International Journal on Software Tools for Technology Transfer (2019) 21:249-265
https://doi.org/10.1007/s10009-019-00512-8

SPIN 2017 l‘)

Check for
updates

EDSKETCH: execution-driven sketching for Java

Jinru Hua' - Yushan Zhang? - Yuqun Zhang? - Sarfraz Khurshid’

Published online: 16 March 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Sketching is a synthesis approach that allows users to provide high-level insights into a synthesis problem and let synthesis
tools complete low-level details. Users write sketches—partial programs that have “holes” and provide test assertions as the
correctness criteria. The sketching techniques fill the holes with code fragments such that the complete program satisfies all
test assertions. Traditional techniques translate the sketching problem to propositional satisfiability formulas and leverage
SAT solvers to generate programs with the desired functionality. While effective for a range of small well-defined domains,
such translation-based approaches have a key limitation when applying to real applications: They require either translating all
relevant libraries that are invoked directly or indirectly by the given sketch or creating models of those libraries, which requires
much manual effort. This paper introduces execution-driven sketching, a novel approach for synthesizing Java programs with
on-demand candidate generation. The key novelty of our work is to leverage runtime behavior to prune a large amount of search
space. EDSKETCH explores the actual program behaviors in the presence of libraries and sketches small parts of real-world
applications, which may use complex constructs of modern languages, such as reflection, native calls and File I/O. We further
leverage a set of pruning strategies based on Java syntax to expedite the synthesis process. EDSKETCH embodies our approach
in two forms: a stateful search based on the Java PathFinder model checker; and a stateless search based on re-execution
inspired by the VERISOFT model checker. Experimental results show that EDSKETCH can complete some sketches that contain
complex constructs in the presence of libraries, recursive procedures and advanced features like reflection. Without translating
to SAT, EDSKETCH’s performance compares well with the SAT-based SKETCH system for a range of small but complex data
structure subjects.

Keywords Program sketching - Execution-driven synthesis - Backtracking search

1 Introduction

Program sketching [1] is a program synthesis approach [2—
5] where developers write partial programs that have “holes”
and let the synthesizer fill in the holes based on the given
specification, which is usually provided in the format of test
harnesses or reference implementations. Existing sketching

B<X Yuqun Zhang
zhangyq@sustc.edu.cn

Jinru Hua
lisahua@utexas.edu

Yushan Zhang
zhangysh@mail.sustc.edu.cn

Sarfraz Khurshid
khurshid @utexas.edu
' The University of Texas at Austin, Austin, TX, USA

Southern University of Science and Technology, Shenzhen,
China

approaches [1,6] translate the partial program to proposi-
tional satisfiability formulas and leverage SAT solvers to
generate a program that satisfies all constraints. While these
translation-based approaches have shown their effectiveness
on a range of small well-defined domains, they have a key
limitation: when applying to real applications with libraries
or programs with complex constructs like reflection, these
translation-based approaches require either translating all
libraries that are invoked directly or indirectly by the given
sketch or creating models of all those libraries and complex
constructs, which can lead to impractical SAT problems.

To tackle this limitation, we introduce EDSKETCH, a novel
approach that performs execution-driven sketching to syn-
thesize Java programs using backtracking search. The key
novelty of our work is to introduce an on-demand candi-
date generation technique that leverages runtime behavior
to substantially prune a large amount of search space and
efficiently explore the actual program behaviors in the pres-
ence of libraries. To illustrate, consider trying to sketch a

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-019-00512-8&domain=pdf

250

J.Huaetal.

while condition as well as the body of the while loop, if a
test execution raises an exception upon evaluating a specific
candidate for the while loop condition, all candidates of the
while loop body are pruned from search for that choice of
the candidate condition expression. If the while loop body
is not executed, our approach for lazy candidate generation
will not create any candidates for the while loop body, which
may contain thousands of candidates. When a test fails due
to either a runtime exception or a test assertion failure, the
parts of the candidate program that were executed directly
determine the generation of the future candidates.

Asinputs, EDSKETCH takes a sketch (partial program) with
holes written in Java syntax and a test suite that character-
izes the correctness specification. EDSKETCH executes the
test suite against the sketch and backtracks the search when
it encounters a failure (runtime failure or test assertion fail-
ure) and tries the next candidate. EDSKETCH terminates when
the space of candidate programs is exhausted or a complete
program that satisfies all tests is found.

EDSKETCH supports four kinds of holes: expressions
(e.g., field dereferences), arithmetic operators ({+, —, X,
/}), Boolean conditions (e.g., while loop), and blocks of
assignment statements. To initialize the search, EDSKETCH
generates candidate expressions for the holes based on the tar-
get type and variables given by the user. For instance, using
up to two field dereferences, the expressions of the type Entry
derived from a variable e that represents an entry in a singly
linked list should be {e, e.next, e.next.next}, where the field
next represents the next entry in the linked list.

EDSKETCH introduces pruning strategies to expedite the
sketching process. These strategies prune redundant candi-
dates for assignment statement blocks and condition expres-
sions. If the program violates a pre-defined pruning rule,
EDSKETCH backtracks immediately and tries the next alter-
native candidate. For assignment blocks, we define a set of
pruning rules based on the program isomorphism and Java
syntax. For conditions, we introduce a value grouping strat-
egy that splits all condition candidates into two sets based
on their values (true and false) of the current iteration, and
continue splitting the two sets based on the evaluated values
for each iteration.

We embody our approach in two forms of prototypes:
EDSKETCH- JPF, a stateful search based on the Java
PathFinder model checker [7]; and EDSKETCH- JVM, a state-
less search based on re-execution inspired by the VERISOFT
model checker [8].

Experimental results show that EDSKETCH’s performance
compares well with the SAT-based SKETCH synthesizer [1]
based on a dataset of small yet complex data structures. Out
of 43 sketching tasks, EDSKETCH outperforms the SKETCH
synthesizer on 40 tasks. Using three recursive data structures,
EDSKETCH successfully completes all of them in a second,
whereas SKETCH synthesizer fails in one given the same

@ Springer

setting as EDSKETCH. The experiments also show that our
pruning strategies are able to prune an average of 35% of can-
didates before evaluating them against the tests. Moreover,
EDSKETCH completes some sketches that require handling
reflection, I/O, native calls, and external libraries.

This paper makes the following contributions:

— Execution-driven sketching We introduce an execution-
driven approach for program sketching that lazily gen-
erates candidates on-demand by leveraging the runtime
behavior;

— Pruning strategies We introduce pruning strategies
derived from the Java syntax to reduce the search space
of candidates that must otherwise be explored;

— Embodiment We embody EDSKETCH into two proto-
types: one based on the stateful model checker JAVA
PATHFINDER [7], and the other based on a dedicated state-
less backtracking search using re-execution in the spirit
of the VERISOFT model checker [8];

— Evaluation We compare EDSKETCH with the SAT-based
SKETCH synthesizer based on a set of small but complex
data structure subjects. We illustrate EDSKETCH’s ability
to sketch partial programs in the presence of libraries,
recursive procedures and advanced features like reflec-
tion.

2 Motivating example

We use a sketching task of reversing a singly linked list
to illustrate our approach. Assume that the users want to
implement a reverse() method for the singly linked list. Each
list has a head entry, and each entry has a next entry and a
value integer as fields. To reverse the singly linked list, the
users have the notion that they need a while loop to traverse
the list, and some local variables are required to record the
current entry, previous entry and the next entry during the list
traversal. They are also able to provide unit tests that specify
the desired behavior as shown in Fig. 1c. However, it is hard
for the users to complete the detailed implementation for the
condition and the body of the while loop.

EDSKETCH enables users to provide high-level insights
and leaves the implementation details to the synthesizer.
Based on the high-level understanding of the problem, the
users provide three local variables with the type Entry and
a while loop to traverse the list, and leave the condition
of the while loop as well as its body to be synthesized by
EDSKETCH. Figure 1a shows a code skeleton written by the
users that contains unknown while condition at line 7 and
an unknown block of assignments at line 8. To specify the
correctness criteria of the program sketch, the users write a
JUnit test case that contains three entries of the linked list,
as shown in Fig. 1b.

EDSKETCH: execution-driven sketching for Java

251

(A) A program sketch written by the user

1. class LinkedList {

2 Entry head;

3. public void reverse() {
4 Entry 1nl = head;

5. Entry 1n2 = null;

6 Entry 1n3 = null;

7 while (EdSketch.COND(...)) {
8 EdSketch.BLOCK(...);
°.)})}

10.class Entry {

11. Entry next;

12. int value;

13. }

(B) A JUnit test case provided by the user

QTest

1. public void testThreeEntries() {

2. LinkedList list = new LinkedList(new int[1{1,2,3});
3. list.reverse();

4. assertEquals("[3,2,1]",1list.toString());

5

(C) A solution generated by EDSKETCH

1. COND Hole:

2 1nl !'= null

3. BLOCK Hole:

4. head = 1ni;

5 1nl = head.next;
6 head.next = 1n2;
7 1n2 = head;

Fig.1 A sketch example for singly linked list reversal

This sketching task is not trivial: Consider four visi-
ble variables (head, In1, In2, In3), their field dereferences
(given a minimum number of field dereferences required for
this sketch, the candidate field dereferences are head.next,
InT.next, In2.next, In3.next) and a default value null for
non-primitive types, the candidate for each assignment can
be 8 x 9 given that null can only be the right-hand-side
expression, and thus the search space for four consecutive
assignment block is 72* (The sketch requires at least 4 assign-
ments). Moreover, considering a condition expression as a
combination of left-hand-side and right-hand-side expres-
sion together with a relational operator (either != or == for
non-primitive types), the total search space for this sketch is
4.4 billion (72* x (9 x 9 x 2)).

EDSKETCH dynamically selects candidates for the sketch
invocations (line 7 and line 8) when it executes the given
test cases. When EDSKETCH first reaches the while con-
dition hole, EDSKETCH groups all condition candidates
based on their evaluated value (true and false), and non-
deterministically considers two Boolean possibilities for the
execution. When the value false is considered, the unknown

=P=—>| Expr. Candid
pr. Candidate | . Program
—-b—> Generation <h, exprList>=> Instrumention
U
P
¥
Execution-Driven Pruning
—_—
Assign. Candidate |!| Cond. Candidate Cond. Value |
- T->| Pruning : Pruning Grouping :
JVM (Stateless) | JPF (Stateful)
T
<h, value>

Fig.2 EDSKETCH architecture diagram

assignment block in the body of the while loop will not be
executed, and thus all candidates of the assignment block
hole are ignored and EDSKETCH will not create any addi-
tional search space for the assignment block hole.

When EDSKETCH first reaches the assignment sketch at
line 8, it non-deterministically selects expressions for the
right-hand-side and the left-hand-side of the assignment
statement. A simple search may explore many candidates that
are subsumed by other candidates which are already being
explored. EDSKETCH prunes a number of such candidates
based on the program isomorphism (Sect. 3.5). EDSKETCH
backtracks its search if the current choice fails due to a
runtime exception or a test failure. By default, EDSKETCH
incrementally adds one assignment at a time until it finds the
first solution or reaches the pre-defined upper bound on the
number of assignments.

Figure 1c presents a solution generated by EDSKETCH
based on a single test case shown in Fig. 1b. In this example,
EDSKETCH finds the first solution in 9 after exploring over
490 thousand candidates.

3 Approach

We describe our execution-driven sketching in this section.
We first define the syntax of unknown holes /4 in Sect. 3.1. As
shown in Fig. 2, EDSKETCH constructs all candidates based
on the visible variables expr List specified in the sketch P
and the bound of field dereference b (Sect. 3.2). If the sketch
contains assignment block holes, EDSKETCH instruments the
program so that it can dynamically select candidates for the
holes (Sect. 3.3). Section 3.4 discusses our backtrack engines
for stateful prototype (EDSKETCH- JPF) and stateless proto-
type (EDSKETCH- JVM). Section 3.5 describes the pruning
strategies we apply to sketch assignments and conditions
when evaluating candidates via the test execution (7).

3.1 Partial expression syntax

Figure 3 denotes the syntax of the holes. We define
two basic types of partial expressions for the sketches:
expression holes and operator holes. The atomic expres-

@ Springer

J.Huaetal.

252
atomic expr e := war | const | var.f
constant const := null | true | false | k (0,1,—1)
arithmetic op aop := +| — | x|/|%
relational op rop:= == |l=|>|<|<]|2>
operator op:= aop|rop ||| &&
composite expr e:= e1 op ex
condition cond := ey rop es
assignment assign := e1 = eo;
block block := assignl;

assign?2; ...

Fig.3 Syntax of partial expressions

sion holes (EdSketch.EXP) represent visible variables, con-
stant values, and field dereferences. As to the opera-
tor holes, we define arithmetic operators {4+, —, x, /, %}
(EdSketch.AOP) and relational operators {==,! =, >, <
, <, >} (EdSketch.ROP). EDSKETCH generates composite
expressions by combining expression holes with operator
holes, including arithmetic operators, relational operators
and logical operators (|| and &&). Composite expres-
sions can further combine together to generate complex
expressions. For instance, we define a hole for conditions
(EdSketch.COND) as two expression holes at left- and right-
hand side combined with a relational operator. Both sides of
expression holes in the condition can be replaced by infix
expressions (e.g., a+b) with arithmetic operators, and the
condition holes can further be combined together with logical
operators to support multiple clauses. Moreover, EDSKETCH
provides the assignment block holes (EdSketch.BLOCK) to
specify a list of consecutive assignments.

To specify these holes in Java syntax, EDSKETCH provides
a list of method invocations that take three parameters: an
object list that contains all visible variables and default values
(nullor 0, 1, — 1), a hole id to distinguish different holes for
the same type, and the target type of the generated candidates
as an optional parameter. The hole id is used to distinguish
different holes, it must be unique within a type of the holes,
1.e., two condition holes cannot have the same id whereas a
condition hole can have the same id as a block hole. In our
motivating example of Fig. 4, the user assigns an identifier
0 to the while condition and an identifier O to the assign-
ment statement block sketch. If user does not specify the
target type of the hole, EDSKETCH takes the first two param-
eters and treats the target type as another hole of object type.
EDSKETCH enumerates all types that can be derived from the
given object list within the bound of the field dereferences to
fill in the hole of the object type. Note that SAT-based SKETCH
synthesizer [9] also requires users to provide candidates for
the “holes” (Fig. 6).

EDSKETCH provides a set of Java method invocations to
specify different types of unknown holes. These APIs are
treated as normal Java methods, thus our sketches can be
directly compiled and executed using the given test suite. We

@ Springer

highlight two APIs provided by EDSKETCH as below using
the example shown in Fig. 1:

Condition Hole The complete invocation of the while
condition synthesis at line 8 shown in Fig. 1 is: EdS-
ketch.COND(new Object[] {head, In1, In2, In3}, O,
Entry.class), which represents all conditional clauses whose
left-hand-side and right-hand-side expressions are either the
given variables or their field dereferences, combined with the
relational operator holes. As the type Entry is non-primitive
type, the relational operator hole consists of candidates {==,

=}

Block Hole The complete invocation of the unknown assign-
mentblock at line 9 shown in Fig. 1 is: EdSketch. BLOCK(new
Object([] {head, In1, In2, In3}, 0, Entry.class), which repre-
sents a block of assignments that consist of either the given
variables or their field dereferences. The number of assign-
ments in the block is up to the pre-defined bound.

The purpose of program sketching is to bridge the gap
between users’ high-level insights of the expected program
and the low-level implementation. Following the same spirit,
EDSKETCH enables users to provide more insights by invok-
ing a set of supportive methods.

Maximum number of field dereferences EDSKETCH gener-
ates up to one field dereference by default and makes this
bound configurable. For example, the user can specify EdS-
ketch.BLOCK(...).setFieldDeref(2) in Fig. 1 to allow up to two
field dereferences. With this setting, EDSKETCH will gener-
ate field dereferences {In1, In1.next, In1.next.next} derived
from the In1 in Fig. 1.

Enable default values or not We define the default value
for integer and double as {0, 1, -1}, boolean as {true,
false}, non-primitive types as null, and the type String as
empty string. The user can exclude the default values as EdS-
ketch.BLOCK(...).enableDefault(false) in Fig. 1.

Maximum number of assignments By default, EDSKETCH
generates no more than four statements for the block holes.
EDSKETCH also allows users to specify the number of
assignment statements using the method set- Length(), e.g.,
EdSketch.BLOCK(...).setLength(5).

Note that the purpose of these bounds is to leverage users’
insights to explore the search space in a more effective man-
ner, yet there is no bound on how many holes users can
introduce to the sketch. As long as the holes are covered
by the test execution, EDSKETCH is able to generate candi-
date and validate whether there exists a solution that satisfies
all tests.

3.2 Expression candidate generation

This section describes how we generate expression can-
didates. Shown as Algorithm 1, EDSKETCH leverages a

EDSKETCH: execution-driven sketching for Java

253

Algorithm 1: Expression Candidate Generation

Input : Partial program P, bound of field dereference b
Output: Complete Program P’ that pass all test cases
1 Function generateExpressions (P, b) is
2 exps|] < O, exprList]] < T ;
/* Expression candidates generation */
foreach % € holes(P) do
exps|h] < fetchVariables();
len < 0,i < 0;
while len < b do
size < exps|h].size ;
while i < size do
exps[h] <
exps[h]U fields(exps[h].get(i));
10 i++;
11 len ++ ;
12 exprListh] < selectType(exps[h], type(h)) ;
13 Function getExpression (candList) is
14 if id == -1 then

NI B WY B)

15 | id < choose(0, candList.size — 1) ;
16 return candList[id] ;

17 Function getBlock (stmtList, candList) is
18 foreach stmt € stmtList do

19 rhs < getExpression(candList) ;
20 lhs < getExpression(candList) ;
21 assign(lhs, rhs) ;

breadth-first iteration to generate field dereferences for all
provided variables within a pre-defined bound of b (line 3-
12). EDSKETCH creates all field dereferences using reflection
and iteratively adds generated field dereferences to the list
of candidates. After generating all candidates, EDSKETCH
selects expression candidates based on the target type of the
“hole” specified in the method invocation. In particular, the
object this is also regarded as a variable yet we do not generate
its field references because these fields are already included
as heap-allocated variables. The implicit length field for the
array type is not reflected by the getFields() method [10],
and thus we manually insert this field if there exist candi-
dates with the array type.

For each non-deterministic “hole”, we put all its expres-
sion candidates in a vector called candidate vector. We assign
each expression candidate a unique identifier, which is its
index in the candidate vector. When EDSKETCH performs
sketching, it dynamically selects a candidate identifier for
each “hole” using non-deterministic choose() operator and
executes the program based on the candidate it selects. All
candidate identifiers for the holes are initialized as —1 (Algo-
rithm 1 line 14), indicating that EDSKETCH has not selected a
candidate for this “hole”. Once EDSKETCH selects a candidate
identifier for this hole, this candidate will be used consistently
across all test cases. When EDSKETCH backtracks, it incre-
ments the candidate identifier and re-executes the program
with the next candidate that corresponds to the new identifier
of the hole.

3.3 Program instrumentation

To introduce non-determinism to the program and allow a
backtracking search to explore the space of candidate pro-
grams, we need to instrument the sketches in the following
procedures and transform them to executable programs that
can be validated by the test execution.

Loops and Recursive Procedures To get rid of infinite loops
during the synthesis of while loop, following the same spirit
of SAT-based SKETCH synthesizer, we set up a bound for the
while loop iteration and backtrack whenever the execution
has exceeded the pre-defined bound, shown in Fig. 4 line 10—
11. By default we set the bound EdSketch.LOOP_BOUND
as 16 (the default loop bound for the SAT-based SKETCH
synthesizer) and make it configurable to the end users. For
recursive procedures, we use a heuristic to check whether
the method itself is directly called in its body, and intro-
duce a configurable bound EdSketch.RECUR_BOUND as 16
at the beginning of the recursive procedures, shown in Fig. 11
line 2-3. We leave the checking of indirectly recursive pro-
cedures as future work.

Assignment Block Figure 4 presents the instrumented pro-
gram for the motivating example, and highlights the newly
instrumented code using the “+” signal. EDSKETCH gener-
ates a for loop to sketch the assignment statement block.
This for loop enumerates each statement in the list, which is
the return value of the assignment statement block hole EdS-
ketch.BLOCK (...). In this for loop, EDSKETCH assigns values
to the left-hand-side expressions for each assignment using
a switch statement to select the left-hand-side expression

The instrumented program for the example of Figure 1

1. class LinkedList {

2. Entry head;

4. public void reverse(){

5. if (head==null) return;

6. Entry 1nl = head;

7. Entry 1n2 = null;

8. Entry 1n3 = null;

9. int count=0;

9. while (EdSketch.COND(Entry.class,0)) {

10.+ if (count++>EdSketch.L0OOP_BOUND)

11.+ EdSketch.backtrack();

12.+ for (Statement s: EdSketch.BLOCK(Entry.class, 0)) {
13.+ EdSketch_Assign stmt = (EdSketch_Assign) s;
14.+ Entry rhs_val = (Entry) stmt.getRHS();
15.+ switch (stmt.getLHS_id()) {

16.+ case 0: head = rhs_val;

17.+ case 1: 1nl = rhs_val;

18.+ -

19.+ case 7: 1n3.next = rhs_val;

20.+ } }}

Fig.4 The instrumented program for the example of singly linked list
reversal

@ Springer

254

J.Huaetal.

Algorithm 2: Execution-Driven Sketching

Input : Partial program P, test suite 7'

Output: Complete Program P’ that pass all test cases
Function sketch () is

do

1

2

3 try

4 | exploreCurrentChoice();
5 catch BacktrackException

6 | createNextChoice() ;

7 while incrementCounter();

8 Function exploreCurrentChoice() is
9

try
10 foreach rest € T do
11 ‘ test.run() ;
12 catch TestFailureException
13 \ throw BacktrackException ;
14 printSolution() ;
15 searchExit() ; // first solution found

based on the candidate identifier for the “hole”, and assigns
the right-hand-side expression to the selected left-hand-side
expression. We only generate case statements for variables
and field accesses that can be assigned, and will not gener-
ate case statements for this object, unmodifiable fields like
array.length, and default candidates such as null, 0, 1, —1.
If the user does not provide the bound for the number of
sketching assignments, EDSKETCH will add one assignment
at a time until it finds the first solution or reaches the default
bound for the number of sketching assignments.

3.4 Execution-driven sketching

As shown in Algorithm 2, EDSKETCH starts sketching the par-
tial program by directly executing the test cases (line 9-13).
Whenever itencounters a runtime exception or a test failure, it
backtracks and fetches for the next choice until it has explored
the entire search space or finds a solution that meets the cor-
rectness criteria. Shown as Function sketch() in Algorithm 2,
whenever the test execution encounters an assertion failure
or an exception, EDSKETCH throws a BacktrackException,
increments the candidate identifier (incrementCounter())
and re-executes the test cases based on the new candidate
identifier which maps to the next unexplored candidate. EDS-
KETCH prints a complete program if this program satisfies all
test assertions.

We build two prototypes based on two different backtrack
engines: a stateful prototype based on JAVA PATH FINDER
[7] and a stateless prototype based on re-execution.

Stateful Prototype with Java PathFinder JAvA
PATHFINDER (JPF) [7]is a mature model checker that imple-
ments a customized JVM to efficiently store and restore
program states. While JPF cannot handle Java native calls and
can hardly scale up to large applications with libraries and
millions lines of code, using JPF as the backend for sketch-

@ Springer

ing opens the future work possibility to sketch multithreading
programs [11] with systematic path exploration.

Stateless Prototype Using Re-Execution Our second pro-
totype is based on a dedicated stateless search [8] using
re-execution [12]. Since this prototype executes on the stan-
dard JVM, it allows synthesis in the context of open-source
projects with advanced features, such as reflection, I/O, and
native calls.

3.5 Pruning strategies

Brute force search yields a huge search space of sketch candi-
dates, whereas some candidates can be isomorphic with each
other and some candidates can be detected as wrong solution
based on pre-defined roles. With the purpose of pruning the
search space of sketch candidates, we discuss our pruning
strategies for sketching assignments and conditions in this
section.

3.5.1 Assignment pruning

We define four pruning rules based on the Java syntax and
program isomorphism analysis. We omit the proof of these
rules as they can be easily derived from the Java syntax. These
rules may prune the program based on one assignment (rule 1)
or two consecutive assignments in the sketching block (rule
2-4). For the rules below, we use e to represent an expression
which can be either variables or field dereferences, and use
v1, U2, v3 to represent variables. The method id() returns the
candidate identifier of this candidate.

(1) “e; = e1”. If the left-hand-side expression is equal to the
right-hand-side expression, the candidate is ignored as the
assignment has no effect on the current program state. For
example, any candidates that have the assignment In1.next =
In1.next will be pruned in the motivating example as shown
in Fig. 1.

(2) “v1 = vo; v = v1”. If the left-hand-side variable of the
first assignment is the same as the right-hand-side variable of
the second assignment, and the right-hand-side variable of the
first assignment is the same as the left-hand-side variable of
the second assignment, this candidate is omitted because the
two assignments are subsumed by the assignment v; = vs.
For example, in Fig. 1, the candidate will be pruned if it has
two consecutive statements In1=1n2;In2 =1In1.

(3) “v1 = wvy; v1 = v3”. If both left-hand-side variables in
two consecutive assignments are the same and both right-
hand-sides are variables, we do not need to execute this
program because it is subsumed by the assignment v = vs3.
For instance, the candidate in Fig. 1 with consecutive assign-
ments In2 = In4; In2 = In3 will be ignored, because the two
assignments are equivalent to a single assignment In2 = In3,
which has been covered by the current search.

EDSKETCH: execution-driven sketching for Java

255

Algorithm 3: Condition Value Grouping

Input : Expression candidates expr List, two empty sets
trueSet and falseSet
Qutput: Next condition candidate
1 Function getCondition (exprList, trueSet, falseSet) is

if select < —1 then
/* Initialize condition candidates
*/

3 condCands < construct(exprList, primOp) ;

4 foreach ¢ € condCands do

5 if eval(c) then

6 ‘ trueSet < trueSet Uc ;

7 else

8 ‘ falseSet < falseSet Uc;

9 else if select==0 then

/* Split trueSet */

10 falseSet < &;

11 foreach c € trueSet do

12 if eval(c)==false then

13 falseSet < falseSet Uc;

14 ‘ trueSet < trueSet \ c;

15 else

16 trueSet < &,

17 foreach c € falseSet do

18 if eval(c) then

19 trueSet < trueSet Uc ;
20 falseSet < falseSet \ c;
21 if trueSet is empty then
22 ‘ select=1;
23 else if falseSet is empty then
24 ‘ select=0;
25 else
26 ‘ select < choose(0, 1) ;
27 return (select, trueSet, falseSet) ;

4) “v3 = vy;vp = v;” while id(v3) > id(vy). If two
consecutive assignments have the same variable at the right-
hand-side, we only execute the program if the identifier of
the first assignment’s left-hand-side variable is smaller than
that of the second assignment. We consider the consecutive
assignments “vo = v1; v3 = v1” and “v3 = vi; v2 = v;” as
isomorphic solutions and we only evaluate isomorphic solu-
tions once. For example, in Fig. 1, we will not execute the
program with consecutive assignments “In4 =In2;In3 =1n2",
as the candidate identifier of In4 is bigger than that of In3
and an isomorphic program with “In3 = In2; In4 = In2” has
already been explored.

We also try to apply existing synthesizing optimization
strategies to EDSKETCH. Counter-example-guided inductive
synthesis technique (CEGIS) [4] has shown its effectiveness
on a number of SAT-based synthesizers to add the validated
counter-example to the propositional satisfiability formulas
and further expedite the synthesizing process. It does not
directly apply to EDSKETCH as EDSKETCH is purely based
on execution and no SAT translation is involved. The can-
didate that has been validated against the test execution will
never be generated again by EDSKETCH. Yet we borrow the

idea of memorizing information from previous validation
results to prune the candidates before validating them with
the test execution. We implement a pruning strategy to reuse
the validation result of the NullPointerException, i.e., if the
first several consecutive assignments lead to a NullPointerEx-
ception, we will not generate any assignment blocks staring
with these assignments. However, our preliminary evaluation
result based on the dataset specified in Sect. 4.1 indicates
that the pure execution via JVM is often much faster than
memorizing and further checking the validation conditions.
Therefore, we keep the simplicity of the pruning strategies
and leave the improvement in these strategies as future work.

3.5.2 Condition pruning

To sketch condition expressions including if conditions and
while loop conditions, EDSKETCH first generates all condi-
tion candidates and splits these candidates into two groups
based on their evaluated values (true and false). Algorithm 3
outlines how EDSKETCH sketches a condition expression.

Condition Candidate Generation During the first access of
the condition sketch, EDSKETCH generates all condition can-
didates by combining expression candidates with relational
operators rop. We define two relational operators {==, ! =}
for non-primitive types and six condition operators for prim-
itive types {==, ! =, >, <, >=, <=}. The primitive type
operators are also applied to corresponding wrapper classes
such as Integer. We only need to consider the combination
e1 rop e» where the candidate identifier of e; is smaller than
that of e (id(e1) < id(ez)) based on the program symmetry.
Assume that e; and e, are two non-primitive expression can-
didates, and the e ’s candidate identifier is smaller than e;, we
only need to consider the condition candidates e; == e, and
e1! = e because e == ¢ and ep! = e are equivalent to
the previous two candidates. If we have five expression can-
didates with the primitive type int, EDSKETCH will generate
60 (6 x (4 +3 + 2+ 1)) condition candidates by combin-
ing each candidate with the ones that have bigger identifiers
using six condition operators. We also include two constant
Boolean value true and false for completeness (¢; == e
and e|! = ¢)).

Condition Value Grouping The generated condition can-
didates are further split to two sets based on their evaluated
values, shown as line 9 to 20 in Algorithm 3. If it is not the
first access, EDSKETCH will re-evaluate each candidate in the
set and split the candidate set based on the evaluated value
of each condition candidate in the new execution. If EDS-
KETCH selects boolean value true in the previous execution,
the trueSet will be split in the current execution, and vice
versa. For example, the condition candidate In1 != null in
the motivating example may be true in an iteration, and its
value may change to false in the next iteration. Therefore,

@ Springer

256

J.Huaetal.

(A) "Best Case"

Value Grouping

Source code:

(B) "Worst Case"

e ¥
|1j/T F\iwhne(ch)
(o e Ea
[1{T F\gwhile(wca)

_@_while (wc')

1,7 F
|£ \while(wcg)

(C) "Equal Splitting"
’\while (weh)
@ Wwhile (wc')

if(ia),f/ F\4t|
T
&/

s
\whne wc4)

I #Transitions=28 |

‘ #Transitions=12 |

|
|
| whie (wo){ 1 while {we)
| iféic)li | e
reak; |
| g T
) (i) @ B
. TR
| return; : él }() -
! while (wc
we:wl,w2,...,w8 | i (ic?
: ic:i1,i2,...,i8 [if (ic)A‘/
————————]
Without while (wc?)

Value Grouping
FFF

r_ﬁ/ lﬁ arh &E\m
PRI SSN

if (ic') if (ic')

T

//X\
TN

while (wc?) while (wc')

AR O

TTTTFFF

PARTENS S

T.TTTEFF if (ic")

H*+
_|
=
o
=1
@
=
[e]
=1
7
IS o :
U 0

| #Transitions=16 ’

L1135 N
G

ransitions=64 |

| #Transitions 40 |

Fig.5 EDSKETCH pruning example

the condition candidate In1 != null will be put in trueSet in
the first iteration and will be moved to falseSet in the next
iteration.

EDSKETCH chooses a Boolean value at the end of each
invocation based on the size of two candidate sets, shown as
line 21 to 27 in Algorithm 3. If there is no candidate that is
evaluated to be true, EDSKETCH will select false represented
as 1 at line 22 in Algorithm 3. And if the set of candidates
which are evaluated to be false is empty, EDSKETCH will
select true represented as 0. The selected Boolean value
is returned from the getCondition method together with
two candidate sets. If the chosen value does not satisfy test
assertions, EDSKETCH will backtrack to the previous choice,
and select a different value based on the non-deterministic
choose() operator.

To illustrate the efficacy of our condition value grouping
strategy, we present three cases with and without value group-
ing and compare the number of transitions in each case. As
shown in Fig. 5, assume the while condition has eight candi-
dates (wc € {wy, wa, ..., wg}) and the if condition also has
eight candidates (ic € {i, i2, ..., ig}):

(1) “Best Case” In this case, we assume that there is only one
candidate that is evaluated to be true for the while loop (wc')
and false for the if condition (ic!). we! indicates the while
loop condition in the first iteration. In this case, no further
choices will be created because the program terminates after

@ Springer

executing this candidate; we term this case as the “best case”
as shownin Fig. 5a. Shown as edges from one node to another,
the “best case” requires 4 transitions with value grouping and
16 transitions without value grouping.
(2) “Worst Case” We assume that there is only one candi-
date for which the condition evaluates to false for the while
loop (wel) and true for the if condition (ic') when it is
executed the first time. EDSKETCH will keep creating non-
deterministic choices until it exhausts all choices; we term
this case as the “worst case”. As shown in Fig. 5b, EDS-
KETCH has 28 transitions with value grouping strategy, while
the traditional approach without value grouping requires 64
transitions.
(3) “Equal Splitting” Lastly, we consider a case where candi-
dates are equally split in each iteration. As shown in Fig. 5c,
EDSKETCH with value grouping strategy requires 12 transi-
tions while traditional approach requires 40 transitions.

Our example illustrates that our value grouping strategy
effectively reduces the number of transitions in three cases.

4 Evaluation

To investigate EDSKETCH’s efficacy of sketching partial pro-
grams, we curate two evaluation datasets: the first dataset
consists of small but complex data structures including recur-

EDSKETCH: execution-driven sketching for Java

257

sive procedures, these subjects have been used to evaluate
SAT-based sketch synthesizers in prior works [1,4,13,14],
the second dataset contains partial programs in the presence
of libraries and advanced features like reflection.

We address the following research questions in the evalu-
ation:

— How effective is EDSKETCH to sketch small but complex
subjects compared to the SAT-based synthesizer?

— How do the pruning strategies affect the search space of
sketching?

— Can EDSKETCH complete synthesis tasks in the presence
of libraries in open-source projects and advanced lan-
guage features such as reflections?

4.1 Sketching tasks with data structures

To study EDSKETCH’s efficacy of sketching small but com-
plex data structures, we select 10 subjects from java.util
source code and algorithm book [15] as reference implemen-
tation. Based on the reference implementation, we transform
all if and while conditions to condition holes, and all expres-
sion assignments as assignment holes [16]. We do not
evaluate expression holes separately because they are part
of the condition and assignment holes.

As shown in Table 1, the 10 subjects are: Binary Search
Tree Insertion (BSTAS and BSTCD), Finding Median
(MEDAS and MEDCD), Red-Black Tree Insertion (RBTAS
and RBTCD), Singly Linked List Reversal (LLREV), Dou-
bly Linked List Add First (DLLAF), Doubly LinkedList
Add Last (DLLAL), Red-Black Tree Removal (RBTRM),
Fibonacci numbers using recursion (FIB), Singly Linked List

Table 1 Evaluation subjects

Insertion using recursion (LLINS) and Binary Search Tree
Insertion using recursion (BSTIS). We evaluate the perfor-
mance and pruning strategies of sketching assignments and
conditions separately considering different pruning strategies
to these two types of sketching. We use the first 10 subjects to
compare the performance of EDSKETCH- JPF, EDSKETCH-
JVM and SAT-based SKETCH synthesizer and use the last
3 subjects to illustrate EDSKETCH’s effectiveness to sketch
recursive procedures.

To reach full branch coverage, we use 7 test cases from
[17] for Find Median subjects and 4 test cases for the first
4 Fibonacci numbers in the subject of FIB. For the rest of
subjects, we use KORAT [18] to generate bounded exhaustive
test suites. KORAT is a test generation tool that uses given
constraints to guide the generation of bounded suites. We
use bounded exhaustive test suite up to three nodes for binary
search tree, singly linked list, and doubly linked list, and test
suite up to four nodes for red-black tree. We sort the test
cases based on the number of nodes and execute EDSKETCH
with test cases in ascending order.

Table 1 lists the average search space for the first five
assignments or conditions. The subjects can have more than
five partial expressions (RBTCD has 7 condition holes) or
only 4 non-deterministic holes, whose search space of the
fifth expression is marked as N/A. For example, the ref-
erence implementation of the Singly Linked List Reversal
(LLREV) has 4 assignments (Fig. 1), and the search space of
candidates for 3 assignments (262.4 K in Table 1) is cal-
culated as the average search space of candidates for all
combinations of 3 out of 4 assignments (i.e., the search
space of candidates for the assignments {1, 2, 3}, {1, 2, 4},
{2, 3, 4}). Given 4 variables (head, In1,In2,In3 in Fig. 1), one

Type Name Tests 1 2 3 4 5
1 A BSTAS 8 196 384K 75M 1.5B 289 B
2 A MEDAS 7 16 256 41K 66 K N/A
3 A LLREV 4 64 41K 2624K 16.7M I.1B
4 A RBTAS 15 676 457K 309 M 209 B N/A
5 A DLLAF 4 196 384K 7.5M 15B N/A
6 A DLLAL 4 196 38K 7.5M 15B N/A
7 C BSTCD 8 392 190.5K 747M 293B 142T
8 C RBTRM 15 74 55K 74M 10.0B N/A
9 C MEDCD 7 96 92K 884.7K 849M 82B
10 C RBTCD 15 74 55K 74M 10.0B 135T
11 FIB 4 1COND, 1AOP 24
12 LLINS 3EXP 108
13 BSTIS 2COND, 5EXP 24

Column Type represents the sketching type: A represents assignments and C represents conditions. If the subject has only four statements, the
search space for the fifth statement is marked as N/A. The last three subjects are recursive procedures. / COND represents one condition hole, /AOP

represents one arithmetic hole, 3EXP represents three expression holes

@ Springer

258

J.Huaetal.

(A) A sketch written in Sketch syntax [40]

1.void reverse(LinkedList 1) {
2. Entry 1nl = 1l.head;

3. Entry 1n2 = null;
4
5

. Entry 1n3 = null;
. while({|(1.head|1n1|1n2|1n3) (.next) ?(==|!=)
(1.head|1n1|1n2|1n3) (.next)?|null| }){
6. minrepeat {

{I(1.head|1n1|1n2|1n3) (.next)?|}= {|(1.head|1lnl
|1n2|1n3) (.next)?|};

P}

~

(B) Test harnesses written in Sketch Language

1.harness void test() {

2. 1 = newList(); ...// insert 1,2,3
3. reverse(l);

4. assert l.head.value == 3;

5. assert l.head.next.value == 2;

6. assert l.head.next.nextvalue == 1;}

Fig.6 Singly linked list reversal written in Sketch syntax [1]

field dereference (head.next, In1.next, In2.next, In3.next)
without considering the default value null, the number of
candidates for one assignment are 8 x 8. The number of can-
didates for three assignments (say assignment {1, 2, 3}) are
643 = 262.4K, and the average candidate search space for 3
assignments are also 262.4K. Similarly, the search space of
candidates for condition holes in the findMedian method will
be 96 considering six operators (==, ! =, >, <, >=, <=)
and 4 candidates at both sides of the condition, thus syn-
thesizing four conditions can have 96* candidates. Using
these subjects, we first compare the sketching performance
of EDSKETCH with SAT-based Sketch synthesizer, and then
illustrate the efficacy of our pruning strategies.

Comparison with Sketch Synthesizer We compare EDS-
KETCH with SKETCH synthesizer [1], a state-of-the-art SAT-
based synthesizer that has been evaluated as a benchmark
for other synthesizers [4,19]. We choose SKETCH synthesizer
because it can sketch assignments, conditions and expres-
sions similar to EDSKETCH, whereas other synthesizers focus
on API sequences and cannot sketch assignments blocks
(e.g., CODEHINT [20], SYPET [21] and EDSYNTH [22].

We manually transform the Java subjects and test suites to
SKETCH language, which is a type-based language similar to
Java. Figure 6 illustrates the Singly linked list reversal exam-
ple written in SKETCH language. To make sure the subjects
written in SKETCH language are semantically equivalent to
the subjects for EDSKETCH (Fig. 1), we provide the same
variables, field dereferences and relational operators for the
subjects written the SKETCH language. Note that the key-
word minrepeat in SKETCH language shares the same logic

@ Springer

as EDSKETCH: adding one statement at a time until a solution
is found.

We execute EDSKETCH-JVM, EDSKETCH-JPF, and
SKETCH synthesizer on the subjects using the same test suites
and report the time when they find the first solution that satis-
fies all test cases. All performance experiments are conducted
on a MacBook Pro with 2.2 GHz Intel Core i7 processor and
16 GB of 1600 MHz DDR3 memory running OS X version
10.12.1.

Figure 7 represents the sketching performance time of
EDSKETCH- JVM, EDSKETCH- JPF, and SKETCH synthesizer
for sketching different numbers of assignments. The x-axis
shows the number of statements under sketching, and the y-
axis represents the average performance time for sketching
tasks with specific number of assignments. The y-axis in for
the last 4 subjects in Fig. 7 is transformed with log2 scale
for better display. The green line with triangle represents
the performance of EDSKETCH- JVM, the red line with cir-
cle represents EDSKETCH- JPF, and the blue line with square
represents Sketch synthesizer.

Figure 7 indicates that EDSKETCH is able to sketch
small but complex data structures with a better performance
compared to SAT-based inductive synthesizer in 20 out
of 22 sketch tasks. For example, for the subject LLREYV,
EDSKETCH- JVM sketches the first correct solution with 5
assignments in 3.1s while Sketch synthesizer takes 11.7s
for the same task. EDSKETCH- JVM is slower than Sketch
synthesizer in 2 experiments: DLLAF with four assignments
(22.4 vs. 1.9s) and the subject DLLAL with 4 assign-
ments (25.8 vs. 2.8s). The average performance time for
EDSKETCH- JVM is 16.2s while the Sketch synthesizer is
25.1s.

Figure 8 presents the performance of three tools for sketch-
ing conditions, including if conditions and while conditions.
For instance, for the subject RBTCD, EDSKETCH-JVM
spends an average of 0.06s sketching 6 conditions while
SKETCH synthesizer spends 58.9s. It might because the
transformation of red-black tree implementation to boolean
formulas is not trivial. and it takes a long time for the SAT
solver to find a solution. EDSKETCH- JVM is faster than
SKETCH synthesizer in 19 out of 21 experiments. EDSKETCH-
JVM is slower than SKETCH synthesizer in the subject
BSTCD with three and four conditions (1.7 vs. 0.8 s and 10.5
vs. 1.7s).

Previous work [19] conjectured that the backtracking
solver purely based on concrete execution will be much
slower than SAT-based solver in exploring large state space
due to the highly optimized heuristics used by modern SAT
engines. However, our experiments show that EDSKETCH
with our pruning strategies for sketching assignments and

EDSKETCH: execution-driven sketching for Java

259

MEDAS

05| g —p—F— "

0.4

BSTAS

Time (sec)
o o
S (2]
Time (sec)
o o
N W

0.2
0.1
0014 = - = = 0014 = - =
1 2 3 4 1 2 3 4
assignments # assignments
LLREV RBTAS
1024 4096
I T 4
J?i 64 @ 28
g 4 2 4
[g
0 0
1 2 3 4 5 1 2 3 4
assignments # assignments
DLLAF DLLAL
4096 4096
5 128 5 128
o o
2 2
4
E g
- -
0 0
1 2 3 4 1 2 3 4

assignments # assignments

- JPF & JVM -#- Sketch
Fig.7 Compare the performance of sketching assignments

BSTCD RBTRM

Time (sec)
= o
o wn o (3, o
x 4 : X X
Time (sec)
o - N w S wn
>
S
b

1 2 3 4 1 2 3 a 5
conditions # conditions
MEDCD RBTCD

0.0

Time (sec)

o o

N S
Time (sec)
@ =) @
o o o

N
N
w
IS
5
N
IS
o

conditions # conditions

-0~ JPF =& JVM -#- Sketch

Fig.8 Compare the performance of sketching conditions

conditions is comparable or even sometimes faster than the
SAT-based synthesizer.

Comparison of two prototypes In our experiments, state-
ful search using JAVA PATHFINDER (JPF) is always slower
than the dedicated stateless search. JPF is a general purpose
model checker that implements a custom JVM to handle all
of Java bytecode, including multithreading programs. JPF
provides an off-the-shelf backtrack engine, which is a very
convenient way to implement a solution for the sketching

BSTAS MEDAS
g 300 2 100
£ 200 s
g g 5o
& 100 o
3 3
=3 2
: I I : I
X >
w w
3t 3
T2 3 4 s 1 2 3 4
assignments # assignments
LLREV RBTAS
» 2000,000 ” 100,000,000
g 1,500,000 1 g 75,000,000
2 1,000,000 g 50,000,000
s 500,000 % 25,000,000
g 2
n R
o =3
* - - = = N N
12 3 4 5 1 2 3 4
assignments # assignments
DLLAF DLLAL
» 5,000,000 » 6,000,000
£ 4,000,000 € 4,000,000
g, 3,000,000 E,
& 2,000,000+ a 2,000,000
B 1,000,000 2
2 2
o o
o o
X >
w w
3 — | 3 - I
1 2 3 4 1 2 3 4
assignments # assignments
. With Pruning Without Pruning

Fig.9 Compare the pruning efficacy for sketching assignments

MEDCD RBTCD
@ 67,108,864 1 o 4,194,304
E £
I IS
8 524,288+ g 65536
[*8 [\%
o °
2 4,096 - o 1,024
3 3
g o)
I 324 I I i 16 I
® « 1 - I
12 3 4 5 2 4 6
conditions # conditions
BSTCD RBTRM
2 262,144 2 32,7681
o o
= = 4
S 8192 g 2048
[N a
© °
£ 25 g 1287
3 3
2 3 |
w 8 w 8
3t . 3t
1 2 3 4 1 2 3 4 5
conditions # conditions
[l with Pruning Without Pruning

Fig. 10 Compare the pruning efficacy for sketching conditions

problem, albeit with sub-optimal performance, it suffers from
the performance cost on saving and restoring previous pro-
gram state. Yet using JPF as the backend for sketching opens
the future work possibility to sketch concurrent programs
[11] with systematic path exploration. We leave the sketch-
ing for multithreading programs as future work.

Efficacy of Pruning Strategies To evaluate whether our
pruning strategies can effectively reduce the number of candi-
dates before executing given test suites, we report the number

@ Springer

260

J.Huaetal.

of executed programs with and without pruning strategies
when EDSKETCH finds the first solution that satisfies all test
cases.

Figure 9 presents the number of executed programs with
and without pruning rules for sketching assignment subjects.
The x-axis represents the number of assignments and the y-
axis represents the average number of executed programs for
sketching a certain number of assignments. The last 4 sub-
jects in Fig. 9 are transformed to square-foot scale for better
display. The black bars represent the number of executed
programs with pruning rules and the gray ones represent
the number of executed programs without pruning rules. As
shown in Fig. 9, our pruning rules can effectively prune 7%
to 70% with an average of 21% candidates before execut-
ing the test suite. For instance, the pruning rules discard
68.4% of candidates for sketching four assignments in the
subject LLREYV, that is, only around one third of the can-
didates are actually executed with the test suite and more
than two thirds of them are pruned before being executed.
The subjects BSTAS and MEDAS have a lower pruning rate
(the percentage of candidates being pruned out of all can-
didates) compared to other subjects, because the sketched
assignments in these two subjects are scattered in different
if-else conditions and only the rule 1 of the pruning rules can
apply to these two subjects.

Figure 10 presents the number of executed programs with
and without condition pruning strategy for sketching con-
dition subjects. The y-axis for all subjects in Fig. 10 are
transformed to /og?2 scale for better display. Our value group-
ing strategy can effectively prune an average of 56% of
candidates before executing test suites. Note that for sketch-
ing one condition in the subject RBTRM, 35 programs are
executed on average with value grouping strategy, while only
15 programs are evaluated without value grouping strategy.
This result indicates that the value grouping strategy might
not always bring in saving when the search space is small,
which is different from the pruning rules for assignments.

In summary, EDSKETCH effectively prunes an average of
21% of candidates for assignment sketching and more than
half candidates for condition sketching.

Sketching Recursive Procedures Sketching recursive pro-
cedures is known to be a challenging problem in program
synthesis [13,14,23]. A handful of previous works utilize
heuristic search [13], reusable templates [14] and formal
specifications [23] to synthesize recursive programs. SKETCH
synthesizer has been used as a performance benchmark for
these works. We follow the same spirit [13] to compare
EDSKETCH with SKETCH synthesizer using recursive tasks
borrowed from prior works [13,14,23]: Fibonacci number
(integer program), link list insertion (list) and binary search
tree insertion (tree).

@ Springer

(A) A sketch of generating fibonacci numbers

public int fib_sketch(int x) {

if (count++ > EdSketch.RECUR_BOUND)
EdSketch.backtrack();

if (EdSketch.COND(O, new Object[I{x, 1}))
return Xx;

return EdSketch.AOP(0, int.class, new Object[]{
fib(x-1), £fib(x-2)});

7. }

O W N

(B) Expected program for the sketch

public int fib_expect(int x) {
if (x<=1)
return x;

return fib(x-1)+fib(x-2);

}

GO W N

(C) Test cases written in JUnit Format

QTest

1. public void test() {

2. assertEquals(fib_sketch(0), fib_expect(0));
3 assertEquals(fib_sketch(1), fib_expect(1));
4. assertEquals(fib_sketch(2), fib_expect(2));
5. assertEquals(fib_sketch(3), fib_expect(3));
6

!

Fig. 11 A sketching example of Fibonacci numbers using recursion

Figure 11 presents the subjects of generating Fibonacci
numbers using recursion. Similar to prior works on synthe-
sizing recursive procedures [13,14,23], we create a sketch
with a condition hole and a hole for the arithmetic opera-
tors ({+, -, X, /}). We use four JUnit test cases to check the
first four Fibonacci numbers starting from 0. As described
in Sect. 3.3, EDSKETCH instruments the recursive procedure
with a bound of the recursive execution to avoid infinite
recursion (Fig. 11a). EDSKETCH completes the sketching
task in 1s. Yet using semantic-equivalent sketches and test
harnesses, SKETCH synthesizers throws an out-of-memory
exception with 2GB memory limit with the same default set-
ting.

For the other two recursive examples for linked list inser-
tion and binary search tree insertion, we introduce an average
of one condition holes and four expression holes based on
the reference implementation [13,14,23]. Leveraging the test
generation tool KORAT [18], we generate a bounded exhaus-
tive test suite up to 3 nodes and convert the generated tests
to JUnit format. Both EDSKETCH and SKETCH synthesizer
successfully complete the recursive synthesis task within
1I's. Our results demonstrate the EDSKETCH’s efficiency at

EDSKETCH: execution-driven sketching for Java

261

(A) repOK() method for BST with Reflection

.public boolean repOK() throws Exception {
if (root == null)
Set<Node> visited = new HashSet<Node>();

1
2. return size == 0;
3.
4. visited.add(root);

5. LinkedList<Node> workList=new LinkedList<Node>();
6. workList.add(root);

7. while (!workList.isEmpty()) {

8. Node cur= workList.removeFirst();

9. Node exp=(Node)EdSketch.EXP(...);

10. //expect current.left

11. if(Node.class.getField("left").get (exp)'=null){
12. if (!visited.add(current.left)) return false;
13. workList.add(current.left);

14. } ...//omit the rest } }

(B) Calculate the sum of two integers read from a file

1. public int getSum(String file) {
1 Scanner scan = new Scanner(new File(file));
2. int a = scan.nextInt();
3. int b = scan.nextInt();

//expect a+b

return (int)EdSketch.EXP(...)+(int)EdSketch.EXP(...);

AN

5.}

(C) Swap two integers and concatenate them using JNI

1. public native String nativeToString(int x, int y);
2. public String swap(int x, int y) {

3. int tmp = x;

//expect x =y, y = tmp

EdSketch.BLOCK(...);

String str = nativeToString(x,y);

return str;

~N o O

Fig. 12 Sketching tasks with advanced features

synthesizing a broad range of programs including recursive
procedures.

4.2 Sketching with libraries and advanced features

EDSKETCH is able to explore the actual runtime behaviors in
the presence of libraries and advanced features such as reflec-
tions, File I/O and native calls. We only use EDSKETCH- JVM
to complete the sketch tasks in this section. The SAT-based
SKETCH synthesizer and other translation-based synthesizer
can hardly tackle these tasks because it’s not trivial to
translate third-party libraries, reflections and native calls to
propositional satisfiability formulas and leverage SAT/SMT
solvers to complete the sketches.

Sketching Tasks with Advanced Features EDSKETCH eval-
uates code with concrete program execution and hence can
sketch real-world Java code with advanced features. We illus-
trate EDSKETCH’s ability to sketch program with reflection,
I/O and native call using the prototype EDSKETCH- JVM.

Figure 12a presents a program sketch of the repOK()
method for Binary Search Tree derived from KORAT’s eval-
uation dataset [18]. At line 11, we try to sketch the object
whose left field will be used in the if condition. We provide
a bounded exhaustive test suite for up to 3 nodes and execute
EDSKETCH on the given test suite from KORAT’s evalua-
tion dataset. EDSKETCH completes this task with the variable
expression cur. This example also indicates that EDSKETCH
can be used in a wider scope of sketching tasks, such as
sketching a formal specification written in Java.

Figure 12b shows a getSum() method that reads two vari-
ables from a file and outputs their sum. The task sketches the
infix expression a + b for the return statement, and EDS-
KETCH completes this task with three test cases (0, 0), (0, 1),
and (2, 1).

Figure 12c presents a sketch task with native calls.
EDSKETCH sketches an incomplete swap() method for two
integers and returns the string concatenation for the swapped
integers in a native method nativeToString() using three test
cases (0, 0), (0, 1), and (2, 1).

Sketching Tasks in Presence of Libraries We evaluate
EDSKETCH’s efficacy of sketching tasks in the presence of
libraries on 10 tasks derived from human-written patches and
use the original test cases from the open-source projects as the
synthesis criteria. These patches are randomly sampled from
five open-source projects: JFreeChart (Chart [24]), Closure
compiler (Clo- sure [25]), Apache Commons-Lang (Lang
[26]), Apache Commons-Math (Math [27]) and JodaTime
(Time [28]), which have been used to evaluate a number of
prior works [29-31].

Table 2 presents these 10 sketching tasks. Column Commit
represents the commit number we refer to when generating
the sketches. Part of the human-written patches are shown
in the next column. The last column represents the sketches
written in EDSKETCH syntax to simulate the original patches
written by the developers.

For instance, the No. 7 task is derived from the commit
€9d786 of the open-source project Apache com- mons-lang
(Lang [26]). The version we use has 234 files, 55 thousand
lines of Java code, and more than 10 external libraries includ-
ing maven plug-ins. Derived from the RandomStringUtils
class, the sketch task involves an if condition and an assign-
ment. Each invocation of this sketch involves more than 20
methods and 10 JUnit test cases. EDSKETCH generates a com-
plete program that is identical to the original human-written
patch in 8.8s.

4.3 Discussion and threats to validity
In this section, we discuss some alternative setting for EDS-

KETCH which may affect its sketching efficacy and discuss
the threats to validity of our experiments.

@ Springer

262

J.Huaetal.

Table 2 Sketching tasks in presence of libraries from open-source projects

D Commit Part of the human-written patches

Program sketch written in EDSKETCH syntax

1 Chart CategoryDataset dataset = this.plot.getDataset(index);
2265 — if (dataset==null)
+ if (dataset!=null)
return result;
2 Chart — if (endIndex < 0)
1083 + if (endIndex< 0|| endIindex<startindex)
emptyRange = true;
3 Chart Pathlterator iterator1 = p1.getPathlterator(null);
1025 — Pathlterator iterator2 = p1.getPathlterator(null);
+ Pathlterator iterator2 = p2.getPathlterator(null);
4 if ((NodeUtil.isObjectLitKey(n, n.getParent())) {
Closure ensureTyped(t, n, STRING_TYPE);
59a30b + else
+ typeable = false;
5 Closure — if (flags.process_closure_primitives)
369282 — options.closurePass = true;
+ options.closurePass = flags.closure_primitives;
6 private String getRemainingJSDocLine() {
Closure String result = stream.getRemainingJSDocLine();
4fbbc4 + unreadToken = NO_UNREAD_TOKEN;

return result;}
7 if (start == 0 & end == 0) {

Lang + if (chars != null)
c9d786 + end = chars.length;
+}else{.}
8 Lang + if (runningState==STATE_RUNNING) {
3ef8a7 stopTime = System.currentTimeMillis();
}
9 — gTy(residuals);
Math + qTy(qtf);
7dadc2 + tmpVec = objective;
+ objective = oldObj;
+ oldObj = tmpVec;
10 Time if (iFieldType == SECONDS_MILLIS || dp > 0) {
5d08al + if (valueLong < 0 &&

CategoryDataset dataset = this.plot.getDataset(index);

if (EdSketch.COND(...)) {...}

return result;

if (endIindex< 0|| EdSketch.COND(...))

emptyRange = true;

Pathlterator iterator1 = p1.getPathlterator(null);
Pathlterator iterator2 = ((GeneralPath) EdSketch.EXP
(...)).getPathlterator(null);

if ((NodeUtil.isObjectLitKey(n, n.getParent())) {
ensureTyped(t, n, STRING_TYPE);

else

EdSketch.BLOCK(...);

EdSketch.BLOCK(...);

private String getRemainingJSDocLine() {
String result = stream.getRemainingJSDocLine();
EdSketch.BLOCK(...);

return result;}

if (start == 0 & & end == 0) {

if (EdSketch.COND(...))
EdSketch.BLOCK(...);

}else{..}

if (EdSketch.COND(...)) {

stopTime = System.currentTimeMillis();

}

qty((double[]) EdSketch.EXP(...));

EdSketch.BLOCK(...);

if (iFieldType == SECONDS_MILLIS || dp > 0){
if (EdSketch.CONDY...) && EdSketch.CONDX...)) {

valueLong > — DateTimeConstants.MILLIS_PER_SECOND) {

We first investigate the order of the test cases and its influ-
ence on EDSKETCH’s sketching efficacy. We sort the bounded
exhaustive test cases based on the number of nodes, execute
EDSKETCH with test cases in ascending order and descendent
order, and compare the performance time of finding the first
solution for all subjects. The result illustrates that the per-
formance is almost the same with test cases reordered (5.1
vs. 5.7, Wilcoxon test p > 0.05). It might be because the
subjects we select are relatively small with a small number
of test cases and the time to evaluate test cases is negligible,

@ Springer

and thus the prioritization of test cases has little influence on
the total performance.

We then investigate the order of selecting left-hand-side
and right-hand side expressions for sketching assignments.
We have two options to sketch an assignment: select left-
hand-side expression first and then select right-hand side
expression, or vice versa. We compare the sketching per-
formance with these two options on sketching assignment
subjects. Based on our subjects, we find that sketching
right-hand side first performs faster than the other option,

EDSKETCH: execution-driven sketching for Java

263

especially for the experiments with large search space. For
instance, EDSKETCH spends 22.4s sketching four assign-
ments for the subject DLLAF by selecting right-hand side
first, whereas it takes 112.5s with the other option. Yet this
difference is not significant for the experiments with small
search space (sketching less than 4 assignments) based on
Wilcoxon tests (p > 0.05). We report the performance time
by selecting right-hand side first in our performance evalua-
tion.

To further investigate the efficacy of our pruning strate-
gies, we execute EDSKETCH to find all solutions that satisfy
the test suite and compare the pruning rate, i.e., the percent-
age of candidates that have been pruned out of all candidates.
The result shows that the pruning rate for the first solution is
similar to that of all solutions (35% vs 37%), indicating that
the efficacy of our pruning strategies is consistent in finding
the first solution and all solutions based on our subjects.

External Validity We only compare EDSKETCH with a SAT-
based counter-example-guided inductive synthesizer with a
small but complex dataset. Our performance comparison
results may not extend to other SAT-based synthesizers in
a different dataset. Yet Sketch synthesizer has been used
as a benchmark for a number of counter-example-guided
inductive (CEGIS) synthesizers [4] with reasonable per-
formance. EDSKETCH sketches expressions, conditions and
assignments, our idea of execution-driven sketching can be
extended to sketch method invocations [22], which has been
shown as comparable with the state-of-the-art synthesizers
for API sequences, such as SYPET and CODEHINT.

Construct Validity In our performance comparison exper-
iment, we manually transform the Java program to Sketch
language, which may have inadvertently introduced behav-
ioral differences. We list all subjects and tests at [16] for
cross-validation.

Internal Validity To sketch partial programs, we use
bounded exhaustive test suites generated by KORAT [18]
based on formal specification, yet these test cases might still
lead to plausible sketching results, i.e., passing all test cases
but is incorrect from the perspective of users. In our exper-
iment, we manually inspect the first generated solution for
each subject to validate their correctness.

5 Related work

Sketch-based synthesis Program synthesis has had numer-
ous successes on synthesizing code in small well-defined
domains such as bit-vector logic [32] and data structures [33].
They transform partial programs [1], input-output exam-
ples [5] or oracles [32] to decision procedures and leverage
SAT/SMT solvers to complete the procedures based on the

given specification. These techniques are very efficient in
certain domains that have been fully modeled [34]. Sketch-
based synthesis [1] is a sub-problem of program synthesis
that asks programmers to write a draft program contain-
ing missing expressions, and uses counter-example-guided
inductive synthesis to complete the holes. JSKETCH brings
sketch-based synthesis to Java [6]. Given a partial Java pro-
gram written in the sketch syntax, JSKETCH translates the
Java program to SKETCH synthesizer and transfers the syn-
thesizer’s result back to executable Java code. Yet it only
supports a limited subset of Java libraries and does not sup-
portaccess control and exceptions. JSKETCH is confined to the
limitations of translation-based sketching approaches. EDS-
KETCH does not translate program sketches and test suites to
SAT formulas. It directly executes test cases thus can sketch
real-world Java applications that involve advanced language
features like reflection. While a primary focus of sketching
has been on imperative and functional languages, ASKETCH
[35] introduces a test-driven approach for sketching declar-
ative models in ALLOY [36]—a relational first-order logic
with transitive closure.

API sequence synthesis Another group of synthesis tools
[20,21,37] try to synthesize a composition of API calls, where
each method takes some arguments and returns a non-void
value. PROSPECTOR [37] and CODEHINT [20] synthesize Java
APIs and evaluate code at runtime, thus in theory they could
also apply to programs with libraries and advanced features
such as reflection. EDSKETCH focuses on synthesizing con-
ditions and blocks of assignments, whereas PROSPECTOR
[37], CODEHINT [20] and SYPET [21] focuses on API chain
completion. Our idea of execution-driven sketching can be
extended to synthesize sequences of API method invocations
[22], which has been shown as comparable to SYPET [21] and
CODEHINT [20].

Angelic Programming Similar to our approach, angelic pro-
gramming [19] leverages the non-deterministic backtrack
algorithm [38]. Barman et al. [19] embed the angelic choice
construct into the Scala programming language and build
a parallel backtracking solver to explore the scalability of
their backtracking solver. Without any pruning strategies, this
approach scales up much faster compared to the SAT-based
SKETCH synthesizer. We illustrate that our pruning strategy
is efficient and the performance of EDSKETCH on our dataset
is comparable or even faster than a SAT-based synthesizer.
We also demonstrate that our approach can be extended to
real-world Java code that involves reflection and external
libraries.

Code completion Code completion refers to the generation
of small code snippets. Perelman et al. [39] infer partial
expressions using type-directed completion and INSYNTH
[34] handles high-order functions and polymorphism using

@ Springer

264

J.Huaetal.

theorem proving. Yet both are confined to single-statement
synthesis. SLANG [40] predicts probabilities of API calls
using statistical models based on machine learning. STRATH-
CONA [41] assists developers for relevant API invocations
from similar program contexts. Different from code comple-
tion tools based on probabilistic models, EDSKETCH ensures
that the generated solution satisfies all test assertions.

Program Repair Program repair [31,42,43] for automated
debugging addresses a similar technical problem as pro-
gram synthesis. Our program isomorphism analysis is similar
to AE [44], which determines semantic equivalence with
respect to test cases. AE considers duplicate statements
and dead code elimination in terms of variable dependency.
Our condition value grouping is similar to SPR’s notion of
abstract condition values [45], which only considers Boolean
value true and false as abstract symbols instead of con-
sidering all condition candidates. ANGELIX [46] leverages
symbolic analysis and constraint solving to generate repairs
for real-world C programs. The idea of finding an angelic
value is similar to our approach, but it cannot generate new
statements while EDSKETCH is able to sketch multiple assign-
ments. Hua et.al [47] reduce the problem of program repair
to program sketching by translating the faulty program into
a sketch of a correct program, and leverages SAT solvers to
generate a complete program that satisfies all test assertions.
SKETCHFIX [31] applies execution-driven sketching tech-
nique to program repair and automatically generates sketches
to fix problematic conditions and expressions. Instead of fix-
ing existing programs, EDSKETCH is designed in the purpose
of sketching partial expressions, conditions, and a block of
assignment statements.

6 Conclusion

This paper presents a novel execution-driven sketching
approach that synthesizes Java programs using backtrack-
ing search. Our key insight is to introduce effective pruning
strategies to reduce the search space for solutions and explore
the actual program behaviors by executing the given test
suite. EDSKETCH can synthesize Java code that may use com-
plex constructs of imperative languages, such as reflection
and native calls, and can be applied to recursive proce-
dures and large-scale projects in the presence of libraries.
Our experiments show that our approach is comparable or
even sometimes faster than a SAT-based synthesizer on our
dataset. We believe our execution-driven approach holds a
key to practical and scalable solutions to a wide-class of syn-
thesis problems.

Acknowledgements This work was funded in part by the National Sci-
ence Foundation (NSF Grant Nos. CCF-1319688 and CNS-1239498),
Shenzhen Peacock Plan (Grant No. KQT D2016112514355531), the

@ Springer

Science and Technology Innovation Committee Foundation of Shen-
zhen (Grant No. JCYJ2017081 7110848086). We thank Mukul Prasad,
Allison Sullivan and Kaiyuan Wang for discussion and comments.

References

1. Solar-Lezama, A.: Program sketching. STTT 15(5-6), 475-495
(2013)

2. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification
to program synthesis. In: Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL 2010, Madrid, Spain, January 17-23, 2010, pp. 313-326
(2010)

3. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Complete functional
synthesis. In: Proceedings of the 2010 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI
2010, Toronto, Ontario, Canada, June 5-10, 2010, pp. 316-329
(2010)

4. Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman,
M., Seshia, S.A., Singh, R., Solar-Lezama, A., Torlak, E., Udupa,
A.: Syntax-guided synthesis. In: Formal Methods in Computer-
Aided Design, FMCAD 2013, Portland, OR, USA, 20-23 October
2013, pp. 1-8 (2013)

5. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure
transformations from input—output examples. In: Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, Portland, OR, USA, June 15-17,
2015, pp. 229-239 (2015)

6. Jeon, J., Qiu, X., Foster, J.S., Solar-Lezama, A.: JSketch: sketch-
ing for Java. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, Bergamo,
Italy, August 30-September 4, 2015, pp. 934-937 (2015)

7. Visser, W., Havelund, K., Brat, G.P., Park, S.: Model checking
programs. In: ASE 2000, pp. 3—12 (2000)

8. Godefroid, P.: Model checking for programming languages using
verisoft. In: POPL 1997, pp. 174-186 (1997)

9. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S.A., Saraswat,
V.A.: Combinatorial sketching for finite programs. In: Proceedings
of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2006,
San Jose, CA, USA, October 21-25, 2006, pp. 404—415 (2006)

10. http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html
(2017). Accessed 30 Jan 2017

11. Ujma, M., Shafiei, N.: jpf-concurrent: An extension of java
pathfinder for java.util.concurrent. CoRR arXiv:1205.0042 (2012)

12. Elkarablieh, B., Khurshid, S.: Juzi: a tool for repairing complex
data structures. In: ICSE 2008, pp. 855-858 (2008)

13. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive program
synthesis. In: Computer Aided Verification—25th International
Conference, CAV 2013, Saint Petersburg, Russia, 13—19 July 2013.
Proceedings, pp. 934-950 (2013)

14. Inala, J.P., Polikarpova, N., Qiu, X., Lerner, B.S., Solar-Lezama,
A.: Synthesis of recursive ADT transformations from reusable tem-
plates. In: Tools and Algorithms for the Construction and Analysis
of Systems—23rd International Conference, TACAS 2017, Held
as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, Part I, pp. 247-263 (2017)

15. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

16. https://github.com/SketchFix/EdSketch-Evaluation
Accessed 1 Jan 2019

(2019).

http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html
http://arxiv.org/abs/1205.0042
https://github.com/SketchFix/EdSketch-Evaluation

EDSKETCH: execution-driven sketching for Java

265

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula
automatic fault-localization technique. In: ASE 2005, pp. 273-282
(2005)

Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing
based on Java predicates. ISSTA 2002, 123-133 (2002)

Bodik, R., Chandra, S., Galenson, J., Kimelman, D., Tung, N.,
Barman, S., Rodarmor, C.: Programming with angelic nondeter-
minism. In: Proceedings of the 37th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, 17-23 January 2010, pp. 339-352 (2010)
Galenson, J., Reames, P., Bodik, R., Hartmann, B., Sen, K.: Code-
hint: dynamic and interactive synthesis of code snippets. In: 36th
International Conference on Software Engineering, ICSE 14,
Hyderabad, India, May 31-June 07, 2014, pp. 653-663 (2014)
Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.W.: Component-
based synthesis for complex APIs. In: Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, pp. 599-612
(2017)

Yang, Z., Hua, J., Wang, K., Khurshid, S.: EdSynth: Synthesizing
API sequences with conditionals and loops. In: 2017 IEEE Interna-
tional Conference on Software Testing, Verification and Validation,
ICST 2018, Vasteras, Sweden, April 9-13, 2018. IEEE Computer
Society (2018)

Kneuss, E., Kuraj, 1., Kuncak, V., Suter, P.: Synthesis modulo
recursive functions. In: Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Sys-
tems Languages & Applications, OOPSLA 2013, part of SPLASH
2013, Indianapolis, IN, USA, October 26-31, 2013, pp. 407-426
(2013)
https://sourceforge.net/p/jfreechart/code/HEAD/tree/
Accessed 30 April 2018
https://github.com/google/closure-library (2018). Accessed 30
April 2018

https://github.com/apache/commons-lang (2018). Accessed 30
April 2018

https://github.com/apache/commons-math (2018). Accessed 30
April 2018

https://github.com/JodaOrg/joda-time (2018). Accessed 30 April
2018

Just, R.,Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser,
G.: Are mutants a valid substitute for real faults in software testing?
In: FSE 2014, pp. 654-665 (2014)

Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing
faults to enable controlled testing studies for java programs. In:
ISSTA 14, San Jose, CA, USA, July 21-26, 2014, pp. 437-440
(2014)

Hua, J., Zhang, M., Wang, K., Khurshid, S.: Towards practical
program repair with on-demand candidate generation. In: Proceed-
ings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27-June 3, 2018. ACM
(2018)

Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided
component-based program synthesis. In: Proceedings of the 32nd
ACMI/IEEE International Conference on Software Engineering—
Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010,
pp- 215-224 (2010)

(2018).

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

Singh, R., Solar-Lezama, A.: Synthesizing data structure manip-
ulations from storyboards. In: SIGSOFT/FSE’11 19th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering
(FSE-19) and ESEC’11: 13th European Software Engineering
Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011,
pp- 289-299 (2011)

Gvero, T., Kuncak, V., Piskac, R.: Interactive synthesis of code
snippets. In: Computer Aided Verification—23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings, pp. 418-423 (2011)

Wang, K., Sullivan, A., Marinov, D., Khurshid, S.: ASketch:
a sketching framework for alloy. In: Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, pp. 916-919 (2018)

Jackson, D.: Software Abstractions: Logic, Language, and Analy-
sis. The MIT Press, Cambridge (2006)

Mandelin, D., Xu, L., Bodik, R., Kimelman, D.: Jungloid mining:
helping to navigate the API jungle. In: Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design
and Implementation, Chicago, IL, USA, June 12-15, 2005, pp.
48-61 (2005)

Floyd, R.W.: Nondeterministic algorithms. J. ACM 14, 4 (1967)
Perelman, D., Gulwani, S., Ball, T., Grossman, D.: Type-directed
completion of partial expressions. In: ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI *12,
Beijing, China, June 11-16, 2012, pp. 275-286 (2012)

Raychev, V., Vechev, M.T., Yahav, E.: Code completion with
statistical language models. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI *14,
Edinburgh, United Kingdom, June 09-11, 2014, pp. 419-428
(2014)

Holmes, R., Murphy, G.C.: Using structural context to recom-
mend source code examples. In: 27th International Conference on
Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis,
Missouri, USA, pp. 117-125 (2005)

Malik, M.Z., Ghori, K., Elkarablieh, B., Khurshid, S.: A case for
automated debugging using data structure repair. In: ASE, pp. 620—
624 (2009)

Gopinath, D., Malik, M.Z., Khurshid, S.: Specification-based pro-
gram repair using SAT. In: TACAS 2011, pp. 173-188 (2011)
Weimer, W., Fry, Z.P., Forrest, S.: Leveraging program equivalence
for adaptive program repair: models and first results. In: ASE, pp.
356-366 (2013)

Long, F., Rinard, M.: Staged program repair with condition syn-
thesis. In: ESEC/FSE, pp. 166-178 (2015)

Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: Scalable multi-
line program patch synthesis via symbolic analysis. In: ICSE 2016
(2016)

Hua, J., Khurshid, S.: A sketching-based approach for debugging
using test cases. In: ATVA 2016, pp. 463-478 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://sourceforge.net/p/jfreechart/code/HEAD/tree/
https://github.com/google/closure-library
https://github.com/apache/commons-lang
https://github.com/apache/commons-math
https://github.com/JodaOrg/joda-time

	EdSketch: execution-driven sketching for Java
	Abstract
	1 Introduction
	2 Motivating example
	3 Approach
	3.1 Partial expression syntax
	3.2 Expression candidate generation
	3.3 Program instrumentation
	3.4 Execution-driven sketching
	3.5 Pruning strategies
	3.5.1 Assignment pruning
	3.5.2 Condition pruning

	4 Evaluation
	4.1 Sketching tasks with data structures
	4.2 Sketching with libraries and advanced features
	4.3 Discussion and threats to validity

	5 Related work
	6 Conclusion
	Acknowledgements
	References

