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Abstract
In the automata theoretic approach to explicit state LTL model checking, the synchronized product of the model and an
automaton that represents the negated formula is checked for emptiness. In practice, a (transition-based generalized) Büchi
automaton (TGBA) is used for this procedure. This paper investigates whether using a more general form of acceptance,
namely a transition-based generalized Rabin automaton (TGRA), improves the model checking procedure. TGRAs can have
significantly fewer states than TGBAs; however, the corresponding emptiness checking procedure is more involved. With
recent advances in probabilistic model checking and LTL to TGRA translators, it is only natural to ask whether checking
a TGRA directly is more advantageous in practice. We designed a multi-core TGRA checking algorithm and performed
experiments on a subset of the models and formulas from the 2015 Model Checking Contest and generated LTL formulas
for models from the BEEM database. While we found little to no improvement by checking TGRAs directly, we show how
various aspects of a TGRA’s structure influences the model checking performance. In this paper, we also introduce a Fin-
less acceptance condition, which is a disjunction of TGBAs. We show how to convert TGRAs into automata with Fin-less
acceptance and show how a TGBA emptiness procedure can be extended to check Fin-less automata.

Keywords Model checking · Explicit state · LTL · ω-Automata · On-the-fly · Generalized · Büchi · Rabin · Multi-core ·
Parallel

1 Introduction

1.1 Model checking

Model checking is a way to ensure that a systemmodelled by
a Kripke Structure K satisfies some behavioural properties
expressed as an LTL formula ϕ. In the automata theoretic
approach to LTL model checking [34], the formula ϕ is first
transformed into aBüchi automaton A¬ϕ capturing forbidden
behaviours. This automaton is then synchronized with the
system K , and the procedure then amounts to testingwhether
the language of this synchronized product is empty:L (K ⊗
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A¬ϕ) = ∅. If the language of the product is non-empty, it
means there exists a counterexample: an execution of K that
does not satisfy ϕ.

When performed explicitly (i.e. not using any kind of
symbolic representation of those automata), the procedure
is limited by the well known state-space explosion problem,
where the product automaton K ⊗ A¬ϕ becomes too large to
handle.

In what follows, we will focus on the emptiness check
procedure, i.e. the algorithm that takes an automaton A as
input, and decides if its languageL (A) is empty.We abstract
away that fact that in a model checkerA is a product, but we
have to account for the fact that A can be quite large.

On-the-flymodel checkingmitigates the state-spacemem-
ory constraints by only storing the states (not the transitions)
encountered during the emptiness check. The search proce-
dure is launched from an initial state. Reachable states are
computed on demand via a successor function, and in case a
counterexample is detected the search may end well before
the entire state-space is explored. A consequence is that in
practice emptiness checks rely on depth-first search (DFS)
exploration [33].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-019-00508-4&domain=pdf


308 V. Bloemen

With current hardware systems, one can further improve
the model checking performance by using multiple cores.
This way, the time to model check can be significantly
reduced; related work shows that even though the prob-
lem is difficult to parallelize, in practice an almost linear
improvement with respect to the number of cores can be
obtained [8,16,20,32].

Finally a way to reduce the size of the product automa-
ton is to keep the sizes of the system’s state-space and the
negated property automaton as small as possible. In particu-
lar, smaller property automata can be obtained by usingmore
complex acceptance conditions.

The automata theoretic approach to LTL model check-
ing is often performed using Büchi automata (BAs), or
even transition-based generalizedBüchi automata (TGBAs).
TGBAs can be linearly more concise than BAs, resulting in
smaller products, and can be emptiness checked using an
algorithm that enumerates strongly connected components
(SCCs) at no extra cost compared to SCC-based algorithms
on BAs [10].

1.2 Our goal: emptiness checks using generalized
Rabin automata

For probabilistic model checking, working with determinis-
tic automata is important, as otherwise the resulting product
automaton might not be a Markov chain [3]. Since it is well
known that not all BAs can be determinized, probabilistic
model checkers use Rabin automata (RAs) instead. More
recently, order-of-magnitude speedups were reported when
performing probabilistic model checking using a generalized
acceptance condition called transition-based generalized
Rabin automata (TGRAs) [9]. Also, there has been a lot
of interest into building tools such as LTL3DRA [2] and
Rabinizer 3&4 [15,22,24] for translating LTL formulas
into small deterministic TGRAs.

Our objective is to study whether the speedups observed
with TGRAs in probabilistic model checking also hold for
non-probabilistic explicit model checking. There are plenty
of algorithms for checking BAs and TGBAs (both sequen-
tially and multi-core) [8,16,32,33]; however, for Rabin
acceptance there is only a recentwork on aGPUalgorithm for
checking (non-generalized) RAs [35] and a TGRA checking
algorithm for probabilistic model checking [9].

None of these works address our question: in a setting
where determinism is not necessary, is there any advan-
tage to using transition-based generalized Rabin automata
(TGRAs) over transition-based generalized Büchi automata
(TGBAs)? To do so, we introduce a multi-core empti-
ness check procedure for TGRAs. We implement it in
LTSmin [21], and benchmark several model checking tasks
realized using TGRAs or TGBAs.

We should also point out that having an efficient empti-
ness check for TGRAs has more applications than just
model checking, because generalized Rabin acceptance can
be thought of as a normal form for any acceptance condition.
Such a TGRA emptiness check could therefore be useful
to ω-automata libraries such as Spot [12] that work with
automata using arbitrary acceptance conditions [1]. In Spot
2.5.2, ω-automata with complex acceptance conditions are
first converted into TGBAs before being emptiness-checked.

Two recent tools called LTL3TELA (no publication yet)
and Delag [30] convert LTL formulas into automata with
unconstrained acceptance conditions: the acceptance is sim-
ply chosen to help the translation into smaller (in the case
of LTL3TELA) or deterministic (Delag) automata. So far
it is not clear whether these translations can be useful in the
context of explicit model checking. By looking at TGRAs,
we contribute a partial answer to this question.

This paper is an updated version of an article published in
the Spin’17 conference [6]. We extend that previous work in
two ways.

First, in this paper we also introduce a Fin-less accep-
tance condition, which is a disjunction of TGBAs. We show
how a TGBA emptiness procedure can be trivially extended
to support Fin-less acceptance and we empirically compare
how automata with a Fin-less acceptance relate to TGBA and
TGRA in terms of model checking performance.

Second,weextend the set of experiments to includebench-
mark models from the BEEM database [31], accompanied
by randomly generated LTL formulas (obtained from [4]). In
total, more than 3000 model and formula combinations were
added. We observed that the TGRAs generated from these
formulas have amore complex structure compared to the ones
from prior experiments. Experiments show how this affects
the relative performance of checking TGRAs versus TGBAs.
We also provide a more detailed analysis of the results.

1.3 Overview

The remainder of the paper is structured as follows. We pro-
vide preliminaries in Sect. 2 and present our algorithm in
Sect. 3. We discuss related work in Sect. 4. Implementation
details and experiments are discussed in Sect. 5 and we con-
clude in Sect. 6.

2 Preliminaries

We define ω-automata using acceptance conditions that are
positive Boolean formulas over terms like Fin(T ) (the transi-
tions in T should be seen finitely often) or Inf(T ) (infinitely
often). This convention, inspired from the HOA format [1],
allows us to express all traditional acceptance conditions and
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Table 1 Acceptance condition formulas corresponding to classical
names

(B) Büchi Inf(I1)

(GB) Generalized-Büchi
∧

i Inf(Ii )

(C) Co-Büchi Fin(F1)

(R) Rabin
∨

i Fin(Fi ) ∧ Inf(Ii )

(GR) Generalized-Rabin
∨

i Fin(Fi ) ∧ Inf(I 1i ) ∧
Inf(I 2i ) ∧ . . . ∧ Inf(I pii )

(FL) Fin-less
∨

i Inf(I
1
i ) ∧ Inf(I 2i ) ∧

. . . ∧ Inf(I pii )

(EL) Emerson–Lei any positive formula of
Fin(Fi ) and Inf(Ii )

Fi and Ii denote sets of transitions

is similar to the formalism used by Emerson and Lei 30 years
ago [14] using state-based acceptance.

Definition 1 (TELA) A transition-based Emerson–Lei
automaton (TELA) is a tuple A = (�, Q, q0, δ,Acc) where
� is an alphabet, Q is a finite set of states, q0 ∈ Q is the
initial state, δ ⊆ Q × � × Q is a transition relation, Acc is a
positive Boolean function over terms of the form Fin(T ) or
Inf(T ) for any subset T ⊆ δ. For a transition t ∈ δ, we note t s

its source, t� its label, and td its destination: t = (t s, t�, td).
Runs of A are infinite sequences of consecutive transi-

tions:

Runs(A)={ρ ∈ δω | ρ(0)s = q0 ∧ ∀i ≥ 0 : ρ(i)d = ρ(i + 1)s}

The acceptance of a run ρ is defined by evaluating the
acceptance condition Acc over ρ such that:

– Fin(T ) is true iff all the transitions in T occur finitely
often in ρ.

– Inf(T ) is true iff some transitions in T occur infinitely
often in ρ.

Let ρ� ∈ �ω be the word recognized by a run ρ ∈
Runs(A) defined by ρ�(i) = ρ(i)� for all i ≥ 0. The
language of A, denoted L (A), is the set of all words ρ�

recognized by some accepting run ρ.

Some shape of acceptance conditions Acc are given
names, as shown in Table 1. We use the abbreviation TXA,
where X is any value of the first column of Table 1, to denote
a TELA whose acceptance condition has the shape given in
the last column.

For instance, a Transition-based generalized Büchi
automaton (TGBA) is a TELA where Acc = Inf(T1) ∧
Inf(T2) ∧ . . . ∧ Inf(Tn) for some n, meaning that any accept-
ing run has to visit infinitely often one transition from each
set Ti .

Fig. 1 (A1) a deterministic transition-based generalized Büchi automa-
ton recognizing GFa ∧ GFb. (A2) a non-deterministic transition-based
Büchi automaton recognizing FGa. (A3) a deterministic transition-
based co-Büchi automaton recognizing FGa (colour figure online)

As an example, automaton A1 from Fig. 1 represents a
TGBA for the formula GFa ∧ GFb. Here, transitions are
labelled by all possible assignments of a and b, i.e. elements
of � = {āb̄, āb, ab̄, ab} (ā denotes the negation of a), and
transitions are also marked using 0 and 1 to denote their
membership to the sets used in the acceptance condition. A
run of A1 is accepted if it visits both acceptance marks 0

and 1 infinitely often.
A transition-based generalized Rabin automaton (TGRA)

is a TELA where Acc has the form
∨n

i=1

(
Fin(Fi ) ∧

Inf(I 1i ) ∧ Inf(I 2i ) ∧ . . . ∧ Inf(I pii )
)
for some values of n,

and p1, p2, . . . , pn . This is a generalization of Rabin accep-
tance in the sense that in Rabin acceptance pi = 1 for all
i . Each conjunctive clause of the form Fin(Fi ) ∧ Inf(I 1i ) ∧
Inf(I 2i )∧. . .∧Inf(I pii ) is called a transition-basedgeneralized
Rabin pair (TGRP). A transition-based co-Büchi automaton
is a TGRA with n = 1 and p1 = 0; co-Büchi acceptance
consists of a single clause of the form Fin(F1).

The two automata A2 and A3 from Fig. 1 represent the
formula FGa using the alphabet � = {ā, a} and differ-
ent acceptance conditions: A2 is a transition-based Büchi
automaton while A3 is a transition-based co-Büchi automa-
ton. Both automata are minimal in their number of states and
illustrate that allowing Fin acceptance can reduce the size of
an automaton. Moreover, A3 is a deterministic automaton,
whereas no equivalent deterministic BA exists.

Figure 2 depicts a deterministic TGRA (A4) and a non-
deterministic TGBA (A5), both representing the property
FG(Fa U b). A4 is accepting if either 1 is visited infinitely
often without visiting 0 infinitely often, or if 2 is visited
finitely often and both 1 and 3 are visited infinitely often.
Only one of the two TGRPs has to be satisfied. In this case,
by comparing A4 and A5 we can (again) observe that Fin
acceptance aids in reducing the size of the automaton.

Since generalized Rabin acceptance is just a disjunction
of TGRPs, it can serve as a normal form for any acceptance
condition. Any acceptance condition can be converted into
generalized Rabin acceptance by distributing ∧ over ∨ to
obtain a disjunctive normal form, and then replacing any
conjunctive clause of the form Fin(F1) ∧ Fin(F2) ∧ . . . ∧
Fin(Fm) ∧ Inf(I 1) ∧ Inf(I 2) ∧ . . . ∧ Inf(I p) by the TGRP
Fin(

⋃n
i=1 F

i ) ∧ Inf(I 1) ∧ Inf(I 2) ∧ . . . ∧ Inf(I p). This con-
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Fig. 2 Two automata recognizing FG((Fa)U b). (A4) a non-
deterministic transition-based generalized-Rabin automaton with two
pairs. (A5) a non-deterministic transition-based generalized Büchi
automaton (colour figure online)

version can be done without changing the transition structure
of the automaton; but the downside is that it may introduce
an exponential number of TGRPs.

Strongly connected components (SCCs) are usually
defined as maximal with respect to inclusion, but this extra
constraint is not always desirable in an emptiness check,
where we are just looking for one accepting cycle. We there-
fore use the terms partial SCC and maximal SCC when we
need to be specific.

Definition 2 (SCC) Given a TELA of the form A =
(�, Q, q0, δ,Acc), a partial Strongly Connected Component
(partial SCC) is a pair C := (CQ,Cδ) ∈ 2Q × 2δ with
CQ 
= ∅ such that any ordered pair of states of CQ can
be connected by a sequence of consecutive transitions from
Cδ . We say that C is a maximal SCC if C is maximal with
respect to inclusion, thus the case where both CQ and Cδ

cannot be extended without losing strong connectivity. An
SCC is called trivial if Cδ = ∅, and hence CQ consists of a
single state.

In a TGBA whose acceptance condition has n acceptance
sets of the form Inf(T1)∧ . . . ∧ Inf(Tn), finding an accepting
run boils down to searching for a trace from the initial state
to a reachable partial SCCC for which ∀1≤i≤n : Ti ∩Cδ 
= ∅
holds, i.e. a partial SCC that intersects each acceptance set.

In a TGRA, an accepting run has to satisfy one TGRP.
A TGRP Fin(F) ∧ Inf(I 1) ∧ Inf(I 2) ∧ . . . ∧ Inf(I p) has an
accepting run if there is a trace from the initial state to a
reachable partial SCC C with F ∩ Cδ = ∅ and Ii ∩ Cδ 
= ∅
for all 1 ≤ i ≤ p. In other words, a partial SCC that contains

a transition from every Inf set and no transition from the Fin
set.

Note that in the case of a TGBA, it is always valid to
replace the search for a partial SCC intersecting all accep-
tance sets by the search for amaximal SCC intersecting these
sets. However, this cannot be done when the acceptance con-
dition uses Fin sets. For instance consider the automaton
A4 in Fig. 2 checked against the TGRP Fin( 0 ) ∧ Inf( 1 ):
the automaton has a unique maximal SCC, consisting of
both states and every transition, which does not satisfy
0 ∩Cδ = ∅ ∧ 1 ∩Cδ 
= ∅. However, those constraints hold
on the partial SCC that consists of state 0 and the loop above
it. For this reason, our algorithm will build partial SCCs that
do not include transitions labelled by Fin sets.

At the cost of introducing non-determinism, any general-
ized Rabin automaton can be converted into what we have
called Fin-less automaton1 (TFLA) in Table 1.

Proposition 1 (Fin-removal)Given a TGRAA = (�, Q, q0,
δ,

∨n
i=1 Fin(Fi )∧Inf(I 1i )∧Inf(I 2i )∧. . .∧Inf(I pii )), the TFLA

B = (�, Q′, q0, δ′,
∨n

i=1 Inf(J
1
i )∧ Inf(J 2i )∧ . . .∧ Inf(J pi

i ))

where:

– Q′ = Q ∪ Q × {1, 2, . . . , n}
– δ′ = δ

∪ {(t s, t�, (td , i)) | i ∈ {1, 2, . . . , n} ∧ t ∈ (δ\Fi )}
∪ {((t s, i), t�, (td , i)) | i∈{1, 2, . . . , n} ∧ t∈(δ\Fi )}

– J j
i = {(t s, i), t�, (td , i) | t ∈ (I ji \ Fi )} for i ∈

{1, 2, . . . , n} and j ∈ {1, 2, . . . , pi }

is such that L (A) = L (B).

Anyaccepting run ofAwill eventually reach a pointwhere
all the transitions it visited satisfy one of the generalized
Rabin pairs. The above construction, illustrated by Fig. 3,
works by introducing non-determinism to guess this point
and the pair satisfied. The non-deterministic transitions (pic-
tured with dashed lines) connect to clones of the original
automaton,2 in which taking the transitions of Fi (for pair i)
is forbidden from now on, and the acceptance condition is
set so that the other Inf sets still have to be visited infinitely
often.

Given aTFLABwith acceptance
∨n

i=1 Inf(J
1
i )∧Inf(J 2i )∧

. . .∧Inf(J pi
i ), an accepting run has to satisfy one Inf conjunc-

tion. This means that there is an accepting run if, for some

1 Strictly speaking, a Fin-less automaton could use any formula using
only Inf terms. We assume that the formula is under disjunctive nor-
mal form for simplicity and because this is what the construction of
Proposition 1 produces.
2 When implementing this construction, the number of non-
deterministic jumps can be reduced: only one such jump is needed per
cycle of the sub-automaton created for each generalized Rabin pair.
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Model checking with generalized Rabin and Fin-less automata 311

Fig. 3 Application of Proposition 1 to transform the TGRAA4 of Fig. 2
into a TFLAB4. The dashed transitions correspond to non-deterministic
jumps added to some copies of the original automaton. Each copy han-
dles one generalized Rabin pair of the original acceptance condition. In
the original acceptance 1 was used in both pairs, but since Proposition
1 creates a different set of each use, we distinguish these two sets with
1 and 1 here (colour figure online)

1 ≤ i ≤ n, there is a trace from the initial state to a reachable
partial SCC C such that J ki ∩ Cδ 
= ∅, for all 1 ≤ k ≤ pi .

A TGBA checking algorithm can be easily extended to
also check for TFLA emptiness. This is achieved by tracking
all acceptance sets in each found partial SCC. Thus, given the
automaton B4, we would track whether 1 , 1 , and 3 have a
non-empty intersection in each SCCC . Then, when checking
whether a partial SCC C contains an accepting cycle, the
algorithm iterates over 1 ≤ i ≤ n to search for an i such that
J ki ∩ Cδ 
= ∅ holds for all 1 ≤ k ≤ pi . Note that, as with
the case for TGBAs, it is also always valid to only check for
maximal SCCs instead of partial SCCs.

The Fin-removal construction procedure, in combination
with the extended TGBA emptiness checking algorithm,
could be regarded as a method for checking TGRAs. In
fact, the non-determinism introduced by the Fin-removal
construction is very similar to non-deterministically choos-
ing to check for one of the TGRPs. An accepting run on a
TFLA starts by first forming a trace from the initial state
of a TGRA to an arbitrary state in the TGRA. Then, a non-
deterministic choice is made to decide which TGRP will be
checked. Finally, the trace is continued to a reachable partial
SCC that does not contain any Fin transitions from the cho-
sen TGRP. Note that this accepting run is also accepting in
the corresponding TGRA. The downsides of using the Fin-
removal construction are that it introduces non-determinism
in the automaton, and it linearly increases the size of the
automaton (in the number of TGRPs).

Algorithm 1: Checking TGRA by checking TGRPs.

1 function TGRACheck (Q, q0,TGRA = {TGRP1, . . . ,TGRPn})
2 forall the i ∈ {1, . . . , n} do
3 TGRPAcc(Q, q0,TGRPi )

4 return No_Acc // No TGRPAcc call reported
Acc

3 Algorithm for TGRA emptiness

In this section, we present a direct algorithm for checking
emptiness on TGRAs, without removing Fin sets first. We
start by splitting up the TGRA acceptance into individual
TGRPs and show how these can be checked.

3.1 Checking Rabin pairs

Checking TGRAs can be achieved by checking each Rabin
pair separately, as shown in Algorithm 1. In case an accept-
ing cycle is found by TGRPAcc, that sub-procedure should
report Acc and exit. Thus, in case none of the TGRPAcc
sub-procedures report acceptance, the algorithm returns with
No_Acc. The TGRPAcc procedure itself will be explained
later.

We assume that prior to each TGRPAcc call, we have no
knowledge on the individual TGRPs and therefore treat them
equally and separately. In theory, this assumption may lead
to missed opportunities, for example, if TGRP1 = TGRP2.
Even an overlap in the Fin and/or Inf fragments of the TGRPs
might offer an opportunity to combine gained information.

3.2 TGRP checking algorithm

Throughout this section, we consider checking a TGRP with
acceptance of the form Acc = (F, {I 1, . . . , I p}). We note
that a TGRP can be seen as an extension of a TGBA, in which
a Fin constraint is added. The algorithm that we propose is an
extension of the best parallel algorithm for checking TGBAs
that we know [7,8]. We present the algorithm’s sequential
execution and show how it can be parallelized.

3.2.1 Abstract idea of the algorithm

The general idea of the algorithm, which we present in Algo-
rithm 3 (a simplified version of the algorithm is given in
Algorithm 2), is to perform an SCC decomposition of the
automaton without allowing any F transitions from being
part of the SCCs. As a result, we obtain SCCs that contain
all edges except those in F . Formally, we have that each
SCC C is a partial SCC of A that is maximal on the TGRP
Aδ\F := (�, Q, q0, δ \ F,Acc). C is an accepting SCC if
Cδ ∩ I i 
= ∅ for each 1 ≤ i ≤ p, i.e. C contains transitions
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such that every I i can be visited infinitely often. By defini-
tion ofAδ\F , we have thatCδ ∩F = ∅. IfC is also reachable
from q0 via transitions from δ (including F transitions), it
can be reported that a counterexample exists.

3.2.2 Preventing F transitions from being considered

The algorithm detects the aforementioned ‘constrained’
SCCs in linear time and in an on-the-fly setting, without
relying on visiting states multiple times.3 It does so by per-
forming a constrained SCC decomposition of A from q0.
Once a transition t = (t s, t�, td) ∈ F is encountered, state
td is stored in a so-called Fstates set and t is further dis-
regarded since t cannot appear in any accepting cycle. Once
this search is finished, all states are marked as Dead and all
SCCs are decomposed on the automatonA′, which is formed
by a reachability from q0 over the transitions δ \ F . In case a
non-trivial SCC contains transitions from all I i sets, we have
detected a counterexample. Otherwise, we pick a state s from
the Fstates set and consider the following two cases:

1 s is marked Dead, meaning that it was added to
Fstates but it was also reachable inA′ (without taking
any F transitions). Thus, we have already explored this
state and can ignore it.

2. s is not marked Dead, meaning that s is not part of A′
and we launch a new SCC decomposition from s.

The search procedure is illustrated in Fig. 4. Here, two
TGRPs are checked separately. Note that due to the way how
0 and 3 are located in the automaton, the initial searches
for the first and second pair lead to different components.
The search for pair 1 detects A′

1 = C1 ∪ C3 (avoiding 0)
and the search for pair 2 detects A′

2 = C1 ∪ C2 (avoiding
3). Consider the search for pair 1. After the initial search, it
found the Fstates u and t . Both have not been explored so
suppose that u is arbitrarily chosen as a ‘new’ initial state.We
assume that the search from u visits all states in C2.4 If we
now find the edge from v to r , thus from C2 to C1, we should
not report an accepting cycle as it would contain the 0 mark.
This is guaranteed, since the search from u is initiated after
the search from q0 is complete; so r is already marked Dead
and thus ignored. In fact, even when we allow the search
from u to start before all states in C1 ∪C3 are marked Dead
it may in the worst case only add redundant explorations.

3 The parallel search is based on swarmed verification, making it
unlikely that states are visited only once in practice, but in theory and
in a sequential setting this is not necessary for correctness.
4 Consider for example what happens when there is no path from u to
t . After the search for u ends, all reachable states from u are marked
Dead and the search from t is started. Once it observes a Dead state,
it will not continue searching that state, hence no redundant states are
explored.

Fig. 4 Example of running an emptiness check on an TGRA with two
pairs. C1, C2, and C3 represent components (not necessarily strongly
connected) that do not contain any transition in the sets 0 or 3 .Workers
doing the emptiness check for the first pair will first explore C1 ∪ C3,
attempting to find a cycle satisfying Inf(1)∧Inf(2) without crossing
the 0 -transitions leading to u and t . If no accepting cycles are found,
they will continue their exploration in C2, starting in states u and v,
and ignoring all transitions going back to C1 ∪ C3. Workers doing the
emptiness for the second pair will similarly first look for cycles satis-
fying Inf(4) in C1 ∪ C2, postponing the exploration of C3 that is only
accessible via a 3 -transition (colour figure online)

This is because the edge from s to u is not included as an
edge in the SCC decomposition and hence no cycle can be
formed with a 0 mark.

3.2.3 Simplified algorithm

In Algorithm 2, we present a simplified version of the TGRP
checking algorithm. The function should be initially called
withs := q0 and it recursively explores the graph in a depth-
first order. A state is marked visited, then it’s successors are
processed, then the state is explored and it getsmarkedDead.
All Dead states are ignored when processing successors. If
the successor t has not beenvisited yet, dependingonwhether
it is reached via an F transition, we either store it in the
Fstates set, or we recursively explore the state. If t has
been visited before and it is not reached via an F transition,
then we detected a cycle. We then want to combine the states
and transition marks on this cycle to check whether this is an
accepting cycle. Once the initial state is fully explored, we
check whether there are stored states in Fstates, and if so,
we start searching from these states until we processed the
entire state-space.

3.2.4 Data structures

To represent the Fin and Inf fragments of a TGRP,we use a set
of accepting marks per transition. We assign a unique mark
to each F and I i set, for 1 ≤ i ≤ p, and refer to these marks
with FM and I iM . We denote the set of all Inf marks by IM ,
i.e. IM := ⋃

1≤i≤p I
i
M . The complete set of markings M is
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Algorithm 2: Simplified algorithm for one TGRP.

1 Visited := Dead := Fstates := ∅ // Initializing
sets

2 function TGRPAccSimple (Q, s,TGRP = (FM ,IM ))

3 Visited := Visited∪ s // Mark s as visited
4 forall the (acct , t) ∈ suc(s) do // Explore

successors
5 // Ignore fully explored (Dead)

states
6 if t ∈ Dead then continue
7 else if t /∈ Visited then // Unseen state t
8 // Store F transitions for later
9 if acct ∩ FM 
= ∅ then

Fstates.addState(t)
10 else // recursively explore

otherwise
11 TGRPAccSimple(Q, t,TGRP)

12 // If visited before, we found a
cycle

13 else if acct ∩ FM = ∅ then // No F
transition

14 Unite states and combine acc sets on cycle
15 if IM = ‘combined acc set’ then
16 report Acc and exit // Accepting

cycle

17 Dead := Dead ∪ s // Explored s, mark s as
Dead

18 // If backtracking from the ‘initial’
state

19 if Dead = Visited then
20 if ¬Fstates.isEmpty() then // Stored F

states
21 f := Fstates.pickState() // Try next

one
22 TGRPAccSimple(Q, f ,TGRP) // New

search

23 else exit // No accepting cycle found

thus defined as M := {FM , I 0M , . . . , I pM }. Each transition t is
associated to a set of acceptancemarksacc ⊆ M , indicating
whether t ∈ F or t ∈ I i for 1 ≤ i ≤ p.

We define S as a mapping from states to pairs, consist-
ing of a set of states and a set of marks. Thus S (s) =
(states,acc) and formally, S : Q → 2Q × 2M . By imple-
mentingS with a union-find structure, we can maintain the
following invariant at all times:

∀u, v ∈ Q : u ∈ S (v).states ⇔ S (v) = S (u)

This further implies that every state is part of exactly one set
of states. In the algorithm, we use S to associate each state
u to its partial SCC that contains the states S (u).states and
visits all the marks inS (u).acc.S pairs can be combined
using a Unite function. We use an example to illustrateS
and the Unite function. Let S (u) := ({u, w}, {FM }) and
S (v) := ({v}, {FM , I 1M }), we can use the Unite function

to combine the two structures. After callingUnite(S , u, v)

we have S (u) = S (v) = ({u, v, w}, {FM , I 1M }), while
keeping all other mappings the same. For more details on this
structure, we refer to Bloemen et al. [7].We use an additional
function AddAcc to ‘add’ (the union of) acceptance marks
to the set, thus AddAcc(S , v, {I 1M , I 2M }) will ensure that
S (v).acc becomes {FM , I 1M , I 2M }.

The Fstates structure is implemented as a cyclic list
that contains all states added to the list (by means of
Fstates.addState). Fstates.pickState returns
a state from the list, in case the list is non-empty. Finally,
states are removed from the list by calling
Fstates.removeState. For efficient list containment
and to avoid duplicated states from being added, we store the
list on top of an array, in which the elements point to each
other.

Algorithm 3: Algorithm for checking a TGRP.

1 function TGRPAcc (Q, q0,TGRP = (FM ,IM ))

2 ∀s ∈ Q : S (s) := ({s},∅) // Initialize map
3 Visited := Dead := ∅ // Sets
4 R := ∅ // Roots stack of (acc, state) pairs
5 Fstates := {q0} // Cyclic list of init

states
6 while ¬Fstates.isEmpty() do
7 s := Fstates.pickState()

8 if s /∈ Dead then TGRPAccRecur(∅, s)
9 Fstates.removeState(s)

10 return // No Acc got reported in the
search

11 function TGRPAccRecur (accs , s)
12 Visited := Visited ∪ {s}
13 R.push(accs , s)
14 forall the (acct , t) ∈ suc(s) do
15 if t ∈ Dead then continue // Explored
16 else if t /∈ Visited then // ‘New’ state
17 if acct ∩ FM 
= ∅ then // Avoid F
18 Fstates.addState(t)

19 else TGRPAccRecur(acct , t)

20 else if acct ∩ FM = ∅ then // Cycle
21 while S (s) 
= S (t) do
22 (accr , r) := R.pop()

23 Unite(S , r , R.top().state)
24 AddAcc(S , r ,accr )

25 AddAcc(S , s,acct ) // Add acct to
S (s)

26 if IM = S (s).acc then //
Acc. cycle

27 report Acc and exit

28 if s = R.top() then // Completed SCC
29 Dead := Dead ∪ S (s).states
30 R.pop()
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3.2.5 Detailed algorithm

The detailed sequential algorithm for checking a TGRP
is presented in Algorithm 3. We repeatedly perform SCC
decompositions, using Dijkstra’s algorithm [11]. To this
end, we will maintain a stack R, which can be regarded as
an extension to the roots stack from Dijkstra’s SCC algo-
rithm [11].

First, all data structures are initialized in lines 2–5.
Then, the algorithm continuously picks a state s (ini-
tially q0) and calls the TGRPAccRecur procedure. After
the TGRPAccRecur is finished, s is removed from the
Fstates list and a new state is picked from the list. If the
list is empty, then the complete state-space must have been
visited and since no Accwas reported, we can conclude that
no counterexample exists for this TGRP.

In the TGRPAccRecur procedure, state s is marked as
visited and pushed on top of the R stack, along with the
accompanying acceptance set accs (note that since there is
no transition to the initial state, the empty set is given in line
8). All successors of s are considered in lines 14–27. For each
successor t , we consider three cases:

– t ∈ Dead (line 15), this implies that t has already been
completely explored and can thus be disregarded.

– t is unvisited (lines 16–19), meaning that t has not been
encountered yet. If t is part of the Fin set, we add it to
the Fstates list and ignore it for the current search.
Otherwise, we recursively search t .

– t is not Dead but it has been visited before (lines 20–
27). This implies that there is some state r ′ on the R
stack such that t ∈ S (r ′).states and hence a cycle can
be formed. The algorithm then continuously takes the top
two states from the R stack and unites them (and adds
the acceptance mark) untilS (s) andS (t) are the same.
Finally, the acceptance marks from acct are added. At
line 26, S (s) contains all states in the cycle from s to
t and forms a partial SCC. S (s) is then checked if it
contains all Inf acceptance marks. If so, an accepting
SCC is found and is reported.

After all successors are explored, the algorithm backtracks.
In case s equals the top of the R stack (line 28), s is the last
state of the SCC and the entire SCC is marked as being fully
explored by marking it as Dead.

Figure 5 shows an example run of the algorithm on a small
automaton.

3.2.6 Outline of correctness

We argue that the TGRPAcc algorithm decomposes the
TGRP automaton in maximal SCCs when defined over the
transitions δ\F and that it correctly reports accepting cycles;

it reports Acc when a reachable SCC contains a transition
from each I i sets, for 1 ≤ i ≤ p, and no transition from
F . Due to the conditions of lines 17 and 20, for a transition
with acct ∩ F 
= ∅ it is not possible to start a recursive call
with acct (thus acct never appears on the R stack) nor is it
possible to call AddAccwith acct as an argument. All such
transitions are ‘avoided’ and unvisited successors are added
to Fstates. We thus conclude that no F transition can be
contained in any formed SCC.

Because we do allow and explore all other (non-F) tran-
sitions during the search, assuming a correct SCC algorithm,
the acceptance set of each SCC cannot be further extended
without also having to include an F transition.

Since all states that did not get visited were added to the
Fstates list, and each state from this list is eventually
picked as an initial state, we argue that the complete state-
space has been explored after the algorithm terminates on
line 10.

3.2.7 Complexity

One can observe that every state and transition is visited at
most once in the algorithm. TheTGRPAccRecur procedure
will mark a state as visited and will never be called twice
for the same state. The bottleneck of the algorithm becomes
maintaining the S structure. From previous work [7], we
know that the union-find structure (without tracking accep-
tance marks) causes the complete algorithm to operate in
quasi-linear time. By assuming that the number of accep-
tance marks |M | (= 1+ p) is a small constant (which holds
in practice), tracking the acceptance can be achieved in con-
stant time per modification to the structure, hence the total
time complexity is upper bounded by O(|M |·|δ|·log(|δ|)) for
each TGRP (the log(|δ|) factor acts as an over approximation
for the quasi-linear time).

The space complexity is limited by the sizes of the R,S ,
and Fstates structures. R may contain up to |Q| states
and acceptance marks in the worst case (by visiting every
state in a single path).S can be implemented as an array of
length |Q| of structs that are of constant size, plus |M | bits
for tracking acceptance, and Fstates can be implemented
as an array of |Q| elements. In total, O(|Q| · |M |) memory
is used.

3.3 Parallel implementation

We now present two ways in which parallelism can be used
to speed up the checking process for TGRAs.

3.3.1 Parallel TGRA checking

We first consider Algorithm 1 for checking each TGRP sep-
arately. After a TGRPAcc call has finished, the next Rabin
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(a)

(d)

(g) (h) (i)

(j) (k) (l)

(e) (f)

(b) (c)

Fig. 5 Example of running the algorithm on a small automaton and a
single TGRP: Fin(0)∧ Inf(1)∧ Inf(2). In this case, transitions labelled
by 0 should be avoided. Unexplored transitions are dotted. States and
transitions on the DFS stack are in bold. Dead states are coloured. The

grey background represents the current view of the SCCs as stored

in the union-find data structure; for instance, means that
S (u) = S (v) = ({u, v}, 1 ) (colour figure online)

pair is selected and a new sub-procedure is started, until all
n pairs have been checked. Since we are working in a multi-
core environment, we can assign different worker instances
to different Rabin pairs. Suppose there are P workers avail-
able, we can choose to either use all P workers for checking
a single Rabin pair, or we can distribute the workers over
the different pairs. By distributing the workers evenly, for n
Rabin pairs, each pair is checked by P

n workers.
A disadvantage of the latter setup is that each of the n

groups of P
n workers processing the same TGRP needs its

own copy of the shared data structure. This means that by

checking all pairs in parallel, approximately n times more
memory is required.5

However, one advantage of checking all pairs in parallel
is that these jobs are completely independent, so this could
be the basis for a distributed algorithm. We expect better
scalability, since parallel workers on a single pair have to
synchronize on a shared datastructure (our implementation
uses a concurrent hashtable and a shared union-find datas-
tructure). Also, when P gets large compared to the size of
the (remaining) graph, the probability that workers have to
wait for each other, or perform duplicate work, increases.

5 All global (shared) data structures have to be copied for the n pairs,
but the memory overhead for the local data structures remains the same.
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Another advantage could be that counterexamples may be
detected faster in the latter setting. Suppose for example that
only the nth pair contains a counterexample that is detected
by visiting only part of the state-space. Then the parallel pairs
approach prevents traversing the complete state-space n − 1
times.

We have experimentedwith these two extreme paralleliza-
tion approaches, but it is conceivable that a more flexible job
scheduler with load balancing leads to even higher speedups.
Note, however, that in practice the number of Rabin pairs is
quite limited.

3.3.2 Parallel TGRP checking

Algorithm 3 can be parallelized by swarming the search
instances; by starting multiple worker instances from the
initial state and using a randomized successor function to
steer the workers towards different parts of the state-space.
The TGRPAccRecur function can be seen as an extension
to the multi-core SCC algorithm from Bloemen et al. [7,8].
The key to this algorithm is to globally communicate locally
detected cycles. This way, multiple workers can coopera-
tively decompose SCCs. Additionally, (partly) unexplored
states in an SCC are tracked globally and once a worker fully
explores a state, none of the other workers have to explore
this state again. Once all states of an SCC are fully explored,
the entire SCCmust be fully explored and thus can bemarked
Dead.

During Unite procedures, the involved parts of the
union-find structure are briefly locked to guarantee correct-
ness. During this locking phase, the acceptance set can be
updated atomically without interfering with other parts. This
is also implemented in our existing TGBA checking algo-
rithm [8].

The Fstates list is implemented by using a fine-grained
lockingmechanism to add states to the list, such that all states
remain on the cycle. The reason for implementing Fstates
as a cyclic list becomes clear in the next example. Suppose
the Fstates list contains two states, u and v. To avoid
contention, the algorithm attempts to divide the workload by
assigning half of the workers to search from u and the other
half to search from v. Now, assume that u does not have any
successors and a large part of the state-space is reached from
v. If the search from u completes, we ideally want to let the
workers aid in the search from v. By maintaining Fstates
as a cyclic list, without much effort we can check which
searches have not been completed yet. The Fstates list
is implemented similarly as the cyclic list in the union-find
structure, which is discussed in [7].

The time complexity of the algorithm is in the worst case
increased by a factor P , for P workers, since the algorithm
tracks a bit per worker instance in the union-find structure.
However, in practice we observe a significant performance

improvement over the sequential implementation. For the
same reason, the memory complexity is also increased by
P , and additionally every worker contains its own R stack.
Moreover, if all TGRPs are checked simultaneously, a copy
of the global data structures has to be made for each group
of workers that process a different TGRP. As a result, n
times more memory is required for these structures in case
there are n TGRPs. Though, as mentioned before, checking
TGRPs simultaneously could reduce the computation time
(compared to checking every TGRP one-by-one).

4 Related work

4.1 Related work on checking Büchi automata

Explicit state on-the-fly algorithms for checking can be
distinguished into two classes, namely Nested Depth-First
Search (NDFS) and SCC-based algorithms. Schwoon and
Esparza provide a great overview on these techniques [33].
The advantage of SCC-based algorithms over NDFS is that
they can handle generalized Büchi automata efficiently.

In a multi-core setting, we consider the CNDFS algo-
rithm [16] to be the state-of-the-art NDFS-like algorithm. It
is based on swarm verification [19] and operates by spawn-
ing multiple NDFS instances and globally communicating
‘completed’ parts of the state-space.

For state-of-the-art multi-core SCC-based algorithms, in
prior work we showed that the algorithm from Bloemen et
al. [8] outperforms other techniques and performs compara-
ble to the CNDFS algorithm. The algorithm is also based on
swarmed searches, and detected partial SCCs are communi-
cated globally and maintained in a shared structure. Notable
related multi-core SCC algorithms are those from Renault et
al. [32] and Lowe [28].

4.2 Related work on checking Rabin automata

As mentioned in Sect. 1, when checking LTL properties for
probabilistic systems, the automaton needs to be determin-
istic [3]. Chatterjee et al. [9] present an algorithm to check
deterministic TGRA conditions in the context of (offline)
probabilistic model checking. The idea is to consider each
generalized Rabin pair (Fi , {I 1i , . . . , I lii }) separately and for
each pair: (1) remove the set of states Fi from the state-
space, (2) Compute the maximal end-component (MEC)
decomposition, and (3) check which MECs have a non-
empty intersection with every I ji , for j = 1, . . . , li . These
sets are then used for computing maximal probabilities. The
paper reports significant improvements over checking a non-
generalized variant of deterministic Rabin automata. They
also present improvements for computing a winning strategy
in LTL(F,G) games by using a fixpoint algorithm for general-
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ized Rabin pairs. Our algorithm is different in that it operates
on-the-fly and in a multi-core setting.

Wijs [35] recently presented an on-the-fly GPU algorithm
for checking LTL properties for non-generalized determinis-
ticRabin automata.Here, the choice for (deterministic)Rabin
automata, instead of non-deterministic Büchi automata, is
motivated by the observations that it can speed up the suc-
cessor construction and that it can reduce the state-space
of the cross-product. In that paper, a BFS-based search is
used, in particular a variation on the heuristic piggybacking
search [18,20]. This approach is incomplete due to situations
referred to as shadowing and blocking, but these cases can
be detected and resolved with a depth-bounded DFS. Our
approach differs in that we allow (generalized) TGRAs and
do not require repair procedures.

4.3 Related work on co-Büchi emptiness checks

Livelock detection algorithms such as the DFS f i f o algo-
rithm [17,25] search the state-space for cycles that avoid
“progress transitions”. If we label all progress transitions
with 1 , such a search amount to the emptiness check of
an automaton with acceptance Fin(1), i.e. a transition-based
co-Büchi automata. DFS f i f o detects non-progress cycles by
performing a DFS that is restricted to non-progress transi-
tions, but that remembers the set F of all states that are
the destination of an ignored progress transition. Once the
“restricted” DFS terminates, it is started again from one of
the F sets. The similarity with Algorithm 3 should not be a
surprise: co-Büchi acceptance is just a generalizedRabin pair
without any Inf set. In our case, the DFS has to track (partial)
strongly connected components simply to ensure we visit
each Fin set infinitely often.

This similarity suggests another application of our algo-
rithm: detection of non-progress cycles under fairness. For
instance assume a communicating-process model where two
clientsC1,C2 are in contact with three servers S3, S4, S5. We
want to knowwhether any of the client can livelock under the
fairness assumption that the servers progress infinitely often.
If we denote by T1, T2, . . . , T5 the set of progress transi-
tions of each of these five processes, the problem amounts to
the emptiness check of the state-space with the generalized
Rabin condition (Fin(T1) ∧ Inf(T3) ∧ Inf(T4) ∧ Inf(T5)) ∨
(Fin(T2) ∧ Inf(T3) ∧ Inf(T4) ∧ Inf(T5)).

4.4 Related work on checking different automata

Emerson and Lei [14] show that the emptiness check of
an ω-automaton with arbitrary acceptance condition is NP-
complete. They also present a polynomial algorithm for
the case where the acceptance condition is provided as a
disjunction of Streett acceptance conditions. Streett accep-
tance is the negation of Rabin acceptance, a conjunction of

Fin(I ) ∨ Inf(F) instances (or equivalent, Inf(I ) ⇒ Inf(F)),
and Streett acceptance closely relates to fairness checking.

Duret-Lutz et al. [13] present a sequential algorithm for
checking Streett objectives by performing an SCC decom-
position and tracking thresholds to prevent ‘rejecting’ cycles
from occurring in the SCCs. In a multi-core setting, the
algorithm by Liu et al. [27] performs an initial SCC decom-
position and for every SCC a new instance is launched in
parallel that ignores certain transitions.

5 Experiments

5.1 Experimental setup

All experiments were performed on a machine with 4 AMD

Opterontm 6376 processors, each with 16 cores, forming a
total of 64 cores. There is a total of 512GBmemory available.
We performed all experiments using 16 cores.

5.1.1 Implementation

References to all the tools involved in the experiments are
given in Table 2. The TGRA checking algorithm is imple-
mented in a development version of the LTSmin toolset.
Additionally, we used several external tools and libraries for
generating and parsing the automata:

– We used Rabinizer 3 to generate deterministic
transition-based generalized Rabin automata.

– The tool LTL3DRA was also used to generate determin-
istic automata with transition-based generalized Rabin
acceptance. However, LTL3DRA only supports a subset
of LTL, called LTL\GUX in [5], which is slightly stricter
than the set of LTL formulas where no until (U) operator
may occur in the scope of any always (G) operator.

– We used some tools from Spot: ltl2tgba for generat-
ing TGBAs, and autfilt for converting automata with
other accepting conditions into TGRAs or TFLAs.

– We used LTL3TELA to generate non-deterministic
automata with an arbitrarily complex transition-based
acceptance. We then used Spot’s
autfilt --generalized-rabin to convert these
automata to TGRAs.

– We used the cpphoafparser library to parse a HOA
automaton [1] and create an internal representation for
LTSmin.

The commands used to generate automata from LTL are
summarized in Table 3.

We used the algorithm from Bloemen et al. [8] to model
check TGBAs and TFLAs, and used the algorithm presented
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Table 2 Tools used in the
experimental evaluation

Tool Version Ref. Web page

Spot (ltl2tgba, autfilt) 2.5.2 [12] https://spot.lrde.epita.fr/

Rabinizer 3.1 [15,22] https://www7.in.tum.de/~kretinsk/rabinizer3.html

LTL3DRA 0.2.6 [2] https://sourceforge.net/projects/ltl3dra/

LTL3TELA 1.1.1 https://github.com/jurajmajor/ltl3tela/

cpphoafparser 0.99.2 [1] http://automata.tools/hoa/cpphoafparser/

LTSmin 3.0 [21] http://ltsmin.utwente.nl/

Table 3 Tool configurations
used for generating an
automaton from an LTL formula
ϕ

Key Automaton type Command

Rabinizer 3 TGRA java -jar Rabinizer3.jar
-format=hoa -in=formula
-out=std -silent ϕ

LTL3DRA TGRA ltl3dra -f ϕ

LTL3TELA TGRA ltl3tela -f ϕ | autfilt
--generalized-rabin

Fin-less TFLA ltl3tela -f ϕ | autfilt --remove-fin

TGBA TGBA ltl2tgba -f ϕ

in this paper for checking TGRAs, both are implemented
in LTSmin. The algorithms make use of LTSmin’s internal
shared hash tables [26], and the same randomized successor
distributionmethod is used throughout. The shared hash table
is initialized to store up to 228 states.

5.1.2 Experiments

Themodels and properties for our experimentswere obtained
from the 2015 Model Checking Contest [23], and from
models from the BEEM benchmark [31] for which a set
of non-trivial, randomly generated LTL formulas is avail-
able [4].

The MCC model set was restricted to those that do
not describe obligation properties because using non-Büchi
acceptance cannot help producing smaller automata on this
class [29]. This selection is further reduced by selecting
only the instances where the ‘TGRAgenerators’ (LTL3DRA,
Rabinizer 3 and LTL3TELA) create TGRAs with at
least one non-empty Fin set. Otherwise, a TGRP is the same
as a TGBA, and hence the TGBA emptiness check could
be used instead. For this selection, we report results on the
experiments (118 in total) for which the time to model check
using the TGBA checking algorithm is between 1 second
and 10 min. We remark that this selection is in favour of the
TGBA checking algorithm, since all cases where timeouts
and memory errors occurred in the TGBA algorithm were
filtered out as a result of our selection criteria.

For each pair of model M and formula ϕ, we solved
the model checking task L (M ⊗ A¬ϕ) = ∅ using 5
configurations that were repeated 10 times. We take the

mean of the results to mitigate randomness introduced
by the multi-core search procedure. The configurations
were: ltl2tgba using the TGBA checking algorithm,
LTL3DRA, Rabinizer 3, and LTL3TELA translated to
TGRA, where the latter three cases used the TGRA check-
ing algorithm introduced in this paper. Every task was run
with a timeout of 10min. In total, theMCC experiments took
approximately 5 days to complete.

The second set of experiments consists of 3200 formulas
over 16 models extracted from the BEEM database [4,31].
For each model, 100 verified (empty product) and 100 vio-
lated (non-empty product) formulas were generated [4]. We
refer to this set of experiments by the BEEM experiments.

For this set of experiments, we generated the following
automata: TGBAs from the ltl2tgba tool, TGRAs from
LTL3DRA, Rabinizer 3, and LTL3TELA, and we also
generated Fin-less automata by first generating TGRAs with
LTL3TELA and using Spot’s autfilt to convert these into
TFLAs. We only considered TFLAs that contain a disjunc-
tion of multiple TGBA acceptance sets, hence we filtered
out all TFLAs generated from a TGRA with a single Rabin
pair. We used the (extended) TGBA checking implementa-
tion to check the TGBAs and TFLAs, andwe used the TGRA
checking implementation to check the TGRAs and also the
TFLAs. Every task was ran once with a timeout of 10 min.
In total, the BEEM experiments also took approximately 5
days to complete.

All our results and means to reproduce them are available
on https://github.com/utwente-fmt/Rabin-STTT.
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Fig. 6 Time (in seconds) comparisons of the TGBA (x-axis) and the
TGRA and TFLA emptiness checks (y-axis), for various LTL to TGRA
and TFLA translations. Each point represents the time to perform an

emptiness check using 16 cores. The TGRA and TFLA algorithms per-
formed faster for instances below the x=y line (colour figure online)

5.2 Main results

The main results of the experiments are presented in Fig.
6 and are summarized in Table 4. We also depict specific
characteristics of the experiments in Table 5, Figs. 7, and 8.
One thing to note is that the results are presented on a log–
log scale. The (16-core) experiments for the TGBA checking
algorithm are provided on the x-axis and the results for the
TGRP and TFLA checking experiments are shown on the
y-axis. All TGRAs are checked by considering each TGRP
sequentially, i.e. all workers are assigned to the first TGRP
and continue to the second pair (if there is one) when the first
TGRP is fully explored.

We encountered some errors in the experiments. There
were a number of instances that resulted in a memory error,
meaning that the data structures became too large to fit in the
memory during the model checking procedure. These errors
only occurred for the TGRA checks and were presumably

caused by the additional allocation of the Fstates data
structure. There are also several instances that resulted in
timeouts for some of the configurations.

We first analyse the performance of the TGRA checking
algorithm and how the different TGRA generators influ-
ence the results, then we consider the translation to Fin-less
automata, and finally we discuss some additional results.

5.2.1 Comparison between the three TGRAs and TGBA

We first take a look at Fig. 6 and Table 4. It becomes clear
that formost experiments it ismore beneficial tomodel check
using TGBAs compared to TGRAs (using our algorithm). In
the scatter-plot we observe that in some cases the TGBA
checking algorithm is more than two orders of magnitude
faster. That being said, there are instances where the TGRA
checking algorithm is faster, especially for the TGRAs gen-
erated by LTL3TELA.

123



320 V. Bloemen

Table 4 Comparison of the geometric mean execution times (in seconds)

MCC BEEM

LTL3TELA LTL3DRA Rabinizer 3 TGBA LTL3TELA LTL3DRA Rabinizer 3 TGBA

Counterexample 1.51 (1.89) 1.69 (2.12) 1.03 (1.29) 0.80 0.12 (1.14 ) 0.26 (2.41) 0.43 (4.04) 0.11

No counterexample 7.68 (1.60) 5.67 (1.18) 5.64 (1.17) 4.81 8.11 (1.44) 34.25 (6.06) 33.98 (6.02) 5.65

Total 4.47 (1.69) 3.79 (1.43) 3.20 (1.21) 2.64 0.66 (1.25) 1.83 (3.49) 2.48 (4.74) 0.52

The numbers between parentheses denote how many times faster the TGBA checking algorithm is compared to the other configuration. We only
used the experiments that were checked in all TGRA and TGBA configurations without running out of memory or time (39 in total for the MCC
experiments, with 13 counterexamples, and 1167 in total for the BEEM experiments, with 699 counterexamples)

Table 5 Geometric mean sizes of the automata and products

|Aut| |Pairs| |States| |Trans|
MCC

LTL3TELA 1.00 1.53 0.71 × 106 4.26 × 106

LTL3DRA 1.00 1.00 0.47 × 106 2.78 × 106

Rabinizer 3 1.38 1.00 0.47 × 106 2.78 × 106

TGBA 1.31 1.00 0.51 × 106 3.11 × 106

BEEM

LTL3TELA 2.85 1.07 4.02 × 106 13.86 × 106

LTL3DRA 4.00 1.27 10.61 × 106 42.17 × 106

Rabinizer 3 3.56 1.24 10.29 × 106 40.86 × 106

TGBA 3.23 1.00 3.80 × 106 13.74 × 106

|Aut| denotes the number of states in the LTL automaton, |Pairs| the
number of TGRPs in the TGRA, and |States| and |Trans| provide the
sizes of the product automaton. We only used data from experiments
without a counterexample and that were checked in all TGRA and
TGBA configurations without running out of memory or time (26 in
total for MCC and 468 in total for BEEM)

Fig. 7 Distribution of automaton sizes for TGBAs, TGRAs andTFLAs.
The x-axis shows the number of pairs (or Inf sets for TFLAs) in the
automaton and the y-axis shows the size of the automaton. The size of
the circle denotes how many automata belong to the same class, i.e. an
automaton having x Rabin pairs and y states (colour figure online)

We notice that there is quite some difference between the
results from the MCC experiments and the BEEM exper-
iments. We argue that the LTL formulas for the MCC
experiments are more realistic, but also less complex. The
effect is that the produced TGRAs are simpler in structure
and are therefore similar to the TGBAs. The results show this
as well; in many MCC experiments the difference between
the TGRA and TGBA emptiness checks is relatively small
(compared to the BEEM experiments).

The BEEM experiments are generated randomly and
therefore do not give an accurate representation of reality.
However, the generated formulas are generally more com-
plex and cause the TGRAs and TGBAs to differ a lot more
than they do in the MCC experiments. We can see that these
more complexTGRAs (andTGBAs) cause the TGRAcheck-
ing algorithm to perform significantlyworse,when compared
with the MCC experiments. This implies that our algorithm
for checking TGRAs performs relatively poorly for complex
LTL formulas.

We can also observe that there are significant differences
between the TGRAs generated by the three TGRA genera-
tors. The (non-deterministic) TGRAs from the LTL3TELA
generator leads to the most favourable results. Both deter-
ministic TGRAgenerators (especiallyRabinizer 3) gen-
erate automata for which the model checking algorithm
performs significantly worse. Hence we argue that in our
setting we do not benefit much from deterministic TGRAs
compared to non-deterministic ones.

5.2.2 Analysing the TGRAs

We analyse how the different TGRA generators influence
the automaton sizes in Table 5. For the MCC experiments,
we observe that the automaton sizes for LTL3TELA and
LTL3DRA are on average smaller than a TGBA. More-
over, the product automaton for both deterministic automata
are smaller than that of a TGBA. The product size of the
LTL3TELA TGRAs are larger than for the other automata,
and in Table 4 we see that LTL3TELA performs the worst
on the MCC experiments.
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Fig. 8 Time (in seconds) comparisons of the emptiness checks in the
same format as Fig. 6, but here the plots in the left column only contain
TGRAs that have a single Rabin pair. The middle column only shows

results for TGRAs with exactly two Rabin pairs, and the right column
shows results for the remaining automata, i.e. automata with more than
two Rabin pairs (colour figure online)

However, the automata for the BEEM experiments are
quite different from the MCC ones. Here, both deterministic
TGRA generators generate significantly larger automata and
product automata (a factor of three larger) compared to both
LTL3TELA and TGBA. Here it seems thatLTL3TELA leads
to more suitable automata for emptiness checking TGRAs.
As can be observed in Table 4, the product automaton size
seems to correlate well with the TGRA emptiness check per-
formance, as LTL3TELA is clearly the favourite of the three.

In Fig. 7 we show how the number of Rabin pairs cor-
relates with the size of the automaton. Note that this figure
only shows the majority of the generated automata; there
are automata with more than 30 states and more than 4
Rabin pairs. It is clear that most of the automata contain
a single Rabin pair and have less than five states. Most of
LTL3TELA TGRAs seem to have the same number of states
as theTGBAs, andLTL3TELA also produces small automata

for multiple Rabin pairs. The TGRAs from both determinis-
tic TGRA generators have similar characteristics. There are
fewer automata with a single Rabin pair, and the automa-
ton sizes are larger when there are multiple Rabin pairs. This
makes sense asmultipleRabin pairs indicate that the LTL for-
mula ismore complex,which causes the deterministic TGRA
generators to require more states to remain deterministic.

5.2.3 Influence of the number of Rabin pairs and Fin
transitions

In Fig. 8 we split up the results from Fig. 6 and show how
the performance is affected when the TGRAs contain more
Rabin pairs. We can see that in general, the TGRA check-
ing algorithm performs relatively worse for automata with
multiple Rabin pairs compared to TGRAs with a single pair.
We can also see that most of the timeouts occur for two or
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Table 6 Comparison of the geometric mean execution times (in sec-
onds) in the same format as Table 4

LTL3TELA Fin-less TGBA

Counterexample 0.20 (1.55) 0.13 (0.96) 0.13

No counterexample 15.02 (3.70) 4.52 (1.11) 4.06

Total 2.11 (2.49) 0.88 (1.04) 0.85

We only used data from experiments that were checked in the TFLA,
LTL3TELA-TGRA, and TGBA configurations without running out of
memory or time (195 BEEM experiments in total, with 89 counterex-
amples)

more Rabin pairs. This result is not surprising, as checking
a TGRA with two pairs involves traversing the entire state-
space of the product automaton twice, assuming there is no
counterexample.

We found that for most product automata (with TGRAs),
the number of Fin transitions is either a very small or very
large proportion of the total number of transitions. In Fig. 8
we coloured three classes: automata for which the number
of Fin transitions is 0–10% of the total number of transitions
(blue), automata for which this ratio is between 10 and 90%
(black), and automata in which 90% or more transitions are
Fin transitions (red).

It becomes clear that this aspect greatly influences the
TGRA model checking performance. Its performance is
actually comparable to TGBA for a small fraction of Fin
transitions. Furthermore, there are almost no instances where
the TGRA checking algorithm performs well for cases with
many Fin transitions.

5.3 Fin-less results

We now discuss how the emptiness check for Fin-less
automata compares with the check for TGBAs. As noted
before, we only considered TFLAs with at least two Inf
sets (and hence are obtained from TFLAs with at least two
Rabin pairs). In Fig. 6 we can see that the performance of
the TFLA checking algorithm is comparable to that of the
TGBA checking one. While there is only a small difference
in the emptiness procedure, the TFLAs are quite different
from TGBAs. In Table 6 we summarize the performance
results and indeed see that there is only a small difference
between the two emptiness checks.

It could be expected that a TFLA emptiness check per-
forms worse than the corresponding TGBA one as there is a
slightly greater overhead on verifying the acceptance condi-
tion. Also, as a result of their construction process, TFLAs
are non-deterministic and contain (linearly, in the number of
TGRPs) more states than the original TGRAs. A reason for
why a TFLA might be checked faster than a TGBA is that a
counterexample may be detected earlier as there are multiple
acceptance sets that can be checked simultaneously. Another

Table 7 Geometric mean sizes of the automata and products in the
same format as Table 5

|Aut| |Pairs| |States| |Trans|
LTL3TELA 3.31 2.21 5.22 × 106 11.30 × 106

Fin-less 5.79 2.17 2.74 × 106 9.06 × 106

TGBA 3.76 1.00 2.37 × 106 7.43 × 106

Here, |Pairs| denotes the number of Inf sets in the TFLA. We only
used data from experiments without a counterexample and that were
checked in the TFLA, LTL3TELA-TGRA, and TGBA configurations
without running out of memory or time (106 in total for BEEM)

Fig. 9 Time (in seconds) comparisons of the emptiness checks in the
same format as Fig. 8, but here the x-axis represents the time required
for LTL3TELA-TGRA and the y-axis shows the time needed for TFLA
(colour figure online)

reason is because the acceptance condition is more lenient
than a TGBA. This allows a TFLA generator to construct
more complex automata without significantly impacting the
emptiness checking algorithm.

In Table 7 we see that a TFLA has significantly more
states than the corresponding TGBA, which holds as well
for its product automaton. The effect of the TFLA construc-
tion procedure is visible in Fig. 7. TFLAs are constructed
from the TGRAs generated by LTL3TELA. One can observe
that as a result of this construction, the number of states in
the automata shifts up when comparing the TFLA with the
corresponding TGRA. Table 7 also shows that TFLAs are
significantly larger than TGRAs. However, even though the
TFLAs are larger and contain more non-determinism than
TGRAs, the product automaton is on average smaller.

Figure 9 shows how the performance of the TFLA check-
ing algorithm compares with that for the TGRA version of
the automata. The TFLA version is significantly faster in
practically all instances. The difference is especially large
in cases where the TGRA state-space consists of many Fin
transitions. We can argue that it is more advantageous to first
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construct a TFLA from a TGRA and check the TFLA, than
to check the TGRA directly (using our algorithm).

5.4 Additional results

5.4.1 Checking TGRPs in parallel

In preliminary experiments we experimented with checking
TGRPs in parallel, as suggested in Sect. 3.1. We performed
experiments to compare the two. In the case for products
without counterexamples, there was no observable differ-
ence. In case there were counterexamples, the results varied
more, but there does not seem to be a clear winner. Because
the ‘parallel’ version does allocate significantly more mem-
ory (the memory consumption was almost doubled), we
prefer to check the TGRPs sequentially.

5.4.2 Scalability

Our existing TGBA checking algorithm [7,8] achieves good
scalabilitywhen increasing the number ofworkers, at least up
to 64 cores. Initial experiments for the TGRA checking algo-
rithm showed similar improvements, but the performance
improvement starts to dropwhen increasing beyond 16 cores.
The bottleneck of the algorithm is most likely caused by
inserting and selecting states from the Fstates list. Future
work could investigate whether the Fstates list can be
further improved, or point out whether the bottleneck is a
structural problem in the algorithm.

6 Conclusion

We introduced a multi-core, on-the-fly algorithm for explicit
checking of emptiness on TGRAs. We showed that the algo-
rithm is efficient in the sense that every state and transition
only has to be visited once and reduces to an SCC decompo-
sition in case there are no Fin sets in the TGRA.

Experiments show that, in general, a TGBA checking
algorithm outperforms our new algorithm. This seems to be
true in particular for cases where a large proportion of the
product state-space is part of a Fin set for the TGRA. In gen-
eral we conclude that using TGRAs is not advantageous over
TGBAs for checking emptiness, when using our algorithms.

Our experiments do suggest that using TGRAs for empti-
ness checks is comparable to a TGBA emptiness check in
some scenarios. We analysed various aspects of the TGRAs
and how these affect the model checking performance.
The TGRA checking algorithm seems most beneficial in
instances where only a small fraction of the state-space is
part of a Fin set.

We also introduced Fin-less automata, which can be con-
structed from TGRAs. We showed that the emptiness check

for such a TFLA can be implemented in a TGBA emptiness
implementation without a large performance impact. Experi-
ments showed that emptiness checks for TFLAs and TGBAs
perform comparably. From our findings we conclude that it is
more beneficial to construct a Fin-less automaton and check
that for emptiness than to check the TGRA directly.

Future work includes further improving the TGRA check-
ing algorithm (there are several variations possible), perform-
ing additional experiments, and comparing this technique
(in different contexts) with related work. Future work is
also needed to check whether our algorithm is useful in set-
tings other than model checking (e.g. equivalence checking
of automata), where synchronization that results in a large
number of Fin transitions are perhaps less likely. Another
direction for future work is to investigate a variation of the
proposed algorithm to check fairness or Streett automata.
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translation of LTL to deterministic Rabin automata: beyond the
(F,G)-fragment. In: Proceedings of ATVA’13, pp. 24–39. Springer
(2013)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT
Press, Cambridge (2008)

4. Ben Salem, A., Duret-Lutz, A., Kordon, F., Thierry-Mieg, Y.:
Symbolic model checking of stutter-invariant properties using
generalized testing automata. In: Tools andAlgorithms for theCon-
struction andAnalysis of Systems—20th International Conference,
TACAS 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS, vol. 8413 of LNCS, pp.
440–454. Springer (2014)
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