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Abstract
Recent research on spatial and spatio-temporalmodel checking provides novel image analysismethodologies, rooted in logical
methods for topological spaces. Medical imaging (MI) is a field where such methods show potential for ground-breaking
innovation. Our starting point is SLCS, the Spatial Logic for Closure Spaces—closure spaces being a generalisation of
topological spaces, covering also discrete space structures—and topochecker, a model checker for SLCS (and extensions
thereof). We introduce the logical language ImgQL (“Image Query Language”). ImgQL extends SLCS with logical operators
describing distance and region similarity. The spatio-temporal model checker topochecker is correspondingly enhanced
with state-of-the-art algorithms, borrowed from computational image processing, for efficient implementation of distance-
based operators, namely distance transforms. Similarity between regions is defined bymeans of a statistical similarity operator,
based on notions from statistical texture analysis. We illustrate our approach by means of an example of analysis of Magnetic
Resonance images: segmentation of glioblastoma and its oedema.

Keywords Spatial logics ·Closure spaces ·Model checking ·Medical imaging · Segmentation ·Magnetic resonance imaging ·
Distance transform · Statistical texture analysis

1 Introduction

Computer Science plays a fundamental role in the field
of medical image analysis. Computational methods are
currently in use for several different purposes, such as:
computer-aided diagnosis (CAD), aiming at the classifica-
tion of areas in images, based on the presence of signs of
specific diseases [34]; Image Segmentation, tailored to iden-
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tify areas that exhibit specific features or functions (such
as organs or sub-structures) [43]; Automatic contouring of
Organs at Risk or target volumes for radiotherapy applica-
tions [12]; Identification of indicators, computed from the
acquired images, enabling early diagnosis, or understanding
ofmicroscopic characteristics of specific diseases, or helping
in the identification of prognostic factors to predict a treat-
ment output [18,77] (examples of indicators are the mean
diffusivity and the fractional anisotropy obtained fromMag-
netic Resonance (MR) Diffusion-Weighted Images, or the
magnetisation transfer ratiomaps obtained from a Magneti-
sation Transfer acquisition [32,55]).

Such kinds of analyses are strictly tied to the spatial fea-
tures of images.

In this paper, we focus on image segmentation, in partic-
ular to identify glioblastomas which are the most common
malignant intracranial tumours. For the treatment of glioblas-
tomas, neuroimaging protocols are used before and after
treatment to evaluate the effect of treatment strategies and
to monitor the evolution of the disease. In clinical studies
and routine treatment, magnetic resonance images (MRI)
are evaluated based mostly on qualitative criteria such as
the presence of hyperintense tissue appearing in the images
[60]. The study and development of automatic and semi-
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automatic segmentation algorithms are aiming at overcoming
the current time-consuming practise of manual delineation
of such tumours and at providing an accurate, reliable and
reproducible method of segmentation of the tumour area and
related tissues [35].

Segmentation of medical images, and brain segmenta-
tion in particular, is nowadays an important topic on its
own in many applications in neuroimaging; several auto-
matic and semi-automatic methods have been proposed,
constituting a very active research area (see for exam-
ple [33,35,38,54,72,80]). Segmentation methods are often
divided into two broad categories [60]: generative mod-
els, which rely on domain-specific prior knowledge about
the appearance of specific brain tissues and anatomy, and
discriminative models, which exploit little prior knowledge
and instead rely mostly on the extraction of a large num-
ber of low-level image features such as local histograms,
texture features and raw input pixel values. Among the
main principles of segmentation algorithms is the exploita-
tion of the variation of grey-scale intensity and texture of
images. These features are then used in a wide range of fully
automatic and semi-automatic techniques. Among them, we
find techniques such as region growing, deformable tem-
plates, thresholding and pattern recognition techniques like
adaptive fuzzy clustering, artificial neural networks, parti-
cle swarm optimisation and random forest. There are also
hybrid techniques in which several such techniques are com-
bined. Semi-automatic techniques include fuzzy cognitive
maps, support vector machines and neural networks. For fur-
ther details on the enormous variety of proposed techniques
and their performance in terms of accuracy and time com-
plexity, we refer to the following surveys [8,60,62]. At the
time of writing, the state of the art in automated segmentation
of brain tumours, which is our running example, is almost
entirely constituted by various machine learning methods1.
One of the technical challenges of the development of auto-
mated (brain) tumour segmentation is that lesion areas are
only defined through changes in the intensity (luminosity) in
the (black & white) images that are relative to surrounding
normal tissue. Even manual segmentation by experts shows
significant variations when intensity gradients between adja-
cent tissue structures are smooth or partially obscured [60].
Furthermore, there is a considerable variation across images
from different patients and images obtained with different
MRI scanners.

In this paper, we propose a novel approach to image
segmentation, namely an interactive, logic-based method,

1 This is witnessed by current results that are publicly
evaluated in the latest editions of the multimodal brain
tumour image segmentation benchmark (BraTS), see https://
www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/
MICCAI_BraTS_2017_proceedings_shortPapers.pdf.

supported by spatialmodel checking, tailored to loosely iden-
tify a region of interest inMRI on which to focus the analysis
of glioblastoma or other types of tumours. This approach is
particularly suitable to exploit the relative spatial relations
between tissues of interest mentioned earlier. With respect
to the aforementioned categories, our approach is that of
a hybrid methodology in which the different segmentation
methods (such as texture features, local histogram process-
ing, and prior knowledge) can be freely combined and nested,
since they are mapped to operators of a domain-specific lan-
guage for image analysis.

Spatial and Spatio-temporal logics and model checking
are the subject of a recent trend in Computer Science (see
for instance [22–24,31,45,46,64]) that uses specifications
written in logical languages describing space—called spa-
tial logics—to automatically identify patterns and structures
of interest in a variety of domains, ranging from Collec-
tive Adaptive Systems [20,25,26] to signals [64] and images
[23,46].

The research presented in the present paper stems from
the topological approach to spatial logics, dating back to
the work of Alfred Tarski, who first recognised the possibil-
ity of reasoning on space using topology as a mathematical
framework for the interpretation of modal logic (see [78]
for a thorough introduction). In this context, formulas are
interpreted as sets of points of a topological space, and in
particular the modal operator � is usually interpreted as the
(logical representation of the) topological closure operator.
A standard reference is the Handbook of Spatial Logics [3].
Therein, several spatial logics are described, with applica-
tions far beyond topological spaces; such logics treat not
only aspects of morphology, geometry and distance, but
also advanced topics such as dynamic systems, and discrete
structures, that are particularly difficult to deal with from a
topological perspective (see, for example [39]); in addition,
the idea of investigating a spatial, topological, interpretation
of the temporal logic until operator is discussed (see [78]).
In recent work [22,23], Ciancia et al. pushed such theoretical
developments further to encompass arbitrary graphs as mod-
els of space, by choosing Closure spaces, a generalisation of
topological spaces [39,40], as underlyingmodel for the logic.
This resulted in the definition of the Spatial Logic for Clo-
sure Spaces (SLCS), and a relatedmodel checking algorithm.
SLCS includes both the closure modality �—denoted by N
(to be read for “near”) for avoiding confusion—and a spatial
until operator—denoted by S (to be read “surrounded”); a
point satisfies Φ1 S Φ2 if it satisfies Φ1 and there is no way
for moving away to a point not satisfying Φ1 without first
passing by a point satisfying Φ2, i.e. the points satisfying
Φ1 are surrounded by points satisfying Φ2. Subsequently, in
[21], a spatio-temporal logic, combining Computation Tree
Logic and the newly defined spatial operators, was intro-
duced; the (extended) model checking algorithm has been
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implemented in the prototype spatio-temporalmodel checker
topochecker.2

The broader aim of our research in the context of medical
imaging is to enable the declarative description and auto-
matic or semi-automatic, efficient identification of regions
in images using spatial logic formulas. This is possible by
considering such images as instances of (quasi-discrete) clo-
sure spaces. The tools and methods we introduce can be used
both for two-dimensional (2D) and three-dimensional (3D)
MI; we remark that modern MRI machines can usually pro-
vide 3D data for analysis; however, in standard practice, 3D
information is often discarded in favour of 2D (slice by slice)
analysis, due to the lack of well-established methods for 3D
analysis. Using 3D information may lead to improved accu-
racy, and it is therefore of high interest, in current research,
to identify techniques for this purpose.

1.1 Original contributions

This paper details and extends the ideas outlined in [9], pro-
viding several further original contributions:

– extension of the spatial logic SLCS to ImgQL, introduc-
ing distance-based operators and showing their formal
relation to the other spatial logic operators of SLCS.
A novel approach to model checking of distance-based
operators is provided based on so-called distance trans-
forms, that forms the basis for the definition an efficient
algorithm to solve the model checking problem. Asymp-
totic time complexity of the procedure we propose is
linear or quasi-linear, depending on the kind of distance
used. This result makes such procedure suitable for the
analysis of higher resolution or 3D images;

– introduction of a novel logical connective aimed at esti-
mating similarity between regions. This operator is based
on statistical texture analysis and is able to classify points
of the space based on the similarity between the area
where they are localised, and a target region, expressed
in logical terms. The connective is specific for medical
image analysis. Its embedding shows how such connec-
tives can be integrated into the spatial logic. This provides
an example of how other specialised existing algorithms
could be introduced and exploited within the spatial logic
model checking framework;

– enhancement of the results in the glioblastoma case study
first introduced in [9], providing the relevant technical
details on the logical specification;

– development of efficient model checking algorithms, that
are competitive in computational efficiency w.r.t. state-
of-the-art (semi-)automatic segmentation approaches.

2 Topochecker: a topological model checker, see http://topochecker.
isti.cnr.it, https://github.com/vincenzoml/topochecker.

A major advantage of our formal verification approach,
with respect to the state of the art in (semi-)automated
segmentation, is that logical specifications are transparent,
reproducible, accurate, human readable, and applicable to
both 2D and 3D images.

Texture analysis, distance, and reachability in space can
be freely combined as high-level logical operators with a
clear and well-defined topological semantics. The interplay
of these aspects is the key to obtain our experimental results.
The work in [9] constituted a first proof-of-concept study. In
that study,topocheckerwas used for the declarative spec-
ification of regions in medical images. The model checker
was used to automatically and efficiently identify and colour
glioblastoma and the surrounding oedema in MRI scans, on
the basis of a declarative definition of the two regions of inter-
est, given in terms of their visual appearance. The latter is
defined by image features such as proximity, interconnection,
and texture similarity. The input to themodel checker consists
of a precise, declarative, unambiguous logical specification,
that besides being fairly close to the level of abstraction of an
expert description of the process, is also remarkably concise,
human readable, robust and reproducible.

1.1.1 Related work

The idea of using model checking, and in particular spa-
tial or spatio-temporal model checking, for the analysis of
medical images is relatively recent and there are only a
few articles exploring this field so far. In particular, [74]
uses spatio-temporal model checking techniques inspired by
[45]—pursuing machine learning of the logical structure of
image features—for the detection of tumours. In contrast,
our approach is more focused on human-intelligible logical
descriptions that can be reused and extended. Other interest-
ing work is that in [66] where spatio-temporal meta model
checking is used for the analysis of biological processes, with
an interesting focus on multi-scale aspects.

Among the fully automated approaches that recently are
gaining interest are those based on machine learning and, in
particular, deep learning (see for example [4] for a recent
review). Although manual segmentation is still the standard
for in vivo images, this method is expensive and time-
consuming, difficult to reproduce and possibly inaccurate
due to human error. Machine learning and deep learning
approaches have shown promising results in pattern recogni-
tion in areas where large, reliable datasets are available and
are currently being developed for application in MRI based
brain segmentation with the aim to obtain reliable automatic
segmentation methods. Deep learning is based on the use of
artificial neural networks, consisting of several layers, that
can extract a hierarchy of features from raw input data. These
methods depend heavily on the availability of large training
datasets. Furthermore, some machine learning approaches
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require the generation of manual ground truth labels, i.e.
data sets in which segments of interest are indicated by
experts manually in a standard way. This is a complicated
task not only because it is very laborious, but also because
of the relatively high intra-expert and inter-expert variability
of 20±15% and 28±12%, respectively, for manual segmen-
tations of brain tumour images [59]. Interactive approaches
based on spatial model checking may therefore also be of
help to improve the generation of manual ground truth labels
in a more efficient, transparent, and reproducible way.

Spatial (and spatio-temporal) model checking is a rela-
tively new area of research, so that there are not that many
proposals available in the literature. In [63], SSTL, a spatial
extension of the linear time, time-bounded, Signal Temporal
Logic (STL), is presented which provides a logical frame-
work for reasoning about (stochastic) population models
where agents live—and move around—in a discrete patch-
based representation of space, i.e. a finite (cost-)weighted
graph. The logic has a single spatial operator, namely the
bounded somewhere operator, ♦�IΦ—reminiscent of the
somewhere operator of [67]—which requires Φ to hold
in a location reachable from the current one with a total
cost falling in interval I . A monitoring—rather than model
checking—algorithm is also provided, extending the similar
algorithm for STL with the spatial component. In [64,65],
some of the co-authors of the present paper, jointly with
Nenzi et al. proposed an extension of SSTL with a bounded
surrounded operator SI which, in turn, extends the sur-
rounded operator of [22,23] with the additional requirement
that, in order for a point x to satisfy Φ1 SI Φ2, it must
also be the case that the length of the shortest path from
x to the “boundary” Φ2 must fall in I . Finally, in [5], an
alternative characterisation of the bounded surrounded oper-
ator is proposed, which defines it as derived from a (basic)
reachability operator and a new operator, called escape. Note
that in [22,23], reachability is available in turn as a derived
operator—namely, the dual of S.

1.1.2 Outline

A technical introduction to spatial logics and distance-based
operators is provided in Sect. 2. Syntax and semantics of the
fragment of SLCS we will use in this paper are recalled, as
well as the main notions of spatial model checking for the
fragment. The definition of a distance operator for ImgQL
is presented in Sect. 3 together with the related extension of
the model checking algorithm. In Sect. 4, the logic frame-
work we propose for statistical texture analysis is presented.
Section 5 briefly describes the tooltopochecker, and pro-
vides the results of some benchmarks of its spatial analysis
capabilities. In Sect. 6, the glioblastoma case study is pre-
sented in detail, including a first assessment of validation.
Some concluding remarks are provided in Sect. 7.

2 Logics for closure spaces

In this section, we discuss the background knowledge that we
use in the technical developments of the paper. In particular,
we briefly introduce the notion of closure spaces, the frag-
ment of SLCS [22,23] we use in this paper, and the related
model checking algorithm.

In the sequel, we will often make explicit reference to 2D
images and their pixels; here, we point out that this is done
only for the sake of simplicity and that all notions, notations,
definitions, and results equally apply to 3D images and their
voxels (i.e. volumetric picture elements, the 3D counterpart
of pixels).

2.1 Closure spaces, spatial logics, andmodel
checking

In spatial logics, modal operators are interpreted using the
concept of neighbourhood in a topological space, enabling
one to reason about points of the space using familiar con-
cepts such as proximity, distance, or reachability. A compre-
hensive reference for these theoretical developments is [3].
Transferring the results in the field to applications, and in par-
ticular to model checking, requires one to use finite models.
However, finite topological spaces are not satisfactory in this
respect; for instance, they cannot encode arbitrary graphs,
including e.g. those with a non-transitive/non-symmetric
edge relation, that may be the object of spatial reasoning
in several applications (for instance, consider the graph of
roads in a town, including the one-way streets). Extending
topological spaces to closure spaces (see [39]) is the key
to generalise these results. In this paper, we use a fragment
of SLCS comprising an operator, called near, interpreted as
proximity, and the surrounded connective, which is a spatial
variant of the classical temporal weak until operator, able to
characterise unbounded areas of space, based on their bound-
ary properties. The surrounded connective is similar in spirit
to the spatial until operator for topological spaces discussed
byAiello andvanBenthem in [2,78], although it is interpreted
in closure spaces. Several derived operators may be defined,
among which, notably, variants of the notion of reachability
in space. The combination of SLCS with temporal operators
from the well-known branching time logic CTL (Computa-
tion Tree Logic) [28] has been explored in [21]. Some related
case studies have been analysed in [19,26] where the logic
caters for spatio-temporal reasoning and model checking. In
the present paper, we focus on spatial properties; therefore,
we restrict our attention to spatial aspects of our framework.

2.2 A fragment of SLCS

SLCS is a logic for space, where the latter is modelled by
means of closure spaces. Before introducing the fragment

123



Spatial logics and model checking for medical imaging 199

of SLCS we use in the present paper, we recall some basic
notions of closure spaces [39,40].

Definition 1 A closure space is a pair (X , C) where X is a
non-empty set (of points) and C : 2X → 2X is a function
satisfying the following three axioms:

1. C(∅) = ∅;
2. Y ⊆ C(Y ) for all Y ⊆ X ;
3. C(Y1 ∪ Y2) = C(Y1) ∪ C(Y2) for all Y1,Y2 ⊆ X . ��

According to the well-known Kuratowski definition,
adding the idempotence axiom C(C(Y )) = C(Y ) for all
Y ⊆ X in Definition 1 makes it a definition of topologi-
cal spaces [40]. Consequently, the latter are a subclass of
closure spaces.

Given any relation R ⊆ X × X , function CR : 2X → 2X

with CR(Y ) = Y ∪ {x |∃y ∈ Y .y R x} satisfies the axioms of
Definition 1 thus making (X , CR) a closure space. The class
of closure spaces generated by binary relations on the set of
points represent a very interesting subclass of closure spaces,
known as quasi-discrete closure spaces. Quasi-discrete clo-
sure spaces include discrete structures like graphs, where
each graph (X , R) with set of nodes X and set of the
edges R is in one-to-one correspondence with closure space
(X , CR). Clearly, finite closure spaces are quasi-discrete clo-
sure spaces.

The following definition is instrumental for the definition
of paths over quasi-discrete closure spaces.

Definition 2 A continuous function f : (X1, C1) → (X2, C2)
is a function f : X1 → X2 such that, for all Y ⊆ X1, we
have f (C1(Y )) ⊆ C2( f (Y )). ��

In the definition below, (N, CSucc) is the closure space
of natural numbers with the successor relation: (n,m) ∈
Succ ⇔ m = n + 1.

Definition 3 A path π in (X , CR) is a continuous function
π : (N, CSucc) → (X , CR). ��
The elements of N will be called indexes in the context of
paths.

A quasi-discrete closure space (X , CR) can be used as
the basis for a mathematical model of a 2D digital image;
X represents the finite set of pixels, and R is the reflex-
ive and symmetric adjacency relation between pixels [41].
We note in passing that several different adjacency relations
can be used. For instance, in the orthogonal adjacency rela-
tion (sometimes called von Neumann adjacency) only pixels
which share an edge count as adjacent, so that each pixel is
adjacent to (itself and) four other pixels; on the other hand, in
the orthodiagonal adjacency relation pixels are adjacent as
long as they share at least either an edge or a corner, so that

Fig. 1 Syntax of the fragment of SLCS

each pixel is adjacent to (itself and) eight other pixels. Pixels
are usually associatedwith specific attributes, such as colours
and/or colour-intensity. Wemodel this by assuming that a set
A of point attribute names is given and by enriching (X , CR)

with an attribute evaluation function A : X × A → V
from points and their attributes to some value set V such
that A(x, a) ∈ V is the value of attribute a of point x . For
given set P of atomic predicates p, the syntax of the fragment
of SLCS we use in this paper is given in Fig. 1.

Informally, it is assumed that space is modelled by a set
of points; each atomic predicate p ∈ P models a specific
feature of points and is thus associated with the set of points
which have this feature. A point x satisfies N Φ if a point
satisfying Φ can be reached from x in at most one (closure)
step, i.e. if x is near (or close) to a point satisfying Φ. A
point x satisfies Φ1 S Φ2 if it satisfies Φ1 and in any path
π rooted in x (i.e. such that π(0) = x) and passing through
a point π(�) not satisfying Φ1, there is a point π( j) before
or at � (i.e. 0 < j ≤ �) that satisfies Φ2. In other words, x
belongs to an area satisfying Φ1 and one cannot escape from
such an area without hitting a point Φ2, i.e. x is surrounded
by Φ2. Finally, the fragment includes logical negation (¬)
and conjunction (∧).

The above description is formalised by the definition of
model and satisfaction relation:

Definition 4 A closure model is a tuple ((X , C),A,V) con-
sisting of a closure space (X , C), a valuationA : X×A → V ,
assigning to each point and attribute the value of the attribute
at that point, and a valuation V : P → 2X assigning to each
atomic predicate the set of points where it holds. ��

In the sequel, we assume that an atomic predicate p can
be bound to an assertion α, the latter stating a property of
attributes, and we use the syntax p := α for atomic predicate
definitions, to this purpose. Assertions are standard Boolean
expressions, e.g. comparisons of the form a ≥ c, for c ∈ V ,
and compositions thereof; we refrain from specifying the
actual syntax of assertions, and we assume valuation A be
extended in the obvious way in order to evaluate assertions,
e.g. A(x, a ≥ c) = A(x, a) ≥ c.

Definition 5 Satisfaction M, x |� Φ at point x ∈ X in
model M = ((X , C),A,V) is defined by induction on the
structure of formulas, as in Fig. 2. ��
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Fig. 2 Satisfaction relation for the fragment of SLCS;whenever p := α

is a definition for p, we assume x ∈ V(p) if and only ifA(x, α) yields
the truth-value true

(a) (b) (c) (d)

Fig. 3 An example model: a the points satisfying atomic predicate p
are shown in violet, those satisfying q are shown in yellow; the points
satisfying ¬Nq (b), those satisfying q S p (c), and those satisfying
p T ¬(N q) (d) are shown in green (colour figure online)

Fig. 4 Some derived operators

In Fig. 3a, a simple finite closuremodel is shown forwhich
the orthogonal adjacency relation is assumed. All the points
satisfying atomic predicate p are shown in violet, whereas
those satisfying q are shown in yellow (no point satisfies
p ∧ q in this example). Figure 3b shows in green the points
that satisfy ¬Nq, while Fig. 3c shows in green the points
satisfying q S p (i.e. all q-points that are surrounded by
p-points; note that, in the example, these are exactly all q-
points).

A number of useful derived operators are defined in Fig. 4.
A few words of explanation are worth for the T operator,
while we refer the reader to [23] for a general discussion on
SLCS derived operators. A point satisfies Φ1 T Φ2 if and
only if it lays in an areaY1 ⊆ X the points ofwhich satisfyΦ1

and Y1 “touches” a non-empty area Y2, the points of which
satisfy Φ2; for this reason, sometimes we call the From-

To operator “touches”. Figure 3d shows in green the points
satisfying p T ¬(N q). A useful pattern, that may be used
for filtering noise in images, is formulaN I Φ. The effect of
such a formula is to capture the regular region [52] included

Fig. 5 Sketch of the model checking algorithm for computing the set
Sat(M, Φ) of points in X satisfying Φ

in the set of points satisfying Φ; point x satisfies N I Φ if
and only if it is adjacent to at least one point y satisfying Φ

which, in turn, is not adjacent to points satisfying ¬ Φ. The
effect of such a filter is to eliminate small regions, e.g. those
consisting of a single point, when these are considered noise
or artefacts.

2.3 Model checking SLCS

In this section, wewill briefly recall model checking of SLCS
[22,23] over finite models. Note that, in the context of the
present paper, we are concerned with so-called globalmodel
checking, i.e. a procedure that, given a finite model and a
logic formula, returns the set of all points in the model satis-
fying the formula [29]. More precisely, the model checking
algorithm computes a function Sat such that, for every finite
closure model M = ((X , CR),A,V) and formula Φ, we
have Sat(Φ) = {x ∈ X |M, x |� Φ}. The algorithm uses
recursion on the structure of the formulas and is sketched in
Fig. 5. In the present paper, we will focus on the surrounded
operator only and we will describe the related section of
the model checking algorithm by means of an example. The
details of model checking for the other operators are a matter
of standard routine and can be found in [22,23].

For a formula Φ1 S Φ2 the algorithm, roughly speaking,
first identifies areas of bad points, that is points that can reach
a point satisfying ¬Φ1 without passing by a point satisfying
Φ2; then returns the points that satisfy Φ1 and that are not
bad.

Below, we give a brief description of how the algorithm
works, using the graphs shown in Fig. 6. Let us consider
the model of Fig. 6a as input model, where points are rep-
resented by coloured squares and the adjacency relation is
the orthogonal one. In this example, we assume that the
set of atomic predicates is the set {pink, yellow,white}—
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Model checking yellow S pink: a input model; b set
{x |M, x |� ¬(yellow∨ pink)}; c set {x |M, x |� yellow}∩CR(blue);
e set {x |M, x |� yellow} ∩ CR(blue)6d (colour figure online)

represented in the figure in the obvious way—and that
V(p) ∩V(p′) = ∅ whenever p �= p′. Suppose the input for-
mula is yellow S pink. The result of the assignment Bad
:= TempBad of the first iteration of the repeat is shown
in Fig. 6b, where all nodes that satisfy¬(yellow∨ pink) are
marked blue. Note that this blue-colouring is not part of the
model; we use it at a “meta-level” and only for describing
the behaviour of the algorithm; the same will apply to points
marked in cyan in the sequel. InFig. 6c, the (only two) yellow
points in the closure of the points indicated in blue are shown
in cyan3; these are the points to be selected for being added
to TempBad in the first iteration of the repeat. The new
value of TempBad, resulting from the assignment, consists
of all blue points of Fig. 6d. The body of the repeat is
executed now with the new value of TempBad. In Fig. 6e,
the (again only two) yellow points in the closure of the set
of points in blue are shown in cyan. Note that such a closure
refers to the model of Fig. 6d; this is abbreviated in Fig. 6e as
CR(blue)6d . The new value of TempBad, resulting from the
assignment, consists of all points indicated in blue in Fig. 6f.
The body of the repeat is executed now for the third time,
and this results in no change in the value of TempBad: the
fixed point is reached, the repeat block is exited and the
points satisfying yellow S pink are the four yellow points
in the bottom-left corner of Fig. 6f. In [23], it has been shown
that, for any finite closure modelM = ((X , CR),A,V) and
SLCS formula Φ of size k, the model checking procedure
terminates in O(k · (|X | + |R|)) steps.4

3 Incorporating distance

In this section, we detail the use of so-called distance oper-
ators in our research line, and we extend the logic fragment

3 In the caption, such a closure is abbreviated by CR(blue) for space
reasons.
4 The size of a formula is given by the number of operators in the for-
mula: si ze(p) = 1; si ze(¬Φ) = si ze(NΦ) = 1+si ze(Φ); si ze(Φ1∧
Φ2) = si ze(Φ1S Φ2) = 1 + si ze(Φ1) + si ze(Φ2).

with a distance operator parametric on the specific notion
of distance; we also give an account of the extension of the
model checking algorithm necessary for the efficient imple-
mentation of the distance operator, based on the notion of
distance transform.

Models of space as well as spatial logics can be extended
with notions of distance (see e.g. [52,53,63,64]). Distances
are very often expressed using the non-negative real numbers
R≥0, like the Euclidean distance on continuous space.

For quasi-discrete closure spaces, especially when used
as a representation of finite graphs, it is natural to consider
shortest-path distance, where a path between two nodes is a
sequence of consecutive edges connecting the first node to
the second, and its length is given by the sum of the lengths
of such edges. The length of an edge is often taken to be
1; however, other notions of distance can be more appropri-
ate. For example, sampling a multi-dimensional Euclidean
space is often done using a regular grid, that is, a graph in
which the nodes are arranged on multiples of a chosen unit
interval that may vary along each dimension of the space.
Nodes are connected by edges using a chosen notion of
adjacency (e.g. the orthogonal or orthodiagonal adjacency
relations discussed before, but any choice may be reason-
able, depending on the application context). Such graphs can
then beweighted by associatingwith each edge theEuclidean
distance between the nodes it connects. Graphs with nodes
in a Euclidean space and weighted by Euclidean distance
are known as Euclidean graphs and are naturally equipped
with both Euclidean distance between nodes and (weighted)
shortest-path distance—which is also called Chamfer dis-
tance in the particular case of Euclidean graphs with nodes
arranged on a regular grid,which is the case of interest forMI.
In two-dimensional imaging, pixels—with an application-
dependent choice of adjacency—form a Euclidean graph,
and Euclidean distance is the reference distance between (the
centres of) two pixels.

Euclidean and Chamfer distances obviously divert, no
matter how fine is the grid or how many neighbours are
chosen in the adjacency relation, unless all pairs of nodes
are linked by an edge (labelled with the Euclidean dis-
tance between the end-points of the edge). Therefore, in
this context, Euclidean distance is considered error-free,
and Chamfer distance is considered an approximation of
the former. The chosen adjacency relation determines the
precision-efficiency trade-off of the computed distance: the
more pixels are considered adjacent, the more precise is the
approximation, at the expenses of generating graphs with
larger out-degrees. This is illustrated in Figs. 7 and 8. In the
first figure, we show a two-dimensional, rectangular image
where all and only points at a Euclidean distance larger than
a given threshold k from the centre of the figure are coloured
in red. In Fig. 8a, the points in red are those at a Chamfer
distance larger than k from the centre; in particular, ortho-
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Fig. 7 Threshold imposed on
Euclidean distance from a point
in the centre of image

Fig. 8 Percentage error of Chamfer distance: aChamfer distancewith 8
adjacent pixels per node, i.e. 3×3 square centred on node; b percentage
error, scale: 0–10; c Chamfer distance with 24 adjacent pixels per node,
i.e. 5 × 5 square centred on node; d percentage error, scale: 0–2

diagonal adjacency has been used (each pixel has 8 other
adjacent pixels). Figure 8b shows the percentage of error
for each pixel with respect to the Euclidean distance, in a
scale from 0 to 10%. Finally, in Fig. 8c we use Chamfer dis-
tance, the same threshold k and an adjacency relation where
each pixel has 24 other adjacent pixels (i.e. the pixels that
are adjacent to any pixel form a 5 × 5 square centred in
the pixel). Figure 8d shows the percentage of error w.r.t. the
Euclidean distance, in a scale from 0 to 2%. The percentage
error δ(x) for Chamfer distance dC is defined for each pixel
x as δ(x) = |dE (y,x)−dC (y,x)|

dE (y,x) , where y is the central point of
the image and dE denotes the Euclidean distance.

3.1 SLCS with distance operators

In this section, we extend the fragment of SLCS presented
in Sect. 2.2 with logic distance operators. We first introduce
the notion of distance closure spaces and, to that purpose we
recall the well-known notion of metric space:

Definition 6 A metric space is a pair (X , d) where X is a
non-empty set (of points) and d : X × X → R≥0 is function
that satisfies the following axioms, for all x, y, z ∈ X :

1. d(x, y) = 0 iff x = y [identity of indiscernible];
2. d(x, y) = d(x, y) [symmetry];
3. d(x, z) ≤ d(x, y) + d(y, z) [triangle inequality].

Whenever X is a closure space (X , C), ((X , C), d) is called
a metric closure space. ��

Metric functions are easily extended to sets as follows:

Definition 7 Given metric space (X , d), x ∈ X and Y , Z ⊆
X we let

1. d(x,Y ) = inf{d(x, y)|y ∈ Y }
2. d(Y , Z) = inf{d(y, z)|y ∈ Y and z ∈ Z}

Note that if Y �= ∅ is finite, then inf{d(x, y)|y ∈ Y } =
min{d(x, y)|y ∈ Y }; we let d(x,∅) = ∞ by definition. ��

In the case of quasi-discrete closure spaces, symmetrymay
turn out to be too much restrictive. This is for instance the
casewhen the relation R underlying the closure operatorCR is
not symmetric. Similarly, the triangle inequality is not fitting
well when more qualitative distance “measures” are used,
for instance when the codomain of d is composed of only
three values, representing short,medium, and large distance,
respectively. For all these reasons, for quasi-discrete closure
spaces we often use the less restrictive notion of distance
space, where only Axiom 1 of Definition 6 above is required.

Definition 8 A distance closure space is a tuple ((X , C), d)

where (X , C) is a closure space and d : X×X → R≥0∪{∞}
is function satisfying d(x, y) = 0 iff x = y.

A quasi-discrete distance closure space is a distance clo-
sure space ((X , CR), d) where (X , CR) is a quasi-discrete
closure space. ��

Distance operators can be added to spatial logics in various
ways (see [52] for an introduction). For the purposes of the
present paper, we extend SLCS with the operator D I , where
I is an interval of R≥0. The intended meaning is that a point
x of a distance closure model satisfies D I Φ if its distance
from the set of points satisfying Φ falls in interval I . Below
we provide the necessary formal definitions.

Definition 9 A distance closure model is a tuple
(((X , C), d),A,V) consisting of a distance closure space
((X , C), d), a valuation A : X × A → V , assigning to each
point and attribute the value of the attribute of the point and
a valuation V : P → 2X assigning to each atomic predicate
the set of pointswhere it holds. A quasi-discrete distance clo-
sure model is a distance closure model (((X , CR), d),A,V)

where ((X , CR), d) is a quasi-discrete distance closure space.
��

As the definition of d might require the elements of R
to be weighted—as in the case of Euclidean graphs—quasi-
discrete distance closure models are often enriched with a
R-weighting function W : R → R assigning the weight
W(x, y) to each (x, y) ∈ R.

The satisfaction relation of our fragment of SLCS is
extended as expected:

Definition 10 Satisfaction M, x |� Φ at point x ∈ X in
model M = (((X , C), d),A,V) is defined by induction on
the structure of formulas, by adding the equation below to
those in Fig. 2:

M, x |� D I Φ ⇔ d(x, {y|M, y |� Φ}) ∈ I
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Fig. 9 Additional derived operators

(a) (b) (c)

Fig. 10 The points of Fig. 3a satisfying D>2 p (a), those satisfying
J<3q (b), and those satisfying J<2q (c) are shown in green (colour
figure online)

Note that the definition of the SLCS distance operator
is parametric on the specific distance used. The particular
meaning of the distance operator is fully characterised by the
specific distance d of the underlying distance closure model.
In this paper, we will use the Euclidean distance dE and the
Chamfer distance dC .

We close this section with the definition of an additional
set of derived operators shown in Fig. 9.

Again, with reference to Fig. 3a, Fig. 10a shows in green
all the points satisfying D>2 p, according to the Chamfer
distance (over the orthogonal adjacency relation).

Intuitively, the J <c operator can be used as a form of
filtering, eliminating small details caused by noise in the fine-
scale structure of an image; this method is akin to the nested
application ofN and I described in Sect. 2.2, parameterised
with respect to a chosen maximum size c of details to be
suppressed. To see this, recall that IΦ is defined as ¬N¬Φ,
therefore NIΦ is the same as N (¬N¬Φ), which is very
similar to the definition of J <c, with N replaced by D<c.

With reference to Fig. 3a, Fig. 10b shows in green the
points satisfying J <3q, whereas those satisfying J <2q are
given in Fig. 10c.

The bounded surrounded operator Φ1S IΦ2 is satisfied
by a point x if and only if x satisfies Φ1 and is strongly
surrounded by points satisfying Φ2 and its distance from
such points falls in interval I . Note that, in the first argument
of S!, it is required that ¬Φ2 holds as well; this ensures that
all Φ2-points are at a distance of at least inf I from x .

In Fig. 11a (Fig. 11b, respectively), the points satisfying
q S[2,2] p (q S[2,3] p, respectively) are shown in green.
Note that a similar operator has been defined in [64], which
turns out to be stronger than S[a,b], i.e. denoting the former

(a) (b)

Fig. 11 The points of Fig. 3a satisfying q S[2,2] p (a) and those satis-
fying q S[2,3] p (b) are shown in green (colour figure online)

operator by Ŝ[a,b], we have that, for all formulas Φ1, Φ2,
(Φ1 ∧ ¬Φ2) Ŝ[a,b] Φ2 implies Φ1S[a,b]Φ2.

We close this section pointing out that, for finite models,
the operator D≤c coincides with the operator ∃≤c proposed
in [71]:

M, x |� ∃≤cΦ ⇔ ∃y.d(x, y) ≤ c and M, y |� Φ

and similarly for D<c and ∃<c. Note that this coincidence
does not hold in general, e.g. forEuclidean spaces.Our choice
of the specific distance operator is motivated by its natural
compatibility with distance transforms, as we illustrate in
Sect. 3.2.

3.2 Model checking SLCS with distance operators

For distance-based operators, generally speaking, the time
complexity of naive model checking algorithms is quadratic
in the size of the space (see [64] for an example). However,
given a Euclidean graph representing a multi-dimensional
image, spatialmodel checkingof formulasD IΦ forEuclidean
or Chamfer distance can be done in linear time or quasi-
linear time, respectively, with respect to the number of
points of the space. This is achieved via so-called dis-
tance transforms, that are one of the subjects of topology
and geometry in computer vision [51] and are extensively
used in modern image processing and computer graphics
[27]. In particular, effective linear-time algorithms have been
recently introduced in the literature [37,58]. Basically, a dis-
tance transform takes a model Min as input and produces
a model Mout as output as follows. Let Min be a model
(((X , CR), d),Ain,V,W) such that every point x ∈ X
has an attribute, say ain , defined on a binary domain, say
{0, 1}—the value of such an attribute may represent the
fact that the point satisfies a given formula Φ or not. The
output model will be Mout = (((X , CR), d),Aout ,V,W)

such that every point x ∈ X has an attribute, say aout , and
Aout (x, aout ) = d(x, {y ∈ X |Ain(y, ain) = 1}).

The algorithm of Fig. 5 is extendedwith the case forD IΦ,
sketched in Fig. 13; note that, in the general case, the argu-
ment M of Sat is a weighted finite distance closure model
(((X , CR), d),A,V,W), where the distance function d may
be defined using the weights in W . It is assumed that two
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(a) (b)

Fig. 12 Intermediate models for D>2 p and input model of Fig. 3a,
according to the procedure of Fig. 13

Fig. 13 Sketch of the model checking algorithm for D I Φ

distinct attributes as (playing the role of ain above) and ad
(playing the role of aout above) are defined for all x ∈ X . Two
intermediate, auxiliary modelsMs andMd are computed—
Ms in Step 1 and Md in Step 2—according to the
distance transform method described above. In Fig. 13, for
the sake of simplicity, functionsA,As andAd are treated as
(bi-dimensional) arrays. Again with reference to Fig. 3a, and
formula D>2 p—shown in Fig. 10a—intermediate models
Ms and Md are shown in Fig. 12a, b, respectively. Here,
the chosen notion of distance is Chamfer over orthogonal
adjacency, considering the Euclidean distance between two
adjacent voxels equal to the unit. The values in the points in
Fig. 12a (Fig. 12b, respectively) are those of attribute as (ad ,
respectively).

Forwhat concerns the computation of the specific distance
and the related distance transform, for Euclidean distance
we use the algorithm that was proposed by Maurer in [58].
Such algorithm computes Euclidean distance transforms on
anisotropic multi-dimensional grids (such as 2D and 3D
medical images); it has linear complexity, its run-time is pre-
dictable, and it is among the most efficient algorithms for the
purpose [36]. The general idea of the algorithm is to proceed
by induction on the number of dimensions of the image. The
distance transform problem in n + 1 dimensions is reduced
to the problem in n dimensions by a technique that relies
on multi-dimensional Voronoi maps. We refer the interested

reader to [27], where a theoretical study of the algorithm
is provided. The specification described therein was closely
followed in our implementation.

For shortest-path distances over arbitrary directed graphs,
we use a variant of the well-known Dijkstra shortest-path
algorithm, called “modified Dijkstra distance transform” in
[44]. The standard Dijkstra algorithm uses a priority queue
sorted by distance from a root node. The queue is initialised
to the root node of the considered graph, whose priority is set
to 0. In the modified version, when computing the distance
transform from a set of nodes identified by formula Φ, the
queue is initialised with all the nodes that satisfy Φ and have
an outgoing edge reaching a node not satisfying Φ; all such
nodes have priority 0. The algorithm then proceeds as the
standard algorithm. As a result, after termination, each node
of the graph is labelled with the shortest-path distance from
the set of nodes satisfying Φ, as required by the specifica-
tion. The asymptotic run-time of this procedure is not linear
but quasi-linear due to the usage of a priority queue. In this
respect, research is still active to optimise the procedure in
specific cases (see e.g. [75]). However, the effective run-time
behaviour of the algorithm is highly dependent on the struc-
ture of the considered graph and the chosen implementation
of data structures.

4 A logical framework for texture analysis

In this section, we define an additional logic operator that,
when incorporated in the spatial logic presented in the pre-
vious sections, provides a logical framework for Texture
Analysis (TA).

TA can be used for finding and analysing patterns in
(medical) images, including some that are imperceptible to
the human visual system. Patterns in images are entities
characterised by distinct combinations of features, such as
brightness, colour, shape, size. TA includes several tech-
niques and has proved promising in a large number of
applications in the field of medical imaging [16,30,50,56];
in particular, it has been used in Computer Aided Diag-
nosis [47,49,79] and for classification or segmentation of
tissues or organs [17,69,70]. In TA, image textures are usu-
ally characterised by estimating some descriptors in terms
of quantitative features. Typically, such features fall into
three general categories: syntactic, statistical, and spectral
[50]. Our work is mostly focused on statistical approaches
to texture analysis. For two-dimensional images, statistical
methods consist of extracting a set of statistical descriptors
from the distributions of local features in a neighbourhood
of each pixel.

In this paper, we explore the use of first-order statistical
methods, that are statistics based on the probability distri-
bution function of the intensity values of the pixels of parts,
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or the whole, of an image. The classical first-order statistical
approach to TAmakes use of statistical indicators of the local
distribution of image intensity around each pixel, such as
mean, variance, skewness, kurtosis, entropy [73]. Although
such indicators ignore the relative spatial placement of adja-
cent pixels, statistical operators are useful inMI because their
application is invariant under transformations of the image,
in particular affine transformations (rotation and scaling),
which is necessary when analysing several images acquired
in different conditions. It is worth mentioning that current
research also focuses on constructing features using first-
order operators, keeping some spatial coherence, but loosing
at least partially the aforementioned invariance [76]. The
method we propose is an attempt to improve over the classi-
cal setting described above, by analysing (the histograms of)
statistical distributions directly.

In the following, we introduce a spatial logic operator that
compares image regions in order to classify points that belong
to sub-areas in the image where the statistical distribution of
the intensity of pixels is similar to that of a chosen reference
region. Several similarity measures exist (see [61]), that can
be used to compare distributions in images. In particular, as
a starting point, we use the cross-correlation function (also
called Pearson’s correlation coefficient), that is often used
in the context of image retrieval, but is also popular in other
computer vision tasks. In MI, cross-correlation is also fre-
quently used in the case of image co-registration ( [13]).5

4.1 A logical operator for statistical similarity

The statistical distribution of the values of a numerical
attribute in a set of points Y of a space—e.g. the grey lev-
els of the pixels or voxels of an area of a black and white
image—is approximated by the histogram h of the values of
the attribute in the points belonging to Y , as described below.
Given a minimum value m, a maximum value M , and a pos-
itive number of bins k, let Δ = (M − m)/k and define the
histogram h as a function associating with each bin i ∈ [1, k]
the number of points that have the value of the attribute in the
(half-open) interval [(i−1)·Δ+m, i ·Δ+m). Theminimum
value m and the maximum value M are aimed at improving
the resolution of histograms, by excluding rare peaks in the
set of points—they might be due to artefacts in acquisition,
in the case of images—and would result in a high number of
empty bins. A formal definition is given below:

Definition 11 Given closuremodelM = ((X , C),A,V), we
define functionH : A× 2X ×R×R×N → (N → N) such

5 In image processing, the problem of co-registration is that ofmapping
two images coming from different sources to the same spatial domain,
by finding transformations of the considered images that make given
image features coincide.

that for all values m, M ∈ R, with m < M , and k, i ∈ N,
with k > 0 and i ∈ [1, k], letting Δ = M−m

k :

H(a,Y ,m, M, k)(i) = |{y ∈ Y |(i − 1)Δ

≤ A(y, a) − m < iΔ}| ��
So H(a,Y ,m, M, k) is the histogram of the distribution of
the values of attribute a of the points in Y , in the interval
[m, M] with step Δ.

The definition of cross-correlation between two his-
tograms follows. In the sequel, for histogram h : [1, k] → N

we let h = 1
k

∑k
i=1 h(i) denote the mean of h.

Definition 12 Let h1, h2 : [1, k] → N be two histograms.
The cross-correlation of h1 and h2 is defined as follows:

r(h1, h2) =
∑k

i=1

(
h1(i) − h1

) (
h2(i) − h2

)

√
∑k

i=1

(
h1(i) − h1

)2
√

∑k
i=1

(
h2(i) − h2

)2

��
The value of r is normalised so that −1 ≤ r(h1, h2) ≤ 1;

r(h1, h2) = 1 indicates that h1 and h2 are perfectly corre-
lated (that is, h1 = ah2 + b, with a > 0); r(h1, h2) = −1
indicates perfect anti-correlation (that is, h1 = ah2 + b,
with a < 0). On the other hand, r(h1, h2) = 0 indicates
no correlation. Note that normalisation makes the value of
r undefined for constant histograms, having therefore stan-
dard deviation of 0; in terms of statistics, a variable with such
standard deviation is only (perfectly) correlated to itself. This
special case is handled by letting r(h1, h2) = 1 when both
histograms are constant, and r(h1, h2) = 0 when only one
of the h1 or h2 is constant.

We are now ready for embedding the statistical similarity
operator ����c

[
m M k
ρ a b

]
in ImgQL.

Definition 13 Satisfaction M, x |� Φ at point x ∈ X in
model M = (((X , C), d),A,V) is defined by induction on
the structure of formulas, by adding the following equation
to those in Fig. 2, wherem, M ∈ R, withm < M , and k ∈ N,
with k > 0:

M, x |� ����c
[
m M k
ρ a b

]
Φ ⇔ r(ha, hb) �� c

with

• ha(i) = H(a, S(x, ρ),m, M, k)(i),
• hb(i) = H(b, {y|M, y |� Φ},m, M, k)(i),
• ��∈ {=,<,>,≤,≥}, and
• S(x, ρ) = {y ∈ X |d(x, y) ≤ ρ} is the sphere of radius

ρ centred in x . ��

So ����c
[
m M k
ρ a b

]
Φ compares the region of the space con-

stituted by the sphere of radius ρ centred in x against the
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Fig. 14 Sketch of the model checking algorithm for the statistical sim-
ilarity operator

region characterised by Φ. The comparison is based on the
cross-correlation of the histograms of the chosen attributes
of (the points of) the two regions, namely a and b and both
histograms share the same domain ([m, M]) and the same
bins ([1, k]). In summary, the operator allows to check to
which extent the sphere around the point of interest is statisti-
cally similar to a given region (specified by)Φ. For example,
��≥0.7

[
200 2000 100
10.0 a b

]� is true at voxels centred in a region—of
radius 10.0—where the distribution of the values of attribute
a has cross-correlation greater than 0.7 with the distribution
of the values of attribute b in the whole image. In this case,
cross-correlation is computed using 100 bins, and taking into
account only values between 200 and 2000.

4.2 Model checking ImgQL with statistical similarity
operators

The algorithm of Fig. 5 is extended with the case for
����c

[
m M k
ρ a b

]
Φ, sketched in Fig. 14. Auxiliary function Idx

computes the bin index associated with the intensity level �

of the relevant attribute, relative to parameters m, M and k:
Idx(�,m, M, k) = (� div M−m

k )+1. The extension of the
algorithm for implementing the statistical similarity opera-
tor is straightforward. An array Hb, sized to the number of
bins k, is allocated, initialised to 0 at each index, and the
histogram hb (see Definition 13) is stored in it, by iterating
over all the points y satisfying Φ, finding the index i of the
bin corresponding to the intensity level of y, and increasing
the corresponding value of Hb[i]. An additional array Ha ,
sized to the number of bins k, is allocated. For each pixel x ,
Ha is (re-)initialised to 0 at each index, and all the points y
laying in the sphere of radius ρ centred in x are examined;

for each y, the index i of its bin is identified, and the value
of Ha[i] is increased, so that when all the y have been exam-
ined, Ha represents the histogram ha . The cross-correlation
value r(ha, hb) is then computed by simple calculations that
are linear in the number of bins k.

This algorithm has time complexity proportional to v ·
ρn · k, where v is the number of pixels in the image and
n the number of dimensions (indeed the number of pixels
in an n-dimensional sphere is proportional to ρn). Since ρ

and k are usually fixed for a given analysis, such algorithm
can still be considered “linear” in the size of the image. This
basic procedure is amenable to optimisation, for instance by
observing that the spheres centred around twodifferent points
of the image may share some pixels; therefore, the histogram
of each one could be computed starting from the histogram of
the other, at the expenses ofmorememory needed to store the
histogram of different points. We leave the study of similar
optimisations for future work.

5 The tool topochecker

The tool topochecker6 is a global model checker, capa-
ble of analysing models specified as weighted graphs, RGB
images, or grayscale medical images. The tool is imple-
mented in the functional programming language OCaml,7

which provides a good balance between declarative features
and computational efficiency. The output of the tool consists
of a region of interest (ROI) for each formula, that is, an
image where the specific region where such formula holds
is coloured according to a user-specified colour. The spatial
model checking algorithm is entirely run in central memory,
and it uses memoisation (and on-disk caching) to store the
intermediate results, so that when the same sub-formula is
used more than once, results are reused.

In order to evaluate the efficiency of the tool, we have
designed a set of benchmarks.8 Currently, we aim at eval-
uating the algorithms for Euclidean and Chamfer distance
transforms, similarity search via statistical cross-correlation,
and the reachability / surrounded primitives. Four bench-
marks are currently considered: search for exit and blocked
paths in a maze, similar to Example 7.4 in [23], which
exercises the implementation of the surrounded operator
(indirectly, via the touch operator); cross-correlation with
various radiuses (plus thresholding), using the whole image
as a target; Euclidean distance transform (plus threshold-
ing); Chamfer distance transform (plus thresholding). The
last three benchmark types use a checkerboard-like pattern

6 See https://github.com/vincenzoml/topochecker.
7 See http://www.ocaml.org.
8 Available for download at https://github.com/vincenzoml/spatial-
model-checking-benchmarks.

123

https://github.com/vincenzoml/topochecker
http://www.ocaml.org
https://github.com/vincenzoml/spatial-model-checking-benchmarks
https://github.com/vincenzoml/spatial-model-checking-benchmarks


Spatial logics and model checking for medical imaging 207

Fig. 15 Acheckerboard-like pattern (a) and the result of the�� operator
applied to it (b)

with areas having differently sized squares (see Fig. 15a).
Although the graphical results on such images are not sur-
prising in general, we show in Fig. 15b the output from
statistical cross-correlation, as it also illustrates how the oper-
atorworks.Note that the “target” histogram (that of thewhole
image)mostly consists of an equal number of black andwhite
points (plus a smaller number of points having an intermedi-
ate value, due to grey lines separating the different areas of
the image). Therefore, the points that have high local cross-
correlationwith thewhole image (depicted in green) are those
that lay on the border of squares, whereas in the inner part
of any square, the histogram only consists of either white or
black points.

We have run our benchmarks on a laptop equipped with
a 6th generation Core i7 CPU; Table 1 displays the image
resolution, radius for cross-correlation, number of voxels,
execution time in seconds, and memory used in kilobytes
for each test. Execution times are as expected: the cross-
correlation operator (benchmark “scmp”) is linear in the size
of the model, as well as the Euclidean distance transform
algorithm (“maurer”), and the surrounded operator (“maze”),
whereas Chamfer distance, employing a variant of the Dijk-
stra shortest-path algorithm, has complexity n log n, which is
apparent when the size of the model grows by powers of two.

6 Medical image analysis with ImgQL

MR images are produced using different kinds of sequences
of magnetic field gradients and radio-waves. Images so
obtained are called weighted images; these can be fur-
ther post-processed in various ways. For instance, typ-
ical weighted images are those produced using Fluid-
attenuated inversion recovery pulse sequence (MR-FLAIR),
T2 weighted pulse sequence (MR-T2w), or diffusion-
weighted images, whereas theApparent Diffusion Coefficient
maps (ADC) are obtained via post-processing of diffusion-
weighted images. A standard reference for such matters is
[14]. In this section, we illustrate our approach on the seg-

Table 1 Benchmark results on
some 2d synthetic images.
Images have the same horizontal
and vertical size

Benchmark Resolution Voxels Time (s) Memory (kb)

scmp 512 (r: 15) 262,144 12.01 20,156

scmp 512 (r: 20) 262,144 19.16 19,996

scmp 1024 (r: 5) 1,048,576 6.23 40,536

scmp 1024 (r: 10) 1,048,576 22.92 41,456

scmp 1024 (r: 15) 1,048,576 49.41 41,344

scmp 1024 (r: 20) 1,048,576 88.38 41,660

scmp 2048 (r: 5) 4,194,304 27.7 127,468

scmp 2048 (r: 10) 4,194,304 95.99 127,404

scmp 2048 (r: 15) 4,194,304 196.66 127,608

scmp 2048 (r: 20) 4,194,304 337.3 127,676

scmp 4096 (r: 5) 16,777,216 112.45 471,440

scmp 4096 (r: 10) 16,777,216 370.01 471,564

scmp 4096 (r: 15) 16,777,216 783.24 471,536

scmp 4096 (r: 20) 16,777,216 1352.89 438,656

maurer 512 262,144 1.66 22,808

maurer 1024 104,8576 6.74 49,824

maurer 2048 4,194,304 28.01 125,512

maurer 4096 16,777,216 113.3 477,044

chamfer 512 262,144 11.81 19,840

chamfer 1024 104,8576 83.81 41,464

chamfer 2048 4,194,304 627.68 125,612

chamfer 4096 16,777,216 5173.41 470,460
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mentation of glioblastoma tumour and oedema in images
obtained using MR-FLAIR. We first show the steps on 2D
images and then present further results for 3D images.

For glioblastoma, our procedure was successfully tested
on five images from different sources, that were acquired in
very different conditions. However, validation of themethod-
ology for actual clinical usage requires extensive clinical
research. We refer to Sect. 6.2 for preliminary validation
results and a more detailed discussion.

6.1 Example: segmentation of glioblastoma

In this example, we detail the specification of an anal-
ysis aimed at the segmentation of glioblastoma (GBM)
and oedema in MR-FLAIR images. Being able to segment
tumour and oedema in medical images can be of immediate
use for automatic contouring applications in radiotherapy,
and, in perspective, it can be helpful in detecting the invis-
ible infiltrations in computer-aided diagnosis applications.
The procedure is non-trivial, but every step is justified by
morphological and spatial considerations on the arrangement
of parts of the head and the brain.

Normal tissues of the head can be divided into several
classes. The outer layer of the head consists of adipose tis-
sue (and skin) surrounding the skull that in turn consists of
bone and bone marrow. The skull encloses the brain tissues.
The brain itself is suspended in cerebrospinal fluid (CSF)
and isolated from the blood stream. Thresholds in the grey
levels of images can be used to single out specific tissues in
a medical image; however, in doing so, noise is generated
in the form of (small, scattered) regions not belonging to
the tissue. The relative positioning of tissues—the so-called
topological information of the image—plays an important
role in suppressing such noise. We will see in the following
how such information is encoded by logic formulas in the
methodology we propose.

GBMs are intracranial tumours composed of typically
poorly marginated, diffusely infiltrating necrotic masses.
Even if the tumour is totally resected, it usually recurs, either
near the original site, or at more distant locations within the
brain. GBMs are localised to the cerebral hemispheres and
grow quickly to various sizes, from only a few centimetres,
to lesions that cover a whole hemisphere. Infiltration beyond
the visible tumour margin is always present. In MR-FLAIR
images, GBMs appear hyperintense and surrounded by vaso-
genic oedema.9

Segmentation of GBM according to our method is per-
formed in three steps:

9 Vasogenic oedema is an abnormal accumulation of fluid from blood
vessels, which is able to disrupt the blood–brain barrier and invade
extracellular space.

Fig. 16 a Slice of MR-FLAIR brain acquisition of a patient, Case
courtesy of Dr. Ahmed Abd Rabou, Radiopaedia.org, rID: 22779; b
a different slice of the acquisition in Fig. 16a; c slice of MR-FLAIR
brain acquisition of a different patient—Case courtesy of A.Prof Frank
Gaillard, Radiopaedia.org, rID: 5292;d histograms of Fig. 16a (in blue),
of Fig. 16b (in green) and of Fig. 16c (in red) (colour figure online)

1. a preprocessing step (not using topochecker), aimed
at normalisation of images, to make the choice of thresh-
olds in our experiment applicable to different images;

2. brain segmentation, to limit the area of the image where
the tumour is searched for;

3. tumour and oedema segmentation, which is the stated
goal of this example.

6.1.1 Preprocessing

Histograms of grey levels of images10 of the same body
part may differ from each other due to inter-patient or inter-
scanner differences or depending on the actual acquisition
volume (Fig. 16) or the file format used to store the image.11

10 To ease visual comparison, in Figs. 16d, 17d, 18b, the histograms
that we show are normalised so that the measure of the area below the
curve is 1.
11 For instance, jpeg images, as downloaded from Radiopaedia.org,
typically use 8-bit precision (typical range 0-255) (see Fig. 16), whereas
dicom images saved by scanners typically use 12 or 16-bit (for MR
images, the typical range is 0–4096 or 0–65536, respectively) (see
Fig. 18).
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Fig. 17 Finding themask for normalisation: a the pixels in Fig. 16cwith
grey levels below a given threshold are shown in green; b the sub-mask
that touches the border of the image is shown in orange; c the mask of
the image excluding the background is shown in green; d histograms
of normalised version of images in Fig. 16a (in blue), in Fig. 16b (in
green), in Fig. 16c (in red), and in Fig. 18a (in orange) (colour figure
online)

More uniform results, on different images, can be obtained
by dividing the intensity of each pixel by the average of the
intensity levels of all the significant pixels in the image. A
pixel is considered significant when it does not belong to the
background. Significant pixels are selected using a Boolean
mask (indicated by the green area in Fig. 17c). In order to
compute such a mask, we start from the observation that the
background (corresponding to the air surrounding the head
of a patient) is darker than the rest of the image, so it mostly
contributes to the initial part of its histogram. This situation
is witnessed in the histogram by a peak close to 0. A thresh-
old is thus selected for each image as the value immediately
following such peak.Using this threshold, it is possible to iso-
late the background, by separating it from the head (Fig. 17a).
Note that the obtained mask also includes cerebrospinal fluid
(CSF) and bone. The part of themask that touches the bound-
ary of the whole image is then selected (Fig. 17b) and its
complement, that is, the green area in Fig. 17c, is finally used
to select the significant pixels to compute the mean value for
normalisation. Figure 17d shows the histograms of images
after normalisation.

We remark that equalisation of histograms is another form
of normalisation, frequently used for texture analysis ([48]).
We do not use this method as it changes the relationship

Fig. 18 Effect of histogram equalisation: a a slice of MR acquisition of
brain, on the left, and its equalised version, on the right—case courtesy
of Dr. Ahmed Abdrabou, Radiopaedia.org, rID: 39024; b histograms of
grey levels of the original (green) and equalised (red) version of image
in (a) (colour figure online)

between grey levels of different structures in the image (as
shown in Fig. 18), that we use rather prominently for differ-
entiating different tissues; normalisation of image intensity
is sufficient for our purposes.

6.1.2 Brain segmentation

In this second phase of our method, we perform a segmenta-
tion of the brain in order to limit the search area of the tumour,
by means of specific logic formulas. This improves the accu-
racy of the output (e.g. avoiding areas in bone marrow or
skull) and reduces computing time.

In the process below, we fix some thresholds for identi-
fying different tissues in the brain; note that, thanks to the
preprocessing step described above, these can be kept uni-
form across different images.

Intuitively, the general model of a patient head that we
use to segment the brain in MR-FLAIR images is defined as
follows:

– Darker pixels in the head belong to CSF and bones;
– Brighter pixels belong both to adipose tissue surrounding
the head, and to bone marrow;
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– Also pixels belonging to the tumour and oedema are
brighter than the surrounding tissues;

– The brain region is composed of white matter, grey mat-
ter, tumour and oedema;

– The brain (excluding the tumour) has intermediate inten-
sities and is mainly surrounded by CSF.

For the segmentation of the brain, we use the normalised
NIfTI imageof theMR-FLAIRacquisition shown inFig. 16c.
In the rest of the analysis, the relevant attribute, i.e. the nor-
malised grey level, of each pixel in this image is referred to
as FLAIR.

It is convenient to define a few additional operators that
serve as macros and that are specifically useful in the seg-
mentation procedure that follows; for readability reasons, we
use a prefix notation for these operators:

grow(Φ1, Φ2) � (Φ1 ∨ Φ2) S ¬Φ2

denoise(Φ) � Φ T D≥2¬Φ

closeTo(Φ) � D<3 Φ

Formula grow(Φ1, Φ2) is inspired by the image segmen-
tation method of seeded region growing [1]. This method
starts from a number of seed points in the region of inter-
est and examines neighbouring points to decide whether
they should be added to the region. The definition of
grow(Φ1, Φ2) is a form of region growing, under the
assumption that it is guaranteed that all points satisfying Φ1

are also satisfying Φ2.
We start from points that satisfy propertyΦ1 and to which

all points satisfying propertyΦ2 are added that, together with
those satisfyingΦ1, forma common region that is surrounded
by points that do not satisfy Φ2.

Let A be the set of points satisfying formula Φ. Formula
denoise(Φ) is used to remove small areas from A, as
follows: first A is shrunk by 2 units; in doing so, some sub-
areas of A may disappear; the areas that do not disappear
are restored to their original shape by means of the touch
operator. This operation is similar to J <2, but it preserves
the contours of the original area A. Formula closeTo(Φ)

denotes the points that lay at a distance less than 3 units from
the set of points satisfyingΦ. For this analysis, theD Cham-
fer distance operator uses 4 adjacent pixels per node and the
distance units are in millimetres with respect to the actual
dimension of the head, i.e. the real-world dimensions.

Next, we define a number of useful thresholds for the grey
levels of the image that are used to obtain a first approxima-
tion of different kinds of tissue of interest:

lowIntsty := FLAIR < 0.5;
medIntsty := FLAIR > 0.5 ∧ FLAIR < 1.3;
highIntsty := FLAIR > 1.7;
tumIntsty := FLAIR > 1.17 ∧ FLAIR < 1.53;
oedIntsty := FLAIR ≥ 1.47 ∧ FLAIR < 2.4;

We distinguish three general levels of intensity (low,
medium, and high), and two specific intensities that are typ-
ical for tumour and oedema, respectively.

We are now ready to start the segmentation procedure.
First, we identify the points that are part of the background
of the image. These all have a very low intensity, but there
are other points in the image that have low intensity as well.
What distinguishes the points of the background from the
other low intensity points is that the background area touches
the border of the image.

We assume that the special atomic proposition, named
border is satisfied by the points that form the border of an
image; this predicate is predefined in topochecker. This
way points of the background are exactly those that satisfy
the property background:

background � lowIntsty T border

The points that satisfy background are shown in red in
Fig. 19b. The original image is shown in Fig. 19a.

The next step is to look for the external border of the head,
consisting of skin and adipose tissue. For our purposes, it is
sufficient to identify the adipose tissue, since the brain is
surrounded by the adipose tissue, which separates it from the
skin.

Adipose tissue in the normalised MR-FLAIR images has
intensity above 1.7, so of high intensity. As before, there
may be other points with high intensity in the image, but we
exploit the knowledge that adipose is at the external border
of the head, and thus close to the background. These points
can be found with the following formula:

adipose � highIntsty T closeTo(background)

The points that satisfy adipose are shown in green in
Fig. 19b.

Using the properties background and adipose, it is
not difficult to specify the points that are part of the head.
These are all those points that are not part of the background
or close to adipose tissue.

head � ¬(closeTo(adipose) ∨ background)

The points that satisfy head are the union of the green and
red points in Fig. 19c (see below).

In the next steps, we show how we can distinguish the
various tissues within the area of the head, namely the brain
and the cerebrospinal fluid (CSF) that contains it. We start
from the identification of points that are part of CSF. These
are points that arewithin the head and that have low intensity:

CSF � lowIntsty ∧ head
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Fig. 19 Experimental results of using topochecker for segmenta-
tion of glioblastoma and oedema: a a slice of a brain acquisition of
a patient—case courtesy of A.Prof Frank Gaillard, Radiopaedia.org,
rID: 5292; b background (in red) and adipose tissue (in green); c out-
put showing head (in red or green) and CSF (in red); d output of
brainApprox; e output of brainSeed; f output of noisyBrain;
g output of brain; h output of tum0 (in green) and oed0 (in red);

i output of tum1 (in green) and oed1 (in red); j output of tum2 (in
green) and oed2 (in red); k output of tumour (in green) and oedema
(in red) l a slice of a brain acquisition of another patient—case cour-
tesy of Dr. Ahmed Abd Rabou, Radiopaedia.org, rID: 22779;m output
of tumour (in green) and oedema (in red); n another slice from the
second patient; o output of tumour (in green) and oedema (in red)
(colour figure online)

The points that satisfy CSF are shown in red in Fig. 19c.
We proceed with segmentation of the brain in four subse-

quent steps. As a first approximation, we look for the points
of the brain with medium intensity within the head (and that
are not belonging to CSF). Within this approximation, we
select some inner areas that are most certainly part of brain
tissue and that can serve as a seed from which to ‘grow’ in a
more precise way points belonging to the brain. Finally, we
remove pieces that have been erroneously identified as part
of the brain, but that are actually relatively small areas that
are part of the skull or bone, having a similar intensity as that
of the brain. This way we obtain all pixels that are actually
part of the brain. The four steps of the specification are given
below.

brainApprox � head ∧ ¬CSF ∧ medIntsty
brainSeed � D>10¬brainApprox
noisyBrain � grow(brainSeed,head ∧ ¬CSF)

brain � noisyBrain T brainSeed

The points that satisfy brainApprox, (brainSeed, and
noisyBrain, respectively) are shown in green in Fig. 19d
(Fig. 19e, f, respectively). The final result of the brain is
shown in Fig. 19g.

6.1.3 GBM segmentation

In the final part of our analysis, we identify tumour and
oedema regions. Since in MR-FLAIR, GBM and oedema
are hyperintense areas, and the oedema is brighter than the
tumour,we start by using the thresholdswe introduced before
that provide a rough segmentation of the image shown in
Fig. 19a:

tum0 � J <1(tumIntsty S (brain ∨ CSF))

oed0 � J <1(oedIntsty S (brain ∨ CSF))

In Fig. 19h, we show in red the points that satisfy formula
oed0 referring to the oedema, and in green those satisfying
formula tum0 referring to the tumour. These are points that
have the selected intensity (oedIntsty and tumIntsty,
respectively) and are part of the brain tissue, i.e. they are
surrounded by brain or CSF. Note that the regions oed0
and tum0 are partially overlapping. Moreover, we remove
from these identified regions areas whose radius is smaller
than 1mm using the J <1 operator.

An important constraint, that drastically reduces noise in
the output of our analysis, is the a priori knowledge that
oedema and tumour are very close to each other. We exploit
this knowledge using the distance operator D as follows:
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Fig. 20 Effects of using cross-correlation on a 3D volume. a, c, e target image for cross-correlation (glioblastoma in red, oedema in blue). b, d, f
Output of the cross-correlation operator. Case courtesy of Dr. Ahmed Abdrabou, Radiopaedia.org, rID: 39024 (colour figure online)

Fig. 21 Experimental results of using topochecker for segmentation of glioblastoma and oedema on a 3D volume. a, c, e Original slices. b, d,
f Output of the segmentation of glioblastoma (in red) and oedema (in blue). Case courtesy of Dr. Ahmed Abdrabou, Radiopaedia.org, rID: 39024
(colour figure online)

oeddst � D≤2oed0
tum1 � tum0 T oeddst
oed1 � oed0 ∧ (oeddst R tum1)

We first define the region oeddst at distance less than
2mm from oed0 then select sub-regions of tum0 that touch
oeddst (formula tum1) and sub-regions of oed0 that can
reach points satisfying tum1 by passing only through points
satisfying oeddst (formula oed1). The result is shown in
Fig. 19i. Comparing the latter with Fig. 19h, we can observe
that somegreen areas, located in the left half of the brain, have
disappeared. Thesewere pointswith a similar intensity as that
of tumour tissue, but not actually part of it since theywere not
connected to the tumour. In this example, we used shortest-
path distance as an approximation of Euclidean distance, for
the sake of execution speed, as high accuracy for the distance
is less important in this particular case.

tum2 � denoise(tum1)

oed2 � denoise(oed1)

Figure 19j illustrates the areas characterised by tum2
(green) andoed2 (red). Compared to Fig. 19i, this removes a
number of small detached areas of oedema that were located
in the tumour area and should be considered as noise.

Finally, tumour and oedema are defined as being inter-
reachable. This part could remove some separate areas that
have tumour or oedema intensity but should not be considered
as such since they are too far apart. In this particular case,
no such areas were present apparently as can be observed
comparing Fig. 19j with the final output of the segmentation
in Fig. 19k.

tumour � tum2 T oed2
oedema � oed2 T tum2

As a further result, in Fig. 19 we show the final segmentation
of tumour and oedema on two other images from a different
patient applying the same specification. Figure 19m shows
the segmentation of the image in Figs. 16a, and 19o shows
the one of the image in Fig. 16b. The original images are
also shown aside of the result in Fig. 19 for more convenient
comparison.

The whole analysis presented in this section has been
carried out in 2D. The same approach also works in 3D,
with minor modifications. Fig. 21 shows some slices of the
segmentation of MR-FLAIR acquisition of the patient in
Fig. 18a, using topochecker on the whole 3D volume
image. Some minor modifications to the model checking
session presented in this section were required; the most
relevant one is that cross-correlation was used to enlarge
the area of tum1 to tum1’ prior to using tum2 �
denoise(tum1’). See Fig. 20.

In general, there may be many different ways to obtain
an accurate segmentation. Ideally, these should be robustly
working for many different images, both in 2D and in 3D.
In future work, we plan to investigate this in more detail and
compare various variants from the point of view of robust-
ness, accuracy and computational efficiency. Regarding the
latter, the 2D analysis of GBM was performed on a standard
laptop (equipped with an 6th generation Intel CORE i7 CPU,
and 8 gigabytes of RAM) and performed in a little less than
1 minute, which as a first indication is in line with the current
state of the art. However, the tool topochecker still does
not scalewell to 3D image analysis, as execution time for a 3D
image (resolution: 512×512×1024, about 6 million points)
on the same machine takes about half an hour. We envisage
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that new algorithms (mostly, for statistical cross-correlation)
and the adoption of specialised imaging libraries—in place of
the general-purpose graph-based approachwhich is currently
implemented—may improve performance considerably.

6.2 Validation

The work presented in this section is aimed at providing an
illustration of the analysis capabilities of our logic-based
methodology, rather than providing complete clinical case
studies. For instance, consider the glioblastoma specifica-
tion, which is rather concise, consisting of a less than 30
lines long logical specification, and a simple preprocessing
step. Although such procedure was successfully tested on
five images from different sources and acquired in very dif-
ferent conditions, this is certainly not sufficient to validate
our example as a glioblastoma segmentation methodology
for future clinical usage. Future work aims at improving the
method, eliminating corner cases in the formulas as much as
possible, making it robust to different acquisition conditions
and properly validating it. More generally speaking, clinical
experimentation is the next step in our research programme.

However, some conclusions can already be drawn from the
data we have, both with respect to efficiency and to accuracy
of the obtained results.

Analysis time is proportional to the size of the image
(the algorithm is linear). In the glioblastoma example, MR-
FLAIR very often has a slice size of 256 × 256 pixels,
multiplied by 20 − 30 slices. As a rough estimate, the
execution time for the analysis of a single 1024 × 1024-
voxels slice—including preprocessing—on a standard laptop
(equipped with an Intel CORE i7 CPU, and 8 gigabytes of
RAM) currently stays below one minute. This information,
although not being a fully fledged benchmark, provides a first
indication that, efficiency-wise, our approach is in par with
the state of the art in semi-automatic glioblastoma segmen-
tation procedures (see for example [38]). We remark that our
procedure makes use of a prototype general-purpose model
checker, that could be amenable to further optimisation, e.g.
employing specialised, well-known flood-filling algorithms
for images for model checking the surrounded connective—
in place of the current graph-theoretical method.

A preliminary assessment of the quality of the obtained
results in the case of glioblastomawas performed for a patient
of the A.O.U.S. university hospital. The patient underwent
first surgery and then radiotherapy. We compared our results
on the post-surgery MR-FLAIR with target volumes delin-
eated on the pre-treatment Computed Tomography (CT) by
one experienced radiotherapist. In particular, we considered
the gross tumour volume (GTV), i.e. what can be seen or
imaged, and the clinical target volume (CTV), which con-
tains the GTV, plus a margin for sub-clinical disease spread
which therefore cannot be fully imaged [15]. Usually for

Table 2 Score of comparison with manual segmentation (from [11])

Mean SD Median Range

Dice (%) 87 2 87 78–89

HD (mm) 3.50 1.20 3.18 2.47–5.45

glioblastomas, the CTV is defined as a 2–2.5-cm isotropic
expansion of GTV within the brain. In order to quantify the
effectiveness of our segmentation, we computed the Dice
coefficient (DC), that we used to measure the morpholog-
ical similarity between the manual segmentation MS and
automatic segmentation AS. The coefficient is defined as
DC = 2V (MS∩AS)

V (MS)+V (AS) , where V (a) is the volume of a, that
is, the number of voxels that belong a; DC ranges from 0
to 1; 0 indicates no overlap, and 1 indicates complete over-
lap. The CT volume was co-registered to the FLAIR volume.
Then,we considered the region R obtained as the union of the
oedema and tumour regions, as found using our method. We
compared R to the GTV contour, and furthermore we com-
pared R, expanded by 2.5cm (as explained above) to the CTV
contour. We obtained DC = 0.76 for GTV and DC = 0.81
for CTV. Although a single case does not have clinical signif-
icance, these results are very encouraging, and aligned with
state-of-the-art methods for automatic and semi-automatic
segmentation of glioblastoma [35]. In [11], a variant of the
method we described was assessed on a dataset of 7 patients
affected by GBM, that have undergone radiotherapy. Seg-
mentation results were evaluated using the Dice coefficient
and the percent (0.95) Hausdorff distance (HD) between
obtained segmentation volumes and theCTVmanually delin-
eated by an expert radiotherapist for radiotherapy planning.
The results are shown in Table 2. The evaluation was per-
formed on a midrange portable with an intel i7 CPU and 8
GB of RAM, the same machine used for the other experi-
ments in the current paper. The average execution time per
patient (3D image size: 256 × 256 × 40) was 10 minutes.

The state of the art in automated glioblastoma segmenta-
tion is represented by the Brain Tumor Image Segmentation
Benchmark (BraTS) [60]. The top results in most recent edi-
tions, as already mentioned, are almost exclusively based on
machine learning algorithms. The BraTS challenge is aimed
at segmentation of the GTV, as opposed to the CTV that was
studied in [11]. A direct comparison is therefore not possible.
Future work will be directed to clinical studies of procedures
formalised using spatial logics, including (possibly refined)
versions of the one we presented, and to comparison with
existing benchmarks and methods for each type of study.

Finally,we note that numeric thresholds and other parame-
ters (e.g. the number of nestedN constructs in some formulas,
the number of bins for statistical analysis, etc.) have been
chosen by the medical physicist in charge of the analysis,
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on the basis of expert knowledge on the matter and in some
cases by trial-and-error. The values that we used might prove
stable in clinical validation (and this is the purpose of the
preliminary normalisation of images that we use), but this
is not yet to be taken for granted, or even to be expected in
more general situations. Instead, parameter calibration on
a per-image or per-study basis will be an important subject
in our future research. Such calibration may be fully auto-
matic (e.g. through machine learning techniques), but this
is just one possibility. It would also make sense to adopt a
semi-automatic approach (which is also frequent in state-of-
the-art techniques, see e.g. [35,38,72,80]), involving human
interaction with an expert to merely calibrate the parame-
ters, rather than performing a full manual segmentation, in
order to save a large part of the time (and costs) required for
preparation to radiotherapy or surgery.

7 Conclusions and future work

This work provides a first, promising exploration of logical
methods for declarativemedical image analysis in the domain
of radiotherapy.Adeclarative approachmakes analysis trans-
parent, reproducible, human-readable, and exchangeable,
and permits domain experts who are not technicians to under-
stand the specifications. Such advantages are akin to those
obtained in other domains, such as the application of the
Structured Query Language (SQL) in the field of databases,
or the introduction of query languages (XPATH, XSLT, …)
in semi-structured data management.

Logical properties are used as classifiers for points of an
image; this can be used both for colouring regions that may
be similar to diseased tissues, and therefore being diseased
tissue in turn, and for colouring regions corresponding to
organs of the humanbody.Envisaged applications range from
contouring to computer-aided diagnosis. Our logic ImgQL
is able to predicate on both shortest-path and Euclidean dis-
tance at the same time, andtopochecker implements both
operators. In MI, shortest-path distances proved useful so far
mostly to speed up interactive development; this is imple-
mentation dependent, as theModifiedDijkstra transform that
we use (see Sect. 3.2) currently performs faster than Mau-
rer distance transform in our tests. We also considered the
embedding of specific operators for MI in ImgQL such as an
operator for texture analysis based on first-order statistical
methods. Other options and operators could be considered
following a similar approach, providing a way to include
state-of-the-art analysis techniques that can be conveniently
combined using the spatial operators of the logic.

It is noteworthy that the analysis we designed for glioblas-
toma segmentation can be used,withmildmodifications, also
to analyse the whole 3D volume of an image at once. 3D
analysis is a relatively new application in medical imaging,

leveraging the precision/efficiency trade-off of more classi-
cal methods. Furthermore, 3D analysis may be combined
with existing applications of 3D printing in preparation for
surgery (see [68]), by providing practitioners with models of
a patient’s body, with the relevant regions, identified by our
method, printed in different colours. Such aspects constitute
a further interesting line of research for future work.

Part of our ongoing work consists in identifying novel
logical operators that are useful in medical imaging. So
far, we only used operators that classify individual pixels
or voxels. However, drawing inspiration from the family of
region calculi (see [3]), one could also classify regions, tak-
ing advantage of “collective” observations on sets of voxels
that belong to the same area. Some work in this direction
is [23], including the definition of operators related to con-
nectedness of regions; further work will be directed to the
investigation of properties related to the size of regions, or to
their morphological properties. Also, the “distance-bounded
surrounded” operator defined in [64] could be useful in med-
ical imaging. A limitation of the model checking algorithm
in [64] is its quadratic complexity. We have shown that the
application of distance transforms yields a linear algorithm
for a weaker variant of the bounded surrounded operator for
the case of images (that is, regular grids).

We recall thattopochecker is a spatio-temporal model
checker. Temporal reasoning could be exploited in future
work to consider, for instance, the sequence of acquisitions
of a patient in order to reason about the evolution of image
features such as tumours, which is very important in radio-
therapy applications.

Our experiments show that typical analyses carried out
using spatial model checking in medical imaging require
careful calibration of numeric parameters (for example, a
threshold for the distance between a tumour and the asso-
ciated oedema, or the size of areas identified by a formula,
that are small enough to be considered noise, and ought be
filtered out). The calibration of such parametersmight be per-
formed using machine learning techniques. In this respect,
future work could be focused on the application, in the con-
text of our research line, of the methodology used in the
development of the logic SpaTeL, aimed at signal analysis
(see [6,7,42,45]), that pursuesmachine learning of the logical
structure of image features. We emphasise that such a devel-
opment, if implemented, would be a radical improvement in
application of machine learning to medical imaging. It can
be framed under the recent research trend on explainable
artificial intelligence, as it would yield a procedure that can
explain in terms of a human-readable language the method-
ology that a machine learning algorithm extrapolates from
data. Our topological approach to spatial logics would be
a key enabling technique for this purpose, as the formulas
obtained in the SpaTeL approach are not meant to be intelli-
gible by humans. It is worth noting that machine learning and
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deep learningmethods have also been applied to the detection
of tumours in very recent literature [4,74]. On the other hand,
our application of machine learning could as well be focused
simply on the identification of numeric parameters, rather
than logic formulas, that may depend on complex features of
images.

The example of glioblastoma that we illustrated in
Sect. 6.1 has immediate practical relevance. As we already
mentioned, improvement and validation of the procedure are
in progress; see for instance [10] for a revised version of the
tool including validation of glioblastoma segmentation on a
larger dataset. The normalisation step that we employ could
be improved using state-of-the-art methods (see [54,57], and
the references therein).

Planned future developments also includemeans for inter-
active refinement of analysis, based on visual fine-tuning
of specific values (e.g. thresholds or distances) that may
have a non-linear effect on the results of complex queries,
with significant impact on methods that require human
interaction—e.g. interactive segmentation in preparation for
surgery, or contouring for radiotherapy planning.
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