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Abstract
Model checking (Baier and Katoen in Principles of model checking, MIT Press, Cambridge, 2008; Clarke et al. in Model
checking, MIT Press, Cambridge, 2001) is an automatic technique to formally verify that a given specification of a concurrent
system meets given functional properties. Its use has been demonstrated many times over the years. Key characteristics that
make the method so appealing are its level of automaticity, its ability to determine the absence of errors in the system (contrary
to testing techniques) and the fact that it produces counter-examples when errors are detected, that clearly demonstrate not
only that an error is present, but also how the error can be produced. The main drawback of model checking is its limited
scalability, and for this reason, research on reducing the computational effort has receivedmuch attention over the last decades.
Besides the verification of qualitative functional properties, the model checking technique can also be applied for other types
of analyses, such as planning and the verification of quantitative properties. We briefly discuss several contributions in the
model checking field that address both its scalability and its applicability to perform planning and quantitative analysis. In
particular, we introduce six papers selected from the 23rd International SPIN Symposium onModel Checking Software (SPIN
2016).
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1 Introduction

The current issue of the journal Software Tools for Tech-
nology Transfer (STTT) contains six revised and extended
versions of papers presented at the 23rd International SPIN
Symposium on Model Checking Software (SPIN 2016) [8].
SPIN 2016 was held in Eindhoven, The Netherlands, on 7–8
April 2016 collocated with the Joint European Conferences
on Theory and Practice of Software (ETAPS). These six
papers were selected by the guest editors out of the sixteen
papers presented at the event, based on their ranking given
by the peer reviewers.

During the last two decades the SPIN symposiums have
established themselves as traditional annual forums for
researchers and practitioners for the verification of software
systems. The evolution of the SPIN events has to a great
extent mirrored the maturing of model checking into a pre-
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D.Bosnacki@tue.nl

1 Eindhoven University of Technology, Eindhoven,
The Netherlands

vailing technology for the formal verification of software
systems. The first SPIN workshop was held in Montreal in
1995. The next couple of subsequent editions of SPIN were
intended as gatherings for presenting extensions and applica-
tions of themodel checker Spin [24], towhich the series owes
its name. Startingwith the 2000 edition, the scope of the event
clearly broadened to include techniques for formal verifica-
tion and testing in general. In addition, the SPIN events aim
to promote interaction and exchange of ideas across related
software engineering areas, like static and dynamic analysis.

This special issue nicely demonstrates the current scope
of the SPIN events. First of all, in addition to the Spinmodel
checker, contributions in this issue use the tool TAPAAL[13],
the Afra model checking tool [29], the ASSET tool [40], and
the Cadp toolbox [19].

Second of all, the majority of the papers in this issue
are on extending and applying model checking beyond its
traditional set-up, i.e. the formal verification of concurrent
systems w.r.t. qualitative behavioural properties. Four of
the six papers are on the application of model checking to
construct a strategy or plan to solve a particular schedul-
ing or control problem constrained by time and/or resource
requirements. Another paper is on on-the-fly verification of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-018-0501-x&domain=pdf


494 D. Bošnački, A. Wijs

quantitative properties via probabilistic model checking [3].
In that sense, one of the papers is more traditional in its
scope, but it addresses the main drawback of model check-
ing, i.e. its limited scalability, by contributing to the topic of
partial-order reduction [22,35,39], a very effective technique
to mitigate state space explosion.

The remainder of this preface is organised as follows: Sec-
tion 2 discusses the use of model checking for the synthesis
of strategies and plans. In Sect. 3, the verification of quanti-
tative properties by means of probabilistic model checking is
considered. Partial-order reduction to on-the-fly reduce state
spaces explored by model checkers is discussed in Sect. 4.
Finally, in Sect. 5, some concluding remarks are given.

2 Planning and strategy synthesis

The application of model checking to construct a plan or
synthesise a strategy is not far-fetched, as model check-
ing and planning have much in common [1,11,37,43,44]: in
both cases, a (large) state space has to be explored, looking
for interesting behaviour. While in traditional model check-
ing, this behaviour is essentially undesirable, violating some
functional properties, in planning the interesting behaviour
is desirable and constitutes a successful plan to optimise a
system while fulfilling given constraints. When synthesising
a strategy, typically the notion of a controller is added to the
model, and the question is whether there exists a strategy for
that controller such that any possible behaviour under that
strategy satisfies the specification.

In the paper Integrating river basin DSSs with model
checking by del Mar Gallardo et al. [18], which extends their
SPIN 2016 paper [17], it is demonstrated how the Spinmodel
checker can be applied in a decision support system (DSS)
that mitigates the effects of floods in river basins. Model
checking is used to synthesise management recommenda-
tions that meet the constraints given by the dam manager. A
set of constraints is added to a Promelamodel that interacts
with an external model for the river basin. Spin exhaustively
explores all possible manoeuvres and produces a trace, i.e. a
sequence of manoeuvres, that fulfils the given constraints.

The paper A Case Study of Planning for Smart Factories
– Model Checking and Monte-Carlo Search for the Rescue
by Edelkamp and Greulich [15], which extends their SPIN
2016 paper [16], proposes to use the Spin model checker to
construct plans formulti-agent systems that control the indus-
trial production of goods. Assembling stations use queues to
buffer materials, and the core objective is to optimise the
throughput of the system. The authors demonstrate that by
using branch-and-bound searching, optimised plans consist-
ing of thousands of steps can be produced in reasonable
time. For comparison, they also consider using aMonteCarlo
search framework and conclude that such an approach is even

better in constructing plans. They conjecture that building a
model checker that uses Monte Carlo search is an interesting
topic to investigate in future work.

Of course, timing is crucial when synthesising strategies
to control real-time systems, but its introduction makes the
use of model checking more challenging. The previous con-
tribution handles timing by carefully modelling it explicitly
such that a model checker unaware of timing could still be
used. An alternative is to use model checking techniques that
natively support timing. Symbolic continuous-time on-the-
fly methods, such as those employed in the tools Kronos [9],
UPPAAL [5], Tina [6] and Romeo [20], have been employed
in on-the-fly algorithms for controller synthesis [4,36]. How-
ever, for such a task, discrete-timemethods turn out to be very
competitive [2].

The paper Discrete and Continuous Strategies for Timed-
Arc Petri Net Games by Jensen et al. [25], which extends their
SPIN 2016 paper [26], addresses this topic and proposes an
on-the-fly algorithm for the synthesis of timed controllers
relative to safety objectives. It turns out that when restricting
the context to the use of urgent controllers that act immedi-
ately or wait for another occurrence of the same event, then
discrete-timemethods can be used to determine the existence
of a continuous-time safety controller.

Schedulability and resource utilisation of wireless sensor
and actuator network (WSAN) applications are addressed
in the paper Modeling and Analyzing Real-Time Wireless
Sensor and Actuator Networks Using Actors and Model
Checking by Khamespanah et al. [27]. This paper extends
their SPIN 2016 paper [28]. Such applications can be
modelled by defining a number of concurrent actors, each
providing services that can be requested by other actors by
sending messages. Schedulability of the operations can be
checked using Timed Rebeca, and Timed Computation Tree
Logic (TCTL) model checking can be performed to check
more complicated properties, such as minimal resource util-
isation.

3 Probabilistic model checking

To check quantitative properties of systems, for exam-
ple referring to time constraints or energy consumption,
models can be extended with probabilities associated with
behavioural events. The potential behaviour of such sys-
tems can then be captured in Markov Chains or proba-
bilistic transition systems (PTSs) [21], which essentially
are discrete-time Markov Chains in which transitions are
labelled with actions and probabilities, and communica-
tion between concurrent processes is modelled. Probabilistic
model checkers, such as Prism [30] and Storm [14],
can be used to analyse these Markov Chains and deter-
mine whether they satisfy given probabilistic properties.
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To express these properties, suitable temporal logics need
to be defined, such as probabilistic computation tree logic
(PCTL) [23].

In the paper On-the-Fly Model Checking for Extended
Action-Based Probabilistic Operators by Mateescu and
Requeno [32], which extends their SPIN 2016 paper [33],
a new regular probabilistic operator is proposed to specify
the probability measure of a path described by a generalised
regular formula involving computations on data values. This
operator subsumes the until operators of PCTL and their
action-based counterparts. The authors integrate this oper-
ator into MCL (Model Checking Language) and implement
an on-the-fly model checking method in the CADP tool-
box.

4 Partial-order reduction

The partial-order reduction (POR) technique [22,35,39] is
perhaps the most efficient technique to mitigate the state
space explosion problem in model checking. In recognition
of this fact the founding fathers of POR, Godefroid, Peled,
Valmari, and Wolper, received the 2014 CAV award. POR
exploits the observation that the state space may contain
several paths that are similar, in the sense that their differ-
ences are not relevant to the property under consideration.
By pruning certain transitions, the size of the state space can
be reduced.

The current issue features the paperFair Testing and Stub-
born Sets by Valmari and Vogler [41], which extends their
SPIN 2016 paper [42]. Valmari was the first to notice the
necessity for the so-called cycle proviso to ensure the cor-
rectness of POR when cycles are present in the state space.
In the presence of cycles, POR without such a proviso may
incorrectly terminate after having investigated a cycle, con-
sistently ignoring behaviour that leaves the cycle. Hence,
this problem is known as the ignoring problem. The cycle
proviso turned out to be crucial for various adaptations of
POR to different search orders of the state space (such as
breadth-first search [7]), as well as parallel searches, both
for shared memory (in settings using multiple cores [31]
and graphics processing units [34]) and distributed archi-
tectures [10,38].

In the paper by Valmari and Vogler, it is proven that a
partial-order method originally proposed for trace equiv-
alence also preserves fair testing equivalence, in which
deadlocks are unified with livelocks that cannot be exited.
Thus, it supports a practical fairness assumption. Com-
pared to the original SPIN 2016 paper, the extended version
presents new observations regarding the ignoring problem in
this context, remarking that the preservation of trace and fair
testing equivalence does not imply that the ignoring problem
is addressed.

5 Conclusions

Recent improvements and applications in the field of model
checking have been discussed and associated with six papers
selected from SPIN 2016, that have been included in this
special issue. Four of the six papers contribute work on
the application of model checking techniques to construct
schedules and plans for planning problems, and synthesise
strategies for control problems. In addition, one paper con-
tributes to the verification of quantitative properties, and one
contributes to the topic of partial-order reduction. Together,
these papers address both the strengthening of the model
checking method itself and its applicability to efficiently
solve problems outside its traditional scope.
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