
International Journal on Software Tools for Technology Transfer (2018) 20:705–737
https://doi.org/10.1007/s10009-018-0496-3

FASE 2017

Automated reasoning for attributed graph properties

Sven Schneider1 · Leen Lambers1 · Fernando Orejas2

Published online: 30 June 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Graphs are ubiquitous in computer science. Moreover, in various application fields, graphs are equipped with attributes to
express additional information such as names of entities or weights of relationships. Due to the pervasiveness of attributed
graphs, it is highly important to have the means to express properties on attributed graphs to strengthen modeling capabilities
and to enable analysis. Firstly, we introduce a new logic of attributed graph properties, where the graph part and attribution part
are neatly separated. The graph part is equivalent to first-order logic on graphs as introduced by Courcelle. It employs graph
morphisms to allow the specification of complex graph patterns. The attribution part is added to this graph part by reverting to
the symbolic approach to graph attribution, where attributes are represented symbolically by variables whose possible values
are specified by a set of constraints making use of algebraic specifications. Secondly, we extend our refutationally complete
tableau-based reasoning method as well as our symbolic model generation approach for graph properties to attributed graph
properties. Due to the new logic mentioned above, neatly separating the graph and attribution parts, and the categorical
constructions employed only on a more abstract level, we can leave the graph part of the algorithms seemingly unchanged.
For the integration of the attribution part into the algorithms, we use an oracle, allowing for flexible adoption of different
available SMT solvers in the actual implementation. Finally, our automated reasoning approach for attributed graph properties
is implemented in the tool AutoGraph integrating in particular the SMT solver Z3 for the attribute part of the properties.
We motivate and illustrate our work with a particular application scenario on graph database query validation.

Keywords Attributed graphs · Nested graph conditions · Model generation · Tableau method · Graph queries

1 Introduction

Graphs are ubiquitous in computer science.Moreover, in var-
ious application fields, graphs are equipped with attributes
to express additional information such as names of enti-
ties or weights of relationships. Due to the pervasiveness of
attributed graphs, it is highly important to have the means
to express properties on attributed graphs to strengthen
modeling capabilities and to enable analysis. Properties on
attributed graphs specify complex patterns on the graph
structure and specify conditions on the attribute values of
the graph. Examples of application areas include model-
based engineering where properties of graphical models are
expressed, the formal analysis and verification of systems

B Sven Schneider
sven.schneider@hpi.de

1 Hasso Plattner Institut, University of Potsdam, Potsdam,
Germany

2 Dpto de L.S.I., Universitat Politècnica de Catalunya,
Barcelona, Spain

where the states are modeled as graphs, the formal modeling
and analysis of sets of semi-structured documents (especially
if they are related by links), or of graph queries in the graph
database domain.

As a first basic contribution, we introduce a novel
intuitive, dedicated logic for formulating attributed graph
properties, where the graph and attribution parts are neatly
separated. The graph part uses graphs and graph morphisms
as first-class citizens. In particular, we revert for this graph
part to the logic of nested graph conditions as initially defined
byHabel and Pennemann [21]. A similar approachwas intro-
duced by Rensink [43] first. The origins can be found in the
notion of graph constraints [23], introduced in the area of
graph transformation [44], in connection with the notion of
(negative) application conditions [14,20], as a form to limit
the applicability of graph transformation rules. These graph
constraints originally had a very limited expressive power,
while nested conditions have been shown [21,39] to have the
same expressive power as first-order logic (FOL) on graphs as
introduced byCourcelle [9]. For integration of the attribution
part with the graph part of the new logic for attributed graph

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-018-0496-3&domain=pdf


706 S. Schneider et al.

properties, we revert to the so-called symbolic approach to
graph attribution [35], where the attributes are represented
symbolically byvariableswhose possible values are specified
by a set of constraints making use of algebraic specifications.

Apart from being able to express in an elegant and for-
mal way attributed graph properties, we want to be able to
automatically reason about these properties. A first question
to be answered is whether a given attributed graph property
is satisfiable at all. We have addressed this question already
in earlier work for graph properties without attributes [27].
In case an attributed graph property is satisfiable, a second
question to be answered is which attributed graphs satisfy
the property in particular. We have addressed this further
question by a symbolic model generation approach for graph
properties without attributes already in [46]. In particular, we
identified that in most application scenarios, it is desirable to
be able to explore graphs satisfying the graph property or
even to get a complete and compact overview of the graphs
satisfying the graph property. More formally speaking, we
designed an algorithm A, which returns for a given graph
property p a finite set S of so-called symbolic models such
that

– S jointly covers all graphs G satisfying the graph prop-
erty p (completeness of S),

– S does not cover any graph G violating the graph prop-
erty p (soundness of S),

– S contains no superfluous symbolicmodels not necessary
for completeness (compactness of S),

– S allows for each of its symbolic models the immediate
extraction of a finite graph G, satisfying the graph prop-
erty p and being minimal (minimal representable S),

– S allows for an enumeration of further finite graphs G
satisfying the graph property p (explorable S).

Such an algorithm is also desirable for attributed graphs.
The second main contribution of this paper is therefore

twofold. We extend our refutationally complete tableau-
based reasoning method for graph properties [27] to the case
with attributes. Moreover, we extend our symbolic model
generation approach for graph properties [46] to the case
with attributes. In addition,we show that it inherits all proper-
ties mentioned above of the algorithm for the non-attributed
case also strengthening compactness. Moreover, we show
that it comes up with an extra property for S. In partic-
ular, we show that it does not generate symbolic models
with overlapping covered attributed graphs (nonambiguity
of S). For showing that all other properties are inherited
from the case without attributes, we exploit the fact that our
new logic for attributed graph properties neatly separates the
graph part from the attribution part and that our algorithm
relies only on a abstract level on categorical constructions
specific to attributed graphs. Consequently, we can leave the

graph part of previous algorithm seemingly unchanged. For
the attribute part, we assume and make use of an oracle,
allowing for flexible adoption of different available SMT
solvers in the actual algorithm implementation. In fact, our
refutation procedure and symbolic model generation algo-
rithm for attributed graph properties are highly integrated:
Since the latter is designed to compute a complete overview
of all possible models, it is at the same time able to refute a
property if the overview turns out to be empty. Note that, in
general, our symbolic model generation algorithm might not
terminate because we support FOL on graphs for the graph
part already. It is designed, however, (also if nonterminat-
ing) to gradually deliver better underapproximations of the
complete set of symbolic models by returning a stream of
symbolic models.

Finally, we present the implementation of our algorithm
in the tool AutoGraph delegating the attribute part of the
reasoning to the SMT solver Z3 [28]. We start the paper with
presenting a concrete scenario, where our approach can be
applied. In particular,we select the graph database domain [2,
3,53] and show that we can formally model and reason about
the validity of graph database queries from a prominent case
study in this domain on social network queries [51, version
0.3.0].

Compared to earlier work in [46], we extended the entire
approach by allowing attribute constraints in graph prop-
erties, which strengthens its overall applicability. We have
moreover added the property of nonambiguity and improved
the notion of compactness. In particular, we have extended
the application scenario started in [46], where we investi-
gate the validity of graph database queries, by allowing for
attribute constraints in the queries as illustrated by the exam-
ples in Figs. 2, 3, 4, and 5. This extension, which is based
on earlier work on symbolic graphs making use of algebraic
specifications from [35], requires the usage of SMT solvers
such asZ3 at various steps in ourmodel generation algorithm
such as in Definition 19 (to attempt) to decide satisfiability
of attribute constraints. Furthermore, exchanging the consid-
ered category from typed graphs to typed attributed graphs
resulted in the need to inspect fundamental properties (see
Appendix B) of the underlying category (i.e., the category of
typed attributed graphs in our case) required for higher level
constructions such as shift in Definition 17 according to their
soundness proofs such as Lemma 1.

This paper is structured as follows: In Sect. 2, we give an
overview over related work. In Sect. 3, we discuss graph
databases as an application domain where graph queries
are to be analyzed. In Sect. 4, we recall the formalism of
algebraic specifications required for attribute handling in a
self-contained way and introduce the category GraphsSTA
of typed attributed graphs. In Sect. 5, we introduce attributed
graph properties over typed attributed graphs together with
basic operations on them such as shift and conversion of

123



Automated reasoning for attributed graph properties 707

graph properties into conjunctive normal form. In Sect. 6,
we adapt our tableau-based reasoning procedure to typed
attributed graphs, which has been initially developed in [27].
In Sect. 7, we present the extension of our symbolic model
generation algorithm [46] to attributed graph properties, and,
in particular, show that it still fulfills the requirements listed
before. In Sect. 8, we describe the implementation of the
algorithm in our tool AutoGraph, focussing also on modi-
fications required by extending our work to the handling of
attributes and attribute constraints. In Sect. 9, we take a closer
look at our application scenario and apply our tool Auto-
Graph to analyze the graph queries introduced before. We
conclude the paper in Sect. 10 together with an overview of
future work.

2 Related work

Instead of using a dedicated logic for graph properties such
as the one introduced in Sect. 5, graph properties may be
defined in terms of some existing logic allowing the appli-
cation of its associated reasoning methods. We structure the
Related Work section in three parts. We start with describing
approaches that follow the idea of using some existing logic
and continue with approaches following the idea of working
with a dedicated logic for graph properties.We concludewith
a description of the integration of attribute constraints in all
these approaches to automated reasoning on graph proper-
ties.

In particular, Courcelle presented in [9] a graph logic
defined in terms of first-order (or monadic second-order)
logic. In that approach, graphs are defined axiomatically
using predicates node(n), asserting that n is a node and
edge(n1, n2) asserting that there is an edge from n1 to n2.
In [18], such a translation-based approach for finding mod-
els of graph-like properties is followed. OCL properties are
translated into relational logic, and reasoning is then per-
formed by Kodkod, which is a SAT-based constraint solver
for relational logic. In a similar vein, in [4] reasoning for fea-
ture models is provided based on a translation into input for
different general-purpose reasoners. Analogously, in [50],
the Alloy analyzer [50] is used to synthesize in this case
large, well-formed, and realistic models for domain-specific
languages. Based on Alloy, the Aluminum tool [31]
computes minimal models, which are smaller than a pro-
vided maximum (i.e., assuming the small-world hypothesis
from Alloy), by minimizing initially non-minimal mod-
els computed by Alloy. Moreover, Aluminum supports
the interactive exploration of the model space (but is not
compact as isomorphism is only approximated). However,
Aluminum inherits some general problems from Alloy:
The use of a small-world hypothesis, the required complex
manual encoding, as well as the usage of general-purpose

SMT solvers instead of domain-specific solvers such as
AutoGraph limits the usability of Aluminum. Reasoning
for domain-specific modeling is addressed also in [24,25]
using the FORMULA approach taking care of dispatching
the reasoning to the state-of-the-art SMT solver Z3 [28].
In [45], another translation-based approach is presented to
reason with so-called partial models, which express uncer-
tainty about the information in themodel duringmodel-based
software development.

In principle, all the previously exemplarily presented
approaches from the model-based engineering domain rep-
resent potential use cases for our automated reasoning
approach for graph-like properties. We are in particular able
to automatically refute unsatisfiable graph properties and,
for satisfiable graph properties, to generate symbolic models
that are complete (in case of termination), sound, compact,
minimally representable, nonambiguous, and explorable in
combination. We therefore believe that our approach has
the potential to considerably enhance the type of anal-
ysis results, in comparison with the results obtained by
using off-the-shelf SAT-solving technologies. Following this
idea, in contrast to the translation-based approach, it is
possible, for example, to formalize a graph-like property
language such as OCL [42] by a dedicated logic for graph
properties [21] and apply corresponding dedicated auto-
mated reasoning methods as developed in [27,34,37,38].
The advantage of such a graph-dedicated approach as fol-
lowed in this paper is that graph axioms are natively
encoded in the reasoning mechanisms of the underlying
algorithms and tooling. Therefore, they can be built to be
more efficient than generic-purpose methods, as demon-
strated, for example, in [37–39], where such an approach
outperforms some standard provers working over encoded
graph conditions. Moreover, the translation effort for each
graph property language variant (e.g., OCL) into a for-
mal logic already dedicated to the graph domain is much
smaller than a translation into some more generic logic,
which in particular makes translation errors less probable.
Another approach following this idea is presented in [49]
where uncertainty about a graph-based model, which pos-
sibly occurs in partial models, may be resolved by graph
transformation steps. The authors of [37,39] present a sat-
isfiability solving algorithm for graph properties [21]. This
solver attempts to find one finite model (if possible), but
does not generate a compact and gradually complete finite
set of symbolic models allowing to inspect all possible
finite models including a finite set of minimal ones. In
contrast to [37,39], our symbolic model generation algo-
rithm is interleaved directly with a refutationally complete
tableau-based reasoning method [27], inspired by rules of
a proof system presented previously in [38], but in that
work the proof rules were not shown to be refutationally
complete.

123



708 S. Schneider et al.

When it comes to integrating attribute constraints in all
the previous approaches mentioned above, we can observe
that most translation-based approaches usually come with
attribute support for the properties and the corresponding
reasoning. This is presumably because they can rely on
the underlying solvers for coping with attribute constraints.
All dedicated automated reasoning approaches up until now
do not support attributes. However, there exists one recent
work [11] integrating attribute support into static analysis
techniques for graph transformation. As in our approach, it is
based on formalizing graph attribution using symbolic graphs
as introduced in [35,36]. In particular, the tool SyGrAV
and a framework for the analysis of symbolic graph trans-
formation systems also make use of the Z3 solver to handle
attribute constraints. SyGrAV allows the usage of nested
negative application conditions, which are used to restrict
rule applications in symbolic graph transformation systems.
This approach, however, is not concerned with automated
reasoning for attributed graph properties.

3 Application scenario

In this section, we focus on an application scenario from the
graph database domain in which our automated reasoning
approach for attributed graph properties can be applied. We
revert to a prominent case study in this domain concerned
with social network queries [51, version0.3.0, p. 25]. It was
developed by the Linked Data Benchmark Council (LDBC)
as a benchmark for following up the progress in graph data
management technologies.

Analogous to the relational database domain [48], queries
can be formalized and validated by subjecting them to static
analysis. As argued also in the relational domain, querying a
database should not depend on how and where the data are
stored. For relational databases, the relational model [8] has
therefore been designed as an underlying theory formodeling
databases and their queries with the mathematical notion of
a relation. A relational database consists of one (or more)
relations of arity prescribed by the given database schema. A
relational query is basically a mapping of a given database to
a relation of fixed arity. Following this idea (cf. [6] and [26]),
graphs and graph properties have been used to model graph
databases and their queries. In this graph model, a graph G
(possibly typed over a given type graph TG) models a graph
database instance. A graph query q for a graph database G
mapsG to one (or more) patterns (or subgraphs) of a specific
form in G.

The first step in our application scenario (cf. (1) in Fig. 1) is
the formalization of graph queries as attributed graph prop-
erties: We described the first four “complex read queries”
from the LDBC Social Network Benchmark case study [51,
version0.3.0, p. 25] into the typed attributed graph proper-

graph database
query

attributed
graph property

invalid query

valid query

example graph
databases

set of sym-
bolic models

designs

formalizes
(1)

AUTOGRAPH(2)

is-empty

is-not-empty

extract and explore
concrete models

(2a)

(2b)

(2c)

gets

Fig. 1 Application scenario (nonemptiness problem)

ties presented in Figs. 2, 3, 4, and 5. Note, arguments of
the graph queries are translated into variables argi in their
graph property counterparts. Technically, graph properties
allow for the combination (by propositional operators such
as conjunction and negation) of statements of existence of
(sub)graphs in a given host graph also allowing more com-
plex statements using nesting. In addition to graph conditions
such as in [21,46], we also allow for the usage of attributes
and attribute constraints.

The second step in our application scenario (cf. (2)
in Fig. 1) is the application of our automated reasoning
approach for graph query analysis. As described also for
the relational domain [48], many query optimization tasks
rely on the following three types of questions to be answered
(cf. (2a)–(2c) in Fig. 1): Can a query q ever deliver a non-
empty result (nonemptiness problem)?Does query q1 always
deliver the same result as query q2 (equivalence problem)? Is
the result of query q1 always contained in the result of query
q2 (containment problem)? In particular, the first question
that can be answered automatically by our approach for a
given graph database query is whether there exists a graph
database forwhich the query result is non-empty as illustrated
in Fig. 1. In particular, our refutationally complete reason-
ing method for attributed graph properties implemented in
our tool AutoGraph returns an empty set of symbolic mod-
els iff there exists no model for the given attributed graph
property. Then, we know that the graph database query is
invalid. On the other hand, our symbolic model generation
algorithm returns a non-empty set of symbolic models iff
there exist finite models for the attributed graph property. In
this case, we know that the original query is valid. In addition,

123



Automated reasoning for attributed graph properties 709

Fig. 2 Graph property p2 modeling query 1 of the LDBC Social Network Benchmark [51, version0.3.0, p. 25] searching for persons Pres (with a
given firstName-value of arg2) that are reachable by a path of knows-edges of length 1–3 from a person P given by the id arg1

Fig. 3 Graph property p3 modeling query 2 of the LDBC Social Network Benchmark [51, version0.3.0, p. 25] searching for persons Pres (known
by a person given by the id arg1) and for messages Mres created by Pres before a given time arg2

Fig. 4 Graph property p4 modeling query 3 of the LDBC Social Net-
work Benchmark [51, version0.3.0, p. 25] searching for persons Pres
(known by a person given by the id arg3) that created at least one mes-

sage M in the time interval [arg1, arg1 + arg2) from country X or Y
(with names given by arg3 and arg4, respectively) without being located
in X or Y

however, we can explore minimal example models for the
property that can be extracted immediately from each sym-
bolic model. For our application scenario, this means that
we get example graph databases for our query that deliver
non-empty results. In fact, the symbolic models generated
describe all different minimal graph databases that can serve
as witnesses for the validity of a query because our symbolic
model generation algorithm delivers a finite, complete, mini-
mal representable, nonambiguous, and compact overview of
all graph databases delivering a non-empty result. Finally,
a flexible exploration starting from any such minimal graph
database to bigger ones that are still witnesses for the validity
will be feasible by checking suitable candidates (constructed

as supergraphs of the minimal models using atomic graph
modifications) for being still witnesses for the validity of the
given query.

In the graph database domain, compared to the relational
domain, it is not common to have a database schema but often
a conceptual model [10] is present. Such a conceptual model
is given by the UML-Class Diagram depicted (adapted with
minor corrections and completions from the LDBC Social
Network Benchmark) in Fig. 6 for our case study. We can
integrate such conceptual models describing the structure of
all graph databases to be queried into our graph model and
analysis approach by flattening the inheritance structure of
the UML-Class Diagram to obtain a type graph, by modeling

123



710 S. Schneider et al.

Fig. 5 Graph property p5 modeling query 4 of the LDBC Social Net-
work Benchmark [51, version0.3.0, p. 25] searching for tags Tres that
are attached to posts created (in the time interval [arg2, arg2+arg3)) by

a person known by a person given by the id arg1 such that, in addition,
there are no posts created by such persons before that time interval

Fig. 6 Adapted UML-Class Diagram of the LDBC Social Network Benchmark [51, version0.3.0, p. 15]

the multiplicity constraints as special attributed graph prop-
erties (cf. to Fig. 10c, d, e.g) and by forbidding parallel edges
of the same type by graph properties as in Fig. 10b.

Finally, with our application scenario, we can also answer,
analogous to the nonemptiness problem, further questions
when given multiple graph queries at once. Firstly, the
nonemptiness problem can be answered for a set of queries

by using a conjunction of attributed graph properties instead
of a single one. Such a set of queries is then jointly valid
if they are able to deliver non-empty answer sets on a com-
mon graph. Secondly, we could answer the abovementioned
equivalence or containment problem for two given queries as
a basis for query optimization (analogous to query optimiza-
tion in the relational database domain [1,48]). For two graph

123



Automated reasoning for attributed graph properties 711

queries q1 and q2, we can state their equivalence q1 ≡ q2 or
containment q1 ⊆ q2 using a logical equivalence or implica-
tion in a single nested graph condition.

The analysis questions introduced in our application sce-
nario here are answered for the example graph queries of our
case study mentioned above in our evaluation in Sect. 9 by
using our automated reasoning approach for attributed graph
properties implemented in the tool AutoGraph.

4 Preliminaries

In this section, we provide, in a self-contained way, fun-
damentals, which are used in the remainder of this paper.
Firstly, in Sect. 4.1, we introduce algebraic specifications
along the lines of [16]. Secondly, in Sect. 4.2, we introduce
symbolic typed attributed graphs based on algebraic specifi-
cations from [35,36].

4.1 Algebraic specifications

We introduce in our notation the well-known algebraic spec-
ifications, which are used in this paper for the handling of
attribute values in Sect. 4.2. Algebraic specifications can
be used to describe data and functional programs. Further-
more, since SMT solvers such as Z3 support the formalism
of algebraic specifications, we are able to employ them for
our purposes in subsequent sections.

A signature consists of sorts S and symbols for operations
O . The elements of O are equipped with an empty list of
input-sorts are OR with an empty list of inputs are and a
unique output sort. Elements of O with an empty list of input
of sorts are called constants.

Definition 1 (Signature) � p = (S, O, typeO : O → S+) is
a signature if S and O are finite.

To allow for the symbolic handling of attribute values (using
terms and equations later on),we equip signatureswith sorted
variables distinguishable from the operations of the signa-
ture.

Definition 2 (Signature with Variables) Given a signature
� p (as in Definition 1), � = (� p, X , typeX : X → S)

is a signature with variables if X ∩ O = ∅.
Example 1 (Signature with Variables) We employ the well-
established notation for signatures with variables as for the
following signature, which captures boolean expressions (in
Definition 30,we provide a signature only including the built-
in operations supported by AutoGraph via Z3).

sorts: bool

opns: true : → bool

false : → bool

not : bool → bool

and : bool bool → bool

vars: b1, b2 : bool

Among other usages (explained later on),we specify attribute
values in Sect. 4.2 based on (the recursively defined) terms
over a given signature. The terms are well typed in the sense
that they respect the sorts declared for variables, constants,
and operations. Note, we define the terms for subsets of the
variables X given in the signature with variables.

Definition 3 (Terms) Given a signature with variables � (as
in Definition 2), s ∈ S, and X ′ ⊆ X . We define T�,s(X ′) to
be the smallest set s.t.

– x ∈ T�,s(X ′) if typeX (x) = s and x ∈ X ′,
– c ∈ T�,s(X ′) if c ∈ O and typeO(c) = s, and
– f (t1, . . . , tn+1)∈ T�,s(X ′) if f ∈ O , typeO( f ) = s1· · ·
sn+1·s, and ti ∈ T�,si (X

′) (for each 1 ≤ i ≤ n + 1).

Also, we define

– sort�(t) = s whenever t ∈ T�,s(X),
– T�,�(X ′) = ⋃

s∈S T�,s(X ′), and
– T�,� = T�,�(∅).

The last two items from the previous definition are to be
understood as follows. On the one hand, terms of arbitrary
type without variables (such as and(true, false) of sort bool
when using the signature in Example 1) are collected in
the set T�,� and represent values. On the other hand, terms
containing variables are used to describe sets of values in
a symbolic way; for example, the statements x > 4 and
endsWith(s, “suffix”) where x and s are variables can be
expressed by using signatures with variables comprising the
used integer and string operations and variables, respectively.

Variable substitutions are required for manipulation of
terms such as in instantiations, simplifications, and equiv-
alence proofs. A variable substitution determines for each
variable x (possibly occurring in a term t) a replacement
term (of equal type) to be inserted in t for each occurrence
of the variable x .

Definition 4 (Variable Substitution) Given the two signa-
tures with variables �1 = (� p, X1, typeX1

) and �2 = (� p,

X2, typeX2
) with common underlying signature � p (as in

Definition 2), each function σ : A → B where A ⊆ X1,
X1 − X2 ⊆ A (that is, σ replaces at least the variables not
known by�2), and B ⊆ T�2,�(X2) is a variable substitution,
written σ ∈ V�1,�2 , if sort�2(σ (x)) = sort�1(x) for each
x ∈ A. Furthermore, the variable substitution σ is implic-
itly extended to a function of type T�1,�(X1) → T�2,�(X2),

123



712 S. Schneider et al.

which recursively replaces all occurrences of a variable x ∈
A in a given term by the replacement σ(x) ∈ B.

An algebraic specification extends a signature with variables
by a finite set of term rewrite rules, which are called equa-
tions. The equations are of the form (�, r), where � and r are
terms of equal sort, possibly making use of variables, and are
usually written � = r . The equations are used to resolve on
the one hand semantic confusion between terms to be con-
sidered equal (e.g., zero = minus(zero)). On the other hand,
equations determine the semantics of an operation contained
in the signature as in functional programming languages
(consider the equations from Example 2). For many relevant
theories, these equations are applied as in functional pro-
gramming from left to right to simplify terms, in particular
terms without variables.

Definition 5 (Algebraic Specification) Given a signature
with variables � (as in Definition 2), SP = (�,EQ) is
an (algebraic) specification if

– EQ ⊆ T�,�(X)2,
– EQ is finite, and
– sort(�) = sort(r) for each (�, r) ∈ EQ.

The equations of the following algebraic specification can be
used to rewrite terms containing the operations and and not
into equivalent terms (defined below) without these opera-
tions (i.e., into the terms true or false).

Example 2 (Algebraic Specification) Equations of type bool
that could be added to the signature from Example 1 leading
to a reasonable algebraic specification are:

eqns: and(true, true) = true

and(false, b1) = false

and(b1, false) = false

not(false) = true

not(true) = false (1)

The equations of a specification already determine certain
terms to be equivalent but this basic equivalence is insuffi-
cient and is therefore extended to a congruence ∼= w.r.t. the
operators from the signature by allowing application of equa-
tions to subterms. As a base case, a term t1 can be rewritten
into an equivalent term t2 by use of an equation (�, r) of
the specification at hand by replacing (using a variable sub-
stitution σ fixing the variables occurring in the equation)
t1 = σ(�) by t2 = σ(r).

Definition 6 (Equivalence of Terms) Given a specification
SP (as in Definition 5), we define ∼=1 ⊆ T�,�(X)2 to be the
least equivalence s.t. t1 ∼=1 t2 whenever there are (�, r) ∈ EQ
and σ ∈ V�,� s.t. t1 = σ(�) and t2 = σ(r).

The congruence ∼= mentioned above is obtained by allowing
term rewritings based on ∼=1 on any level.

Definition 7 (Congruence of Terms)Given a specification SP
(as in Definition 5), we define ∼= ⊆ T�,�(X)2 to be the least
equivalence s.t. t1 ∼= t2 if

– t1 ∼=1 t2 or
– there is some f ∈ O with typeO( f ) = s1· · ·sn+1·s,
t ji ∈ T�,si (X) (for each 1 ≤ i ≤ n + 1 and 1 ≤ j ≤
2) with t1i

∼= t2i (for each 1 ≤ i ≤ n + 1) and t j =
f (t j1 , . . . , t jn+1) (for each 1 ≤ j ≤ 2).

Example 3 (Congruence of Terms) Using Equation 1 from
Example 2, we can simplify the term and(true, false) to false
by term rewriting (using either ∼=1 or ∼=).

Subsequently, we implicitly assume that algebraic specifica-
tions include a propositional fragment based on the sort bool
as well as the propositional constants true (required for sat-
isfiability in Definition 8) and false (required for type graphs
as discussed in the paragraph preceding Definition 12).

We call terms of type bool (attribute) constraints and use
them in attributed graphs to specify/restrict variable values.
For these constraints, we define the satisfaction as follows.

Definition 8 (Satisfaction of Constraints) For a specification
SP (as in Definition 5), a single constraint φ ∈ T�,bool(X)

(as in Definition 3), a set Φ ⊆ T�,bool(X) of constraints,
and a variable substitution σ ∈ V�,� (as in Definition 4), we
define that

– σ satisfies φ, written σ |� φ, if σ(φ) ∼= true,
– φ is satisfiable by SP if ∃σ ∈ V�,�. σ |� φ,
– σ satisfies Φ, written σ |� Φ, if ∀φ ∈ Φ. σ |� φ,
– SP satisfies φ, written SP |� φ, if ∀σ ∈ V�,�. σ |� φ,
– Φ is satisfiable by SP if ∃σ ∈ V�,�.∀φ ∈ Φ. σ |� φ,
and

– SP satisfies Φ, written SP |� Φ, if ∀φ ∈ Φ. SP |� φ.

SMT solvers such as Z3 are typically shipped with built-
in data types, operations, and equations on, for example,
booleans, integers, and strings. Thus, in practice, users of
such solvers and, hence, also users of higher level tools such
as AutoGraph do not need to construct custom algebraic
specifications and custom equations when using such built-
in datatypes only.

Note, users of our tool AutoGraphmay extend the basic
algebraic specification to introduce further sorts and opera-
tions (including equations) for use in constraints in attributed
graphs. However, while SMT solvers are often sufficient
for the few built-in fragments mentioned before, satisfac-
tion and satisfiability of constraints cannot be decided for

123



Automated reasoning for attributed graph properties 713

arbitrary specifications with more complex equations. Con-
straints where the employed SMT solver is not capable of
deciding satisfiability pose problems to our model genera-
tion procedure: The handling of this problem is explicitly
addressed in Sect. 8.

4.2 Symbolic typed attributed graphs

Symbolic typed attributed graphs, as introduced in [35, Def-
inition1] together with a framework of graph transformation
on these graphs, may include vertex attributes and edge
attributes similarly to EGraphs [13]. That is, any number of
vertex attributes (edge attributes) is mapped on the one hand
to a vertex (an edge), called source, and, on the other hand,
to an assigned element, called target. However, in EGraphs,
the target of an attribute is an element of the employed data
algebra, whereas in symbolic typed attributed graphs, the tar-
get is a variable of the algebraic specification. Moreover, in
symbolic typed attributed graphs, a set of constraints is used
to describe the values that such a variable can take. Note, the
set of constraints may be satisfiable by more than one vari-
able substitution. A set of constraints is more expressive than
a single constraint because only a finite set of constraints can
be translated in general into a single constraint using finite
conjunction in the obvious way.

We introduce the category of symbolic typed attributed
graphs stepwise starting with plain graphs.

Definition 9 (Plain Graph) Plain graphs G p are tuples of
the form (V , E, src : E → V , trg : E → V ).

Note, to simplify notation, we facilitate the usual notation for
selectors for tuples such as for plain graphs. For example, we
denote the vertices of a plain graph Gp

i by VGp
i
or simply by

Vi .
In the next step, plain graphs are extended by an algebraic

specification, an attribution consisting of attribute variables,
attribute vertices, and attribute edges togetherwith the source
and target mappings similarly available in EGraphs, and
constraints restricting the possible values of the attribute vari-
ables.

Definition 10 (Symbolic Attributed Graph) Given a plain
graph Gp (as in Definition 9), a specification SP (as in
Definition 5) with finite set X , and an attribution A =
(AX, typeAX : AX → S,AV , srcAV : AV → V , trgAV :
AV → AX,AE, srcAE : AE → E, trgAE : AE → AX).
Then, Gsa = (Gp, SP, A, Φ) is a symbolic attributed graph
if there is a signature �A s.t.

– X ∩ AX = ∅,
– �A = (� p, X ∪ AX, typeX ∪ typeAX), and
– Φ ⊆ T�A,bool(AX)

Fig. 7 Asymbolic attributed graphG7 in two notations (left/right). The
used specification fromExample 2 is not depicted. The single constraint
Φ is depicted separately from the graph structure at the bottom. Note,
the constraint can be satisfied by three different variable substitutions

Fig. 8 A symbolic attributed graph morphism f (see Def 11) has to be
compatible with the operations of the source and target graphs

See Fig. 7 for an example of a symbolic attributed graph
and the simplified notation. Note, the empty graph, written
∅, is assumed to have either the constraint set Φ = ∅ or
Φ = {true} when this fact is to be expressed more explicitly
as in Fig. 12.

The subsequently introduced notion of a morphism
between symbolic attributed graphs is extendedwith compat-
ibilityw.r.t. typing inDefinition 14.As for now, themorphism
maps vertices, edges, and attributes in a way compatible with
the various source and target operations (see Fig. 8). Also

123



714 S. Schneider et al.

Fig. 9 Five symbolic (typed) attributed graph morphisms. The type
graph is given in Fig. 12a. Also, D3 satisfies the graph property ∃(m2 :
G0 ↪−→ G2, ∃(m4 : G2 ↪−→ G4, true)) (an extension of this graph prop-
erty is given in Fig. 12b) according toDefinition 16 because the required

morphisms q2 and q4 can be found such that the two triangles commute
(see Fig. 11 for an example with more explanations on the satisfaction
of graph properties)

note, attribute variable mappings must not restrict satisfying
variable substitutions; i.e., a variable substitution σ satisfy-
ing the constraint of the target symbolic attributed graph Gsa

2
must already have satisfied the constraint of the source sym-
bolic attributed graph Gsa

1 after application of the symbolic
attributed graph morphism.

For example, consider the symbolic (typed) attributed
graph morphism m4 from Fig. 9, where each variable sub-
stitution satisfying the constraint of G4 also satisfies the
constraint of G2 (in this example, no variable renaming is
performed by m4 as it maps the attribution variable x from
G2 to the attribution variable x from G4).

Definition 11 (Symbolic Attributed GraphMorphism) IfGsa
1

and Gsa
2 are symbolic attributed graphs (as in Definition 10)

with specification SP = (�,EQ), then f = ( fV : V1 → V2,
fE : E1 → E2, fAX : AX1 → AX2, fAV : AV1 →AV2,

fAE : AE1 → AE2) is a symbolic attributed graph morphism
of type Gsa

1 → Gsa
2 , written f : Gsa

1 → Gsa
2 , if (see Fig. 8)

– src2 ◦ fE = fV ◦ src1,
– trg2 ◦ fE = fV ◦ trg1,
– srcAV2 ◦ fAV = fV ◦ srcAV1 ,
– trgAV2 ◦ fAV = fAX ◦ trgAV1 ,
– srcAE2 ◦ fAE = fE ◦ srcAE1 ,
– trgAE2 ◦ fAE = fAX ◦ trgAE1 ,
– typeAX2

◦ fAX = typeAX1
, and

– for all σ ∈ V�A2 ,�A2
:1 σ |� Φ2 implies σ |� fAX(Φ1).

Moreover, the composition f2 ◦ f1 : Gsa
1 → Gsa

3 of sym-
bolic attributed graph morphisms f1 : Gsa

1 → Gsa
2 and

f2 : Gsa
2 → Gsa

3 is defined componentwise.

1 Firstly, the algebraic specification used is given by (�A2 ,EQ)

where �A2 is the signature with variables obtained for the attribu-
tion A2 of Gsa

2 and the signature � from SP as in Definition 10.
Secondly, f AX : AX1 → AX2 is a member of V�A1 ,�A2

according
to Definition 4.

A symbolic attributed graph Gsa is extended to a sym-
bolic typed attributed graph G (or graph for short) when a
type graph TG is available such that a typed attributed graph
morphism fromGsa to TG can be determined, which, by def-
inition, has to satisfy the compatibilities discussed before.
In practice, we often use the single constraint false for type
graphs to allow arbitrary values in symbolic attributed graphs
to be typed.

Definition 12 ((Symbolic Typed Attributed) Graph) For a
given symbolic attributed graph morphism τ : Gsa →TG
(as in Def 11), we define G = (Gsa,TG, τ : Gsa →TG) to
be a (symbolic typed attributed) graph.

We introduce grounded graphs as those symbolic typed
attributed graphs where the set of attribute constraints Φ can
be satisfied by a unique variable substitution, whereas for
typed attributed graphs, also infinite and empty sets of such
variable substitutions are allowed.

Definition 13 (Grounded Graph) A graph is a grounded
graph, if its set of attribute constraints Φ is satisfiable by
a unique variable substitution. For a graph Gs , we denote
all grounded graphs Gg obtainable from Gs by only adding
further attribute constraints to Gs by grounded(Gs).

Subsequently, we assume a fixed symbolic attributed graph
TG used as a type graph and lift symbolic attributed graph
morphisms to symbolic typed attributed graphs by requiring
that the two symbolic attributed graph morphisms used for
typing are compatible in the sense of the commutation of the
triangle in the following definition.

Definition 14 ((Symbolic Typed Attributed) Graph Mor-
phism) Given two (symbolic typed attributed) graphs G1 =
(Gsa

1 ,TG, τ1) and G2 = (Gsa
2 ,TG, τ2) (as in Def 12) over

a common type graph TG and a symbolic attributed graph
morphism f : Gsa

1 → Gsa
2 (as in Def 11). We define f to be

123



Automated reasoning for attributed graph properties 715

a (symbolic typed attributed graph) morphism and also to be
of type G1 → G2 if τ2 ◦ f = τ1.

Gsa
1

TG

Gsa
2

τ1

f

τ2

We are binding the definitions of graphs andmorphisms from
before into the single notion of a category.

Theorem 1 (CategoryGraphsSTAofSymbolicTypedAttri-
buted Graphs) For a fixed type graph TG, we obtain the
categoryGraphsSTA by using the symbolic typed attributed
graphs as defined in Definition 12 as objects, the symbolic
typed attributed graph morphisms as defined in Defini-
tion 11 between them as morphisms, the composition of
symbolic typed attributed graph morphisms also defined in
Definition 11, and symbolic typed attributed graph identity
morphisms based on the componentwise identities.

Proof (idea) By the well definedness of the involved notions
of symbolic typed attributed graphs and symbolic typed
attributed morphisms.

In the following, we denote that f : G → G ′ is a mono
as f : G ↪−→ G ′, an epi as f : G � G ′, and an iso as
f : G ↪→→ G ′ (see Lemma 11).
Note, for specifications where attribute constraint satis-

fiability is undecidable, we can also not decide whether an
element is a graphmorphismbecause, by definition, an impli-
cation on attribute constraint satisfaction must be decided. In
Sect. 8, we handle this problem explicitly for our symbolic
model generation procedure.

5 Properties over GRAPHSSTA

In this section, we introduce graph properties over symbolic
typed attributed graphs with basic operations.

On the one hand, graph properties (for labeled graphs)
with attribute constraints without nesting have been intro-
duced in [32] and extendedwith operators frompropositional
logic in [33]. On the other hand, graph properties (for labeled
graphs) without attribute constraints but with nesting have
been introduced in [21]. In the following, we integrate both
ideas and introduce (nested) graph properties on symbolic
typed attributed graphs from Sect. 4.2.

Graph conditions of the simple form ∃(m : ∅ ↪−→ G, true)
state that G is to be contained as a subgraph in every model.
The expressive power of first-order logic on graphs is then
obtained by allowing conjunction, negation, and nesting of
graph conditions of this form.

Definition 15 (GraphConditions andGraphProperties) The
set CG of (graph) conditions over a graph G is inductively2

defined by:

– ∧S ∈ CG if S is a finite subset of CG ,
– ¬c ∈ CG if c ∈ CG , and
– ∃(m : G ↪−→ G ′, c) ∈ CG if c ∈ CG ′ .

A (graph) property is a condition over the empty graph ∅.
Notation 1 We use further operators to ease the usage of
graph properties, introduced as abbreviations, such as

∨S := ¬ ∧ {¬c | c ∈ S},
c1 → c2 := ∨{¬c1, c2},

true := ∧∅,

false := ∨∅, and

∀(m, c) := ¬∃(m,¬c).

We also allow infix and mixfix notation for ∧ and ∨ (e.g., as
in ∧{c1, c2, c3} = c1 ∧ c2 ∧ c3).

When presenting graph conditions in figures, we abbre-
viate (for notational simplicity) existential quantifications of
the form ∃(m : G1 ↪−→ G2, c) by ∃(G ′, c) when the mor-
phism m is clear from the context and where G ′ is the least
subgraph of G2 containing all graph elements that are fresh
in G2 w.r.t. G1. This notation is used in, for example, Fig. 2.

Graph properties may be employed to specify a diverse set
of properties to be satisfied by concrete models. Firstly, the
graph property in Fig. 10a states a simple negative pattern
by means of the symbolic typed attributed graph G7 from
Fig. 7. Secondly, the graph properties from Figure 10b, d,
and Fig. 10c specify lower/upper bounds (i.e., multiplicity
statements) on graph elements that are mapped to common
graph elements in the type graph. Finally, the graph property
given in Fig. 10e describes an infinite sequence of nodes by
essentially formalizing the Peano axioms. The last example
also demonstrates that any stepwise construction of minimal
models adding a finite number of elements cannot terminate
in general.

Definition 16 (Satisfaction of Graph Conditions) A graph
condition cinp from CC is satisfied recursively by amonomor-
phism q : C ↪−→ G, written q |� cinp, as follows:

• q |� ∧S if q |� c for each c ∈ S
• q |� ¬c if not q |� c
• q |� ∃(m : C ↪−→ D, c) if some q ′ : D ↪−→ G satisfies
q ′ ◦ m = q and q ′ |� c.

2 The empty conjunction∧∅ is the base case of the inductive definition.

123



716 S. Schneider et al.

(a)

(b)

(c)

(d)

(e)

Fig. 10 Various examples of graph properties showing the diver-
sity of properties expressible by graph properties. a Graph property
p10a =¬∃(m, true) states that the symbolic attributed graph G7 from
Fig. 7 (equipped with suitable vertex and edge types not depicted for
simplicity) is not a subgraph of any desired model. That is, the pat-
tern described by G7 can be understood to be prohibited. b Graph
property p10b = ¬∃(m, true) states that there are no parallel edges of
type TE between vertices of types TV 1 and TV 2, respectively. c Graph
property p10c = p10c1 ∧ p10c2 states that (p10c1 ) there are at least two

vertices of type TV and that (p10c2 ) there are not three or more vertices

of type TV . d Graph property p10d = p10d1 ∧ p10d2 ∧ p10b states that

(p10d1 ) at least two edges of type TE exit every vertex of type TV 1,

and that (p10d2 ) not three or more edges of type TE exit any vertex of

type TV 1, and (p10b from Fig. 10b) is used to simplify the property (no
mergings of target vertices need to be considered in the property) in con-
texts where preventing parallel edges is reasonable. e Graph property
p10e = p10e1 ∧ p10e2 ∧ p10e3 , with unique vertex and edge types (not

depicted for simplicity), states that (p10e1 ) there is at least one vertex

without predecessor vertex, (p10e2 ) every vertex has a successor vertex,

and (p10e3 ) there is no vertex with two predecessor vertices. The infinite

graph … is the least model of property p10e

and (an isomorphic copy of this graph) is contained in each model of
p10e

C

G

D

q

m

q′

Also, a graph G satisfies a graph property p (see Defini-
tion 15), written G |� p, if the unique mono iG : ∅ ↪−→ G
satisfies p. Finally, �p� is the set of all graphs satisfying p and
two properties p1 and p2 are equivalent, written p1 ≡ p2, iff
�p1� = �p2�.

Consider Fig. 11 for an example for the satisfaction of a graph
property making use of nesting, conjunction, and existential
quantification where types, attributes, attribute constraints,
and negation are left out for simplicity.

For the tableau procedure in Sect. 6, we introduce the
construction shift as a modification of the correspond-
ing construction from [14, Construction3.12, p. 15] where
shift is employed in the context of the analysis of M-
adhesive transformation systems. The operation from [14]
is adapted here by requiring that all involved morphisms are
monomorphisms as required for conditions and for satisfac-
tion (Definition 15 and Definition 16).

While shift is defined homomorphically on conjunction
and negation, for existential quantification all possible over-
lappings of two positive graph patterns are constructed to
compute all situations in which both positive patterns are
satisfied. In the following definition, this means that the con-
dition shift(m1, ∃(m2, c)) describes the occurrence of the
positive pattern ∃(m2, c) in the context of the other positive
pattern ∃(m1, true).

Consider Fig. 12 for an example of a graph property with
attribute constraints that is shifted along a monomorphism
where overlappings are constructed (K in following defini-
tion is an overlapping of C1 and C2 where m′

1 and m′
2 are

injective and jointly epimorphic) and attribute constraints are
handled suitably.

Definition 17 (Operation shift) Given a graph condition
from CC and a monomorphism m1 : C ↪−→ C1, then shift
is defined recursively as follows:

– shift(m1,∧S) = ∧{shift(m1, c) | c ∈ S},
– shift(m1,¬c) = ¬shift(m1, c), and
– shift(m1, ∃(m2 : C ↪−→ C2, c)) = ∨{∃(m′

2,

shift(m′
1, c)) | (m′

2,m
′
1) ∈ F} where F is a set of repre-

sentatives for the isomorphism quotient of {(m′
2,m

′
1) ∈

E ′ | m′
2 ◦ m1 = m′

1 ◦ m2} where E ′ is the set of pairs
of jointly epimorphic morphisms from Definition 32.
Here, (m′

2,m
′
1) and (m′′

2,m
′′
1) are isomorphic, if some

isomorphism i : K ↪→→ K ′ satisfies m′′
2 = i ◦ m′

2 and
m′′

1 = i ◦ m′
1.

123



Automated reasoning for attributed graph properties 717

Fig. 11 For the given graph property p1 with its subconditions p2, p3,
and p4, we derive that the graph Ghost satisfies p1 as follows. Step1:
Ghost satisfies p1 because the unique mono i : ∅ ↪−→ Ghost satisfies
p1. Step2: i satisfies p1 because we can determine some q1 (mapping
v0 to va and v1 to vb) such that q1 ◦ m1 = i (trivial) and q1 satisfies
p2. Step3: q1 satisfies p2 because q1 satisfies p3 and q1 satisfies p4.
Step4a: q1 satisfies p3 because we can determine some q3 (mapping v0
to va and v1 to vb) such that q2 ◦m2 = q1 and q2 satisfies true (trivial).

Step4b: q1 satisfies p4 because we can determine some q4 (mapping
v0 to va and v1 to vb) such that q4 ◦ m3 = q1 and q4 satisfies true
(trivial). Note, instead of choosing q1 as above in Step1, we could have
selected q2 (mapping v0 to vb and v1 to va). However, then we would
have to derive that q2 satisfies p2. This is not possible because q2 does
not satisfy p3 because there is no morphism q ′

3 with same type as q3
such that q ′

3 ◦ m2 = q2 because vertex va has no loop

C∃(m2, c) �

C2c �

C1 � shift(m1,∃(m2, c))

K

m1

m2 m′
2

m′
1

K ′

m′′
2

m′′
1

i

The definition of shift is of course important for the
implementation. However, in proofs we only build upon the
following lemma stating the required compatibility.

Lemma 1 (Compatibility of shift and |�) Given a graph con-
dition c ∈ CC , a monomorphism m : C ↪−→ C ′, and a
monomorphism m′ : C ′ ↪−→ G. Then, m′ ◦ m |� c iff
m′ |� shift(m, c).

C

G

C ′

m′ ◦ m

m

m′

� shift(m, c)c �

Proof (idea) Analogous to the proof of the corresponding
earlier result [14, Lemma3.11, p. 15] using Lemma 14.

To simplify our reasoning, our symbolicmodel generation
algorithm operates on the subset of conditions in conjunctive
normal form (CNF).

Definition 18 (Graph Conditions in Conjunctive Normal
Form (CNF)) A graph condition is in CNF if it is a conjunc-
tion of clauses. A clause is a disjunction of literals. A literal
is a positive literal ∃(m, c) or a negative literal ¬∃(m, c)
where (in both cases) m : C ↪−→ C ′ is no isomorphism, the
attribute constraint of C ′ is satisfiable, and c is in CNF.

For example, the condition ∧{∨{}} is in CNF and is equiva-
lent to false.

For translating conditions into equivalent conditions in
CNF, we introduce the second operation [·] on conditions,
which is similar to an operation in [27,38,39].

Definition 19 (Conversion to CNF) The conversion opera-
tion [·] : CG → CG executes the following steps:

• Step1: removeoperators besides∧,∨,¬, and∃ according
to the abbreviations from Notation 1,

• Step 2: remove any existential quantifications of isomor-
phisms (e.g., ∃(i : A ↪→→ B, ∃(m : B ↪−→ C, true)) is
replaced by ∃((m ◦ i) : A ↪−→ C, true) by moving the
isomorphism i into the literal of the next nesting level),

• Step 3: remove all unsatisfiable existential quantifications
(i.e., replace ∃(m : A ↪−→ B, c) by ∨∅ when the attribute
constraints of the graph B are not satisfiable),

• Step 4:move all negations inwards across∧ and∨, drop-
ping duplicate negations as expected, until reaching an
existential quantification, and

• Step 5: apply distributive and associative laws for ∧ and
∨ to finally enforce the required CNF structure.

In Step3, we require the existence of an oracle that decides
these satisfiability questions in all cases. In Sect. 8, we
explain in more detail how we handle cases where SMT
solvers such as Z3 designed to implement that oracle are
unable to decide satisfiability questions on attribute con-
straints.

As for FOL, the conversion to CNF entails the conversion
of subconditions of the shape (a1 ∧ b1) ∨ · · · ∨ (an ∧ bn),
which results in a CNFwith 2n clauses of size n. However, in
our approach, the conversion of graph conditions into CNF

123



718 S. Schneider et al.

(a)

(b)

(c)

(d) (e)

(f) (g)

Fig. 12 An example of an application of the shift-operation. a The
type graph TG (used in this figure) over the specification from Defini-
tion 30. We omit the vertex and edge types Vertex and Edge in the other
subfigures below as they are unique. b A graph property p = ∃(m1 :
G0 ↪−→ G1, true) ∧ ∃(m2 : G0 ↪−→ G2, ∃(m4 : G2 ↪−→ G4, true)),
which is a condition over the empty graph G0 = ∅ by definition, where
all graphs are typed over the type graph TG from above. c One of
the diagrams required for computing shift(m1 : G0 ↪−→ G1, ∃(m2 :
G0 ↪−→ G2, ∃(m4 : G2 ↪−→ G4, true))) showing that the result (which
is a disjunction) contains at least ∃(m1 : G0 ↪−→ G1, ∃(m′

1,1 : G1 ↪−→

C4, ∃(m′
3,3 : C1 ↪−→ D3, true))). Firstly, (in the upper rectangle) C1 is

constructed fromG1 andG2 by some (possibly partial) overlapping, and
secondly, (in the lower rectangle) D3 is constructed from C1 and G4 by
some (possibly partial) overlapping such that elements that are already
in G2 are overlapped. During the overlapping process, the constraints
of the result are the constraints of the two source graphs where variables
are renamed according to the variable mappings from the source graphs
into the constructed overlapping. Note, the graph D3 satisfies the graph
property p. d An alternative overlapping to D3. e An alternative over-
lapping to D3. f An alternative overlapping to D3 with unsatisfiable
constraint. g An alternative overlapping to C1

123



Automated reasoning for attributed graph properties 719

graph conditions usually has no great impact on the runtime
of our overall algorithm because subconditions from differ-
ent existential quantifiers are not combined in the conversion;
that is, we perform the conversion on each nesting level of the
∃-quantifier and, hence, we obtain quite small CNF condi-
tions. For FOL, this is different: After skolemization, which
removes existential quantifiers, all subconditions are related
to each other resulting in huge formulas. Note, skolemization
is not needed for graph conditions according to [39, p. 100].
Also note, the size of the graphs and themorphisms contained
in the condition are not relevant for the conversion in our
case, which is an important difference to the FOL scenario.
However, attribute constraints have to be checked byAuto-
Graph for satisfiability by the employed SMT solver during
the conversion to CNF to check for unsatisfiable attribute
constraints (seeStep 3 inDefinition 19). These general expla-
nations are supported by our runtime examinations that are
presented in [47] where Alloy is applied to generate mod-
els for two graph queries without attributes that we encoded
in the Alloy input language. However, apparently due to
lacking support for strings and integer arithmetic, Alloy is
not able to determinemodels forAlloy-encoded versions of
the graph properties with attributes and attribute conditions
from Figs. 3, 4, and 5.

6 Tableau procedure

In this section, we adapt the tableau procedure for graph con-
ditions without attributes and attribute constraints from [27]
to graph conditions over the symbolic typed attributed graphs
as introduced in Sect. 4.2. To handle the additional attributes
and attribute constraints, we adapted the underlying opera-
tions shift and [·] as explained before.

Intuitively, using the tableau procedure, we perform in
our algorithm, for a given graph property, a recursive case
distinction to finally return all most explicit cases that can-
not be split further. Subsequently, in Sect. 6.1, we start with
an intuitive explanation on the steps for splitting, recursive
application, and termination backed up by fundamental lem-
mas. Afterward, in Sect. 6.2, we present formal definitions
for the construction of (nested) tableaux implementing the
three discussed steps.

6.1 Recursive case distinction principle

Step 1 (Splitting): we are translating the given graph con-
dition c in CNF into a disjunctive normal form, i.e., into
a disjunction of conjunctions of literals. This conversion is
executed in Sect. 6.2 by construction of a tableau T where
each branch B of the tableau T corresponds to one clause of
the disjunctive normal form to be constructed.

The obtained condition ∨S is then considered compo-
sitionally (assuming here and subsequently an enclosing
existential quantification in the form of ∃(iC ,∨S) using the
unique mono iC : ∅ ↪−→ C). That is, we can consider each
clause of the disjunctive normal form (given by an element
of S) separately without altering the set of models of the
graph property. Hence, we may consider one branch B of the
tableau T constructed in isolation.

Lemma 2 (Sound and Complete Branching) If S is a subset
of CC , then �∃(iC ,∨S)� = ⋃{�∃(iC , c)� | c ∈ S}.
Each clause∧L considered separately from the other clauses
contains either at least one positive literal (Step2) or only
negative literals (Step3).

Step 2 (Recursive Application): To prepare the clause ∧L
for recursive application, we are merging the elements of
L into a single positive literal by application of the shift
construction. Firstly, one positive literal � is selected from L
and all other graph conditions from S = L − {�} are lifted
into � using the shift construction.

Lemma 3 (Sound and Complete Lifting) If S is a given sub-
set from CC , then �∃(iC , (∧S) ∧ ∃(m : C ↪−→ C ′, c′))� =
�∃(iC , ∃(m, c′ ∧ shift(m,∧S)))�.

Also note, the operation [·], which is additionally applied
in the formal tableau construction in Sect. 6.2, is sound and
complete as follows.

Lemma 4 (Sound and Complete [·]) If c is a condition from
CC , then �∃(iC , c)� = �∃(iC , [c])�.
Finally, we recursively apply the presented algorithm to the
condition c of the positive literal∃(m : C ↪−→ C ′, c) obtained.
Note, sincem is no isomorphism due to the operation [·], the
graph C ′ is strictly greater than the graph C . This recursive
application is justified by the following lemma.

Lemma 5 (Sound and Complete Nesting) If c is a condition
in CC ′ , then �∃(iC , ∃(m : C ↪−→ C ′, c))� = �∃(iC ′ , c)�.

Step 3 (Termination): As a complementary case to Step2
we consider clauses containing no positive literal, that is,
clauses containing any number of negative literals of the form
¬∃(m : C ↪−→ C ′, c). Due to the construction of the operation
[·], the monomorphisms m of these negative literals are no
isomorphisms and, hence, the unique monomorphism iC :
∅ ↪−→ C already satisfies these negative literals proving that
C is a model of all negative literals contained in the clause.
Also, the graph C minimally represents all models of the
considered case in the sense that it is the least graph contained
in all these models.

Lemma 6 (Sound and Complete Termination) Let L be a
set of negative literals ¬∃(mi , ci ) from CC where each mi

is no isomorphism. Then, C is the unique least element of
�∃(iC ,∧L)� in the sense of

123



720 S. Schneider et al.

– existence: C is an element of �∃(iC ,∧L)�

– unique least: for each graph C ′ ∈ �∃(iC ,∧L)�, there
exists some monomorphism m : C ↪−→ C ′

The algorithm terminates at this point with conditions of the
form �∃(iC ,∧L)�, which cannot be broken down into mul-
tiple such conditions using a case distinction as mentioned
before and which are called therefore most explicit.

Note, the proofs of these lemmas presented here are con-
tained in Appendix.

Subsequently, we formalize the presented description of
the algorithm by introducing definitions for the construction
of tableaux and, for the recursive application of our steps, of
nested tableaux.

6.2 Recursive construction of tableaux

The algorithm intuitively presented before is now formal-
ized by means of the tableau-based reasoning method that
was introduced in [27]. Regular tableaux are used to perform
the splitting executed in Step1 from above and were directly
inspired by the construction of tableaux for plain FOL rea-
soning [22]. Then, nested tableaux are used to handle the
recursive application of Step2 from above.

Provided a condition in CNF and an empty tableau that is
obtained using the initialization rule, we are using repeatedly
the extension rule to construct branches of graph conditions
by selecting one literal from each clause (note, a condition
is unsatisfiable if it contains an empty clause) of the given
condition. Then, we apply the lift rule to merge all literals
that are contained in a branch into a single positive literal
provided that the branch contains at least one such positive
literal as a starting point.

Definition 20 (Tableaux for Graph Conditions, Open, and
Closed Branches) Given a condition c in CNF over C , a
tableau T for c is a finite tree whose nodes are conditions
constructed using the rules below. A branch in a tableau T
for c is a maximal path in T . Moreover, a branch B is closed
if false is in B; otherwise, it is open. Finally, a tableau is
closed if all of its branches are closed; otherwise, it is open.

– initialization rule: A tree with a single root node true is
a tableau for c.

– extension rule: If B is a branch of a tableau for c and ∨S
is a clause in c, then if S �= ∅ and S∩B = ∅, then append
each element of S as a child node to the leaf of B or if
S = ∅ and false /∈ B, then append false as a child node
to the leaf of B.

– lift rule: if B is a branch of a tableau for c, � and ∃(m, c′)
are in B, �′ = ∃(m, [c′ ∧ shift(m, �)]) is not in B, then
append �′ as a child node to the leaf of B.

Semi-saturated tableaux are the desired results of the iterative
tableaux construction where no further rules are applicable.

Definition 21 (Semi-saturated (Branch of a) Tableau) Let T
be a tableau for condition c over C . A branch B of T is
semi-saturated if it is either closed or

• B is not extendable with a new node using the extension
rule and

• if E = {�1, . . . , �n} is the non-empty set of literals
contained in nodes added to B using the extension rule
(i.e., not by the lift rule), then there is a positive literal
� = ∃(m, c′) in E such that the literal in the leaf node of B
is equivalent to ∃(m, c′ ∧ {shift(m, �′) | �′ ∈ (E − {�}}).
Also, we call � the hook of B.

Finally, T is semi-saturated if all branches of T are semi-
saturated.

Note, the set E in the definition above contains all literals
that are to be integrated using the lift rule in the leaf node
of B.

Following the description of the algorithm frombefore,we
recursively construct further tableaux for the inner conditions
c′ of the leaf nodes ∃(m, c′) contained in the semi-saturated
tableau at hand. That is, the next analysis step is to construct
a tableau for condition c′. The iterative (possibly nonter-
minating) execution of this procedure results in (possibly
infinitely many) tableaux where each tableau may result in
the construction of a finite number of further tableaux. This
relationship between a tableau and the tableaux derived from
the leaf literals of open branches results in a so-called nested
tableau (see Fig. 13 for an example of a nested tableau).

Definition 22 (Nested Tableaux, Opener of Tableau, Context
of Tableau,NestedBranch ofNested Tableau, Semi-saturated
Nested Tableau) Given a condition c over C and a partially
ordered set (I ,≤, i0) with minimal element i0, a nested
tableau NT for c is constructed using the rules below and
is, for some I ′ ⊆ I , a family3 of triples {〈Ti , j, c j 〉}i∈I ′ that
contain a tableau Ti , an index j ∈ I ′, and a condition c j .4

• initialization rule: If Ti1 is a tableau for c, then the family
containing only 〈Ti1, i0, true〉 for some index i1 > i0 is
a nested tableau for c and C is called context of Ti1 .

• nesting rule: IfNT is a nested tableau for cwith index set
I ′, 〈Tn, k, ck〉 is in NT for index n, the literal � = ∃(mn :
An ↪−→ A j , cn) is a leaf of Tn , � is not the condition in

3 Formally, the family is a map that assigns one triple to each i ∈ I ′.
4 Intuitively, a triple 〈Ti , j, ci 〉 is either generated by the initialization
rule or is generated by the nesting rule and Ti is a tableau for a condition
ci that is the inner condition of some literal � = ∃(m, ci ) that is in a
leaf node of the parent tableau Tj that is assigned to index j in NT .

123



Automated reasoning for attributed graph properties 721

Fi
g.

13
N
es
te
d
ta
bl
ea
u
(c
on

si
st
in
g
of

co
nn

ec
te
d
ta
bl
ea
ux

T 0
,
…

,
T 5
)
fo
r
th
e
gr
ap
h
pr
op
er
ty

p1
3
.
T
he

co
nd

iti
on

us
ed

fo
r
ea
ch

of
th
e
ta
bl
ea
ux

is
gi
ve
n
ab
ov
e
it
(t
ha
t
is
,
p1

3
fo
r
T 0

an
d
th
e

co
rr
es
po
nd
in
g
op
en
er
s
fo
r
th
e
ot
he
r
ta
bl
ea
ux
).
In

th
e
m
id
dl
e
br
an
ch

of
T 0
,w

e
ob

ta
in

fa
ls
e
be
ca
us
e

∃(
1

↪−→
1

,
tr
ue

)
is
re
du
ce
d
by

[·]
to

tr
ue

by
re
m
ov
al

of
th
e
is
om

or
ph
is
m
.W

e
ex
tr
ac
t
fr
om

th
e
ne
st
ed

br
an
ch
es

en
di
ng

in
T 4
,T

5
,a
nd

T 3
th
e
sy
m
bo

lic
m
od

el
s
s 1

=
〈 1

2
,
tr
ue

〉,s
2

=
〈 1

2
3

,
tr
ue

〉,a
nd

s 3
=

〈 1
,
¬∃

(
2

,
tr
ue

)
∧

¬∃
(
2

3
,
tr
ue

)〉,
ac
co
rd
in
g
to

D
efi
ni
tio

n
29
.H

er
e,
s 2

is
a
re
fin

em
en
t
of

s 1
,a
cc
or
di
ng

to
D
efi
ni
tio

n
25
,a
nd

,h
en
ce
,w

ou
ld

be
re
m
ov
ed

by
co
m
pa
ct
io
n
as

ex
pl
ai
ne
d
in

Se
ct
.7

.4
.S

in
ce

s 1
an
d
s 3

co
ve
r
di
sj
oi
nt

se
ts
of

gr
ap
hs

al
re
ad
y,
di
sa
m
bi
gu

at
io
n
(a
s

ex
pl
ai
ne
d
in

Se
ct
.7
.5
)
do
es

no
ts
pl
it
th
em

up
fu
rt
he
r

123



722 S. Schneider et al.

any other triple of NT , Tj is a tableau for cn , and j > n
is some index not in I ′, then assign the triple 〈Tj , n, �〉 to
NT to index j , � is called opener of Tj , and A j is called
context of Tj .

A nested branch NB of the nested tableau NT is a maximal
sequence of branches Bi1, . . . , Bik , Bik+1 , . . . of the tableaux
Ti1 , . . . , Tik , Tik+1 , . . . in NT starting with a branch Bi1 in
the initial tableau Ti1 of NT , such that if Bik and Bik+1 are
consecutive branches in the sequence, then the leaf of Bik
is the opener of Tik+1 . NB is closed if it contains a closed
branch; otherwise, it is open. NT is closed if all its nested
branches are closed. Finally, NT is semi-saturated if each
tableau in NT is semi-saturated.

The definitions for the construction of the (nested) tableaux
above correspond closely to the ones in [46] as expected
because they operate on the categorical level. This also
implies that only the operations shift and [·] occurring in
the definitions above needed to be adapted (see Lemmas 1,
4).

In addition to semi-saturation, we require the notion of a
saturated nested tableaux, which requires (informally) that
all tableaux of the given nested tableau are semi-saturated
and that hooks are selected in a fair way not postponing
indefinitely the influence of a positive literal for detecting
inconsistencies leading to closed nested branches.

It has been shown in [27] that the tableau-based reason-
ing method using nested tableaux for conditions c is sound
and refutationally complete. In particular, soundness means
that if we are able to construct a nested tableau where all its
branches are closed, then the original condition c is unsatis-
fiable. Refutational completeness means that if a saturated
nested tableau includes an open branch, then the original
condition is satisfiable (vice versa, unsatisfiability is always
determined in finite time when the saturated nested tableau
includes no open branch). In fact, each open finite or infinite
branch in such a nested tableau defines a finite or infinite
model of the property, respectively. Incompleteness can be
caused in tableaux for FOL by unfair selection of formulas
(confer [22, page 117, Fig. 4] for an examplewhere the unsat-
isfiable condition Q ∧ ¬Q is treated unfairly by never being
selected). In our case, the set of conditions fromwhich a hook
is to be selected in a fair way changes from one tableau to the
next because conditions that are not selected are lifted into
the hook resulting (possibly) inmultiple different conditions.
These conditions are called the successors (cf. [27]) of the
conditions that are selected and lifted. To ensure refutational
completeness,we ensure that the impact of a condition affects
the nested branch eventually by not postponing the selection
of one of these successors as a hook indefinitely. Confer to
[27, p. 29] for the discussion in the original paper.

However, recall again that the usage of attributes and
attribute constraints in the graphs contained in the conditions
leads to situations where the employed SMT solvers cannot
decide satisfiability. This has an impact on the construction
of tableaux because the operation [·], as explained before,
employs SMT solvers to check satisfiability and it is applied
in the lift rule in Definition 20.

7 Symbolic model generation

In this section, we present our symbolic model generation
algorithm A. We first formalize the requirements from the
Introduction for the generated set of symbolic models, then
present our algorithm, and subsequently verify that it indeed
adheres to these formalized requirements. In particular, we
want our algorithm to extract symbolic models from all open
finite branches in a saturated nested tableau constructed for
a graph property p.

Since there are infinite saturated nested tableaux, such as
the one thatwould be constructed for the graph property p10e

given in Fig. 10e, we have an incomplete procedure in the
sense that the gradual construction of a nested tableau for
a graph property p may not terminate. However, due to the
undecidability of FOL on graphs, no alternative sound and
complete algorithm could also accomplish termination. In
order to be able to find a complete set of symbolic mod-
els without knowing beforehand whether the construction
of a saturated nested tableau terminates, we introduce the
key notions of k-semi-saturation and k-termination to reason
about nested tableaux up to depth k, which are in some sense
a prefix of a saturated nested tableau. Note, the verification
of our algorithm, in particular for completeness, is accord-
ingly based on induction on k. Informally, this means that by
enlarging the depth k during the construction of a saturated
nested tableau, we eventually find all finite open branches
and thus finite models. This procedure will at the same time
guarantee that we will be able to extract symbolic models
from finite open branches even for the case of an infinite sat-
urated nested tableau. For example, we will be able to extract
the graph with a single vertex from a finite open branch of
the infinite saturated nested tableau for property p10e1 ∨ p10e

from Fig. 10e.

7.1 Sets of symbolic models

The symbolic model generation algorithm A should gener-
ate for each graph property p a set of symbolic models S
satisfying all requirements described in Introduction (i.e.,
soundness, completeness, minimal representability, com-
pactness, and nonambiguity). A symbolic model in its most
general form is a graph condition over a graph C , where C is

123



Automated reasoning for attributed graph properties 723

available as an explicit component. A symbolic model then
represents a (possibly empty) set of graphs (as defined in
Definition 24).

Definition 23 (Symbolic Model, Remainder) If c is a con-
dition over C according to Definition 15, then 〈C, c〉 is a
symbolic model. The condition c is called remainder of the
symbolic model.

We define the graphs that are covered by a given symbolic
model as follows.

Definition 24 (Graphs Covered by a Symbolic Model) I f
〈C, c〉 is a symbolic model, then covered(〈C, c〉) is equal to
�∃(iC , c)�, i.e., themodels of ∃(iC , c). For a setS of symbolic
models, covered(S) = ⋃{covered(s) | s ∈ S}.
Also note, each graph G that is covered by a given sym-
bolic model 〈C, c〉 subsumes the graph C by means of some
monomorphism as stated in the following lemma.

Lemma 7 (Existence of the Covering Monomorphism) If
〈C, c〉 is a symbolic model and G ∈ covered(〈C, c〉), then
there is some monomorphism m : C ↪−→ G.

For later use, we also define when one symbolic model is
entirely subsumed by another w.r.t. the covered graphs.

Definition 25 (Refinement of Symbolic Model) Given two
symbolic models 〈C1, c1〉 and 〈C2, c2〉 s.t. �∃(iC2 , c2)� ⊆
�∃(iC1 , c1)�, then 〈C2, c2〉 is a refinement of 〈C1, c1〉, writ-
ten 〈C2, c2〉 ≤ 〈C1, c1〉. The set of all such symbolic models
〈C2, c2〉 is denoted by refined(〈C1, c1〉).

Based on these definitions, we formalize the first five
requirements (that is, except for explorability) from Sect. 1
to be satisfied by the sets of symbolic models returned by
algorithm A.

Definition 26 (Soundness, Completeness, Minimal Repre-
sentability, Compactness, and Nonambiguity) Let S be a set
of symbolic models, and let p be a graph property.

• S is sound w.r.t. p if
covered(S) ⊆ �p�,

• S is complete w.r.t. p if
covered(S) ⊇ �p�,

• S is minimally representable w.r.t. p if
for each 〈C, c〉 ∈ S: C |� p and for each G ∈
covered(〈C, c〉)

there is a mono m : C ↪−→ G,
• S is compact if
for each 〈C, c〉 ∈ S:

covered(S) �= covered(S − {〈C, c〉}), and
• S is nonambiguous if
for all distinct 〈C1, c1〉, 〈C2, c2〉 ∈ S:

covered(〈C1, c1〉) ∩ covered(〈C2, c2〉) = ∅.

See Table 1 for distinguishing examples for compactness
and nonambiguity when considering, for simplicity, graph
part and attribute constraints in isolation. In Sect. 7.4 and
Sect. 7.5, we show how both properties can be enforced,
respectively. Subsequently, we discuss the generation of sets
of symbolic models by algorithm A.

7.2 Symbolic model generation algorithmA

We briefly describe the three main steps of algorithm A,
which generates for a given graph property p a sound, com-
plete, and minimally restrictive set of symbolic modelsA(p)
(see Fig. 14 for a visualization). The algorithm consists
of three steps: the generation of symbolic models and the
(optional) compaction and disambiguation of symbolic mod-
els, which are discussed in detail in Sects. 7.3, 7.4, and 7.5.
Afterward, in Sect. 7.6, we discuss the explorability of the
obtained set of symbolic models.

Step 1 (Generation of symbolic models in Sect. 7.3). We
apply the tableau and nested tableau rules from Sect. 4 to
iteratively construct a nested tableau for the given graph
property p. Then, symbolic models are extracted from cer-
tain nested branches of this nested tableau that cannot be
extended. Since the construction of the nested tableau may
not terminate due to infinite nested branches,we construct the
nested tableau in breadth-first manner and extract the sym-
bolic models whenever possible. Moreover, to eliminate a
source of nontermination, we select the hook in each branch
in a fair way not postponing the successors of a positive lit-
eral that was not chosen as a hook yet indefinitely [27, p. 29]
ensuring at the same time refutational completeness of our
algorithm. This step ensures that the resulting set of symbolic
models is sound, complete (provided termination), and mini-
mally representable. The symbolicmodels extracted from the
intermediately constructed nested tableau NT for growing k
are denoted SNT ,k .

Step 2 (Compaction of sets of symbolic models in
Sect. 7.4).We remove all symbolicmodels fromSNT ,k result-
ing in Scomp that do not contribute to the set of graphs jointly
covered thereby enforcing compactness. This second step
of our algorithm A preserves soundness, completeness, and
minimal representability and additionally ensures compact-
ness.

Step 3 (Disambiguation of sets of symbolic models in
Sect. 7.5).We split the setScomp of symbolicmodels obtained
before resulting in Sres such that the graphs that are covered
by the symbolic models from Scomp do not overlap pair-
wise, thereby enforcing nonambiguity. This third step of our
algorithm A preserves soundness, completeness, minimal
representability, and compactness and additionally ensures
nonambiguity.

123



724 S. Schneider et al.

Table 1 Two examples demonstrating compactness and nonambiguity
of sets of symbolic models. (a) The first example on the top considers
symbolic models with different graphs with empty sets of attribute con-
straints, and (b) the second example on the bottom considers symbolic
models with identical graph parts but differing attribute constraints.
However, both examples are quite similar because the integer values
occurring in the second example correspond to the number of vertices
in the first example

Symbolic model Edge-free graphs covered by si

s0 = 〈 , true〉 , , , . . .
s1 = 〈 , true〉 , , . . .
s2 = 〈 , ∧{¬∃( , true)}〉 ,
s3 = 〈 , ∧{¬∃( , true)}〉

Set of symbolic models Properties of Si

S1 = {s0, s1} not compact, ambiguous
S2 = {s0, s2} compact, ambiguous
S3 = {s0, s3} compact, nonambiguous

Symbolic model Constraint set Φi of Ci

s0 = 〈C1, ∧∅〉 {ge(x, 2)}
s1 = 〈C2, ∧∅〉 {ge(x, 3)}
s2 = 〈C3, ∧∅〉 {le(x, 2)}
s3 = 〈C4, ∧∅〉 {lt(x, 2)}
Set of symbolic models Properties of Si

S1 = {s0, s1} not compact, ambiguous
S2 = {s0, s2} compact, ambiguous
S3 = {s0, s3} compact, nonambiguous

(a) In the upper part of the table (a), four symbolic models are given
where we assume that the attribute constraint sets of the graphs are
empty. For a better understanding, we included some of the graphs
without edges covered by the symbolic models. In the lower part of the
table (a), three sets of symbolic models are given with varying prop-
erties w.r.t. compactness and nonambiguity. S1 and S2 are ambiguous
because both of their symbolicmodels cover the graph and ,
respectively. S3 is nonambiguous because s3 forbids two vertices while
s0 requires two vertices. S1 is not compact because each graph covered
by s1 contains two vertices as required by s0. S2 is compact because,
firstly, s0 covers while s2 does not and, secondly, s2 covers
while s1 does not. S3 is compact because, firstly, s0 covers while
s3 does not and, secondly, s3 covers while s0 does not
(b) In the upper part of the table (b), four symbolic models are given
where we assume that the graphs Ci share a common graph part con-
taining an attribute variable x of type int but differ in their attribute
constraint sets Φi . In the lower part of the table (b), three sets of sym-
bolic models are given with varying properties w.r.t. compactness and
nonambiguity. S1 and S2 are ambiguous because both of their symbolic
models allow x to be 3 and 2, respectively. S3 is nonambiguous because
s3 forbids x to be 2 or greater while s0 requires x to be at least 2. S1
is not compact because each x satisfying Φ1 is at least 2 as required
by s0. S2 is compact because, firstly, s0 allows x to be 3 while s2 does
not and, secondly, s2 allows x to be 1 while s1 does not. S3 is compact
because, firstly, s0 allows x to be 3 while s3 does not and, secondly, s3
allows x to be 1 while s0 does not

7.3 Generation ofSNT,k

By applying a breadth-first construction, we construct nested
tableaux that are for increasing k, both k-semi-saturated (i.e.,
all branches occurring up to index k in all nested branches
are semi-saturated) and k-terminated (i.e., no nested tableau
rule can be applied to a leaf of a branch occurring up to index
k in some nested branch).

Definition 27 (k-Semi-saturated Nested Branches, k-Termi-
nated Nested Branches) Given a nested tableau NT for
condition c over C , if NB is a nested branch of length k
of NT and each branch B contained at index i ≤ k in NB is
semi-saturated, then NB is k-semi-saturated. If every nested
branch of NT of length n is min(n, k)-semi-saturated, then
NT is k-semi-saturated. If NB is a nested branch of NT of
length n and the nesting rule cannot be applied to the leaf
of any branch B at index i ≤ min(n, k) in NB, then NB is
k-terminated. If every nested branch of NT of length n is
min(n, k)-terminated, then NT is k-terminated. If NB is a
nested branch of NT that is k-terminated for each k, then NB
is terminated. If NT is k-terminated for each k, then NT is
terminated.

We define the k′-remainder of a branch, which is a refinement
of the condition of that tableau that is used by the subsequent
definition of the set of extracted symbolic models.

Definition 28 (k′-Remainder of a Branch) Given a tableau
T for a condition c over C , a monomorphism q : C ↪−→ G,
a branch B of T , and a prefix P of B of length k′ > 0. If
R contains (a) each condition contained in P unless it has
been used in P by the lift rule (being ∃(m, c′) or � in the lift
rule in Definition 20) and (b) the clauses of c not used by
the extension rule in P (being∨(c1, . . . , cn) in the extension
rule in Definition 20), then 〈C,∧R〉 is the k′-remainder of
B.

The set of symbolic models extracted from a nested branch
NB is a set of certain k′-remainders of branches of NB. In
the example given in Fig. 13, we extracted three symbolic
models from the four nested branches of the nested tableau.

Definition 29 (Symbolic Model Extracted from a Nested
Branch) If NT is a nested tableau for a condition c over C ,
NB is a k-terminated and k-semi-saturated nested branch of
NT of length n ≤ k, B is the branch at index n of length
k′ in NB, B is open, B contains no positive literals, then
the k′-remainder of B is the symbolic model extracted from
NB. The set of all such extracted symbolic models from k-
terminated and k-semi-saturated nested branches of NT is
denoted SNT ,k

Based on the previously introduced definitions of soundness,
completeness, and minimal representability of sets of sym-
bolic models w.r.t. graph properties, we are now ready to
verify the corresponding results on the algorithm A.

123



Automated reasoning for attributed graph properties 725

Fig. 14 Symbolic model generation algorithmAwith optional compo-
nents for compaction and disambiguation. In each component, the tool
AutoGraph is applied to 1, n, and 2n − 1 graph properties, respec-
tively. Symbolic model generation obtains the set SNT ,k of symbolic
models from a nested tableau NT . Then, compaction (using Lemma 8)
constructs n graph properties for the n symbolic models in SNT ,k and

removes symbolic models not contributing to the covered graphs result-
ing in Scomp . Finally, disambiguation (using Lemma 10) constructs
2n − 1 graph properties for the n symbolic models in Scomp in each of
its iterations, which disambiguates Scomp until no further disambigua-
tion is necessary resulting in Sres assuming that all applications of the
algorithm terminate

Theorem 2 (Soundness) If NT is a nested tableau for a graph
property p, then SNT ,k is sound w.r.t. p.

Theorem 3 (Completeness) If NT is a finite terminated
nested tableau for a graph property p, k is themaximal length
of a nested branch in NT, then SNT ,k is complete w.r.t. p.

The presented algorithm A does not terminate for all graph
properties as can be seen from the example in Fig. 10e
where the nested tableau under construction is never semi-
saturated. However, the set of the symbolic models that are
extracted at any point during the breadth-first construction
of the (possibly infinite) nested tableau NT is a gradually
extended underapproximation of the set of symbolic models
〈C, c〉 with finite graphs C that can be extracted from NT .
Moreover, during such a breadth-first construction, the set of
openers ∃(m : G1 ↪−→ G2, c) of the branches that end nonter-
minated nested branches constitutes an overapproximation.
This overapproximation encodes a lower bound on missing
symbolic models in the sense that each symbolic model that
may be discovered by further tableau construction (and each
graph satisfying the graph property that is not covered by
some symbolic model extracted already) contains some G2

as a subgraph.
Furthermore, the extracted symbolic models 〈C, c〉 are

most explicit in the sense ofminimal representability because
the conditions c contained in them are conjunctions of neg-
ative literals that are satisfied by C already. Of course, the

graph C may still have a set of attribute constraints that is
satisfiable by various variable substitutions and, therefore,
SMT solvers such asZ3may be employed to derive examples
of these variable substitutions resulting in grounded graphs
(see Definition 13) to obtain most explicit graphs that have a
unique meaning w.r.t. the attributes as well.

Theorem 4 (Minimal Representability) If NT is a nested
tableau for a graph property p, then SNT ,k is minimally rep-
resentable w.r.t. p.

In the next subsection, we explain how to modify sets
of symbolic models extracted so far to additionally enforce
compactness and nonambiguity.

7.4 Compaction of sets of symbolic models

The finite set of symbolic models SNT ,k as obtained in the
previous section is modified in this second step as follows
to enforce compactness. This second step is intended to sim-
plify SNT ,k , and hence, it may be aborted at any point, which
may be necessary occasionally because compaction (and
disambiguation as well) is resource intensive and possibly
nonterminating.

The following lemma supports the compaction of a set
of symbolic models S into some subset S ′ of it by test-
ing an emptiness condition. This emptiness condition can
be expressed by refutability of a graph property.

123



726 S. Schneider et al.

Lemma 8 (Compaction) A subset S ′ of the set S covers the
same graphs as S iff covered(S − S ′) − covered(S ′)= ∅ iff
∨{∃(iC , c) | 〈C, c〉 ∈ S −S ′} ∧ ¬ ∨ {∃(iC , c) | 〈C, c〉 ∈ S ′}
is refutable.

We apply this lemma by testing for each symbolic model
s in SNT ,k whether it can be removed from SNT ,k without
altering the set of covered graphs. This iteration over the
symbolic models may not terminate because the tableau pro-
cedure is only refutationally complete; i.e., AutoGraph is
only guaranteed to terminate on unsatisfiable graph proper-
ties. The resulting set Scomp of symbolic models is compact
as desired.

Theorem 5 (Compactness) If NT is a nested tableau for a
graph property p, then Scomp ⊆ SNT ,k is compact.

Note, in [46], a weaker form of compactness has been
enforced, which may be called binary compactness because
it considers only two symbolic models at once.

As a special case, we consider sets of symbolic models
where the conditions contained in the symbolic models are
equivalent to true. While such sets of symbolic models (with
at least two elements) are ambiguous (e.g., the union of both
minimal models proves the ambiguity), we can enforce com-
pactness as follows.

Lemma 9 (Compactness for Symbolic Models with Trivial
Remainder) The set of symbolic models S = {〈Ci ,∧∅〉 | i ∈
I } is compact iff for all two distinct symbolicmodels 〈C1,∧∅〉
and 〈C2,∧∅〉 contained in S, there is no monomorphism m :
C1 ↪−→ C2.

We apply this lemma by removing 〈C2,∧∅〉 from the set S if
such a monomorphismm : C1 ↪−→ C2 is found. As expected,
compactification using Lemma 9 is usually much faster than
compaction using Lemma 8 and also terminates in each case.
However, even in this simple case, we are required to find
monomorphisms, which amounts to the NP-complete sub-
graph isomorphism problem. Nonetheless, since the handled
graphs are typed and small (by construction, we generate
minimal models by operating only on the graphs from the
conditions rather than operating on instance graphs), the
required time for finding the monomorphisms is usually not
problematic.

Usually, the symbolic model generation procedure does
not generate symbolic models with trivial remainder as
required by Lemma 9. However, this lemma can be applied
anyway in application scenarios where only the minimal
models and not the remainders are of interest. Hence,
replacing the remainders of the symbolic models obtained
from AutoGraph by ∧∅ implements, from this perspec-
tive, the selection of these minimal models and the above
lemma then allows their compaction more efficiently than
with Lemma 8 (before the replacement). The resulting

compact set of symbolic models is then to be under-
stood only as an enumeration of minimal models of the
graph property from which the set SNT ,k has been gener-
ated.

7.5 Disambiguation of sets of symbolic models

Subsequently, we enforce nonambiguity of the ultimately
obtained set Sres of symbolic models.

As a first step, we claim that a set of symbolic models is
compact whenever it is nonambiguous showing that enforc-
ing compactness can be skipped when nonambiguity is to be
enforced (see Table 1 again for examples on the relationship
between nonambiguity and compactness).

Corollary 1 (Nonambiguity implies Compactness) If NT is a
nested tableau for a graph property p and S ⊆ SNT ,k , then
S is compact if it is nonambiguous.

The following lemma demonstrates how a set of symbolic
models S is disambiguated by considering all combinations
of symbolic models in S. For each such combination, which
is given by a partitioning (S−S ′,S ′) forS ′ � S, we compute
the symbolicmodels describing the graphs covered byS−S ′
and not covered by S ′. The difference in this lemma can be
expressed similarly as in Lemma 8.

Lemma 10 (Disambiguation) LetS be somegiven set of sym-
bolic models. Then, the set covered(S) is equal to the set
⋃{⋂{covered(s) | s ∈ S − S ′} − covered(S ′) | S ′ � S}.
However, for computational complexity, we can observe that
the number of cases, given by the subsets S ′, is exponen-
tial in the size of S. Furthermore, for each partitioning, we
obtain a condition that is a conjunction of positive and neg-
ative literals and, hence, we apply AutoGraph to each of
these conditions to obtain for each set S ′ a set of equivalent
symbolic models. While the set of symbolic models gener-
ated by one of these graph properties may be ambiguous, the
sets generated for the different sets of symbolicmodelsS ′ are
nonambiguous.

For disambiguation, we recursively apply Lemma 10 to
split generated symbolic models enforcing nonambiguity of
the set Sres obtained upon termination.

As for the generation of symbolic models explained in the
previous subsection and the compaction procedure explained
above, we may also abort the disambiguation procedure pre-
maturely (e.g., once the designated resources are used up)
still obtaining a meaningful result that is still sound, com-
plete, minimally representable, and explorable but, due to
the abortion, possibly ambiguous.

Currently, we are unable to prevent noncompactness or
ambiguity of the set of symbolic models generated by algo-
rithm A on the fly (e.g., by preventing some kinds of

123



Automated reasoning for attributed graph properties 727

symmetries) during the computationwithout a similar impact
on runtime.

7.6 Exploration of sets of symbolic models

We believe that the exploration of further graphs satisfying
a given property p based on the symbolic models is often
desirable. In fact, covered(Sres) can be explored according
to Definition 24 by selecting 〈C, c〉 ∈ Sres , by generating a
mono m : C ↪−→ G to a new finite candidate graph G, and
by deciding m |� c. Then, an entire automatic exploration
can proceed by selecting the symbolic models 〈C, c〉 ∈ Sres
in a round-robin manner using an enumeration of the monos
leaving C in each case. However, the exploration may also
be guided interactively restricting the considered symbolic
models and monos.

For example, consider Fig. 13 where a set of two symbolic
models is obtained by application of algorithmA to the graph
property p13. In an interactive exploration, we may want to
decide whether the graph also satisfies p13. In fact,
since there is a monomorphismm : ↪−→ from the
minimal model of s1 to the graph to be tested that satisfies
the remainder of s1, we derive |� p13. However,
the choice of the symbolic model is also in this case relevant
because any morphism m : ↪−→ from the mini-
mal model of s3 to the graph to be tested does not satisfy
the remainder of s3 thereby not allowing the derivation of

|� p13.
An entire enumeration is often not feasible, since many

properties (e.g., true) have infinitely manymodels. However,
we believe that it may prove useful in many application sce-
narios to obtain a finitely representable guidance to construct
every possible finite model if needed. The set of symbolic
models represents such a guidance indeed.

Asmentioned above,wewill take advantage of explorabil-
ity more explicitly in the future. In particular, it could be
adapted to generate large sets of graphs or large, realistic
graphs, for example, in the context of performance testing.

Moreover, in the context of coverage-based testing, the
minimal models that we derive directly from our symbolic
models are not necessarily already realistic enough to the
user. This is true in particularwhen using attribute constraints
as in the class diagram in Fig. 6 because SMT solvers such as
Z3 are not designed to return satisfying models for attribute
constraints that take the intended meaning of the variables
such as first name or spoken languages into account. The user
might want to enlarge themodels (possibly interactively) and
determine whether this enlargement is consistent with the
specification. However, we believe that the minimal models
of a condition, which we are able to generate, are most likely
already reasonable test input sets.

8 Implementation

In this section, we introduce AutoGraph by focussing in
Sect. 8.1 on the external characteristics and limitations of
AutoGraph (deferring a discussion on the features until
Sect. 9 where we apply AutoGraph to examples and mea-
sure the performance) and in Sect. 8.2 on the implementation
details of the tableau construction procedure from algorithm
A presented in Sect. 6.

8.1 Functional properties of AUTOGRAPH

We implemented the algorithm A platform-independently
using Java as our new tool AutoGraph. The inputs and
outputs of AutoGraph (i.e., attributed graph properties, the
contained attributed graph morphisms with their attributed
graphs, the used attributed constraints with their algebraic
specifications, the used type graphs, and the generated sets
of symbolic models) areXML files satisfying a custom XSD
schema [52].We support the different use cases fromFig. 1 as
follows: For an invalid query, we return an empty set of sym-
bolic models; for a valid query, we either return only the first
symbolic model generated or generate (if possible) the entire
set of symbolic models (optionally executing compaction or
disambiguation).

For the attributes and attribute constraints, AutoGraph
uses Z3 via its Java bindings and has built-in support for
the specification in Definition 30 to allow for attributes and
attribute constraints over booleans, integers, and strings.
Using custom algebraic specifications implementing com-
plex functional programs is problematic for the automated
reasoning of AutoGraph in general because Z3 will fail
to decide satisfiability when attribute constraints are too
complex. Many SMT solvers such as Z3 have, besides decid-
ing satisfiability, also support for generating some (or a
sequence) of models for satisfied properties. While Auto-
Graph does not compute certain grounded graphs, using
this feature this may be of interest in various application
domains. Finally, AutoGraph uses Z3 to simplify attribute
constraints and, hence, to keep them small. This is helpful
because attribute constraints are growing in the algorithmdue
to the operation shift where, intuitively, the union of two sets
of attribute constraints is computed (actually, the variables
occurring in the sets of attribute constraints of the graphs C1

and C2 in Definition 17 are renamed according tom′
1 andm

′
2

before computing the union of the two resulting sets).
When converting a graph condition into CNF in Step3

(see Definition 19), we need to check whether the set of
attribute constraints of the contained graphs are satisfiable.
However, the SMT solver may time out without returning a
definite answer to such a satisfiability problem (as opposed
to the oracle assumed in Sect. 6 and Sect. 7) depending on the
attribute constraints. In this case, we assume satisfiability by

123



728 S. Schneider et al.

Fig. 15 Construction step that is implemented as a part of AutoGraph
and that is used iteratively byAutoGraph to generate symbolicmodels
where � is a literal, �s is a list of literals, and L is a set of literals.Rule 1
stops further generation if the current result res is unsatisfiable by hav-
ing a subcondition that is equivalent to false.Rule 2 ensures that hooks
are selected from the queue q-pre (if it is not empty) where fairness of
hook selection is enforced by prioritizing and ordering the positive lit-
erals that are successors of positive literals not chosen as hooks before.
Rule 3 if the queue q-pre cannot be used to select a hook and no clause
remains, the nested branch is terminated and a symbolic model can be
extracted by taking 〈G,∧neg〉 where G is the codomain of cm. Rule
4 implements the lifting rule (see Definition 20) for negative literals

taken from neg. Rule 5 implements the lifting rule (see Definition 20)
for positive literals taken from q-pre; if the morphism of the result-
ing positive literal is an isomorphism, as forbidden for literals in CNF,
we move an equivalent condition in CNF into the current hook (also
implementing the lift rule) instead of moving the literal to the queue
q-post because the conversion of the positive literal into CNF may not
result in a conjunction of positive literals that could be added to the
queue q-post. Rule 6 implements the nesting rule (see Definition 22).
Rule 7 implements the extension rule (see Definition 20) constructing
for each literal of a certain clause a new configuration to represent the
different nested branches

default, which may result in the generation of symbolic mod-
els without grounded graphs (a scenario that does not occur
in Sect. 7 due to the assumption of an oracle) and, in addi-
tion, it may be the reason for a nonterminating computation
of AutoGraph in cases where the known unsatisfiability

would have prevented further execution by removal of the
considered literal (see Step3 inDefinition 19). Alternatively,
we could have assumed that sets of attribute constraints are
unsatisfiable when the SMT solvers do not deliver a definite
result. The premature abortion of the tableau-based symbolic

123



Automated reasoning for attributed graph properties 729

model generation procedure would imply that refutational
completeness is no longer satisfied as not all symbolic mod-
els are generated.

For the computational complexity of the symbolic model
generation algorithm, we may notice that some elementary
constructions used (such as conversion toCNF using [·], exis-
tence and enumeration of monomorphisms of a given type,
and pair factorization as used in shift) have exponential worst
case execution time. However, as explained at the end of
Sect. 5, the operation [·] has typically no noticeable impact
and the problems of deciding existence and of enumeration of
monomorphisms of a given type as well as pair factorization
are applied during the execution of our algorithm, by design,
only onminimalmodels instead of arbitrary instance graphs.
Hence, we believe, also based on our tool-based evaluation
in Sect. 9, that inmany practical applications the runtimewill
be acceptable.

For decreased overall execution times, AutoGraph sup-
ports the usage of multithreading for various of its building
blocks: in particular for the three high-level operations of
tableau-based symbolic model generation (which is consid-
ered in more detail below), compaction, and disambiguation.
For the symbolic model generation, we consider all open
nested branches in parallel, and for compaction and disam-
biguation, we check the satisfiability of the constructed graph
properties in parallel using AutoGraph.

8.2 Implementation details of AUTOGRAPH

For limiting the memory consumption during the symbolic
model generation, we discard the parts of the nested tableau
that are not required for subsequent computations as follows.
The implemented algorithm uses a queue (used to enforce
the breadth-first construction) of configurations where every
configuration represents the last branch of a nested branch
of the nested tableau currently constructed (the parts of the
nested tableau not given by these branches are thereby not
represented in memory). The algorithm starts with a sin-
gle initial configuration, applies one construction rule (see
Fig. 15) inserting all results of that rule application to the
queue, and terminates once the queue of configurations is
empty.

The configurations contain the information that is neces-
sary to continue the further construction of the nested tableau
(also ensuring fair selection of hooks) and to extract the sym-
bolic models whenever one is obtained.

The configurations are tuples of the form (inp, res, neg,
q-pre, q-post, cm) where inp is a condition c over C in CNF
(the construction of the tableau starts with an initially pro-
vided condition in CNF fromwhich clauses are removed one
after another resulting in the remaining input condition inp),
res is ⊥ when no hook has been selected or a positive lit-
eral ∃(m : C ↪−→ D, c′) into which the other literals from

the branch are lifted, neg is a list of negative literals over C
from clauses already handled (this list is emptied as soon as
a positive literal has been chosen for res), q-pre is a queue of
positive literals overC fromwhich the first element is chosen
for the res component, q-post is a queue of positive literals:
Once res is a chosen positive literal ∃(m : C ↪−→ D, c′) , we
shift the elements from q-pre over m to obtain elements of
q-post, and cm is the composition of the morphisms from the
openers of the nested branch constructed so far and is used
to eventually obtain symbolic models (if they exist).

The implemented algorithm is started with the queue
containing, for a graph property p, the unique initial con-
figuration ([p],⊥, λ, λ, λ, id∅) where λ denotes the empty
list.

The construction rules return for each single configura-
tions a finite set of such configurations and are checked in
the order given where only the first applicable rule is used.
The construction rules are explained for better readability
directly in Fig. 15.

For soundness of the implemented algorithm based on the
construction rules, reconsider Definition 28 where the set R
used in the condition ∧R recovers the desired information
similarly to how it is captured in the configurations. The
separation into different elements in the configurations then
allows for queue handling and determinization.

9 Evaluation

In this section, we analyze the four graph database queries,
which were formalized as graph properties in Figs. 2, 3, 4,
and 5, by checking their validity and by generating sym-
bolic models for them by application of AutoGraph. See
Fig. 1 again for a visualization of the general workflow. Note,
the algorithm A implemented in AutoGraph performs the
refutability check, the satisfiability check, and themodel gen-
eration at once. Hence, the set of symbolic models generated
by AutoGraph is sufficient (if AutoGraph terminates) to
answer the three given questions of whether a graph query is
valid, invalid, and how graph databases look like when the
graph query can be matched.

As a first step of our evaluation, we have applied Auto-
Graph to the four graph properties and all binary combi-
nations of them measuring the number of symbolic models
generated as well as the duration of the generation where
compaction and disambiguation have not been performed.

From the results presented in Table 2, we can draw the
conclusion that all four queries are valid queries; i.e., for
each of the four queries, at least one graph database exists
that matches the query. Also, for the binary combinations, we
derive that the queries do not exclude each other; that is, there
are for each case graph databases that simultaneously match
both queries. The four graph properties do not use a deep

123



730 S. Schneider et al.

Table 2 Analysis results for the four graph database queries formalized
in Figs. 2, 3, 4, and 5

Graph Property Symbolic Model Generation
number 1 Thread (ms) 4 Threads (ms)

p2 3 7 5

p3 1 3 1

p4 2 165 90

p5 1 104 103

p2∧ p3 96 1089 789

p2∧ p4 136 9802 6596

p2∧ p5 68 7270 5231

p3∧ p4 294 17,365 13,439

p3∧ p5 147 24,769 14,652

p4∧ p5 378 97,043 50,290

p3v ∧ pwf 99 99 99

The durations in the last two columns are the average over five runs
of our symbolic model generation procedure (without subsequent com-
paction). The specification of the used machine is as follows: 256 GB
DDR4, 2 × E5-2643 Xeon @ 3.4GHz × 6 cores × 2 threads

nested structure, which results in a narrow nested tableau in
the beginning of the computation. This leads to the situations
that some threads have no available leafs to work on in the
beginning. Still,we can alreadyobserve a reasonable speedup
when using multiple threads for the given graph properties.

As a second step, we can inspect the symbolicmodels gen-
erated. They are depicted in Fig. 16 where their remainders
have been omitted for readability.

10 Conclusion and outlook

Wepresented an automated reasoning approach for attributed
graph properties. It includes both a refutationally com-
plete tableau-based reasoning method and a symbolic model
generation procedure. The attributed graph properties are
equivalent to FOL on graphs for the graph part. Our algo-
rithms assume the existence of an oracle for solving attribute
constraints in the properties. It allows for flexible adoption of
different available SMT solvers in the actual implementation.
Attribute reasoning is neatly separated from graph reasoning
by a dedicated logic for attributed graph properties separating
both parts.

Our refutation procedure and symbolic model generation
algorithm are highly integrated. Since the latter is designed
to compute a complete overview of all possible models, it is
at the same time able to refute a property if the overview turns
out to be empty. Our symbolic model generation algorithm is
innovative in the sense that it is designed to generate a finite
set of symbolic models that is sound, complete (upon termi-

nation), compact, nonambiguous, minimally representable,
and flexibly explorable. Moreover, the algorithm is paral-
lelizable because every employed thread can work on one
leaf of the nested tableau to be constructed. The approach is
implemented in our tool, called AutoGraph.

As future work, we will attempt to determine descrip-
tions of subsets of graph properties for which termination
of AutoGraph is guaranteed. Moreover, we aim at apply-
ing, evaluating, and optimizing our approach further w.r.t.
other application scenarios such as test generation for the
graph database domain [7], but also to other domains such as
model-driven engineering, where our approach can be used,
for example, to generate test models for model transforma-
tions [5,19,30]. We also aim at generalizing our approach to
more expressive graph properties able to encode, for exam-
ple, path-related properties [29,40,41]. We moreover aim at
supporting graph properties to state temporal properties on
graphs where nodes and edges are equipped with attributes
specifying their life span. Finally, the work on exploration of
extracted symbolic models as well as reducing their number
during tableau construction is an ongoing task. In particular,
we are working on algorithms for the generation of a sub-
set of the complete set of symbolic models that is suitably
diverse. These extensions are valuable when the complete set
of symbolic models is too large or its generation requires too
many resources.

We would like to thank the reviewers for their thoughtful
comments and efforts toward improving our manuscript.

A Some details on AUTOGRAPH

Definition 30 (Z3Signature)

sorts: bool, int, string

opns: true : → bool

false : → bool

not : bool → bool

and : bool bool → bool

or : bool bool → bool

xor : bool bool → bool

implies : bool bool → bool

eq_bool : bool bool → bool

ifthenelse_bool : bool bool bool → bool

zero : → int

succ : int → int

pred : int → int

minus : int → int

add : int int → int

123



Automated reasoning for attributed graph properties 731

(a)

(b)

(c)

(d)

(e)

Fig. 16 Minimal models generated byAutoGraph for the graph prop-
erties from Figs. 2, 3, 4, and 5. a The three minimal models generated
for graph property p2 from Figure 2. b The unique minimal models
generated for graph property p3 from Fig. 3. c The two minimal mod-
els generated for graph property p4 from Fig. 4. d The unique minimal

model generated for graph property p5 from Fig. 5. eAminimal model
generated by AutoGraph when requiring at least one vertex of type
Forum and the satisfaction of all multiplicity constraints stated in the
class diagram given in Fig. 6. These multiplicity constraints have been
formalized by graph properties along the lines of Fig. 10c, d

123



732 S. Schneider et al.

sub : int int → int

mul : int int → int

mod : int int → int

rem : int int → int

power : int int → int

eq_int : int int → bool

gt : int int → bool

lt : int int → bool

ge : int int → bool

le : int int → bool

ifthenelse_int : bool int int → int

empty : → string

concat : string string → string

length : string → int

contains : string string → bool

indexOf : string string int → int

replace : string string string → string

prefixOf : string string → bool

suffixOf : string string → bool

at : string int → string

extract : string int int → string

eq_string : string string → bool

ifthenelse_string : bool string string → string

Furthermore, we assume sufficient operations for construct-
ing values of string as terms such as a, . . . , z, 0, . . . , 9, -,
SPACE : → string.

B Categorical preliminaries and properties
of GRAPHSSTA

Lemma 11 (GraphsSTA: Characterization of the Mono-
morphisms, Epimorphisms, and Isomorphisms) A graph
morphism f : G → G ′ from the category GraphsSTA is a
mono(morphism) (epi(morphism)) (iso(morphism)), if each
of its components is injective (surjective) (bijective), respec-
tively. And, for isomorphisms, we additionally require that
the reversed implication from Definition 11 holds as well,
i.e., for all σ ∈ V�A2 ,�A2

: σ |� fAX(Φ1) implies σ |� Φ2.

Proof (idea) Due to the componentwise characterization.

Definition 31 (E-M-Factorization) Given a category, a set
E of epimorphisms, and a set M of monomorphisms. The
category has E-M-Factorizations, if

– (existence) for each f : A → C there are (e : A �
K ) ∈ E and (m : K ↪−→ C) ∈ M s.t. m ◦ e = f and

– (uniqueness) for (e′ : A � K ′) ∈ E and (m′ : K ′ ↪−→
C) ∈ M with m′ ◦ e′ = f there is i : K ↪→→ K ′ with
i ◦ e = e′ and m′ ◦ i = m.

Definition 32 (Jointly Epimorphic Morphisms [13, Defini-
tionA.16, p. 334]) Two morphisms e1 : A1 → B and
e2 : A2 → B of a category are Jointly Epimorphic, if any two
morphisms g, h : B → C are equal whenever g ◦ ei = h ◦ ei
(for each 1 ≤ i ≤ 2).

Pair Factorization (cf. [13, Definition5.25, p. 122]) has
the intuition that any two morphisms f1 and f2 with com-
mon codomain C coincide (in the sense of mapping to the
same elements) on a well-defined subgraph K of C . That K
does not include further elements (on which the two mor-
phisms do not coincide) is expressed by stating that the
morphisms e1 and e2 are jointly epimorphic and the coin-
cidence is expressed by stating that m is a monomorphism
together with the commutation.

Definition 33 (E ′-M-Pair Factorization) For a given cate-
gory, a set E ′ of pairs ( f1, f2) of jointly epi morphisms, and
a set M of monomorphisms. The category has E ′-M-Pair
Factorizations, if for each two morphisms f1 : A1 → C and
f2 : A2 → C there are (e1 : A1 → K , e2 : A2 → K ) ∈ E ′
and (m : K ↪−→ C) ∈ M s.t.m◦ei = fi (for each 1 ≤ i ≤ 2).

Definition 34 (Binary Coproduct) A category has binary
coproducts, if for every Ai (with 1 ≤ i ≤ 2) there are
fi : Ai → C (for each 1 ≤ i ≤ 2) s.t. (the following
universal property holds) for all gi : Ai → X there is a
unique h : C → X with h ◦ fi = gi (for each 1 ≤ i ≤ 2).

Lemma 12 (GraphsSTA has Binary Coproducts)

Proof (idea) The binary coproductC withmorphisms f1 and
f2 from Definition 34 is constructed componentwise using
the disjoint union, as usual.

For the category GraphsSTA, we use as E the set of all
epimorphisms, as M the set of all monomorphisms, and as
E ′ the set of all pairs of jointly epimorphic morphisms.

Lemma 13 (GraphsSTA has E-M-Factorization)

Proof (idea) The morphisms e and m, required according
to Definition 31, are constructed componentwise for a mor-
phism f .

Lemma 14 (GraphsSTA has E ′-M-Pair Factorization)

Proof (idea) Analogously to [13, Remark5.26, p. 122], we
construct the E ′-M-Pair Factorizations using E-M-Factor-
izations (based on Lemma 13) and binary coproducts (based
on Lemma 12).

123



Automated reasoning for attributed graph properties 733

C Proofs

Proof of Lemma 2 Part1 (⊆).

G ∈ �∃(iC ,∨S)�

�⇒ iG |� ∃(iC ,∨S)

for some q:C↪−→ G

�⇒ q |� ∨S

for some c ∈ S

�⇒ q |� c

�⇒ q ◦ iC |� ∃(iC , c)

�⇒ iG |� ∃(iC , c)

�⇒ G ∈ �∃(iC , c)�

�⇒ G ∈
⋃

{�∃(iC , c)� | c ∈ S}

Part2 (⊇).

G ∈
⋃

{�∃(iC , c)� | c ∈ S}

for some c ∈ S

�⇒ G ∈ �∃(iC , c)�

�⇒ iG |� ∃(iC , c)

for some q : C ↪−→ G

�⇒ q |� c

�⇒ q |� ∨S

�⇒ q ◦ iC |� ∃(iC ,∨S)

�⇒ iG |� ∃(iC ,∨S)

�⇒ G ∈ �∃(iC ,∨S)�

Proof of Lemma 5 Part1 (⊆).

G ∈ �∃(iC1, ∃(m : C1 ↪−→ C2, c))�

�⇒ iG |� ∃(iC1 , ∃(m : C1 ↪−→ C2, c))

for some q1 : C1 ↪−→ G

�⇒ q1 |� ∃(m : C1 ↪−→ C2, c)

for some q2 : C2 ↪−→ G

�⇒ q2 |� c and q1 = q2 ◦ m

�⇒ q2 ◦ iC2 |� ∃(iC2 , c)

�⇒ iG |� ∃(iC2 , c)

�⇒ G ∈ �∃(iC2 , c)�

Part2 (⊇).

G ∈ �∃(iC2 , c)�

�⇒ iG |� ∃(iC2 , c)

for some q2 : C2 ↪−→ G

�⇒ q2 |� c

�⇒ q2 ◦ m |� ∃(m : C1 ↪−→ C2, c)

�⇒ q2 ◦ m ◦ iC1 |� ∃(iC1, ∃(m : C1 ↪−→ C2, c))

�⇒ iG |� ∃(iC1, ∃(m : C1 ↪−→ C2, c))

�⇒ G ∈ �∃(iC1 , ∃(m : C1 ↪−→ C2, c))�

Proof of Lemma 6 Part1 (C is an element).

C ∈ �∃(iC ,∧{¬∃(m1, c1), . . . ,¬∃(mn, cn)})�
⇐� iC |� ∃(iC ,∧{¬∃(m1, c1), . . . ,¬∃(mn, cn)})

for idC : C ↪−→ C

⇐�idC |� ∧{¬∃(m1, c1), . . . ,¬∃(mn, cn)}

for each 1 ≤ i ≤ n simultaneously

⇐� idC |� ¬∃(mi , ci )

⇐� idC �|� ∃(mi , ci )

there is no qi : Ci ↪−→ G such that qi |� ci and qi ◦ mi = q

⇐� mi is no isomorphism

Part2 (unique least element).

C ′ ∈ �∃(iC ,∧{¬∃(m1, c1), . . . ,¬∃(mn, cn)})�
�⇒ iC ′ |� �∃(iC ,∧{¬∃(m1, c1), . . . ,¬∃(mn, cn)})�

for some q : C ↪−→ C ′

�⇒ q |� ∧{¬∃(m1, c1), . . . ,¬∃(mn, cn)}
�⇒ C ⊆ C ′

Proof of Lemma 3 Part1 (⊆).

G ∈ �∃(iC , (∧S) ∧ ∃(m : C ↪−→ C ′, c′))�
�⇒ iG |� ∃(iC , (∧S) ∧ ∃(m : C ↪−→ C ′, c′))

for some q1 : C ↪−→ G

�⇒ q1 |� (∧S) ∧ ∃(m : C ↪−→ C ′, c′)

123



734 S. Schneider et al.

�⇒ q1 |� ∧S and q1 |� ∃(m : C ↪−→ C ′, c′)

for some q2 : C ′ ↪−→ G

�⇒ q2 |� c′ and q1 = q2 ◦ m (2)

also

q1 |� ∧S

�⇒ q2 ◦ m |� ∧S

�⇒ q2 |� shift(m,∧S)

�⇒ q2 |� c′ ∧ shift(m,∧S)

�⇒ q2 ◦ m |� ∃(m, c′ ∧ shift(m,∧S))

�⇒ q2 ◦ m ◦ iC |� ∃(iC , ∃(m, c′ ∧ shift(m,∧S)))

�⇒ iG |� ∃(iC , ∃(m, c′ ∧ shift(m,∧S)))

�⇒ G ∈ �∃(iC , ∃(m, c′ ∧ shift(m,∧S)))�

Part2 (⊇).

G ∈ �∃(iC , ∃(m, c′ ∧ shift(m,∧S)))�

�⇒ iG |� ∃(iC , ∃(m, c′ ∧ shift(m,∧S)))

for some q1 : C ↪−→ G

�⇒ q1 |� ∃(m, c′ ∧ shift(m,∧S))

for some q2 : C ′ ↪−→ G

�⇒ q2 |� c′ ∧ shift(m,∧S) and q1 = q2 ◦ m

�⇒ q2 |� c′ and q2 |� shift(m,∧S)

�⇒ q2 ◦ m |� ∃(m, c′)

also

�⇒ q2 |� shift(m,∧S)

�⇒ q2 ◦ m |� (∧S)

�⇒ q2 ◦ m |� (∧S) ∧ ∃(m : C ↪−→ C ′, c′)
�⇒ q2 ◦ m ◦ iC |� ∃(iC , (∧S) ∧ ∃(m : C ↪−→ C ′, c′))
�⇒ iG |� ∃(iC , (∧S) ∧ ∃(m : C ↪−→ C ′, c′))
�⇒ G ∈ �∃(iC , (∧S) ∧ ∃(m : C ↪−→ C ′, c′))�

Proof of Lemma 8 Part1.1 (if).

covered(S) = covered(S ′)
�⇒ covered(S) ⊆ covered(S ′)

because covered(S − S ′) ⊆ covered(S)

�⇒ covered(S − S ′) ⊆ covered(S ′)

�⇒ covered(S − S ′) − covered(S ′) = ∅

Part1.2 (only if).

covered(S − S ′) − covered(S ′) = ∅
�⇒ covered(S − S ′) ⊆ covered(S ′)

because covered(S) − covered(S ′) ⊆ covered(S − S ′)

�⇒ covered(S) − covered(S ′) ⊆ covered(S ′)
�⇒ (covered(S) − covered(S ′)) − covered(S ′) = ∅
�⇒ covered(S) − covered(S ′) = ∅
�⇒ covered(S) ⊆ covered(S ′)

because S ′ ⊆ S implies covered(S ′) ⊆ covered(S)

�⇒ covered(S) = covered(S ′)

Part2.

∨ {∃(iC , c) | 〈C, c〉 ∈ S − S ′}
∧ ¬ ∨ {∃(iC , c) | 〈C, c〉 ∈ S ′} is refutable

⇐⇒ �∨{∃(iC , c) | 〈C, c〉 ∈ S − S ′}
∧ ¬ ∨ {∃(iC , c) | 〈C, c〉 ∈ S ′}� = ∅

⇐⇒ �∨{∃(iC , c) | 〈C, c〉 ∈ S − S ′}�
∩ �¬ ∨ {∃(iC , c) | 〈C, c〉 ∈ S ′}� = ∅

⇐⇒ covered(S − S ′)
∩ ({G | G is a graph} − covered(S ′)) = ∅

⇐⇒ covered(S − S ′) − covered(S ′) = ∅

Proof of Lemma 9 – Part1 (if). Fix some 〈C,∧∅〉 ∈ S.
Assume for the contradiction covered(S) = covered(S−
{〈C,∧∅〉}).
Hence, for each G ∈ covered(〈C,∧∅〉) there is some
other 〈C ′,∧∅〉 ∈ S s.t. G ∈ covered(〈C,∧∅〉).
Note that C ∈ covered(〈C ′,∧∅〉). Hence, we are able to
pick some 〈C ′,∧∅〉 s.t. C ∈ covered(〈C ′,∧∅〉).
Hence, there is a monomorphism m : C ′ ↪−→ C .
This is a contradiction.

– Part2 (only if). Fix distinct 〈C,∧∅〉 ∈ S and 〈C ′,∧∅〉 ∈
S.
Assume for the contradiction that m : C ′ ↪−→ C is a
monomorphism.
Hence covered(〈C,∧∅〉) ⊆ covered(〈C ′,∧∅〉).
Hence covered(S) = covered(S − {〈C,∧∅〉}).
Hence S is not compact.
This is a contradiction.

Proof of Corollary 1 Let S be nonambiguous, (sound,)
complete, minimally representable.
We show that S is compact.

123



Automated reasoning for attributed graph properties 735

Fix some 〈C, c〉 ∈ S.
We show that covered(S) �= covered(S − {〈C, c〉}).
– We show that C ∈ covered(S).
From minimally representability we have that C |�
p.
From completeness we that C ∈ covered(S).

– We show that C /∈ covered(S − {〈C, c〉).
Assume for the contradiction that 〈C ′, c′〉 ∈ S −
{〈C, c〉 such that C ∈ covered(〈C ′, c′〉).
Then, covered(〈C ′, c′〉) ∩ covered(〈C, c〉) �= ∅ con-
tradicts nonambiguity because 〈C ′, c′〉 �= 〈C, c〉.

Lemma 15 (Satisfaction is a Congruence) Let c1 and c2 be
conditions from CC such that {q | q |� c1} = {q | q |� c2}.
Then all following items are satisfied.

– {q | q |� ∧(S ∪ {c1})} = {q | q |� ∧(S ∪ {c2})} for all
finite S ⊆ CC .

– {q | q |� ¬c1} = {q | q |� ¬c2}.
– {q | q |� ∃(m : C ′ ↪−→ C, c1)} = {q | q |� ∃(m : C ′ ↪−→
C, c2)} for every m : C ′ ↪−→ C.

Proof of Lemma 15 Fix c1, c2 ∈ CC .
Assume (A) that {q | q |� c1} = {q | q |� c2}. In each case,
we show only one direction wlog.

• Fix some S ⊆ CC that is finite.
Fix some q : C ↪−→ G such that q |� ∧(S ∪ {c1}).
Hence, q |� ∧S and q |� c1.
From (A) we have that q |� c2.
Hence, q |� ∧(S ∪ {c2}).

• Fix some q : C ↪−→ G such that q |� ¬c1.
Hence, not q |� c1.
From (A) we have that not q |� c2.
Hence, q |� ¬c2.

• Fix some m : C ′ ↪−→ C .
Fix some q ′ : C ′ ↪−→ G such that q ′ |� ∃(m : C ′ ↪−→
C, c1).
Hence, there is some q : C ↪−→ G such that q |� c1 and
q ◦ m = q ′.
From (A) we have that q |� c2.
Hence, q ′ |� ∃(m : C ′ ↪−→ C, c2).

Proof of Lemma 4 The construction steps of [·] replace sub-
terms.
By structural induction relying on Lemma 15, it is sufficient
to consider how one condition c1 is replaced by another con-
dition c2 over same graph in the sense of {q | q |� c1} =
{q | q |� c2}.
Weverify for all five steps of theoperation [·] that the property
is rephrased equivalently.

– Step 1: The unfolding of abbreviations is sound by
default.

– Step 2: We assume that ∃(i : A ↪→→ B, c1) has been
replaced by c2.
We perform an induction on c1.

– Case: c1 = ¬c′
1 and, hence, c2 = ∃(i : A ↪→→

B,¬c′
2) for some c′

2
As induction hypothesis, we assume that {q | q |�
c′
1} = {q | q |� c′

2}. We have to show {q | q |� ∃(i :
A ↪→→ B,¬c′

1)} = {q | q |� ∃(i : A ↪→→ B,¬c′
2)},

which is the direct consequence from Lemma 15.
– Case: c1=∧{c0,1, . . . , cn,1} and, hence, c2=∧{c0,2,

. . . , cn,2} for some c0,2, …, cn,2

As induction hypothesis we assume that {q | q |�
ci,1} = {q | q |� ci,2} (for 0 ≤ i ≤ n) We have to
show {q | q |� ∃(i : A ↪→→ B,∧{c0,1, . . . , cn,1})} =
{q | q |� ∃(i : A ↪→→ B,∧{c0,2, . . . , cn,2})}, which
is the direct consequence from Lemma 15.

– Case: c1 = ∃(m : B ↪−→ B ′, c′
1) and, hence, c2 =

∃(m ◦ i, c′
1)

We have to show {q | q |� ∃(i : A ↪→→ B, ∃(m :
B ↪−→ B ′, c′

1))} = {q | q |� ∃(m ◦ i, c′
1)}, which

holds directly application of Definition 16.

– Step 3: We show that {q | q |� ∃(m : A ↪−→ B, c)} =
{q | q |� ∨∅} if {q | q |� ∃(m : A ↪−→ B, c)} is empty.
This is trivially the case because {q | q |� ∨∅} is also
empty.

– Step 4: The mentioned replacement rules
¬(∧S)

·= ∨{¬c | c ∈ S},
¬(∨S)

·= ∧{¬c | c ∈ S}, and
¬¬c

·= c
are obviously sound in the sense of:
{q | q |� lhs} = {q | q |� rhs}.

– Step 5: The mentioned replacement rules
∧(S ∪ {∧S′}) ·= ∧(S ∪ S′),
∨(S ∪ {∨S′}) ·= ∨(S ∪ S′),
∧(S ∪ {∨S′}) ·= ∨{∧(S ∪ {c}) | c ∈ S′}, and
∨(S ∪ {∧S′}) ·= ∧{∨(S ∪ {c}) | c ∈ S′}
are obviously sound in the sense of:
{q | q |� lhs} = {q | q |� rhs}.

References

1. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases:
The Logical Level, 1st edn. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA (1995)

2. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L.,
Vrgoc, D.: Foundations of modern graph query languages. CoRR,
abs/1610.06264 (2016)

3. Angles, R., Gutierrez, C.: Survey of graph database models. ACM
Comput. Surv. 40(1), 1:1–1:39 (2008)

123



736 S. Schneider et al.

4. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.:
Clafer: unifying class and feature modeling. Softw. Syst. Model.
15(3), 811–845 (2016)

5. Baudry, B.: Testing model transformations: a case for test genera-
tion from input domain models. In: Model-Driven Engineering for
Distributed Real-Time Systems, Chap. 3, pp. 43–72. Wiley (2013).
https://doi.org/10.1002/9781118558096.ch3

6. Beyhl, T., Blouin, D., Giese, H., Lambers, L.: On the operational-
ization of graph queries with generalized discrimination networks.
In: Echahed and Minas [12], pp. 170–186

7. Blanco, R., Tuya, J.: A test model for graph database applications:
an MDA-based approach. In: Vos Tanja E.J. Eldh, S., Prasetya, W.
(eds.) Proceedings of the 6th International Workshop on Automat-
ing Test Case Design, Selection and Evaluation, A-TEST 2015,
Bergamo, Italy, August 30–31, 2015, pp. 8–15. ACM (2015)

8. Codd, E.F.: A relational model of data for large shared data banks.
Commun. ACM 13(6), 377–387 (1970)

9. Courcelle, B.: The expression of graph properties and graph trans-
formations in monadic second-order logic. In: Rozenberg [44], pp.
313–400

10. Daniel, G., Sunyé, G., Cabot, J.: Umltographdb: mapping concep-
tual schemas to graph databases. In: Comyn-Wattiau, I., Tanaka,
K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) Conceptual
Modeling—35th International Conference, volume 9974 of Lec-
ture Notes in Computer Science, pp. 430–444 (2016)

11. Deckwerth, F.: Static verification techniques for attributed graph
transformations. Ph.D. thesis,DarmstadtUniversity ofTechnology,
Germany (2017)

12. Echahed, R., Minas, M. (eds.): Graph Transformation—9th Inter-
national Conference, ICGT 2016, in Memory of Hartmut Ehrig,
Held as Part of STAF 2016, Vienna, Austria, July 5–6, 2016, Pro-
ceedings, volume 9761 of Lecture Notes in Computer Science.
Springer (2016)

13. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of
Algebraic Graph Transformation. Springer, Berlin (2006)

14. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-
adhesive transformation systems with nested application con-
ditions. Part 2: embedding, critical pairs and local confluence.
Fundam. Inform. 118(1–2), 35–63 (2012). https://doi.org/10.3233/
FI-2012-705

15. Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G., (eds.):
Graph Transformations, 4th International Conference, ICGT 2008,
Leicester, United Kingdom, September 7–13, 2008. Proceedings,
volume 5214 of Lecture Notes in Computer Science. Springer
(2008)

16. Ehrig, H., Mahr, B.: Fundamentals of algebraic specification 1:
equations und initial semantics. In: EATCS Monographs on The-
oretical Computer Science, vol. 6. Springer, Heidelberg (1985).
https://doi.org/10.1007/978-3-642-69962-7

17. Giese, H., König, B. (eds.): Graph Transformation—7th Interna-
tional Conference, ICGT 2014, Held as Part of STAF 2014, York,
UK, July 22–24, 2014. Proceedings, volume 8571 of Lecture Notes
in Computer Science. Springer (2014)

18. Gogolla, M., Hilken, F.: Model validation and verification options
in a contemporary UML and OCL analysis tool. In: Oberweis,
A., Reussner, R.H., (eds.) Modellierung 2016, 2.-4. März 2016,
Karlsruhe, volume 254 of LNI, pp. 205–220. GI (2016)

19. González, C.A., Cabot, J.: Test data generation for model
transformations combining partition and constraint analysis. In:
Ruscio, D.D., Varró, D. (eds.) Theory and Practice of Model
Transformations—7th International Conference, ICMT2014,Held
as Part of STAF 2014, York, UK, July 21–22, 2014. Proceedings,
volume 8568 of Lecture Notes in Computer Science, pp. 25–41.
Springer (2014)

20. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative
application conditions. Fundam. Inform. 26(3/4), 287–313 (1996)

21. Habel, A., Pennemann, K.-H.: Correctness of high-level transfor-
mation systems relative to nested conditions.Math. Struct.Comput.
Sci. 19(2), 245–296 (2009)

22. Hähnle, R.: Tableaux and related methods. In Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 vol-
umes), pp. 100–178. Elsevier and MIT Press (2001)

23. Heckel, R., Wagner, A.: Ensuring consistency of conditional graph
rewriting—a constructive approach. Electr. Notes Theor. Comput.
Sci. 2, 118–126 (1995)

24. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reason-
ing about metamodeling with formal specifications and automatic
proofs. In: Whittle, J., Clark, T., Kühne, T. (eds.) Model Driven
Engineering Languages and Systems, 14th International Confer-
ence, MODELS 2011, Wellington, New Zealand, October 16–21,
2011. Proceedings, volume 6981 of Lecture Notes in Computer
Science, pp. 653–667. Springer (2011)

25. Jackson, E.K., Sztipanovits, J.: Constructive techniques for meta-
and model-level reasoning. In: Engels, G., Opdyke, B., Schmidt,
D.C.,Weil, F. (eds.)ModelDrivenEngineeringLanguages andSys-
tems, 10th International Conference, MoDELS 2007, Nashville,
USA, September 30–October 5, 2007, Proceedings, volume 4735
of Lecture Notes in Computer Science, pp. 405–419. Springer
(2007)

26. Krause, C., Johannsen, D., Deeb, R., Sattler, K.-U., Knacker, D.,
Niadzelka, A.: An SQL-based query language and engine for graph
pattern matching. In: Echahed and Minas [12], pp. 153–169

27. Lambers, L., Orejas, F.: Tableau-based reasoning for graph prop-
erties. In: Giese and König [17], pp. 17–32

28. Microsoft Corporation. Z3. https://github.com/Z3Prover/z3.
Accessed 19 Sept 2017

29. Milicevic, A., Near, J.P., Eunsuk, K., Jackson, D.: Alloy*:
a general-purpose higher-order relational constraint solver. In:
Bertolino, A., Canfora, G., Elbaum, S.G. (eds.) 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16–24, 2015, Volume 1, pp. 609–619. IEEE
Computer Society (2015)

30. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random
generation of huge metamodel instances. In: Paige, R.F., Hartman,
A., Rensink, A. (eds.) Model Driven Architecture—Foundations
and Applications, 5th European Conference, ECMDA-FA 2009,
Enschede, The Netherlands, June 23–26, 2009. Proceedings, vol-
ume 5562 of Lecture Notes in Computer Science, pp. 130–145.
Springer (2009)

31. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi,
S.: Aluminum: principled scenario exploration throughminimality.
In: Notkin, D., Cheng, B.H.C., Pohl, K. (eds.) 35th International
Conference on Software Engineering, ICSE ’13, San Francisco,
CA,USA,May 18–26, 2013, pp. 232–241. IEEEComputer Society
(2013)

32. Orejas, F.: Attributed graph constraints. In: Ehrig et al. [15], pp.
274–288

33. Orejas, F., Ehrig, H., Prange, U.: A logic of graph constraints.
In: Fiadeiro, J.L., Inverardi, P. (eds.) Fundamental Approaches to
Software Engineering, 11th International Conference, FASE 2008,
Held as Part of the Joint EuropeanConferences onTheory andPrac-
tice of Software, ETAPS2008,Budapest, Hungary,March 29-April
6, 2008. Proceedings, volume 4961 of Lecture Notes in Computer
Science, pp. 179–198. Springer (2008)

34. Orejas, F., Ehrig, H., Prange, U.: Reasoning with graph constraints.
Formal Asp. Comput. 22(3–4), 385–422 (2010)

35. Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed
graph transformation. ECEASST 30, (2010). https://doi.org/10.
1016/j.jsc.2010.09.009

36. Orejas, F., Lambers, L.: Lazy graph transformation. Fundam.
Inform. 118(1–2), 65–96 (2012)

123

https://doi.org/10.1002/9781118558096.ch3
https://doi.org/10.3233/FI-2012-705
https://doi.org/10.3233/FI-2012-705
https://doi.org/10.1007/978-3-642-69962-7
https://github.com/Z3Prover/z3
https://doi.org/10.1016/j.jsc.2010.09.009
https://doi.org/10.1016/j.jsc.2010.09.009


Automated reasoning for attributed graph properties 737

37. Pennemann, K.-H.: An algorithm for approximating the satisfiabil-
ity problem of high-level conditions. Electr. Notes Theor. Comput.
Sci. 213(1), 75–94 (2008)

38. Pennemann, K.-H.: Resolution-like theorem proving for high-level
conditions. In: Ehrig et al. [15], pp. 289–304

39. Pennemann, K.-H.: Development of correct graph transformation
systems, Ph.D. Thesis. Dept. Informatik, Univ. Oldenburg (2009)

40. Poskitt, C.M., Plump, D.: Verifying monadic second-order proper-
ties of graph programs. In: Giese and König [17], pp. 33–48

41. Radke, H.: HR* graph conditions between counting monadic
second-order and second-order graph formulas. ECEASST 61,
(2013). https://doi.org/10.14279/tuj.eceasst.61.831.831

42. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Trans-
lating essential OCL invariants to nested graph constraints focusing
on set operations. In: Parisi-Presicce, F., Westfechtel, B. (eds.)
GraphTransformation—8th International Conference, ICGT2015,
Held as Part of STAF 2015, L’Aquila, Italy, July 21–23, 2015. Pro-
ceedings, volume 9151 of Lecture Notes in Computer Science, pp.
155–170. Springer (2015)

43. Rensink, A.: Representing first-order logic using graphs. In: Ehrig,
H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) Graph
Transformations, Second International Conference, ICGT 2004,
Rome, Italy, September 28–October 2, 2004, Proceedings, volume
3256 of LectureNotes in Computer Science, pp. 319–335. Springer
(2004)

44. Rozenberg, G. (ed.).: Handbook of graph grammars and comput-
ing by graph transformations, vol. 1: foundations. World Scientific
(1997). https://doi.org/10.1142/3303

45. Salay, R., Chechik, M.: A generalized formal framework for par-
tial modeling. In: Egyed, A., Schaefer, I. (eds.) Fundamental
Approaches to Software Engineering—18th International Confer-
ence, FASE 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11–18, 2015. Proceedings, volume 9033 of Lecture Notes in
Computer Science, pp. 133–148. Springer (2015)

46. Schneider, S., Lambers, L., Orejas, F.: Symbolic model generation
for graph properties. In:Huisman,M., Rubin, J. (eds). Fundamental
Approaches to Software Engineering—20th International Confer-
ence, FASE 2017, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2017, Uppsala, Swe-
den, April 22–29, 2017, Proceedings, volume 10202 of Lecture
Notes in Computer Science, pp. 226–243. Springer (2017)

47. Schneider, S., Lambers, L., Orejas, F.: Symbolic model generation
for graph properties (extended version). Number 115 in Technische
Berichte des Hasso-Plattner-Instituts fr Softwaresystemtechnik an
der Universität Potsdam. Universitätsverlag Potsdam, Hasso Plat-
tner Institute (Germany, Potsdam), 1 edition, 2 (2017)

48. Schweikardt, N., Schwentick, T., Segoufin, L.: Algorithms and
Theory of Computation Handbook. Chapter Database Theory:
Query Languages, vol. 19, pp. 1–34. Chapman & Hall/CRC, Boca
Raton (2010)

49. Semeráth, O., Varró, D.: Graph constraint evaluation over partial
models by constraint rewriting. In: Guerra, E., van den Brand, M.
(eds.) Theory and Practice of Model Transformation—10th Inter-
national Conference, ICMT 2017, Held as Part of STAF 2017,
Marburg, Germany, July 17–18, 2017, Proceedings, volume 10374
of Lecture Notes in Computer Science, pp. 138–154. Springer
(2017)

50. Semeráth, O., Vörös, A., Varró, D.: Iterative and incrementalmodel
generation by logic solvers. In: Stevens, P., Wasowski, A. (eds.)
Fundamental Approaches to Software Engineering—19th Inter-
national Conference, FASE 2016, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2–8, 2016, Proceedings,
volume 9633 of Lecture Notes in Computer Science, pp. 87–103.
Springer (2016)

51. The Linked Data Benchmark Council (LDBC). Social network
benchmark. https://github.com/ldbc/ldbc_snb_docs. Accessed: 21
Aug 2017

52. The World Wide Web Consortium (W3C). W3c xml schema defi-
nition language (xsd) 1.1 part 1: Structures (2012)

53. Wood, P.T.: Query languages for graph databases. SIGMOD Rec.
41(1), 50–60 (2012)

123

https://doi.org/10.14279/tuj.eceasst.61.831.831
https://doi.org/10.1142/3303
https://github.com/ldbc/ldbc_snb_docs

	Automated reasoning for attributed graph properties
	Abstract
	1 Introduction
	2 Related work
	3 Application scenario
	4 Preliminaries
	4.1 Algebraic specifications
	4.2 Symbolic typed attributed graphs

	5 Properties over GRAPHSSTA
	6 Tableau procedure
	6.1 Recursive case distinction principle
	6.2 Recursive construction of tableaux

	7 Symbolic model generation
	7.1 Sets of symbolic models
	7.2 Symbolic model generation algorithm mathcalA
	7.3 Generation of mathcalSNT,k
	7.4 Compaction of sets of symbolic models
	7.5 Disambiguation of sets of symbolic models
	7.6 Exploration of sets of symbolic models

	8 Implementation
	8.1 Functional properties of AUTOGRAPH
	8.2 Implementation details of AUTOGRAPH

	9 Evaluation
	10 Conclusion and outlook
	A Some details on AUTOGRAPH
	B Categorical preliminaries and properties of GRAPHSSTA
	C Proofs
	References




