together can significantly reduce the
amount of inserted code. This has also a positive effect on
the portion of code possibly removed by static program slic-
ing before the reachability analysis.
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Fig. 6 Schema of the
configurable instrumentation
tool
sbt-instrumentation

program in llvm

instrumentation
1. stage
2. stage
...

instrumented
program in llvm

instrumentation
rules in JSON

definitions of
instrumentation
functions in llvm

plugins

4 Implementation

The described approach is implemented in Symbiotic tool,
revision tag sttt.1 The tool consists of three main parts,
namely instrumentation tool, slicer, and the external state-
of-the-art open-source symbolic executor Klee [5] licensed
under the University of Illinois license. The instrumenta-
tion and slicing modules rely on our library called dg that
provides dependence graph construction and various pointer
analyses including the extended pointer analysis described
in Sect. 3.

TheCprogram tobeverified is first translated tollvm [44]
using clang [11]. The translated program is then instru-
mented by the instrumentation tool and optimized with
selected optimizations provided by the llvm framework.
Further, the program is sliced and the llvm optimizations
are applied again. Finally, Klee is executed on the sliced
and optimized code to check reachability of the inserted error
locations.

All parts of Symbiotic except Klee are licensed under
the MIT open-source license and can be reached via:

https://github.com/staticafi/symbiotic

Now we describe the dg library, the instrumentation tool,
and the slicer in more details. All these components are
implemented in C++.

4.1 The dg library

The dg library incorporates various algorithms for program
analysis and dependence graphs building [17]. The library
includes configurable pointer analyses and precise reaching
definitions analyses written in a generic way and instantiated
for llvm bitcode. The extended pointer analysis described
in Sect. 3.1 is also a part of the dg library.

1 https://github.com/staticafi/symbiotic/releases/tag/sttt.

Similar to Hind et al. [22], pointer analyses in dg use
sparse evaluation graphswhen computing information about
pointers. Intuitively, sparse evaluation graph is a subgraph
of the control flow graph that contains only nodes relevant
to pointer analysis and edges representing paths between
these nodes. The pointer analysis builds the sparse evalu-
ation graph for each function of the analyzed program and
connects these graphs to one inter-procedural sparse evalua-
tion graph (ISEG) by adding edges from call-sites to entries
of the called functions and from exits of functions to the
corresponding return-sites. As a side effect, recursive calls
or repeated calls of the same function get transformed into
loops in ISEG. Note that a memory location must be single-
instance if the corresponding allocation instruction does not
belong to any program’s loop and is not in a function that can
be called repeatedly. Hence, each allocation node that is not
on a cycle in ISEG has to represent a single-instancememory
location.

4.2 Instrumentation tool

Insteadof implementing a single-purpose instrumentation for
memory safety checking,wedeveloped a configurable instru-
mentation tool called sbt-instrumentation [45]. The
basic schema of sbt-instrumentation is depicted in
Fig. 6. Besides the llvm bitcode to be instrumented, the
tool needs to be supplied with two files created by a user:
a file with definitions of so-called instrumentation functions
whose calls will be inserted into the code, and a JSON file
with instrumentation rules that define how the llvm bitcode
should be instrumented with calls of instrumentation func-
tions. In practice, the fact that our tool can insert just calls to
instrumentation functions is not a restriction as these func-
tions can contain arbitrary code.

An instrumentation rule consists of two parts sayingwhen
it should be applied and what its effect is. The first part of an
instrumentation rule is specified by
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Fig. 7 Example of an
instrumentation rule that inserts
a call to check_fail before
every load instruction, given
that the load is definitely invalid

{
”findInstructions”: [
{

”returnValue”: ”∗”,
”instruction”: ”load”,
”operands”: [”<op>”]

}
],
”newInstruction”: {

”returnValue”: ”∗”,
”instruction”: ”call”,
”operands”: [”check fail”]

},
”where”: ”before”,
”conditions”: [{”query”:[”isInvalid”, ”<op>”], ”expectedResults”:[”true”]}],
”in”: ”∗”

},

– functions in which the rule is applied (typically main or
all functions),

– a sequence of instructions that should be matched, and
– conditions under which the rule is applied.

The second part describes

– the instrumentation function call that should be inserted,
– where it should be inserted (before or after the matched
sequence), and

– information-gathering effects of the rule, namely setting
flags and remembering values or variables used by the
matched instructions in an auxiliary list.

Moreover, there are two other kinds of rules, namely rules
for instrumentation of global variable declarations and rules
instrumenting entry and exit points of functions.

Each rule can be guarded by conditions of several kinds.
A condition can claim that

– a given flag has a particular value,
– a given value or a variable has been remembered earlier
(or not),

– an external plugin returns a particular answer on a given
query constructed with parts of matched instructions.

A rule with conditions is applied only if all conditions are
satisfied. For example, in memory safety checking, we use
the extended pointer analysis as a plugin in order to instru-
ment only dereferences that are not safe and to insert simpler
checks if possible.

The instrumentation proceeds in one or more stages, each
stage defined by a set of instrumentation rules. In each stage,
the tool goes through all instructions of the given llvm
bitcode and it looks for instructions matching any instrumen-
tation rule of the current stage. If amatch is found, conditions

of the instrumentation rule are evaluated. This is where plu-
gins can be queried. If conditions are satisfied, the rule is
applied, i.e., a new code is inserted according to the rule and
some information can be gathered for a later use. An example
of an instrumentation process that gathers such information
and uses it in the next stage is given in Sect. 3.3. Indeed,
the (RT) reduction is enabled by the information about the
inserted checks that is gathered in the first stage of the opti-
mized instrumentation.

We give an example of an instrumentation rule in Fig. 7.
This rule instructs the instrumentation to insert a call to
the function check_fail before any load that is defi-
nitely invalid. In details, the rule comprises several parts. The
findInstructions field defines a sequence of instruc-
tions to be instrumented. In this case, we are looking for
sequences of the length one consisting of a single load
instruction. When a load instruction is found, its operand
is denoted by the variable <op> (and the loaded value is
ignored). The newInstruction field defines the new
instruction that will be inserted if the given sequence is
matched. Here, a call to the function check_fail with
no arguments will be constructed. As the only operand of
the call instruction is the function itself, the call will have
no arguments, i.e., the new instruction is going to be call
check_fail(). The where field determines that the new
instruction will be inserted before every matched load
instruction and the in field states that the rule will be applied
in every function (thus the * sign). However, the rule takes
effect only if the condition given by the conditions field
is satisfied. Hence, the call will be inserted only if an exter-
nal plugin answers true to the query isInvalid. In this
case, the returned answer is true only if the points-to set of
<op> is a subset of {null,invalidated}.

After the last instrumentation stage, the instrumented pro-
gram is linked with the instrumentation functions. The result
of the instrumentation process is again an llvm bitcode.
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The sbt-instrumentation tool is distributed as a
part of Symbiotic and comes with two predefined configu-
rations used for program analysis, namely a configuration
for checking memory safety as described in Sect. 3, and
a configuration for checking signed integer overflows. The
latter configuration inserts a check before every binary oper-
ation over signed integers that may potentially overflow. The
decision whether an operation may overflow is based on the
results of a range analysis [39].

The sbt-instrumentation tool together with the
predefined configurations for checking memory safety and
integer overflows can be found at:

https://github.com/staticafi/sbt-instrumentation

It uses an open-source parser for the JSON format JsonCpp.2

The repository also contains scripts for downloading libraries
that are necessary for plugins used by the predefined config-
urations.

4.3 Slicer

Sincewehave not found any suitable program slicer for llvm
bitcode, we created a tool called sbt-slicer on top of the
dg library. Instead of using the traditional two-pass algorithm
introduced in Horwitz et al. [24], we use a variant of the basic
slicing algorithm based on dependence graphs [17] extended
for inter-procedural slicing. In this algorithm, dependence
graphs for procedures are connected with inter-procedural
edges and the slice is obtained by one backward search.

When computing the dependence graph of the program to
be sliced, data dependencies are derived from results of byte-
precise reaching definition analysis. This analysis follows
the classical data-flow approach and uses information about
pointers provided by a field-sensitive and flow-insensitive
inclusion-based pointer analysis [1]. The slicer can be also
configured to useflow-sensitive pointer analysis, but the com-
putation is more expensive and, according to our experience,
it does not bring any positive effect on performance of Sym-
biotic.

Control dependencies are computed using the algorithm
by Ferrante et al. [17]. This traditional algorithm assumes
that every program path terminates, which may lead to
incorrect slices in the presence of non-terminating loops: a
non-terminating loop may be sliced away and hence a pre-
viously unreachable code may become reachable. Although
we have not experienced this problem in our experiments,
it may lead to reporting false alarms. We currently work on
the implementation of a termination-sensitive control depen-
dence algorithm.

By default, Symbiotic considers slicing criteria to be the
calls to the function __assert_fail that comes from the

2 https://github.com/open-source-parsers/jsoncpp.

expansion of the standard macro assert, and the function
__VERIFIER_error that is the official marker of an error
location in SV-COMP. In general, the slicer can use calls to
arbitrary selected functions as slicing criteria.

The tool sbt-slicer can be found at:

https://github.com/staticafi/sbt-slicer

5 Experimental evaluation

This section is divided into two parts. First, we evaluate the
impact of instrumentation optimizations (RC) and (RT) and
slicing on the performance of Symbiotic. The second part
provides a closer comparison of Symbiotic with the other
twomedalists in theMemSafety category of SV-COMP2018,
namely the tools PredatorHP [23], and UKojak [36].

In both parts, we use 390 memory safety benchmarks
from SV-COMP 2018,3, namely 326 benchmarks from the
MemSafety category and another 64 benchmarks of the sub-
category TerminCrafted, which was not included in the
official competition. The benchmark set consists of 140
unsafe and 250 safe benchmarks. The unsafe benchmarks
contain exactly one error according to the official SV-
COMP rules. All experiments were performed on machines
with Intel(R) Core(TM) i7-3770 CPU running at 3.40 GHz.
The CPU time limit for each benchmark was set to 300
seconds and the memory limit was 4 GB. We used the util-
ity Benchexec [4] for reliable measurement of consumed
resources.

5.1 Contribution of instrumentation optimizations
and slicing

We evaluated six setups of the approach presented in this
paper. More precisely, we consider three different config-
urations of instrumentation referred as basic, (RC), and
(RC) + (RT ), each with and without slicing. The basic
instrumentation is the one described in Sect. 2. The con-
figuration (RC) uses only the optimizations presented in
Sect. 3.2, while the configuration (RC) + (RT ) applies also
the optimization presented in Sect. 3.3. We do not consider
the configuration (RT) as the (RT) optimization would have
hardly any effect without the (RC) optimizations.

The results are presented in Table 1 and Fig. 8. The num-
bers of inserted calls in the table show that the extended
pointer analysis itself can guarantee safety of approximately
86% of all dereferences. There is a small improvement over
the conference paper [7] where the extended pointer analysis

3 https://github.com/sosy-lab/sv-benchmarks/, revision tag
svcomp18 with an additional commit 514e387c that fixes a
bug in one of the benchmarks.
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Table 1 For each
instrumentation configuration,
the table shows the total
numbers of inserted calls to
selected instrumentation
functions, the sum of inserted
calls to all checks (�
check_*), and the sum of
inserted calls to all tracking
functions (� remember_*).
Further, it shows the total
numbers of instructions in
instrumented benchmarks (as
sent to Klee) with and without
slicing, together with their ratio
in the column relative size.
Finally, the table shows the
numbers of solved benchmarks
with and without slicing

basic (RC) (RC)+(RT)

inserted
calls

check pointer 33219 2622 2622
check fail 0 67 67
check bounds 0 425 425
check heap 0 226 226
check stack 0 638 638
check globals 0 520 520
check leaks 389 389 212

Σ check * 33608 4887 4710

remember heap 371 371 371
remember stack 11721 11721 251
remember globals 2032 2032 149

Σ remember * 14124 14124 771

number of
instructions

without slicing 712428 689449 616485
with slicing 333939 303367 166515
relative size 47% 44% 27%

solved
benchmarks

without
slicing

safe 75 78 81
unsafe 137 138 138

total 212 216 219

with
slicing

safe 75 84 128
unsafe 136 137 138

total 211 221 266

applying strong updates only for pointer assignments guaran-
teed about 85% of all dereferences safe. The pointer analysis
itself can decide that all dereferences in a benchmark are safe
in 103 cases. Further, nearly 42% of the dereferences that are
not guaranteed to be safe can be instrumented with a sim-
pler check instead of the expensive check_pointer. The
optimization (RT) reduces the number of inserted memory-
tracking calls to around 5%.

The numbers of instructions show that (RT) not only
reduces the instrumented program size, but also substan-
tially improves efficiency of program slicing. Altogether, all
instrumentation improvements and slicing reduce the total
size of programs to almost precisely 50% comparing to the
basic instrumentationwith slicing, and to approximately 23%
comparing to the basic instrumentation without slicing.

Obviously, the most important information is the numbers
of solved benchmarks. We can see that all setups detected
almost all unsafe benchmarks. This confirms the generic
observation that for verification tools, finding a bug is usu-
ally easier than verifying the correctness of the program. The
configurations basic and (RC) solved onemore unsafe bench-
mark without slicing than with slicing. This is because the
slicer runs out of memory on this benchmark.

The situation is different for safe benchmarks. All con-
sidered setups verified between 75 and 84 safe benchmarks
except (RC) + (RT) with slicing, which verified 128 bench-
marks.This performancegap is alsowell-illustratedbyFig. 8.

The lines clearly show that even though the instrumenta-
tion improvements help on their own in the end, it is the
combination of (RC), (RT), and program slicing that helps
considerably.4

5.2 Comparison of SYMBIOTIC, PREDATORHP,
andUKOJAK

Now,we take a closer look at the performance of the top three
tools in MemSafety category of SV-COMP 2018, namely
Symbiotic, PredatorHP [23], and UKojak [36]. We used
exactly the versions of PredatorHP and UKojak that par-
ticipated in the competition.

Table 2 shows the numbers of solved safe and unsafe
benchmarks in each subcategory of MemSafety and cumu-
lative CPU time in seconds. The row CPU time (solved
benchmarks) gives the running time on all benchmarks that
the tool solved, whereas the row CPU time (solved by all)
provides the running time on benchmarks that were solved
by all three tools. None of the tools reported any incorrect
answer. Moreover, all unsafe benchmarks solved by UKo-
jak were also solved by Symbiotic. PredatorHP solved
one unsafe benchmark that Symbiotic was not able to solve

4 The readermay notice a difference to the conference paper in the num-
ber of solved safe benchmarks. This difference is caused by removing
a heuristic we have previously added to Klee and that turned out to be
incorrect in some cases (although not on the SV-COMP benchmarks).
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Fig. 8 Quantile plot of running times of the considered setups (excluding timeouts and errors). The plot depicts the number of benchmarks (x-axis)
that the tool is able to solve in the given configuration with the given time limit (y-axis) for one benchmark

Table 2 Numbers of
benchmarks in individual
subcategories solved by the
three considered tools. The last
two rows shows the total CPU
time in seconds that the tool
spent on all solved benchmarks
and the total CPU time that the
tool spent on benchmarks that
were solved by all tools,
respectively. Bold values
indicate the highest numbers of
solved benchmarks for each
category and the least consumed
CPU time

Symbiotic PredatorHP UKojak

subcategory number of solved safe solved safe solved safe
benchmarks unsafe unsafe unsafe

Arrays 69 21 1 7 0 39 22

20 7 17

Heap 180 146 56 145 63 40 20

90 82 20

LinkedLists 51 27 3 43 19 1 0

24 24 1

Other 26 26 23 17 15 23 23

3 2 0

TerminCrafted 64 46 45 46 45 61 60

1 1 1

total 390 266 128 258 142 164 125

138 116 39

CPU time (solved benchmarks) 266 1349 4181
CPU time (solved by all) 36 410 2284

(timeouted). The table shows that PredatorHP is better
in solving safe instances of Heap and LinkedLists subcat-
egories and UKojak is better in solving safe benchmarks
from Arrays and TerminCrafted subcategories. Let us note
that while Symbiotic and UKojak are general purpose ver-
ification tools, PredatorHP is a highly specialized tool for
shape analysis of C programs that operate with pointers and
linked lists. In particular, it uses an abstraction allowing
to represent unbounded heap-allocated structures, which is
something that at least Symbiotic cannot handle.

Further, Fig. 9 provides scatter plots comparing perfor-
manceof Symbiotic against the other two tools on individual
benchmarks. On the left, one can immediately see that run-
ning times of UKojak are usually longer than these of
Symbiotic. The fact that UKojak is written in Java and
starting up the Java Virtual Machine takes time can explain
a fixed delay, but not the entire speed difference. Moreover,
there are 140 benchmarks solved bySymbiotic and unsolved

byUKojak, compared to only 38 benchmarks where the sit-
uation is the other way around.

The plot on the right shows that PredatorHP outper-
forms Symbiotic on simple benchmarks solved by both
tools within one second where slicing and code optimiza-
tions are redundant. Further, there are 36 benchmarks that
Symbiotic was not able to solve and which were success-
fully solved by PredatorHP. On the other hand, Symbiotic
decided 44 benchmarks that were not decided by Preda-
torHP. For many of these benchmarks, PredatorHP gave
up very quickly as its static analysis finished but was not able
to decide.Moreover,manybenchmarkswere solvedbySym-
biotic within a second, whereas PredatorHP computed
much longer. To sum up, it seems that the benefits of Symbi-
otic and PredatorHP are complementary to a large extent.

Finally, Fig. 10 depicts the quantile plot of running times
of the three tools. Again, the plot shows thatUKojak ismuch
slower than the other two tools.
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Fig. 9 Scatter plots comparing
Symbiotic with UKojak (left)
and with PredatorHP (right)
by their running times (in
seconds) on individual
benchmarks. The symbols ×
represent benchmarks solved by
both tools, ◦ are benchmarks
solved by Symbiotic but not by
the other tool, � are benchmarks
solved by the other tool but not
by Symbiotic, and � are
benchmarks that were solved by
neither of the tools

Fig. 10 Quantile plot of running
times of the considered tools
(excluding timeouts and errors).
The plot depicts the number of
benchmarks (x-axis) that the
particular tool is able to solve
with the given time limit
(y-axis) for one benchmark

6 Advantages and disadvantages of our
approach

Our approach brings a tuned combination of static analysis,
instrumentation, and program slicing that can greatly reduce
the analyzed program. One advantage of our approach is
that the instrumented and reduced program can be processed
by various verification methods or tools. The experiments
presented in the previous section show that the achieved
reduction has a significant positive impact on the perfor-
mance of symbolic execution and we expect that it may have
similar effect on performance of other verification methods
or tools.

Another advantage of our approach is that it transforms
the problem of checking memory safety into the reachability
problem. Therefore, any tool that can decide reachability can
be used to verify the instrumented and reduced program. The
program can be even compiled and run, provided that the
original program was compilable.

On the other hand, instrumentation inserts code manipu-
lating complex data structures, whichmay be challenging for
some verification tools. Here, we gain by using the symbolic
executor Klee that handles all the code that searches the
lists with records about memory using concrete values (the

search through the elements in the list is concrete, but the test
whether a record is the one that we search may involve sym-
bolic expressions). Further, sincewe only trackwhatmemory
blocks are allocated, but we do not track the structure of the
memory,we cannot reveal errors that stem from, for example,
unaligned access to memory within a structure.

As our approach uses symbolic execution, we are not able
to verify programs that contain unbounded heap structures or
possibly unbounded loops. Symbolic execution simply does
not terminate for such programs. This inconvenience can be
solved by using a different verification backend that supports
analysis of programs with such traits.

As mentioned in Sect. 4.3, our implementation of slicing
may remove some infinite loops and thus lead to false posi-
tives. This problem is just technical and does not affect the
principles of this work.

7 Related work

There are plenty of papers regarding compile-time instru-
mentation for detecting memory errors, but very little that
optimize this process for the context of software verifica-
tion: most of these papers focus on runtime monitoring
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and dynamic testing. Nevertheless, the basic principles and
ideas of instrumentation are shared no matter whether the
instrumented code is executed or passed to a verification
tool. Therefore, we give an overview of tools that perform
compile-time instrumentation although they do not verify but
rather monitor the code. At the end of this section, we present
an overview of tools for verification of memory safety that
use some kind of instrumentation.

7.1 Runtimemonitoring tools

Our instrumentation process is similar to the one of Kelly
and Jones [25] or derived approaches like [13,40]. The dif-
ference is that we do not need to instrument also every pointer
arithmetic (as explained in Sect. 2) and we use simple singly
linked lists instead of splay trees to store records about allo-
cated memory.

A different approach than remembering state of the mem-
ory in records is taken by Tag-Protector [41]. This tool
keeps records and a mapping of memory blocks to these
records only during the instrumentation process (the result-
ing program does not maintain any lookup table or list of
records) and inserts ghost variables into the program to keep
information needed for checking correctness of memory
accesses (e.g., size and base addresses of objects). These
variables are copied along with associated pointers. We
believe a similar technique could be used to speed up our
approach.

AddressSanitizer [42] is a verypopular plugin for compile-
time instrumentation available in modern compilers. It uses
shadow memory to keep track of the program’s state and it
is highly optimized for direct execution.

To the extent of our knowledge, none of the above-
mentioned approaches use static analysis to reduce the
number or the runtime cost of inserted instructions.

CCured [35] is a source-to-source translator for C pro-
gramming language that transforms programs to be memory
safe and uses static analysis to reduce the complexity of
inserted runtime checks. Static analysis is used to divide
pointers into three classes: safe, sequential, andwild pointers,
each of them deserving gradually more expensive tracking
and checking mechanism. CCured does not use a lookup
table but extends the pointer representation to keep also the
metadata (the so-called “fat” pointers). The static analysis
used by CCured is less precise as it uses unification-based
approach as opposed to our analysis which is inclusion-
based. Therefore, our analysis can prune the inserted checks
more aggressively.

NesCheck [32] uses very similar static analysis as CCured
to reduce the number of inserted checks, but does not trans-
form the pointer representation while instrumenting. Instead,
it keeps metadata about pointers separately in a dense, array-
based binary search tree.

SAFECode [14] is an instrumentation system that uses
static analyses to reduce the number of runtime checks. In
fact, the authors also suggest to use this reduction in the
context of verification. SAFECode does not try to eliminate
tracking of memory blocks as our tool does. On the other
hand, it employs automatic pool allocation [29] whichmakes
lookups of metadata fast.

SoftBounds [33] is a compile-time transformationdesigned
to check for spatial memory errors (e.g., out-of-bound
access). However, it has been combined with CETS [34],
which is a compile-time instrumentation system for checking
for temporal memory errors (e.g., double-free). This com-
bination is able to catch all the common memory safety
errors [43].

As far as we known, the idea of using pointer analysis
to reduce the fragment of memory that needs to be tracked
was discussed only by Yong and Horwitz [47]. Even though
the high-level concept of this work seems similar to our
approach, the authors focus on runtime protection against
exploitation of unchecked user inputs.

7.2 Memory safety verification tools

In this subsection, we move from runtime memory safety
checkers to verification tools. Instrumentation is common in
this context as well, but using static analysis to reduce the
number of inserted checks has not caught as much attention
as we believe it deserves.

Modern verification tools support checking memory
safety usually through some kind of instrumentation, but
the instrumented functions are typically interpreted directly
by the tool (they are not implemented in the program).
CPAchecker [2] and UltimateAutomizer [20] insert checks
for correctness ofmemory operations directly into their inter-
nal representation. SMACK [6] instruments code on llvm
level by inserting a check (that is interpreted inside the tool)
before every memory-manipulating instruction.

Map2Check [38] is a memory bug hunting tool that
instruments programs to track the state of allocated mem-
ory (the instrumentation is similar to the Jones and Kelly’s
approach) and then uses verification to find possible errors
in memory operations. It had used bounded model checking
as the verification backend, but it has switched to a com-
bination of fuzzing and symbolic execution (using Klee)
recently [30,31].

None of the hitherto mentioned tools use static analysis
to reduce inserted checks neither program slicing to reduce
the analyzed code. More precisely, CPAchecker implements
some kind of program slicing, but as far as we know, it is not
applied in the standard settings.

One of the few publications that explore possibilities of
combination of static analysis andmemory safety verification
is due to Beyer et. al. [3], where authors apply CCured to
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instrument programs and then verify them using BLAST.
The main goal was to eliminate as much inserted checks as
possible using model checking.

SeaHorn [18] instruments code on llvm level. It uses
ghost variables and shadow memory to keep information
needed for checking the validity ofmemory accesses. Checks
are inserted directly into code as assertions. An unification-
based field-sensitive pointer analysis is used to rule out trivial
out-of-bound checks.

CBMC [27] is a bounded model checker that injects
memory safety checks into its internal code representation.
Checking its source code reveals that it uses a kind of
lightweight field-insensitive taint analysis to reduce the num-
ber of inserted checks.

SANTE (Static ANalysis and TEsting) [9,10] is a bug
hunting tool that combines static analysis, slicing, and con-
colic execution. The tool can find division-by-zero errors,
out-of-bound array accesses, and some cases of invalid
pointer dereference [10]. SANTE does not use instrumen-
tation; however, its workflow is very similar to the one of
Symbiotic. It runs value analysis to reveal possible errors
and then slices the program with respect to these possi-
ble errors. A specialized slice is generated for either each
possible error or for some subset of the possible errors (to
compare, Symbiotic always generates one slice for all pos-
sible errors). Each of the slices is then passed to concolic
execution engine that checks whether the error is real. In
the case of SANTE, the combination of the three techniques
also proved to be more efficient and more successful than
using each technique independently [9]. Unfortunately, it
seems that SANTE is not maintained anymore and we were
not able to get a working instance of this tool for compari-
son.

8 Conclusion

We presented an approach for checking memory safety prop-
erties of programs which is based on a combination of
instrumentation with extended pointer analysis, static pro-
gram slicing, and symbolic execution. We explained why
and how we need to extend a pointer analysis and how
the extended analysis can be used to reduce the number of
inserted checks and to use cheaper checks in some situations.
We introduced an instrumentation optimization that allows
us to dramatically reduce also the number of tracked mem-
ory blocks. These instrumentation enhancements combined
with static program slicing resulted in much faster analysis
of error location reachability performed by symbolic execu-
tion. We implemented this technique in the tool Symbiotic
that is able to compete with state-of-the-art memory safety
verification tools.
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