
International Journal on Software Tools for Technology Transfer (2018) 20:263–288
https://doi.org/10.1007/s10009-018-0488-3

FORMAL METHODS FOR TRANSPORT SYSTEMS

Towards formal methods diversity in railways: an experience report
with seven frameworks

Franco Mazzanti1 · Alessio Ferrari1 · Giorgio O. Spagnolo1

Published online: 8 March 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In the ever expanding universe of formal methods, several tools exist that can be exploited to validate early system designs,
and that are applicable to problems of the railway domain. In this paper, we present an experience report in formal modelling
and verification using seven different formal environments, namely UMC, Promela/SPIN, NuSMV, mCRL2, CPN Tools,
FDR4 and CADP. In particular, we model and verify an algorithm that addresses a typical railway problem, namely deadlock
avoidance in train scheduling. The algorithm is designed according to a prototypical architecture, the so-called blackboard
pattern, inwhich a set of global data are atomically updated by a set of concurrent guarded agents. Our experience, limited to the
specific problem, shows that the design of the algorithm can be translated into the different formalisms with acceptable effort,
while deep proficiency with the tools is required to optimise the performance. The current paper establishes the preliminary
foundations for the concept of formal methods diversity in the development of railway systems. The concept is based on the
idea that if different non-certified formal environments are used to verify the same design, this increases the confidence on
the verification results. Furthermore, by checking that the number of states generated during the verification process is the
same for each framework, the designer can have an initial indication of the equivalence of the diverse models. The industrial
application of this promising concept requires further research, and appropriate guidelines shall be established to identify
the proper formal environments to use for a specific railway problem, and to define an industrial process in which formal
methods diversity can be exploited at its full benefits. The paper presents the different models developed, compares the tools
employed in terms of language features and performance, and discusses the industrial implications of the concept of formal
methods diversity in the railway domain.

Keywords Formal methods diversity · Model checking · Deadlock avoidance · Train scheduling · Railways · Automatic train
protection · CBTC

1 Introduction

The CENELEC EN 50128 norm [13], for the development
of railway safety-critical software, recommends the usage
of formal methods during the design and implementation of
railway products. Several industrial experiences have been
documented in the literature concerning the formal devel-

B Franco Mazzanti
franco.mazzanti@isti.cnr.it
http://fmt.isti.cnr.it

Alessio Ferrari
alessio.ferrari@isti.cnr.it

Giorgio O. Spagnolo
spagnolo@isti.cnr.it

1 ISTI-CNR, Via G. Moruzzi 1, Pisa, Italy

opment of railway software [24,39,71]. The usage of the B
method [2] for the development of the SACEM system—a
control platform for a line of Paris RER [18]—and the itera-
tive formal verification of the Paris automatic metro line 14,
also based on the B method [8], are successful, early expe-
riences that have shown the practicability and effectiveness
of formal methods to railway companies. With the advent of
model checking techniques and tools [17], experiences on the
application of these approaches were performed in railways,
especially for what concerns the validation of interlocking
systems [4,11,29,44,49,68,70].More recently, formalmodel-
based approaches [26,69], involving graphicalmodelling and
code generation, were also used for the development and ver-
ification of railway systems, with a main focus on automatic
train control (ATC) and protection (ATP) systems [15,27,28,
47,63]. Some experiences were also performed on the usage

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-018-0488-3&domain=pdf

264 F. Mazzanti et al.

ofColouredPetriNets (CPN) formodelling and simulation of
railway signalling platforms [50,67]. Recently, experiences
have been published inwhichmodel checking and induction-
proof techniques are used in combination for the verification
of several railway systems [9].

When using any support tool (e.g., compilers, testing
environments, formal verification frameworks) along the
development of a railway product, the CENELEC EN 50128
norm asks the tool to be qualified, or certified, for its usage
in the process [13]. This requirement is common to other
standards, as, e.g., the DO 178C for the software of avionic
systems [64]. Although formal tools exist that are certified
according to the EN 50128 norm, as, e.g., SCADE [22] from
Esterel Technologies, the majority of the formal environ-
ments available are not certified. Hence, notwithstanding the
usefulness of formal methods for discovering design flaws
early in the development, the result of a formal modelling
and verification process in which a non-certified tool is used
cannot be considered as a final proof of the correctness of
a certain design with respect to the verified properties. On
the other hand, the existence of different, non-validated,
tools producing the same results might increase the over-
all confidence on the verification outcomes. This principle
was previously applied in the avionic domain by Rockwell
Collins [60], which, in collaboration with other partners,
developed translators from semi-formal models expressed in
Simulink/Stateflow towards the Lustre formal language [41],
and then towards formal environments, such as PVS [61]
and NuSMV [16], in which design properties and system
requirements can be verified. However, to our knowledge,
no equivalent experience exists in the railway domain. We
hypothesise that this might be due to the perceived difficulty
of formal methods for railway practitioners, and to the com-
mon idea that, if mastering a single formal tool is a problem,
mastering more than one might be hardly feasible.

In this paper, we show that a representative railway prob-
lem can be modelled and verified with limited effort using
sevendifferent tools, namely:UMC[65], Promela/SPIN [46],
NuSMV [16], mCRL2 [38], FDR4 [35], Coloured Petri Nets
(CPN) Tools [51] and CADP [33]. We have selected model
checking tools, given the increasing interest in this technol-
ogy shown by the railway sector in the last years [24]. In
particular, we modelled an algorithm for deadlock avoidance
in train scheduling. The algorithm was previously imple-
mented as part of an Automatic Train Supervision (ATS)
system [57,58] of a Communications-based Train Control
System (CBTC) [30]. Such system controls the movements
of driverless trains inside a given yard. The deadlock avoid-
ance algorithm takes care of avoiding situations in which a
train cannot move because its route is blocked by another
train. Equipped with this algorithm, the ATS is able to dis-
patch the trains without ever causing situations of deadlock,
even in the presence of arbitrary delays with respect to the

planned timetable. This kind of problem is a rather typical
one—not only for the railway domain [21]—which can be
modelled as a set of global data that is atomically updated by
a set of concurrent guarded agents—i.e., agents that, when
certain global conditions are met, are allowed to atomically
change the global status. This design strategy is normally
referred to as the blackboard architectural pattern [21]. In
this paper, we show the design of the algorithm, the different
models produced with the seven formal tools, and the results
of the verification activities, observing differences and hur-
dles in the usage of the seven environments. All the models
produced within this experience, and referred in this paper,
are available in our public repository [56].

This paper establishes a preliminary basis for the potential
usage of formal methods diversity in the design and verifica-
tion of railway software. In particular, our experience shows
that, given a simple blackboard system design, while limited
effort and adjustments were required to translate the design
into different formalisms, a much greater effort was needed
to fully exploit the various verification framework capabili-
ties. Small choices in the specification of themodels, or in the
verification options, resulted in a great impact on the perfor-
mance of the tools. Our goal is to ensure that, given a certain
specification, different non-certified formal tools provide the
same verification results. In this way, although the tools are
not certified, we can increase the confidence on the correct-
ness of the specification. From his point of view, our main
focus is on the validation of the specification rather than on
the validation of the requirements—see Sect. 12 for more
details. We also suggest a lightweight method to provide
an initial indication on the equivalence of the specifications
designed with the different tools, which is based on observ-
ing the number of states produced by the formal tools. If
the number of states is the same, and all the specifications
satisfy the properties, this increases the confidence on the
equivalence of the specifications. To fully ensure specifica-
tion equivalence, model transformation and verification of
the translation step [3] should be performed.

Our proposal is focused on the railway domain, given
the interest of the domain in formal methods [24], and the
certification constraints [13]. Nevertheless, the presented
principles, which take inspiration from code/design diver-
sity [12,52,62], and early studies on diversity of formal
approaches [5], can in principle be applied also to other
domains.

The paper extends a previous contribution to the ISoLA
2016 conference [56].With respect to this previous work, the
current one describes the experience with three additional
environments, namely CPN, FDR4 and CADP (Sects. 7–9),
provides a more in-depth discussion on the lessons learned
while using the seven tools (Sect. 11), and discusses the
potential of formal methods diversity in the railway domain
(Sect. 12).

123

Towards formal methods diversity in railways: an experience report with seven frameworks 265

5

6

7

8

1

BCA03 Piazza Dante
I

II

III
BCA05

Via Marco Polo
Via Roma

Viale dei Giardini

Parco della Vittoria

I

II

III I

II

III

IV

1
2

10

11

12

15

16

1718

20

22

23

24

25

26

27

9
3

4

13

train0

train2

train3

train1

train4

train6

train7

train5

Fig. 1 A fragment of the yard layout and the 8 missions of the trains

The rest of the paper is structured as follows. In Sect. 2,
we describe the deadlock avoidance algorithm that we mod-
elled. In Sects. 3–9, we show our models and the verification
results for UMC, NuSMV, Promela/SPIN, mCRL2, FDR4,
CPNTools and CADP, respectively,1 and, within the descrip-
tions of the models, we highlight the peculiarities of the
different languages and environments. In Sect. 10,we present
a more complex case, based on an extension of the original
design, in which trains perform round-trip missions. All the
models referred in this paper can be retrieved from the data
repository [59]. In Sect. 11, we provide a discussion on the
experience, and in Sect. 12 we discuss the potentials and the
challenges associated with the concept of formal methods
diversity. Finally, Sect. 13 concludes the paper and discusses
our future work.

2 The deadlock avoidance algorithm

This section describes basic elements of the modelled algo-
rithm, which was defined in our previous works [57,58].
Figure 1 shows the structure of the railway layout considered
in this study. Nodes in the yard correspond to itinerary end-
points, and the connecting lines correspond to the entry/exit
itineraries to/from those endpoints. Eight trains are placed
in the layout. Each train has its own mission to execute,
defined as a sequence of itinerary endpoints. For example,
the mission of train0, which traverses the layout from left
to right along top side of the yard, is defined by the mis-
sion vector: T0 = [1, 9, 10, 13, 15, 20, 23]. The mission of
train7, which instead traverses the layout from right to
left, is defined by the vector: T7 = [26, 22, 17, 18, 12, 27, 8].
The progress status of each train is represented by the index,
in the mission vector, which allows the identification of the

1 All the verification experiments have been conducted on a Mac Pro
(late 2013) workstation with Quad-core 3.7 GHz Intel Xeon E5, 64 GB
RAM running OS X 10.11 (El Capitan).

endpoint in which the train is at a certain moment. We will
have 8 variables P0, . . . , P7, one for each train, which store
the current index for the train. For example, at the beginning,
we have P0 = 0, . . . , P7 = 0, since all the trains occupy the
initial endpoints of their missions—at index 0 in the vector.

If the 8 trains are allowed to move freely, i.e., if their next
endpoint is free, there is the possibility of creating deadlocks,
i.e., a situation in which the 8 trains block each other in their
expected progression. To solve this problem, the scheduling
algorithm of the ATS must take into consideration two crit-
ical sections A and B—i.e., zones of the layout in which
a deadlock might occur—which have the form of a ring
of length 8 (see Fig. 2), and guarantee that these rings are
never saturated with 8 trains—further information on how
critical sections are identified can be found in our previ-
ous work [57,58]. This can be modelled by using two global
counters RA and RB, which record the current number of
trains inside these critical sections, and by updating them
whenever a train enters or exits these sections. For this pur-
pose, each train mission Ti , with i = 0 . . . 7, is associated
with: a vector of increments/decrements Ai to be applied to
counter RA at each step of progression; a vector Bi of incre-
ments/decrements to be applied to counter RB.

For example, given T0 = [1, 9, 10, 13, 15, 20, 23], and
A0 = [0, 0, 0, 1, 0,−1, 0], when train0moves from end-
point 10 to endpoint 13 (P0 = 3) we must check that the +1
increment of RA does not saturate the critical section A, i.e.,
RA + A0[P0] ≤ 7; if the check passes, then the train can
proceed and safely update the counter RA := RA+ A0[P0].
The maximum number of trains allowed in each critical sec-
tion (i.e., 7) will be expressed as L A and LB in the rest of
the paper.

The models presented in the following sections, which
implement the algorithm described above, are deadlock-free,
since the verification is being carried on as afinal validationof
a correct design. The actual possibility of having deadlocks,
if the critical sections management were not supported or

123

266 F. Mazzanti et al.

BCA03 Piazza Dante
I

II

III
BCA05

Via Marco Polo
Via Roma

Viale dei Giardini

Parco della Vittoria

I

II

III I

II

III

IV

10

11

12

15

16

1718

20

22

23

24

25

26

27

9 13

A

B

Fig. 2 The critical sections A and B which must not be saturated by 8 trains

incorrectly implemented, can easily be observed by raising
from 7 to 8 the values of the variables L A and LB.

The current design, in which each system state logically
corresponds to a set of train progresses and each train move-
ment logically corresponds to an atomic system evolution
step, leads to a state space of 1,636,535 configurations. These
data are important because it will allow the user to cross-
check the correctness of the encoding of this logical design
in the various frameworks.

3 The UMCmodel

UMC [65] is a model checker that belongs to the Kan-
dISTI2 [66] family. Its development started at ISTI in 2003
and has been since then used in several research projects. So
far UMC is not really an industrial scale project but more an
(open source) experimental research framework. It is actively
maintained and is publicly usable through its web interface.3

The KandISTI family comprises four model checkers,
each of which is oriented to a particular system design
approach, but all of which share the same underlying abstract
model and verification engine. The basic underlying idea
behind KandISTI is that the evolution in time of the sys-
tem behaviour can be seen as a graph where both edges and
states are associated with sets of (composite) labels [37]. The
graph is formalised as an abstract doubly labelled transition
system (L2TS) [20]. Labels on the states represent the observ-
able properties of the system states, and labels on the edges
represent the observable properties of the atomic system tran-
sitions. The logic supported by theKandISTI framework uses
the evolution graph as semantic model and allows the user to
specify abstract properties in a way that is rather independent
from the internal implementation details of the system [25].
From this point of view, the state labels become the state

2 http://fmt.isti.cnr.it/kandisti.
3 http://fmt.isti.cnr.it/umc.

predicates of the logic, and action labels become the basic
actions of the logic.

The different flavours of the various tools of KandISTI
family are related to the supported specifications languages
that range from process algebras to sets of UML-like stat-
echarts. In our case, we will use the UMC tool (version
4.6), because it allows the user to model in a direct way
non-deterministic system evolutions (triggered by global
conditions) that read and update global data.Moreover,UMC
is the only tool of the KandISTI family that supports com-
posite data structures.

It is not themain concern of paper to give a detailed presen-
tation of UMC, for which we refer to the specific documents
available online.4 Here, we focus instead on those aspects
used by our models. In UMC, a system is described as a set
of communicating UML-like state machines. In our particu-
lar case, the system is composed of a unique statemachine, in
which we have a Vars part—including the global state—and
a Behavior part—specifying the state machine behaviour.
The Vars Part The Vars part contains the vectors describing
the train missions (Ti), the indexes recording the train pro-
gresses (Pi)—i.e., the indexes in the previous vectors—the
occupancy counters RA and RB of the two critical sections,
and the vectors Ai , Bi including the increments/decrements
that should be performed by the trains at each step of their
progress for the critical sections A and B, respectively. In
addition, we have the two constants indicating the maximum
number of trains allowed in the critical sections (L A, LB).

Vars:
-- mission steps for train0

T0: int[] := [1, 9,10,13,15,20,23];
. . .

-- RA updates steps for train0

A0: int[] := [0, 0, 0, 1, 0,-1, 0];
. . .

-- RA updates steps for train7

4 http://fmt.isti.cnr.it/umc/DOCS.

123

http://fmt.isti.cnr.it/kandisti
http://fmt.isti.cnr.it/umc
http://fmt.isti.cnr.it/umc/DOCS

Towards formal methods diversity in railways: an experience report with seven frameworks 267

A7: int[] := [0, 0, 0,-1, 0, 0, 0];
-- occupancy of region RA

RA: int :=1;
-- limit value for region RB

LB: int :=7;
-- RB updates steps for train0

B0: int[] := [0, 0, 0, 1, 0,-1, 0];
. . .

-- RB updates steps for train7

B7: int[] := [0, 0, 0,-1, 0, 0, 0];
-- occupancy of region RB

RB: int :=1;
-- train progresses

P0,P1,P2,...,P7:int :=0;

In this particular case, the size of a state is fixed and
static. However, this is not a requirement for UMC, since we
can have variables representing unbounded vectors, queues,
unbounded integers, which together with the (potentially
unbounded) events queues can contribute to make the actual
size of a state5 highly dynamic. This dynamism might lead
to potentially infinite state systems.
The Behavior Part In the Behavior part of our class defi-
nition, we will have one transition rule for each train, which
describes the conditions and the effects of the advancement
of the train. A generic transition rule is expressed as follows:

Behavior:
<SourceState> -> <TargetState>{

<EventTrigger>[<Guard>]/<Actions>
}

. . .

A transition rule expressed as above intuitively states that
when the system is in the state SourceState, the specified
EventTrigger is available, and all the Guards are satis-
fied, then all the Actions of the transition are executed
sequentially and the system state passes from SourceState

to TargetState.
The interleaving of the progress of the various trains is

therefore modelled by the internal non-determinism of the
possible applications of statemachine transitions. In our case,
there is no external event that triggers the system transi-
tions; therefore, the transitions will be controlled only by
their guards.

In the case of train T0, for example, we will have the
transition rule:

s1 -> s1
{- [-- train0 has not yet completed its mission

P0 <6 &
-- next position not occupied by train1

T0[P0+1] != T1[P0] &
. . . -- next position not occupied by ...

5 i.e. the sum of the sizes of the current values held by all variables.

-- next position not occupied by train7

T0[P0+1] != T7[P7] &
-- A is not saturated by arrival of train0

RA + A0[P0+1] <= LA &
-- B is not saturated by arrival of train0

RB + B0[P0+1] <= LB
] /

-- update occupancy of critical section A

RA = RA + A0[P0+1];
-- update occupancy of critical section B

RB = RB + B0[P0+1];
-- update train progress

P0 := P0 +1;
}

Verification As a last step, we have to define what we want to
see on the abstract L2TS associated with the system evolu-
tions. Indeed, we recall that the overall behaviour of a system
is formalised as an abstract L2TS, and abstraction rules allow
us to define what we want to see as labels of the states and
edges of the L2TS. The abstraction rules are expressed in the
Abstraction part of the specification, in which we define
which labels should appear on the edges and states of the
abstract evolution graph. In our case, we are interested to
observe the existence of a certain state inwhich all trains have
completed all their missions. This can be done assigning a
state label, e.g. ARRIVED, to all the system configurations in
which each train is in its final position.

Abstractions {
State SYS.P0=6 and

SYS.P1=6 and
. . .

SYS.P7=6 -> ARRIVED
-- abstract label on final node

}

The L2TS associated with our model will be a directed
graph that will converge to a final state labelled ARRIVED in
the case that no deadlock occurs in the system. The branching
time, state/event-based temporal logic supported by UMC
has the power of full µ-Calculus but also supports the more
high-level operators of Computation Tree Logic (CTL). The
property that for all executions all the trains eventually reach
their destinations be easily checked by verifying the CTL-
like formula:

AF ARRIVED

The AF operator inside the above CTL formula specifies
that for all execution paths (A) of the system, eventually in the
future (F), we should reach a state in which the state predicate
ARRIVED holds.

If this property does not hold, UMC provides an expla-
nation of why the evaluation of the formula failed, allowing
the user to interactively explore the set of system evolution
steps that led to failure of the relevant subformulas and view
all the internal details of the traversed states.

123

268 F. Mazzanti et al.

UMC completes the evaluation of the formula returning
true in a time that ranges from 38 to 86s depending on how
the tool is used. The fastest results of 38 s are obtained by
exploiting a multi-core approach during statespace genera-
tion [55], and by adopting a depth-first exploration strategy.
Cyclic generalisation The case study illustrated above is a
particularly simple model, in which a set of trains perform a
limited one-way mission across a yard. In general, the situa-
tion can bemore complex, e.g. with trains that repeatedly per-
form one mission after another, continuously cycling across
the yard. In this case, the evolution graph would contain: (a)
fair cycles in which all the trains always eventually move
even if they might never pass again from a state in which all
the trains are in their final destination at the same time (b) bad
cycles in which a few trains actually block each other while
the system as a whole would continue to evolve with the non-
deadlocked trains (i.e. a case of partial deadlock); (c) not rele-
vant cycles inwhich only a few trains evolve, but just because
of allowed unfairness of the underlying dispatching policy.

Under these circumstances the above formulaAFARRIVED
can no longer be used to evaluate the correctness of themodel
because it would signal as errors all the above three cases of
cycles. There is another CTLproperty that allows us to distin-
guish a correctmodel from awrong one, which is represented
by the formula:

AG EF ARRIVED

The above formula states that from every reachable state
of the system (AG) there is at least one path (EF) that leads to
a state in which all trains have reached their final destination
(ARRIVED). This formula is false only in the presence of true
partial deadlocks, in which some trains are no longer allowed
to reach their destination, independently from the fairness of
the dispatching policy. An additional benefit of the above
formula is that, if violated, the corresponding explanation
provided by UMC would show a precise path towards the
train movement that is the real cause of a possibly future
partial deadlock. Let us consider, for example, the case of two
trains trying to traverse the same linear sequence of itineraries
in opposite directions. The real cause of the deadlock would
be the entering of the second train inside that linear sequence,
while the explicit partial deadlock would occur at a later time
when the two trains would actually meet face to face. A full
deadlock would occur when no more trains in the system
were allowed to move.

4 The NuSMVmodel

NuSMV6 [16] is a software tool for the formal verification of
finite state systems. NuSMVwas jointly developed by FBK-

6 http://nusmv.fbk.eu/.

IRST and by Carnegie Mellon University. NuSMV allows
the user to check finite state systems against specifications in
the Computation Tree Logic (CTL), Linear Temporal Logic
(LTL) and in the Property Specification Language (PSL) [1].

SinceNuSMVis intended todescribefinite statemachines,
the only data types in the language are finite ones, i.e.
Boolean, scalar, bit vectors and fixed structures of basic data
types. A state of the system is represented by a set of vari-
ables. Assignment rules in the language allow the user to
specify total functions, which define all the possible values
that a state variable can assume in the next state.
Constants and variables NuSMV distinguishes between
system constants (DEFINE construct), and variables (VAR con-
struct). The system constants are represented by the Ti , Ai ,
Bi and L A, LB data values:

DEFINE
T0 := [1, 9,10,13,15,20,23];
. . .

T7 := [26,22,17,18,12,27, 8];
LA := 7;
A0 := [0, 0, 0, 1, 0,-1, 0];
. . .

A7 := [0, 1, 0,-1, 0, 0, 0];
LB := 7;
B0 := [0, 0, 0, 1, 0,-1, 0];
. . .

B7 := [0, 0, 0, -1, 0, 0, 0];

The state variables consist of the different Pi of the various
train progresses, and of the occupancy status of RA and RB
of the two critical sections. Furthermore, we will need an
additional RUNNING input variable for modelling the non-
determinism in the choice of the potentially moving train
and consistently synchronise the updates of the Pi , RA, and
RB variables.

IVAR
RUNNING: 0..7;

VAR
P0: 0..6;
. . .

P7: 0..6;
RA: 0..8;
RB: 0..8;

Behaviour The initial state of the system can be described
within the ASSIGN construct making use of the init opera-
tor:

ASSIGN
init (P0) := 0;

. . .

init (P7) := 0;
init (RA) := 1;

123

http://nusmv.fbk.eu/

Towards formal methods diversity in railways: an experience report with seven frameworks 269

init (RB) := 1;

The total transition relation that models all the possible
system evolutions can be defined within the TRANS construct
structured using a nested sequence of conditional expressions
(condition? thenpart: elsepart) as shown by the fol-
lowing rule:

TRANS
-- progression rule for the evolving train T0
RUNNING =0 &
-- the train has not yet completed its

mission P0 < 6 &
--
-- the next place is not occupied by other

trains
T0[P0+1] != T1[P1] &
T0[P0+1] != T2[P2] &
T0[P0+1] != T3[P3] &
T0[P0+1] != T4[P4] &
T0[P0+1] != T5[P5] &
T0[P0+1] != T6[P6] &
T0[P0+1] != T7[P7] &
--
-- the progression step satisfies all

constraints
RA + A0[P0+1] <= LA &
RB + B0[P0+1] <= LB

?
-- T0 advances one step
next(P0) in (P0+1) &
next(P1) in P1 & -- ot
-- the other trains do not move
next(P2) in P2 &
next(P3) in P3 &
next(P4) in P4 &
next(P5) in P5 &
next(P6) in P6 &
next(P7) in P7 &
-- critical sections occupancy is updates
next(RA) in (RA + A0[P0+1]) &
next(RB) in (RB + B0[P0+1])

:
-- progression rule for the evolving train

T1
RUNNING =1 &
. . .

:
-- progression rule for the evolving train

T7
RUNNING =7 &

Since the rule must be total, we must add a final
:elsepart describing the system transition in the case the
train selected by the RUNNING input value is not allowed to
move. In these cases, the system status should not change.

: -- no train can move
next(P0) in P0 &
. . .

next(P7) in P7 &
next(RA) in RA &

next(RB) in RB

Verification The description of the properties to be veri-
fied is expressed within the CTLSPEC/ LTLSPEC constructs
of a NuSMV module. The property that all trains eventually
complete their mission is encoded in the following way:

CTLSPEC -- all trains eventually complete their mission

AF ((P0=6) & (P1=6) & (P2=6) & (P3=6) &
(P4=6) & (P5=6) & (P6=6) & (P7=6))

LTLSPEC -- all trains eventually complete their mission

F ((P0=6) & (P1=6) & (P2=6) & (P3=6) &
(P4=6) & (P5=6) & (P6=6) & (P7=6))

TheNuSMVversion of the above CTL formulamakes use
of the same AF operator already seen in the previous section.
The only difference with respect to the UMC version is that
now the state predicate to be verified is directly expressed
in terms of values on internal variables of the model. How-
ever, unless we introduce appropriate fairness constraints the
above formulas would appear to be false.

In fact, the final else clause of the transition relation, trig-
gered when an input-selected train cannot move, introduces
non-progressing self-loops in the system evolutions. In order
to discard these uninteresting paths, and to make insignifi-
cant the dummy transitions corresponding to trains that are
not allowed to move, we must introduce a set of FAIRNESS

constraints of the form:

FAIRNESS RUNNING = 0;
. . .

FAIRNESS RUNNING = 7;

In this way, NuSMV limits its evaluations to the fair paths
of the system evolutions, i.e. those infinite paths for which
the fairness constraints are true for an infinite number of
times. With the above constraints, an infinite path in which
only train0 is selected is discarded, because it violates the
fairness rules RUNNING=1,..., RUNNING=7. With the intro-
duced FAIRNESS constraints, we find the formula to be true
in about 39 s in the case of the CTL formula, and in about
43 s in the case of the LTL formula. It is worth noticing that,
in the UMC model presented in Sect. 3, fairness issues did
not arise, because all paths are finite.7

A more efficient way of verifying with NuSMV the cor-
rectness of the system behaviour is to avoid the introduction
of the FAIRNESS constraints and verify instead the NuSMV

7 The language used by UMC does not support explicit fairness con-
straints. Instead, fairness-related properties can be specified by means
of the supported logics, e.g., µ-Calculus.

123

270 F. Mazzanti et al.

CTL equivalent of the already seen AG EF ARRIVED prop-
erty (i.e. that from any state the system has the capability to
reach the successful final state). In this case, the property rule
becomes:
CTLSPEC -- all trains eventually complete their mission

AG EF ((P0=6) & (P1=6) & (P2=6) & (P3=6) &
(P4=6) & (P5=6) & (P6=6) & (P7=6))

Indeed, in this case the formula is proved to be true in just
2.8 s.

When a logical formula is found to be false, NuSMV auto-
matically returns a path as counterexample of the formula, in
the shape of an evolution trace, and it is possible to check in
detail the internal values of the variables along the states in
the path. Since in general the counterexample for a branch-
ing time formula might have the shape of a tree, the returned
path would necessarily describe just a fragment of the real
counterexample.
Cyclic generalisation We have already seen in the UMC
case that the verification of the branching time formula AG

EF ARRIVED allows us to verify the correctness of the cyclic
model (i.e. find livelocks) also in presence on unfair schedul-
ing paths. This alternative formula has also the advantage of
identifying the real cause of partial deadlocks as soon as
they are triggered and, in the NuSMV case, the effect of
making unnecessary the addition of FAIRNESS assumptions,
with great advantages in terms of performance.

5 The Promela/SPINmodel

SPIN8 [46] (Simple Promela Interpreter) is an advanced and
very efficient tool specifically targeted for the verification
of multi-threaded software. The tool was developed at Bell
Labs in the Unix group of the Computing Sciences Research
Center, starting in 1980. In April 2002, the tool was awarded
the ACM System Software Award. The language supported
for the systemspecification is calledPromela (PROcessMEta
LAnguage). Promela is a non-deterministic language, loosely
based on Dijkstra’s guarded command language notation,
and borrowing the notation for I/O operations from Hoare’s
CSP language. Once a model is formalised in Promela, a
corresponding analyser is generated as a source C program
(pan.c). The compilation and execution of the analyser
performs all the needed on-the-fly state generations and ver-
ification steps. The properties to be verified can be expressed
in LTL, and a violation of a property can be explained by
observing the generated counterexample trail path.

In our case, the Promela model consists in single main
process which defines a set of global state variables, their
initialisations, and a main execution body. A Promela model

8 http://spinroot.com.

can also include a set of property specifications that will be
verified by the generated process analyser.
State variables The state variables declarations (a) in our
case consist in the definition of Ti , Ai , Bi vectors, plus the
numeric variables Pi , RA, RB, L A, LB, as shown below.

// mission data for train T0 ... T7

byte T0[7], ... ,T7[7];
// progress data for train0,...train7

byte P0,...,P7;
// constraints of train T0 ...T7 for Region A

short A0[7], ... , A7[7];
// constraints of train T0 ...T7 for Region B

short B0[7], ... , B7[7];
// occupancy of region A, B

byte RA, RB;
// limits of region A, B

byte LA, LB;

Initialisation The system initialisation appears within the
atomic {...} construct inside the system init {...} sec-
tion. In Promela, sequences of statements, when included
inside an atomic {...} construct, are executed as part of a
single system (or process) transition.

The setting of the initial value for the state variables has
to assign a single numeric value to each vector component,
as shown below:

init {
// initializations of state variables
atomic {
// T0:[1, 9,10,13,15,20,23]
T0[0]=1; T0[1]=9; T0[2]=10; T0[3]=13;
T0[4]=15; T0[5]=20; T0[6]=23;
. . .
// T7:[26,22,17,18,12,27
T7[0]=26; T7[1]=22; T7[2]=17; T7[3]=18;
T7[4]=12; T7[5]=27; T7[6]=8;

// A0:[0,0,0,1,0,-1,0]
A0[3]= 1; A0[5]= -1;
. . .
// A7:[0,1,0,-1,0,0,0]
A7[1]=1; A7[3]=-1;

// B0:[0,0,0,1,0,-1,0]
B0[3]=1; B0[5]=-1;
. . .
// B7:[0,0,0,-1,0,0,0]
B7[3]=-1;

RA=1; RB=1; LA=7; LB=7;
}

// main sequence of statements
. . .

}

Behaviour In our case, the non-determinism of the system
can be modelled, as already done in the UMC and SMV
case, by the non-determinism of themain process evolutions.
The main sequence of statements, in our case, is a do loop

123

http://spinroot.com

Towards formal methods diversity in railways: an experience report with seven frameworks 271

containing a sequence of atomic guarded transitions, inwhich
each transition models the progress rule for a train. The do

loop still appears inside the init section, after the initialisation
code.

init {
// initializations of state variables
. . .

// main sequence of statements
do
:: atomic {
// progress rule for train0
(P0 < 6 &&
T0[P0+1] != T1[P1] &&
. . . // next place not occupied by other trains

T0[P0+1] != T7[P7] &&
// critical sections constraints satisfied

RA+A0[P0+1] <= LA &&
RB+B0[P0+1] <= LB

) ->
// update the status of critical sections

RA = RA + A0[P0+1];
RB = RB + B0[P0+1];
// update the progress of train0

P0++;
};

. . .
:: atomic {
// progress rule for train7

. . .

};
// all missions are completed
:: (P0==6) && (P1==6) && (P2==6) && (P3==6)
&&(P4==6) && (P5==6) && (P6==6) && (P7==6)
-> skip;

od;
};

Verification The property we are interested in is the classical
property that all trains eventually complete their missions:

ltl p1 {eventually ((P0==6) && (P1==6) &&
(P2==6)

&& (P3==6) && (P4==6) &&
(P5==6)

&& (P6==6) && (P7==6)) }

The above LTL formula is equivalent to the one already
seen in the NuSMV example. The only difference is in the
syntaxof the eventually operatorwhich is in this case encoded
as eventually instead of F.

The evaluation of the formula is carried out by the process
analyser (pan.c) in about 13 s when the process analyser is
compiled with all gcc optimisations turned on (-O3 flag).
We have also experimented the version of this specification
in which each train was represented by an explicit pro-
cess, whose activity consists in just executing the loop of

its own atomic progress transition. In this case, the evalua-
tion time raises to about 47 s. The introduction of processes
with the only purpose of replacing an internal sequential non-
determinism with an external interprocess non-deterministic
scheduling does not seem to pay off from the point of view
of the performance. Surely also in the case of SPIN a more
detailed fine tuning of the many options provided by the tool
would allow us to further increase its overall performance.

When a formula does not hold, the tool saves a counterex-
ample trail which can be further analysed. Since the logic
supported by SPIN is a linear time logic, it is not possi-
ble to express and verify branching time properties like AG

EF ARRIVED. This means that in the cyclic extension of the
model wemight have difficulties in proving, for example, the
absence of livelocks.

6 ThemCRL2model

mCRL29 [38] is a formal specification language with an
associated toolset. The toolset can be used for modelling,
validation and verification of concurrent systems and proto-
cols. The mCRL2 toolset is developed at the department of
Mathematics and Computer Science of the Technische Uni-
versiteit Eindhoven, in collaboration with LaQuSo, CWI and
the University of Twente. The mCRL2 language is based on
the Algebra of Communicating Processes (ACP) which is
extended to include data and time. Processes can perform
actions and can be composed to form new processes using
algebraic operators. A system usually consists of several pro-
cesses, or components, running in parallel.

In our case, we need to model the existence of a global
status shared among the various trains, and this can be rep-
resented in mCRL2 by a single, recursive, non-deterministic
process, whose parameters preciselymodel the global system
state. Also in this case, the non-determinism of the system
evolutions is modelled through the non-determinism of the
main process behaviour. Our mCRL2 specification includes
a set of data types specification which describe the constants
of our model, a set of actions specifications that qualify the
possible kinds of system evolution steps, a single process
definition and a main process specification.
Data types specifications The data types specifications in our
case are used to define the vectors of the train missions, the
vectors of the sections constraints, and the limits associated
with each critical section. In particular, we have modelled
the vector of a train mission Ti as a map, i.e., a function
from natural numbers (Nat) to natural numbers. The values
returned by the function are expressed by means of the eqn
construct.

9 http://www.mcrl2.org/.

123

http://www.mcrl2.org/

272 F. Mazzanti et al.

map T0: Nat -> Nat;
%% T0 [1, 9,10,13,15,20,23]

eqn T0(0)=1; T0(1)= 9; T0(2)=10;
... ; T0(5)=20; T0(6)=23;

. . .

map T7: Nat -> Nat;
%% T7[26,22,17,18,12,27, 8]

eqn T7(0)=26; T7(1)=22; T7(2)=17;
... ; T7(5)=27; T7(6)= 8;

Similarly, we have used the map construct for the critical
sections limits (L A, LB), and for the vectors of increments
Ai , Bi that trains should apply, with respect to critical sec-
tions, during their progress in the mission:

map LA: Nat; %% limit for region A

eqn LA = 7;

map A0: Nat -> Int;
%% A0 [0, 0, 0, 1, 0,-1, 0]

eqn A0(0)=0; A0(1)= 0; A0(2)=0;
... ; A0(5)=-1; A0(6)=0;

. . .

map B0: Nat -> Int;
%% B0 [0, 0, 0, 1, 0,-1, 0]

eqn B0(0)=0; B0(1)= 0; B0(2)=0;
... ; B0(5)=-1; B0(6)=0;

Actions specification The actions specification should define
the structure of the possible actions appearing inside pro-
cesses. In our case, we define an action move, to represent
the movement of the train at each progress step, and a final
arrived action, which is performed when all trains have
completed their missions:

act arrived; move: Nat;

Process definitions The set of process definitions con-
sists in one unique recursive process, which we name
AllTrains, whose parameters P0, .., P7 represent the
progress indexes Pi of all the train missions, while the RA,

RB parameters represent the occupancy counters of the two
critical sections A and B. The body of this process defini-
tion specifies the non-deterministic rules that govern the train
evolutions in the usual way.

proc AllTrains(P0:Nat, P1:Nat, P2:Nat, P3:Nat,
P4:Nat, P5:Nat, P6:Nat, P7:Nat,
RA:Int, RB:Int) =

% progress of train0
(P0 < 6 &&
T0(P0+1) != T1(P1) &&
. . .
T0(P0+1) != T7(P7) &&
RA + A0(P0+1) <= LA &&

RB + B0(P0+1) <= LB
) -> move(0).
AllTrains(P0+1,P1,P2,P3,P4,P5,P6,P7,

RA+A0(P0+1),RB+B0(P0+1))
+
. . .

+ % progress of train7
(P7 < 6 &&
T7(P7+1) != T0(P0) &&
. . .
T7(P7+1) != T6(P6) &&
RA + A7(P7+1) <= LA &&
RB + B7(P7+1) <= LB

) -> move(7).
AllTrains(P0,P1,P2,P3,P4,P5,P6,P7+1,

RA+A7(P7+1),RB+B7(P7+1))

+ % all trains have completed their
missions

((P0 ==6) && (P1 ==6) && (P2 ==6) &&
(P3 ==6) && (P4 ==6) && (P5 ==6) &&
(P6 ==6) && (P7 ==6)
) ->
arrived . AllTrains(P0,P1,P2,P3,P4,P5,P6,

P7,
RA,RB);

Main process specification Finally, the main process speci-
fication consists in the call of our AllTrains process with
the appropriate initial data:
init AllTrains(0,0,0,0,0,0,0,0, 1,1);

Verification The mCRL2 toolset allows us first to lin-
earise the mCRL2 specification and then to convert it into
a linear process. Given a linear process and a formula that
expresses some desired behaviour of the process, a PBES
(Parametrised Boolean Equation System) can be generated.
The tool pbes2bool executes the PBES and returns the
evaluation status of the formula. The formulas supported by
the mCRL2 toolset are based on full µ-Calculus with para-
metric fix points.

The property that the system will eventually always reach
a state in which all trains have completed their mission can
be expressed as:

mu X.(([!arrived] X) && (<true> true))

The evaluation of this formula takes from 2 to about 19
min before returning the true value, depending on the options
selected during the various evaluation steps. The greatest
impact, which reduces the evaluation time from 19 about
2min, is obtained with the selection of the jittyc rewrit-
ing option that compiles the rewriting engine to be used for
the evaluation of the formula.10 Further minor optimisations

10 http://mcrl2.org/web/user_manual/tools.html.

123

http://mcrl2.org/web/user_manual/tools.html

Towards formal methods diversity in railways: an experience report with seven frameworks 273

are surely possible, but it is outside the purpose of the paper
to analyse all of them.

The logic supported by mCRL2 permits in many cases to
replace the explicit use of fixpoints with the use of regular
expressions inside box ([...]) and diamond (< ... >) oper-
ators. For example, the absence of deadlock can be checked
with the formula [true∗] < true > true.

The mCRL2 framework has no problems in verifying
also the other branching time formula—equivalent to AG EF

ARRIVED—which can be expressed as:

nu X.((<true*.arrived>true) && ([true]X))

or, using regular expressions:

[true*] < true* . arrived > true

When an unexpected false value is returned by the evalua-
tion, the user can request the generation of a counterexample.
This counterexample, however, is based on the structure of
the evaluation process and shows the occurred nested evalu-
ations of the fixpoint formulas, without any link to the actual
structure of themodel or the details of its possible evolutions.
The tool lpsxsim allows the user to explore the possible
evolutions of the model under analysis. However, it does not
seem that this exploration canbedirectly connected to a coun-
terexample generated by a previous unsuccessful evaluation.
Model variants We have also made several experiments
in which the global status of the system was modelled by
explicit processes instead that as data argument of the unique
system process. In particular, we have experimented the use
of (i) one process for each itinerary endpoint, modelling its
occupancy state, (ii) one process for each critical section,
modelling its availability, and (iii) one process for each train,
modelling its mission. The overall system is now resulting by
the parallel composition of all these components that appro-
priately synchronise to model the desired system evolutions.
All the systems described in this way (we have tried several
versions of them) result much less performing that our initial
non-deterministic sequential case (the execution times range
from 78 min to a few hours) and are therefore not further
discussed.

7 The FDR4model

FDR411 [35] is a refinement checker that allows the user
to verify properties of programs written in CSPM , a lan-
guage that combines the operators of Hoare’s CSP with a
functional programming language. Originally developed by
Formal Systems (Europe) Ltd in 2001, since 2008 is sup-
ported by the Computer Science Department of University of

11 https://www.cs.ox.ac.uk/projects/fdr.

Oxford. Being the specification approach based on a process
algebra, the overall structure of the system is very similar to
the one of mCRL2, i.e. we will have a single, recursive, non-
deterministic, process definition whose parameters precisely
model the global system state.
Data types and constants The global data types and con-
stants of our model are defined in a functional style. While
sequences (encoded as <value,...,value>) are among the
predefined data types, indexing inside them must be explic-
itly defined introducing a selector operator:

el(y,x)=
if x==0 then head(y) else el(tail(y),x-1)

The global constants defining the train missions and the
region constraints can be easily introduced as:

---- train missions -----
T0 = < 1, 9,10,13,15,20,23>
T1 = < 3, 9,10,13,15,20,24>

. . .
T7 = <26,22,17,18,12,27, 8>

----- region A: train constraints ------
A0 = <0, 0, 0, 1, 0,-1, 0>
A1 = <0, 0, 0, 1, 0,-1, 0>

. . .
A7 = <0, 1, 0, 0,-1, 0, 0>
LA = 7

----- region B: train constraints ------
B0 = <0, 0, 0, 1, 0,-1, 0>
B1 = <0, 0, 0, 1, 0,-1, 0>
. . .

B7 = <1, 0, 0, 0,-1, 0, 0>
LB = 7

Also in this case we must declare the possible channel
names appearing inside processes:

channel arrived, move

Recursive process definition The recursive process defini-
tion, which we still name AllTrains, has as parameters
the progress indexes Pi of all the train missions, and the
occupancy counters of the two critical sections RA and RB.

AllTrains (P0,P1,P2,P3,P4,P5,P6,P7,RA,RB) =
(P0 < 6 and -- progress of train0

el(T0,P0+1) != el(T1,P1) and
. . .

el(T0,P0+1) != el(T7,P7) and
RA + el(A0,P0+1) <= LA and
RB + el(B0,P0+1) <= LB

) & move ->
AllTrains(P0+1,P1,P2,P3,P4,P5,P6,P7,

RA+el(A0,P0+1),RB+el(B0,P0+1))
[]

123

https://www.cs.ox.ac.uk/projects/fdr

274 F. Mazzanti et al.

. . .

[]
(P7 < 6 and -- progress of train7

el(T7,P7+1) != el(T0,P0) and
. . .

el(T7,P7+1) != el(T6,P6) and
RA + el(A7,P7+1) <= LA and
RB + el(B7,P7+1) <= LB

) & move ->
AllTrains(P0,P1,P2,P3,P4,P5,P6,P7+1,

RA+el(A7,P7+1),RB+el(B7,P7+1)
[]
-- all trains have completed their missions

(P0==6 and P1==6 and P2==6 and P3==6 and
P4==6 and P5==6 and P6==6 and P7==6

) & arrived -> STOP

Main process specification Finally, the main process speci-
fication consists in the call of our AllTrains process with
the appropriate initial data, andwith the hiding of the internal
train moves:

SYS = AllTrains(0,0,0,0,0,0,0,0, 1,1)

\{move}

Verification The main difference of FDR4 with respect to all
the previous approaches is that the system properties to be
checked are specified not by means of temporal logics for-
mulas, but by assertions stating adherence to a given abstract
specification. In our case, for example, if we want to verify
that the system always executes the arrived event, we can
define an abstract specification like: SPEC = arrived ->

STOP and then state that the system is a valid refinement of
the specification.

assert SPEC [FD= SYS

The concept of a system that refines the behaviour
described by the specification is not a trivial one and can be
adjusted according to several refinement notions, expressed
by the [T= (trace), [F= (failure) and [FD= (failure divergences)
refinement constructs. The most useful of these refinement
notions is the [FD= refinement, which is the one used in the
example. We refer to Hoare [45] and De Nicola et al. [19] for
a deeper analysis of their relations and semantics.

While a case study with 6 trains instead of the usual 8
can be verified by FDR4 in about 15 s, the verification of the
complete case with 8 trains took about 1h and 20 min.

When a refinement assertion returns a negative result, a
system evolution trace is also presented as counterexample.
This trace is just a sequence of communication actions, with
no information about the structure of the CSP processes at
the various steps, and in the case of non-deterministic models
it might not be trivial to understand precisely which syn-
chronisations actually occurred during the trace (even if we
reveal the underlying actions hidden behind the top level tau
actions).
Model variants Also in this case we have experimented sev-
eral different designs of the system that better exploit the

Fig. 3 Spec AG EF arrived

Fig. 4 Partially deadlocking implementation

compositional features of the framework. In particular, as
already tried in the mCRL2 case, we have modelled the sys-
tem as a parallel composition of processes, using one process
for each itinerary endpoint, one process for each critical sec-
tion and one process for each train.

The result has been quite amusing as the verification of
the system with 8 trains has now been carried out in about
in a few tens of seconds (from 28 to 41s depending on the
chosen design alternatives) versus the about 80 min of the
sequential version. We omit here the presentation of the var-
ious encoding of the parallel versions, which can, however,
be found among the examples in the data repository of all the
experiments [59].

Let us now take into consideration the other branching
time property, i.e. that from any reachable state it should be
possible to reach a target state in which all trains are at their
target destination. It becomes very difficult in this case to find
a specification—in terms of CSP processes—and refinement
relation which allows us to check whether a system verifies
this property.

For example, we might adopt as specification a process
that behaves as shown in Fig. 3, but there is no refinement
relationwhich can distinguish a correct implementation from
the wrong implementation shown in Fig. 4. If we consider
our more general example of continuously cycling trains (see
Sect. 3), this means that we might have some difficulty in
discovering partial deadlocks—i.e., cases in which the state
arrived becomes no more reachable even if some of the
trains are still allowed to continuously move.

123

Towards formal methods diversity in railways: an experience report with seven frameworks 275

Fig. 5 A CPN transition modelling the activity of train 0

8 The CPN tools model

CPN Tools12 is an environment for editing, simulating, and
analysing Coloured Petri Nets (CPN) [51]. It is originally
developed by theCPNGroup atAarhusUniversity from2000
to 2010. The main architects behind the tool are Kurt Jensen,
Søren Christensen, Lars M. Kristensen, and Michael West-
ergaard. From the autumn of 2010, CPN Tools is transferred
to the AIS group, Eindhoven University of Technology, The
Netherlands. The main difference between Coloured Petri
Nets and ordinary Petri Nets is that the tokens that move
across the network are allowed to contain some data (which
colour them). Places of the network are typed with respect to
the colour of the token they can contain. Transitions can be
guarded with expressions that constrain that token allowed
to pass, and may transform the data inside the token while
moving from the source to the target place.

A direct mapping of our reactive model into a CPN can
be achieved by modelling the system as a CPN with a single
place s1, initially containing a single coloured token that
represents the value of the initial system state. The outgoing
transitions from this place model the possible evolutions of
the system: they (conditionally) accept the token from the
source place, transform it according to the transition activity
and return the modified token to its original place.

CNP Tools is a graphical tool, i.e., the CPN structure must
be graphically drawn using ad hoc graphic tools. CPN places
are represented by ovals, and CPN transitions elements by
rectangles. The language used to describe the datatypes, the
functions, and expressions is Standard ML, a powerful func-
tional language which is also at the base of the FDR4 tool.
Data and behaviour Figure 5 shows theCPN transitionmod-
elling the activity of train0. The label of the edge that exits
from place s1 is labelled with an expression that describes
the structure of the system state: as for all the previous cases,
the data consist of the sequence containing the various train

12 http://cpntools.org.

Fig. 6 Transition modelling the arrival of all trains

progress indexes Pi and current occupancy counters for the
two critical regions RA end RB. The inscription associated
with the guard of transition train0 describes the condi-
tions under which the transition is allowed to fire, and these
are precisely the same conditions already seen in all the previ-
ous cases. The label of the edge returning to the source place
s1 describes the transformation performed by the transition
on the current system state and corresponds precisely to the
usual transformation performed by the activity of train0.

Figure 6 shows the CPN transition modelling the reaching
of the final status of the system, when all the trains have
completed their missions. Apart from its graphical notation,
the information is also in this case the same as in all the
previous cases.

123

http://cpntools.org

276 F. Mazzanti et al.

Fig. 7 The overall structure of the complete CPN

The overall structure of the resulting CPN—omitting all
inscriptions and labels—is shown in Fig. 7. A reader with
experience in CPN may observe that the presented model is
a counter intuitive formalisation of the problem. However,
we recall that we made an effort in faithfully translating our
initial specification into the different languages, and, to repli-
cate our UMCmodel, we had to choose this modelling style.
Different styles may be chosen, if the interest is in require-
ments validation instead of specification validation, as in our
case—see Sect. 12.
Verification The first step of the verification of a CPN
network consists in completely generating its state space.
Once that is done, it is possible to write and evaluate
ML functions that perform some standard queries and
new specific computations on the underlying system evolu-
tions graph. For example, the expression NoOfNodes()
allows the user to see the number of states of the sys-
tem, and NoOfSecs() shows the time taken to generate
the state space. The nodes of the state space are consec-
utively numbered, and the initial state has number 1. The
internal details of the status of a system configuration (i.e.
the marking of a node) can be seen by evaluating the
expression print(NodeDescriptor n), where n is
the node number. The expression ListDeadMarkings()
lists of all the nodes without successors, while the expres-
sion ListHomeMarkings() lists all the nodes that are
reachable by all the nodes of the state space. If our model is
correct, we would have precisely one home marking consti-
tuted by the state in which all the trains are arrived at their
destination. In case of problems, the list of home markings

would be null. To see why an error situation has occurred, we
should first find the internal number of the node correspond-
ing to the expected final node (i.e. the node in which the place
arrived contains 1 token), and then find all the nodes of
the statespace from which that final node is not reachable.
The evaluation of the expression:

SearchNodes(EntireGraph,
fn n => (length(Mark.SYS’arrived 1 n) =1),

NoLimit , fn n => n, [], op::);

displays as result (in the 6 trains case):

val it = [60272] : Node list

The above result indicates that the list of nodes satisfying
our requests contains precisely onenode identifiedbynumber
60272.

We can now search the state space for any node from
which our final 602762 node is not reachable, by evaluating
the expression:

SearchNodes(EntireGraph,
fn n => (not (Reachable (n,60272))),

NoLimit , fn n => n, [], op::);

The displayed result is:

val it = [] : Node list

and it indicates that the list of the nodes in which a partial
deadlock occurs is empty.

If we evaluate the ML expression Reachable’
(1,xx);, we would get a list of nodes (i.e. that path) that
connect node 1 (the initial state) with node xx (that can be
the final or a deadlock state).

Notice that the property we are verifying is actually the
one of the kind AG EF ARRIVED, which allows us to find the
errors also in the general case of continuously cycling trains.

It is also possible, by loading an ad hoc ASK_CTL pack-
age to write and evaluate ML expressions that correspond to
CTL-like formulas. No proofs/counterexamples/explanati-
ons are, however, generated after the evaluation.

The main problem found with this tool is its performance
during the state space generation. While the state space of a
system with 5 trains (10,410 states) requires 14 s, the states-
pace of a system with 6 trains (60,272 states) requires about
9 min. We have not been able to generate the statespace for
the complete case with 7 trains (323,196 states) even after 12
h of execution.

123

Towards formal methods diversity in railways: an experience report with seven frameworks 277

Fig. 8 The basic Petri Net modelling the activity of train 0

Model variant In order to see if this performance problem
was caused by our rather particular use of the Petri Net tool,
which stressed the use of coloured tokens versus the usual
place/ transitions constructs, we have also tried to redesign
the system using a normal Petri Net without making use of
coloured tokens. The adopted structure, here shown for mod-
elling the activity of just one train, is the one illustrated in
Fig. 8.

In that structure, we have used one place for each itinerary
endpoint that initially contains a token only if the endpoint
is not occupied by a train. We have used one place for each
critical section that initially contains as many tokens as the
number of trains allowed to enter the critical section. Finally,
we have a set of places modelling the current progress of the
train that initially contains a token if that train is at that stage
of the progress. The transitions of the system are constituted
by the transitions of the trains that can move from one step
to the next one only if the next endpoint is not occupied and
possibly there are no problems in entering any critical sec-
tion required by step. The effect of the transition is to make
unavailable to other trains the next endpoint, to release to
other trains the previously occupied endpoint, and possibly
to remove or reintroduce a token in the places representing
the critical sections. While the performance of this pure Petri
Net system is slightly higher (e.g. 6.5 min versus the original
9 min in the case of 6 trains), the tool is still not able to gen-
erate the full statespace for systems with an higher number
of trains.13

13 CPN Tools requires a Windows system. We made our experiments
both on a Windows Virtual Machine running under macOS with 64
GB RAM, and on a dedicated Windows system with 64 GB RAM. In

9 The CADPmodel

CADP14 (Construction and Analysis of Distributed Pro-
cesses) is a verification framework for the design of asyn-
chronous concurrent systems [33]. While its origins date
back to the mid-80s, since then it has been continuously
improved and enriched, and is currently actively maintained
by the CONVECS team at INRIA. It has been used in many
industrial projects among many different application fields.
Among the various languages supported for the specifica-
tion/design or models, we have chosen the LNT (Lotos New
Technology) [34] notationwhich, having an imperative style,
is the one that better reflects our style of design. For the
evaluation of the system properties, we have selected the
Evaluator4 model checking engine that allows to verify for-
mulas written in MCL (Model Checking Language) [54].
MCL is a powerful branching time temporal logics extends
a regular alternation-free µ-Calculus with data-handling ,
regular formulas over transition sequences, and fairness oper-
ators. In our case, a LNT model consists in module defining
a set of types for the various data elements used in the model
plus a single sequential non-deterministic process that con-
tains all the system data and evolves according the rules
associated with the train movements.
Data types specifications The data types specifications
assign a name and a definition to each class of values used
in the model. In particular, we have:

Footnote 13 continued
both cases, the used memory remained far below the available memory
provided by the System. The “CPN Tools State Space Manual” says
that 200,000 nodes are the upper limit for the size of state spaces.
14 http://cadp.inria.fr/.

123

http://cadp.inria.fr/

278 F. Mazzanti et al.

type Train_Number is
range 0 .. 7 of nat

end type

type Train_Mission is
array [0 .. 6] of nat

end type

type Train_Constraint is
array [0 .. 6] of int

end type

channel Movement is
(Train : Train_Number)

end channel

Process definition The system behaviour can be described
by a single non-deterministic process that executes a main
loop which includes the non-deterministic choice among all
the trains allowed to progress. A final clause of the choice is
triggered when all the trains have completed their missions.

process MAIN [MOVE: Movement, ARRIVED: none] is
var P0,P1,P2,P3,P4,P5,P6,P7 : nat,

RA,RB : int,
LA,LB : int,
T0,T1,T2,T3,T4,T5,T6,T7 : Train_Mission,
A0,A1,A2,A3,A4,A5,A6,A7 : Train_Constraint,
B0,B1,B2,B3,B4,B5,B6,B7 : Train_Constraint

in
-- data initializations
P0 := 0; . . . ; P7 := 0;
RA := 1; RB := 1;
LA := 7; -- limit for region A
LB := 7; -- limit for region B
loop

select
only if

-- description of movement of train0
(P0 < 6) and
(T0 [P0+1] != T1 [P1]) and -
(T0 [P0+1] != T2 [P2]) and -
(T0 [P0+1] != T3 [P3]) and
(T0 [P0+1] != T4 [P4]) and
(T0 [P0+1] != T5 [P5]) and
(T0 [P0+1] != T6 [P6]) and
(T0 [P0+1] != T7 [P7]) and
(RA + A0 [P0+1] <= LA) and
(RB + B0 [P0+1] <= LB)

then
MOVE (0 of Train_Number);
P0 := P0 + 1;
RA := RA + A0 [P0];
RB := RB + B0 [P0];

end if
[] only if

. . .
[] only if

-- description of movement of train 7
. . .

then
. . .

end if

[] only if
-- condition for successful

completion
(P0==6) and (P1==6) and (P2==6) and

(P3==6)
and

(P4==6) and (P5==6) and (P6==6) and
(P7==6)
then
ARRIVED

end if
end select

end loop
end var

end process

Verification The CADP framework allows to generate and
export the whole state space in standard formats (e.g. .bgc,
.aut, .dot), to minimise the graph according to several equiv-
alence relations, to display and edit its graphical layout, and
to verify properties over it. The verification can be carried
"on the fly", i.e. generating the fragment of the state space
actually used by the evaluation of a logical formula.

The property that the system will eventually always reach
a state in which all trains have completed their mission can
be expressed as:

mu X.(([not ARRIVED]X) and (<true> true))

The evaluation of the above formula is completed in about
29 s.

As in themCRL2 case, using regular expressions to denote
transition sequences, the absence of deadlock can be checked
with the formula [true∗] < true > true. The other branch-
ing time formula—equivalent to AG EF ARRIVED—can be
expressed, using regular expressions, as:

[true*] < true* . ARRIVED > true

Model variants Also in this casewehavemade an experiment
in which the system was modelled a parallel composition set
of interacting processes (one process for each itinerary end-
point, one process for each critical section and one process for
each train). As in the mCRL2 case, the alternative modelling
does not result in more performance than the sequential case
(evaluation time raises from 29 s to 15 min) and is therefore
not further discussed.

10 The round-trip model

The system described in Sect. 2, where trains move only
one way from one side the other side of the yard, has been
chosen as the main reference for the illustration of the possi-
ble encodings of the blackboard style design into the seven
selected frameworks. Indeed, the main goal of our work is

123

Towards formal methods diversity in railways: an experience report with seven frameworks 279

precisely to show the feasibility and the advantages result-
ing from this possibility of diversity, and a simple case study
that does not require the exploitation of very specific tool
features for being experimented has been considered as an
appropriate choice for illustrating our idea.

We have, however, mentioned that our case study is a
simplification of a more complex case study where trains
cyclically perform never ending round missions along the
yard. In this section, we outline how this more complex case
can be analysed in the various frameworks and the impact
that this complexity has on the verification issues.

First of all, we make an important observation. We are
interested in proving that the critical section constraints that
have been added at each movement step of any train are
sufficient to avoid the occurrence of deadlocks or livelocks,
and therefore guarantee that each train has the possibility to
always continue to advance—and reach its destination in the
presence of a fair dispatching policy. We can observe that
any two trains of the same colour (i.e. T0–T4, T1–T5, T2–
T6, T3–T7) always perform exactly the same cyclic mission,
even if starting from different points. Therefore, the two sys-
tem states in which two trains of the same colour swap their
identity are perfectly equivalent in terms of the overall sys-
tem behaviour. The exploitation of this symmetry leads to the
consequence that the correctness of the system can be anal-
ysed by just observing the eight trains to perform a single
round-trip mission, instead of an infinite sequence of them.
This observation has a major impact on the system verifiabil-
ity: not only it reduces the overall size of the problem,15 but
it removes the complexity of having to deal with livelocks
issues because the presence of a blocked train will eventually
lead to a complete system deadlock.

Given this premise, we can now show how the given initial
case study can be easily extended to the case of single round-
trip missions.

The first step is to extend the definition of the missions
of the trains and the definitions of the tables of constraints
governing the traversal of the A and B critical sections. In
the case of UMC, we will have:

Vars:
-- mission steps for train T0
T0: int[] := [1, 9,10,13,15,20,23,

22,17,18,11, 9, 2, 1];
. . .

T7: int[] := [26,22,17,18,12,27,
8, 7,27,11,13,16,20,26];

. . .
-- region A constraints for train T0
A0: int[] := [0, 0, 0, 1, 0,-1, 0,

1, 0, 0,-1, 0, 0, 0];
. . .

15 The continuously cyclingmodel (syntactically aminimal variation of
the round-trip one) has 159,374,352 states and 810,710,977 transitions.

A7: int[] := [0, 1, 0,-1, 0, 0, 0,
0, 0, 1,-1, 0, 0, 0];

B0: int[] := [0, 0, 0, 1, 0,-1, 0,
1, 0, 0,-1, 0, 0, 0];

. . .
B7: int[] := [0, 0, 0,-1, 0, 0, 0,

0, 0, 1,-1, 0, 1, 0];

The second step is the update of the rules governing the
advancements of trains, by extending the limit on the train
progresses from 6 to 13:

Behavior:
-- rule for advancement of train T0
s1 -> s1

{- [P0 < 13 &
-- all the rest of the rule remains

unchanged
T0[P0+1] != T1[P1] &

. . .
}

Finally, we have to update the detections of the final condi-
tion, when all the trains have completed their round mission:

Abstractions {
State SYS.P0=13 and

SYS.P1=13 and
. . .

SYS.P7=13 -> ARRIVED
-- abstract label on final node

}

Mutatis mutandis, i.e. after performing the few syntactic
changes that differentiate one encoding from the other, the
same change can be repeated for all the frameworks taken
into consideration.

This further analysis leads to the discovering of two novel
cases of deadlocks (see Fig. 9) that require the definition
of two other critical sections (that we call C and D), the
definition of their corresponding constraints to be applied
at each step by any trains, and the extension of the train
advancement rules by taking into account also these new
sections. For example, the rule governing the movement of
train T0 will, in the end, become:

s1 -> s1
{- [P0 < 13 &

T0[P0+1] != T1[P1] &
T0[P0+1] != T2[P2] &
T0[P0+1] != T3[P3] &
T0[P0+1] != T4[P4] &
T0[P0+1] != T5[P5] &
T0[P0+1] != T6[P6] &
T0[P0+1] != T7[P7] &

123

280 F. Mazzanti et al.

BCA03 Piazza Dante
I

II

III
BCA05

Via Marco Polo
Via Roma

Viale dei Giardini

Parco della Vittoria

I

II

III I

II

III

IV

10

11

12

15

16

1718

20

22

23

24

25

26

27

9 13

D

C

Fig. 9 The new critical sections C and D

RA + A0[P0+1] <= LA &
RB + B0[P0+1] <= LB &
RC + C0[P0+1] <= LC &
RD + D0[P0+1] <= LD] /

P0 := P0 +1;
RA = RA + A0[P0];
RB = RB + B0[P0];
RC = RC + C0[P0];
RD = RD + D0[P0];

}

The formula to be verified will remain the same in the
case of UMC, mCRL2, FDR4, CADP, and will have to take
into account the new mission length in the case of SPIN and
NuSMV.

This new single cycle model now appears to have
91,890,065 states, 453,321,793 transitions, and its verifica-
tion time ranges from 34 min in the case of NuSMV, to 166
min in the case of mCRL2, and up to 16 h in the case of UMC
(see Table 3).

In the case ofCADP, SPIN andUMC,we have been forced
to execute the verification not directly under themacOS envi-
ronment but under a Linux virtual machine running within
the macOS. This has been necessary, in the case of CADP to
be able to use the 64-bit version of the tool (not yet available
under macOS), and in the other two cases to be able to use
an amount of virtual memory greater than 1.5 times the size
of the physical RAM of the computer. It happens in fact that
the macOS kernel autonomously decides to kill the greatest
memory eating application when the overall system response
time would risk to be too damaged by the presence of mem-
ory hungry user applications. The best results in the case of
UMC are obtained by adopting a depth-first strategy, omit-
ting the recording of counterexamples-related information,
and using multiple cores during state space generation. The
extremely high amount of memory used by UMC—which
induces the extremely high evaluation time because of the
amount of virtual memory swapping required—reflects the
fact that the tool has not been designed with the goal of per-

forming extremely large system validations, but rather with
goal of facilitating the debugging of reasonably small sys-
tem designs. The use of FDR4 requires the explicit setting of
a disc-based storage directory to avoid to hit the maximum
amount of virtual memory allowed by the OS kernel. Any
attempts to use SPIN under macOS always fail with process
analyser being killed by the kernel. Under the Linux virtual
machine, SPIN successfully verifies themodel only forcing a
breadth first evaluation strategy, requesting the use of on disc
memory allocation, and by extending the default cache and
vectors size. In the case of mCRL2, no particular measures
have to be taken to tailor the use of virtual memory, while
the -vrjittyc option should be used to get a satisfactory
evaluation time. In the case of SMV and CADP, the verifica-
tion tools can be used in their default configuration without
having to specify any particular evaluation choice. It is quite
impressing the amount of virtual memory that appears to be
used by NuSMV, i.e., only 1.4 GB.

11 Discussion

The pattern of having a set of global data that are concur-
rently and atomically updated by a set of concurrent guarded
agents [21] is an architectural pattern often encountered in
many fields. In our case, we met this pattern during the ver-
ification of the deadlock avoidance kernel inside the ground
scheduling system that controls the movements of driver-
less trains inside a given yard. This pattern can be rather
easily formalised and verified using different languages and
frameworks. We have experimented with seven possible
alternatives, i.e., UMC, NuSMV, Promela/SPIN, mCRL2,
FDR4, CPN and CADP, which differ greatly in expressive
power and support different verification approaches. The
best results obtained, together with the options used for each
framework, are described in more detail in the previous sec-
tions and are summarised in Tables 2 (for the one-way, initial
case) and 3 (for the round-trip case). The activity is still in

123

Towards formal methods diversity in railways: an experience report with seven frameworks 281

Table 1 Summary of the different environments

Tool Version/year Specification language Property definition language Platform compatibility

UMC v. 4.6/2017 State Machines (Structured Data) µ-Calculus CTL/ACTL Online, Unix, Windows, macOS

NuSMV v. 2.6.0/2015 State Machines (Flat Data) CTL/LTL/PSL Unix, Windows, macOS

SPIN v.6.4.7/2017 State Machines (Flat Data) LTL Unix, Windows, macOS

mCRL2 v.201707.1/2017 Process Algebra (Algebraic Data) parametricµ-Calculus Unix, Windows, macOS

CPN Tools v. 4.0.1/2015 Petri Nets (Functional Data) ML functions CTL Windows

FDR4 v.4.2.3/2017 Process Algebra (Functional Data) Refinement Checking Unix, Windows, macOS

CADP v.2017-j/2017 LNT/LOTOS (Structured Data) MCL Unix, Windows, macOS

Table 2 Data summary for the one-way experiments—best cases only

Tool System Num. states Best encoding structure Best evaluation time VMem. Commands

UMC macOS 1,636,545 Sequential 38 s 2.9 GB umc -m3 -100 umc_oneway8.txt AF.txt

NuSMV macOS 1.63654e+06 Sequential 2.9 s 74 MB nusmv -r -v 1 smv_oneway8.smv

SPIN macOS. 1,636,546 Sequential 13 s 1 GB time spin -a spin_oneway8.pml;

gcc -O3 -o pan pan.c;

pan -v

mCRL2 macOS 1,636,545 Sequential 113 s 1 GB mcrl22lps mcrl2_oneway8.txt temp.lps;

lps2pbes -fmuAF.mcftemp.lpstemp.pbes;

pbes2bool -s2 -vrjittyc temp.pbes;

CPN n/a n/a n/a n/a n/a n/a

FDR4 macOS 1,636,546 Parallel 41 s 650 MB refines fdr4_oneway8.txt

CADP macOS 1,636,545 Sequential 29 s 78 MB lnt.open cadp_oneway8.lnt evaluator4 AF.mcl

progress, since, on the one hand, we plan to extend our exper-
iments to several other well-known toolsets, and, on the other
hand, there are still many aspects of the currently explored
frameworks that need a deeper understanding and evaluation.
Notwithstanding the preliminary nature of our experiments, it
is useful to report a comparison of the different tools, inwhich
we discuss the features offered by the environments, based on
four broad parameters that had an impact on our experience,
namely (1) specification formalism, (2) property definition
language, (3) platforms compatibility, and (4) performance.
The parameters have been evaluated by the authors in the con-
text of the current experience, and although the evaluation is
biased by our background and by the specific context of this
work and general conclusions cannot be drawn, we believe
that it can offer a useful perspective on the applicability of
the tools to specific problems of the railway context.

In the following paragraphs, we describe the parameters,
and, based on them, we compare the different tools, while in
Table 1 and Fig. 10, we summarise our evaluation.16

16 In Table 1 we show the time ranges for the one-way case. We do
not show time ranges for the round-trip case, since these times are
highly influenced by the memory swapping, and different operating
systems were used for the round-trip experiments, due to the constraints
explained in Sect. 10.

Specification language The reference family of the language
supported by a tool to specify the model is a parameter that
a designer should carefully consider when choosing a for-
mal environment. Indeed, based on (a) the confidence that
the designer has with a certain formalism, and (b) the type
of problem at hand, the modelling activity can be extremely
fluid, or particularly cumbersome. The deadlock avoidance
algorithm could be easily represented with the different lan-
guages, but it is useful to report the general differences among
the tools considered. In this paper, three families of speci-
fication languages can be observed, namely state-machine-
oriented representations, process algebras, and Petri Nets.
Among the three families, the state-machine-oriented repre-
sentation, which supports an explicit shared data structure,
seems the most intuitively suitable for the formalisation of
our problem, in which agents atomically read and update a
common data blackboard. Process algebras are usually more
oriented to model designs with communication agents that
do not share a global status. Nevertheless, in our case, the
algebraic model of the system, in which a system state is rep-
resented by process parameters (see Sects. 6 and 7), does not
seem very distant from the other state-machine-oriented rep-
resentation. This is particularly evident in the case of CADP:
the LNT specification has the aspect of a classical imperative
state-machine-oriented representation, while it is automati-

123

282 F. Mazzanti et al.

Table 3 Data summary for the round-trip experiments—best cases only

Tool System Num. states Best encoding structure Best evaluation time VMem. Commands

UMC Linux 91,890,065 Sequential 16 h 112 GB umc -m3 -110 umc_round8.txt AF.txt

NuSMV macOS 9.18901e+07 Sequential 34 min 1.4 GB nusmv -r -v 1 smv_round8.smv

SPIN Linux. 91,890,066 Sequential 185 min 102 GB time spin -a spin_round8.pml;

gcc -O3 -DBFS -DBFS_DISK

-DVECTORSZ=256000 -o pan pan.c;

pan-v

mCRL2 macOS 91,890,065 Sequential 145 min 43 GB mcrl22lps mcrl2_round8.txt temp.lps;

lps2pbes -fmuAF.mcftemp.lpstemp.pbes;

pbes2bool -s2 -vrjittyc temp.pbes

CPN n/a n/a n/a n/a n/a n/a

FDR4 macOS 91,890,066 Parallel 60 min 31 GB Refines—refinement-storage-file-path

swapdir fdr4_round8.txt

CADP Linux 91,890,065 Sequential 79 min 7.3 GB lnt.open cadp_round8.lnt evaluator4 AF.mcl

Fig. 10 Summary of evaluation
time ranges—one-way case
(logarithmic scale)

101 102 103 104

UMC

NUSMV

SPIN

mCRL2

FDR4

CADP

CPN

Evaluation Time (seconds)

cally transformed by the tool into a classical set of LOTOS
algebraic processes.

With Petri Nets, the system state was concealed in the
colour of a token (Sect. 8). In this case, our model with a
single place is definitely not the intuitive way of modelling
with Petri Nets, which are a more natural choice when one
wants to model the flow of a set of activities.

It shall be noticed that, in our context, we were interested
in replicating the same simple blackboard design solution,
with the different tools. However, since other frameworks
rely on a different kind of design approach with respect to the
original state-machine-oriented one—as mentioned, process
algebras and Petri Nets—we felt compelled to try see what
would have happened if a different design were used (see
Sects. 6–9). This has led to the observation that sometimes
(e.g., in the case of FDR4) a different andmore compositional
design approach might actually induce much better perfor-
mance, suggesting a possible solution to scalability problems
of the verification effort. Another consideration is that the

choice of using different design strategies might be inter-
esting also from the point of exploiting design diversity—
instead of tool diversity only—as another approach for the
improvement of the overall trustworthiness of the verification
process.

Another observation related to the specification languages
concerns the data structures made available by the differ-
ent environments. NuSMV and Promela/SPIN admits only
integer and vector types of fixed size. UMC instead admits
also dynamically sized vectors, with nested vector data struc-
tures. The remaining tools have the full power of functional
languages, allowing for complex data types, including high-
order types (e.g., functions as data). It is not a surprise that
this additional complexity takes its toll in terms of perfor-
mance.
Property definition language The language in which a prop-
erty can be expressed affects the type of properties that can
be verified on a certain design. Our initial property, that
all execution paths end in certain state, is a very simple

123

Towards formal methods diversity in railways: an experience report with seven frameworks 283

property which can easily be checked in all frameworks,
either as a CTL formula, or as a LTL formula, or a CSP
specification to be refined. However, it is useful to briefly
summarise the languages supported, since, in some cases, not
all properties can be verified by all the tools, and this may
impact on the choice of the formal environment to adopt.
For example, our generalised case study involving continu-
ously cycling trains (see Sect. 3) might give raise to relevant
verification difficulties in frameworks that do not support
truly branching time formulas. The most powerful environ-
ments in terms of property definition language are mCRL2
and CADP (both event based) that support a parametric ver-
sion ofµ-Calculus (that subsumes both LTL and CTL). Also,
UMC supports plainµ-Calculus, even if in its plain nonpara-
metric form. The original point of UMC is that it supports
both state- and event-based approaches, allowing to write
formulas that can take into account both predicates over the
states and conditions over of the events occurring during a
system evolution. The property specification language sup-
ported by SPIN is the classical (state based) Linear Time
Logics (LTL), and we have seen that this choice might lead
to difficulties in specifying and verifying livelock-related
properties in the case of cyclic models. NuSMV instead
supports directly both LTL and CTL (in their state-based
versions).

FDR4 is not based on temporal logic, but uses a refine-
ment checking approach, in which the property to be ver-
ified is represented with the same specification language
of the model. This approach has its own advantages (e.g.
in terms of compositionality) and disadvantages (e.g. in
the difficulty of finding the correct specification). In our
case, we have observed that we might have difficulties
in specifying and verifying livelock-related properties (see
Sect. 7).
Platform compatibility Although not having a direct impact
on the usability of a tool, its compatibility with multiple plat-
forms gives an indication of the potential audience of a formal
environment. Indeed, while operating system (OS) emulators
exist that can support software developed for different OSs,
a user might not even start using a tool simply because it
is not supported by his/her preferred OS, or the OS used
by the company. With the exception of CPN Tools, all the
considered environments are available on all the platforms.
While most of our experiments were performed on directly
under macOS, in case of CPN tools aWindows emulator was
used. While in the cases of UMC and SPIN a Linux emulator
has instead been used (for the more complex case studies)
to overcome the limits of our native OS, in the case CADP
it has been used to exploit a more advanced version of the
tool—see Sect. 10.
Performance Figure 10 summarises the execution time ran-
ges observed in our experiments for the simpler one-way
case study. Each point in a range corresponds to the use of a

specific evaluation option or to a specific variation in the sys-
tem design. The actual code and evaluation instructions for
each specific case can be found in our data repository [59]. It
was outside our goals to make a rigorous comparative evalu-
ation of the performance of the various approaches, and the
data shown here should be considered as indications of the
observed experiments. For example, we did not try to exploit
the “swarm" feature of SPIN (taking advantage of multi-core
architectures) or of the “cluster" features of CADP (taking
advantage of distributed architectures). Almost all the tools
show extremely great differences in terms of evaluation times
depending on the design or evaluation choices done by the
user. This fact seems to indicate that a deep mastering of the
tools is required to exploit at their best the capabilities of
the various frameworks, and this fact is somewhat an obsta-
cle for our goals of applying diversity in tool selection. It
might be expensive to become really experts in many dif-
ferent frameworks. In particular, process algebraic (FDR4,
mCRL2) approaches appeared to be very sensitive to design
variations (e.g. sequential versus parallel designs, alterna-
tive ways of composing parallel processes), while SPIN and
mCRL2 are probably the most sensitive frameworks from
the point of view of user options applicable at verification
time.

12 Towards formal methods diversity

The possibility to model and verify a certain design with
completely different verification frameworks can be an inter-
esting solution from the point of view of the validation of
critical systems. The CENELEC EN 50128 norms [13], for
the development of railway software, ask the tools used along
the process to be qualified, or certified, for their usage in the
context of safety-critical products development. With some
limited exceptions, i.e., SCADE [22], none of the verification
tools available, including the ones considered in this study, is
designed and validated at the greatest safety integrity levels
by itself. However, the existence of different, non-validated,
tools producing the same result might increase the over-
all confidence on the verification results. This observation
poses the basis for a novel concept for railways, which is
formal methods diversity. The idea is to apply the concept
of diversity, quite common in safety-critical systems engi-
neering [52,62], in the application of formal methods. More
specifically, we suggest to use different non-certified formal
environments for the modelling and verification of a cer-
tain railway problem or design, and compare the results. Of
course, this simple concept has possible hurdles in terms of
applicability. Below, we reflect on the potentials and chal-
lenges that the idea opens, based on our experience and
knowledge of the railway industry.

123

284 F. Mazzanti et al.

Specification validation In the experience described in this
paper, we validate the specification17 of an algorithm, by
ensuring that the encoding of the specification into different
formal environments produce the same verification results.

The same idea can be appliedwhenever one has developed
a specification for a certain system, and wishes to trans-
late it into different frameworks, to increase the reliability
of the verification results. The translation can be performed
manually, as in our case, or automatically, as performed by
Rockwell Collins in the avionic domain [60]. Regardless of
the means used for translation, the errors that might raise in
this context are: (a) errors in the specification, which may
be introduced in the design phase by the system designer;
(b) errors in the translation of the specification, introduced
by the automatic or human translators; (c) errors concealed
in the environments used for formal modelling and verifica-
tion, since, as observed, being the environments themselves
not certified, some of them might include errors that can
be revealed only when the results of the verification dif-
fer from those of other environments. In Sect. 2, we have
already described that our abstract system design has a pre-
cise number of states and transitions that corresponds to the
train positions and the allowed train movements. If we look
at the data of Tables 2 and 3, we can indeed verify the pre-
cise size of this state space in the one-way (1,636,535 states)
and round-trip cases (91,890,065 states). The fact that all the
encodings report the same size 18 is an encouraging indicator
on the correctness of the translation. If the number of states
is the same, and all the specifications satisfy the same prop-
erties, this increases the confidence on the equivalence of
the specifications. Further validation of the translation (see,
e.g., [3]) is, however, required to ensure that the specification
verified is equivalent for the different environments.

It is worth noticing that this does not fully guarantee
that the specification itself is free from faults, since initial
faults may be propagated from the original specification. To
achieve higher confidence on the results, one shall also pursue
requirements validation, as explained later in this section.
Diversity in properties One of the potentials offered by the
usage of different environments is associated with the diver-
sity of logics that the environments support for the definition
of properties to be verified. In our context, we used prop-
erties that can be equivalently specified with CTL and LTL
logics, but, as well known, the two logics are not compara-
ble [17], and different requirements might have forms that
can be specified only with one logic. Therefore, the avail-
ability of diverse environments gives also the possibility of

17 The concept of specification is intended here in Jackson’s terms [40],
i.e., the model that, given certain environmental assumptions, shall sat-
isfy the requirements.
18 Adifference of +1or +2 among themodels is due to the differentway
in which the system initialisation and the system final state is modelled

verifying properties that have, e.g., an inherent CTL nature,
with CTL-oriented environments, and properties that have an
inherent LTL nature with LTL-oriented ones. In this sense,
formal methods diversity also enlarges the scope of proper-
ties that can be verified for the same specification. It is also
worth noticing that the encoding of the property to be verified
can be a possible source of error. When writing a LTL, CTL,
MCL, µ-calculus formula or an algebraic specification, it is
definitely not difficult to make mistakes. Also in this cases
a comparison of the results of the verification might help in
identifying and reducing this source of errors. A wider anal-
ysis on properties that are typical of the railway domain and
that can be verified with the different tools, as performed,
e.g., by Frappier et al. [32] in the context of information
systems verification, would clarify to which extent formal
methods diversity can facilitate the verification of railway
systems.
Requirements validation Formal methods diversity can be
applied also if one wishes to pursue requirements valida-
tion [14], e.g., to check completeness and consistency, instead
of specification validation as in our experience. In this case,
one should use different formal environments to provide
alternative specifications for the same requirements. In a
requirements validation context, we argue that employing
the same formal methods expert for the modelling tasks is
not recommended, since s/he might be biased towards a cer-
tain architecture, and might replicate the same, potentially
erroneous, design decisions in the different specifications. In
addition, different formal environments might give different
modelling capabilities, and one might not use them at their
best if s/he is biased towards the replication of the same spec-
ification. This opens to the possibility of diversifying formal
methods experts, as it happens when different developers are
employed to implement software variants [6,52]. This choice
of having different models designed by different experts has
to be handled with care, since it may trigger complications in
further development stages. Indeed, if only one specification
is chosen for a single implementation, one might partially
loose the benefits of modelling diversity. On the other hand,
if also code diversity is employed [6], with each implemen-
tation being derived from different specifications, modelling
diversity can be exploited at its full benefits. This observation
suggests that when formal methods diversity is adopted, also
the overall railway development process shall be adapted.
This is an issue that we have previously encountered in
railways when passing from a code-centred development
paradigm to amodel-centred development one, inwhich code
generation was used [27]. Rigorously defining a railway pro-
cess, adherent to the CENELEC EN 50128 norm [13], and
based on formal methods diversity is beyond the scope of
this paper. However, a rigorous definition becomes manda-
tory when one wishes to apply the approach in the railway
industry.

123

Towards formal methods diversity in railways: an experience report with seven frameworks 285

Knowledge and experience with formal environments As
already emphasised, one of the major hurdles in apply-
ing formal methods diversity is the experience required to
proficiently handle different formal environments, since the
performance of the tools is affected by (a) design decisions,
as we have shown, e.g., for FDR4 (see Sect. 7) and (b) verifi-
cation options, as shownby the different time ranges obtained
in our experiments, reported in Fig. 10. Therefore, if one is
oriented to exploit the capabilities of different tools at their
best, high proficiency is required with different tools. This
aspect can be mitigated by employing multiple experts of
different environments, but we know that, from an industrial
perspective, this requires a dedicated, or outsourced, formal
methods group, and, more in general, a major uptake of for-
mal methods by railway practitioners [31].
Appropriateness of a formal tool for a design We have
seen that our algorithm design can be represented with seven
different tools, but this might not be true for all the railway-
specific problems. Hence, particular care and guidance is
required in the choice of the formal framework to adopt in
order tomodel and verify the specification [72]. For example,
in the literature we see that state-based graphical specifi-
cations are used to model the control logic of ATC/ATP
systems [15,27,28,47,63], while interlocking systems are
often modelled with textual specification and verified by
means of model checking [11,29,44,49,68,70]. A clear defi-
nition of guidelines for the choice of the appropriate formal
method, or set of formal environments, to be used for a spe-
cific railway problem is therefore required to make formal
methods diversity applicable. Further practical and compar-
ative research, as the one performed, e.g., by Zave [72] in the
context of network protocols, shall be performed in the rail-
way domain to achieve this goal. The authors of this paper
are currently exploring this issue in the framework of the
ASTRail European Project,19, and results on this aspect will
be provided in future publications.
Evolution and acceptance of formal tools The tools that we
used in our experiments are freely available (sometimes with
an academic licence) and mostly maintained by universities
or public organisations. Even within the time span in which
this paper was written, evolution in terms of versions of the
tools was observed (e.g., almost all the tools have had at least
a new version in 2017). Keeping the pace of the evolution of
a single tool is complex, and it requires to rely on a robust
framework of release control, which ensures backward com-
patibility of the platforms, and forward compatibility of the
artifacts created with the platforms. The problem becomes
evenmore complicated if one company has to follow the evo-
lution of multiple environments at the same time, as required
if formal methods diversity is applied. The development of
a railway system can take several years, continuous updates

19 http://www.astrail.eu.

might be required by the customer, and one has to rely on sta-
ble tools versions. In addition, in our experience [28], railway
companies are keen to prefer commercial tools especially for
the availability of assistance and the support of legacy ver-
sions. We are aware that, in general, also the open-source
world is evolving towards a business model in which the rev-
enues come through the assistance services offered for free,
or commercial versions, of the tools. Hence, we foresee that
if this business model gets a foot hold for formal environ-
ments, also the mindset of railway companies might be more
open to these tools, and formal methods diversity has some
additional chance to become an established practice in the
railway industry.

13 Conclusion

The world of formal methods offers several options in terms
of automated environments [23,32], which can and have been
used to verify the design of railway systems [24,36]. In this
paper, we show the application of seven different formal
tools, namely UMC, Promela/SPIN, NuSMV, mCRL2, CPN
Tools, FDR4andCADP, in themodelling andverificationof a
deadlock avoidance algorithm for train scheduling [57]. The
algorithm takes care of avoiding situations in which a train
cannot move because its route is blocked by another train.
This is a typical problem,which can bemodelled according to
a blackboard architectural pattern [21], in which concurrent
guarded agents atomically update a global data blackboard.
Our experience shows that small choices in the design or
verification options trigger radical changes in terms of per-
formance, especially for process algebraic (FDR4, mCRL2)
approaches. Furthermore, we have observed that limited
effort is required to adapt the same design to different formal
environments. This observation opens up new possibilities
for the establishment of the concept of formal methods diver-
sity in railways. The idea is that the application of diverse,
non-certified formal tools on a replication of the same design
allows formal methods users to increase the confidence on
the correctness of the verification results. The paper com-
pares the characteristics of the different tools, in light of
our modelling and verification experience, and discusses the
industrial potential and challenges associated with the appli-
cation of formal methods diversity in the railway context.
Specific challenges include, for example: the need to have
diverse formal methods expertise available within railway
companies; the preference of these companies towards—
possibly stable—commercial tools, in a context in which
formal tools are often open source, academic platforms; the
need to restructure the development process to accommo-
date formal methods diversity, while keeping the process
compliant to the CENELEC norms [13]. To fully establish,
and possibly automate, the idea, approaches for model trans-

123

http://www.astrail.eu

286 F. Mazzanti et al.

formation, and for the verification of the correctness of the
translation step [3], should also be applied.

Our personal interest is now to further experiment with
additional free and open-source tools, such as LTSMin [10],
LTSA [53], DiVinE [7], JavaPathFinder [43], Alloy [48], and
commercial tools, such as SCADE [22], and Stateflow with
Simulink Design Verifier [42]. Our idea is to model our pro-
totypical railway problem, as well as other cases, with these
different tools, to have a more complete in-field understand-
ing of the practical hurdles that formal methods practitioners
may face when dealing with diverse formal methods. Fur-
thermore, we are also interested in comparing the different
tools in terms of clarity of the counterexamples provided,
and in terms of effectiveness in discovering specific types of
errors in the specifications. In this sense, we wish to investi-
gate also the potential complementarity of the different tools,
in a development context in which formal methods are diver-
sified, as proposed in this paper. It should finally be noticed
that the presented reflections, especially those concerning
the different tools, come from an experience report, with the
limits entailed by this research approach. Although general
conclusion cannot be drawn, and even though the reflections
provided are driven by the authors’ experience, we believe
that our work can offer inspiration for future research in the
field.

Acknowledgements Thiswokhas beenpartially fundedby theASTRail
project. This project received funding from the Shift2Rail Joint Under-
taking under the European Union’s Horizon 2020 research and inno-
vation programme under Grant Agreement No. 777561. The content
of this paper reflects only the authors’ view, and the Shift2Rail Joint
Undertaking is not responsible for any use that may be made of the
included information.

References

1. 1850-2010—IEEE Standard for Property Specification
Language (PSL). http://ieeexplore.ieee.org/servlet/opac?
punumber=5445949. Accessed 7 Mar 2018

2. Abrial, J.-R.: The B-book: Assigning Programs toMeanings. Cam-
bridge University Press, Cambridge (2005)

3. Amrani, M., Lucio, L., Selim, G., Combemale, B., Dingel, J.,
Vangheluwe, H., Le Traon, Y., Cordy, J.R.: A tridimensional
approach for studying the formal verification of model transforma-
tions. In: 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation (ICST), pp. 921–928. IEEE
(2012)

4. Antoni, M., Ammad, N.: Formal validation method and tools for
French computerized railway interlocking systems. In: IETConfer-
ence Proceedings—4th IET International Conference on Railway
Condition Monitoring (RCM 2008), pp. 6–6(10) (2008)

5. Arnold, A., Gaudel, M.C., Marre, B.: An experiment on the valida-
tion of a specification by heterogeneous formal means: the transit
node. In: 5th IFIPWorking Conference on Dependable Computing
for Critical Applications (DCCA5), pp. 24–34 (1995)

6. Avizienis, A.: The N-version approach to fault-tolerant software.
IEEE Trans. Softw. Eng. 12, 1491–1501 (1985)

7. Barnat, J., Brim, L., Havel, V., Havlíček, J., Kriho, J., Lenčo,
M., Ročkai, P., Štill, V., Weiser, J.: DiVinE 3.0—an explicit-state
model checker for multithreaded C & C++ programs. In: Interna-
tional Conference on Computer Aided Verification, pp. 863–868.
Springer (2013)

8. Behm, P., Benoit, P., Faivre, A., Meynadier, J.M.: METEOR: a
successful application of B in a large project. In: International Sym-
posium on Formal Methods, pp. 369–387. Springer (1999)

9. Benaissa, N., Bonvoisin, D., Feliachi, A., Ordioni, J.: The PERF
approach for formal verification. In: International Conference on
Reliability, Safety and Security of Railway Systems, pp. 203–214.
Springer (2016)

10. BBlom, S., van de Pol, J., Weber, M.: LTSmin: distributed and
symbolic reachability. In: International Conference on Computer
Aided Verification, pp. 354–359. Springer (2010)

11. Bonacchi, A., Fantechi, A., Bacherini, S., Tempestini,M., Cipriani,
L.: Validation of railway interlocking systems by formal veri-
fication, a case study. In: International Conference on Software
Engineering and Formal Methods, pp. 237–252. Springer (2013)

12. Brilliant, S.S., Knight, J.C., Leveson, N.G.: Analysis of faults in
an n-version software experiment. IEEE Trans. Softw. Eng. 16(2),
238–247 (1990)

13. CENELEC. EN 50128:2011: Railway Applications—
Communication, Signalling and Processing Systems—Software
for Railway Control and Protection Systems. Technical Report
(2011)

14. Chiappini, A., Cimatti, A., Macchi, L., Rebollo, O., Roveri, M.,
Susi, A., Tonetta, S., Vittorini, B.: Formalization and validation of
a subset of the European train control system. In: 2010 ACM/IEEE
32nd International Conference on Software Engineering, vol. 2,
pp. 109–118. IEEE (2010)

15. Cho, C.H., Choi, D.H., Quan, Z.H., Choi, S.A., Park, G.S., Ryou,
M.S.: Modeling of CBTC carborne ATO functions using SCADE.
In: 2011 11th International Conference on Control, Automation
and Systems (ICCAS), pp. 1089–1093. IEEE (2011)

16. Cimatti, A., Clarke, E.,Giunchiglia, E.,Giunchiglia, F., Pistore,M.,
Roveri, M., Sebastiani, R., Tacchella, A.: Nusmv 2: an opensource
tool for symbolic model checking. In: International Conference on
Computer Aided Verification, pp. 359–364. Springer (2002)

17. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT
Press, Cambridge (1999)

18. DaSilva, C., Dehbonei, B., Mejia, F.: Formal specification in the
development of industrial applications: subway speed control sys-
tem. In: Proceedings of the IFIP TC6/WG6. 1 Fifth International
Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols: Formal Description Tech-
niques, V, pp. 199–213. North-Holland Publishing Co. (1992)

19. De Nicola, R., Hennessy, M.C.B.: Testing equivalences for pro-
cesses. Theor. Comput. Sci. 34(1–2), 83–133 (1984)

20. De Nicola, R., Vaandrager, F.: Three logics for branching bisimu-
lation. J. ACM (JACM) 42(2), 458–487 (1995)

21. Dong, J., Chen, S., Jeng, J-J.: Event-based blackboard architecture
for multi-agent systems. In: International Conference on Informa-
tion Technology: Coding and Computing, 2005. ITCC 2005, vol. 2,
pp. 379–384. IEEE (2005)

22. Dormoy, F.-X.: Scade 6: a model based solution for safety crit-
ical software development. In: Proceedings of the 4th European
Congress on Embedded Real Time Software (ERTS08), pp. 1–9
(2008)

23. D’silva, Vijay, Kroening, Daniel, Weissenbacher, Georg: A survey
of automated techniques for formal software verification. IEEE
Transactions onComputer-AidedDesign of IntegratedCircuits and
Systems, 27(7), 1165–1178, (2008)

24. Fantechi, Alessandro: Twenty-five years of formal methods and
railways:what next? In InternationalConference onSoftwareEngi-
neering and Formal Methods, pp. 167–183. Springer, (2013)

123

http://ieeexplore.ieee.org/servlet/opac?punumber=5445949
http://ieeexplore.ieee.org/servlet/opac?punumber=5445949

Towards formal methods diversity in railways: an experience report with seven frameworks 287

25. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese,
R., Tiezzi, F.: A logical verification methodology for service-
oriented computing. ACM Transactions on Software Engineering
and Methodology (TOSEM) 21(3), 16 (2012)

26. Ferrari, A., Fantechi, A., Gnesi, S.: Lessons learnt from the
adoption of formal model-based development. In: Goodloe, A.E.,
Person, S. (eds.) NASAFormalMethods Symposium (NFM2012).
Lecture Notes in Computer Science, vol 7226. Springer, Berlin,
pp. 24–38 (2012)

27. Ferrari, A., Fantechi, A., Gnesi, S., Magnani, G.: Model-based
development and formal methods in the railway industry. IEEE
Softw. 30(3), 28–34 (2013)

28. Ferrari, A., Fantechi, A., Magnani, G., Grasso, D., Tempestini, M.:
The metrô rio case study. Sci. Comput. Program. 78(7), 828–842
(2013)

29. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking
interlocking control tables. In: FORMS/FORMAT 2010, pp. 107–
115. Springer, (2011)

30. Ferrari, A., Spagnolo, G.O., Martelli, G., Menabeni, S.: From com-
mercial documents to system requirements: an approach for the
engineering of novel CBTC solutions. Int. J. Softw. Tools Technol.
Transf. 16(6), 647–667 (2014)

31. Fitzgerald, J., Larsen, P.G.: Balancing insight and effort: the indus-
trial uptake of formal methods. In: Formal Methods and Hybrid
Real-Time Systems, pp. 237–254. Springer (2007)

32. Frappier, M., Fraikin, B., Chossart, R., Chane-Yack-Fa, R., Ouen-
zar, M.: Comparison of model checking tools for information
systems. In: International Conference on Formal Engineering
Methods, pp. 581–596. Springer (2010)

33. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a
toolbox for the construction and analysis of distributed processes.
STTT 15(2), 89–107 (2013)

34. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Mod-
elEd, TestEd, TrustEd—Essays Dedicated to Ed Brinksma on the
Occasion of His 60th Birthday, volume 10500 of Lecture Notes in
Computer Science, pp. 3–26. Springer (2017)

35. Gibson-Robinson, T., Armstrong, P., Boulgakov,A., Roscoe,A.W.:
FDR3Amodern refinement checker for CSP. In: International Con-
ference on Tools and Algorithms for the Construction and Analysis
of Systems, pp. 187–201. Springer (2014)

36. Gnesi, S.,Margaria, T.: FormalMethods for Industrial Critical Sys-
tems: A Survey of Applications. Wiley, Hoboken (2012)

37. Gnesi, S., Mazzanti, F.: An abstract, on the fly framework for
the verification of service-oriented systems. In: Rigorous Software
Engineering for Service-Oriented Systems, volume 6582 of LNCS,
pp. 390–407. Springer (2011)

38. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Commu-
nicating Systems. MIT Press, Cambridge (2014)

39. Gruner, S., Kumar, A., Maibaum, T.: Towards a body of knowledge
in formal methods for the railway domain: identification of settled
knowledge. In: International Workshop on Formal Techniques for
Safety-Critical Systems, pp. 87–102. Springer (2015)

40. Gunter, C.A., Gunter, E.L., Jackson, M., Zave, P.: A reference
model for requirements and specifications. IEEE Softw. 17(3), 37–
43 (2000)

41. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The syn-
chronous data flow programming language LUSTRE. Proc. IEEE
79(9), 1305–1320 (1991)

42. Hamon, G., Dutertre, B., Erkok, L., Matthews, J., Sheridan, D.,
Cok, D., Rushby, J., Bokor, P., Shukla, S., Pataricza, A., et al.:
Simulink design verifier-applying automated formal methods to
simulink and stateflow. In:AFM08: ThirdWorkshop onAutomated
Formal Methods, 14 July 2008, Princeton, New Jersey (2008)

43. Havelund,K., Pressburger, T.:Model checking java programs using
java pathfinder. Int. J. Softw. Tools Technol. Transf. (STTT) 2(4),
366–381 (2000)

44. Haxthausen, A.E.: Automated generation of formal safety condi-
tions from railway interlocking tables. Int. J. Softw. Tools Technol.
Transf. 16(6), 713–726 (2014)

45. Hoare, C.A.R.: Communicating sequential processes. In: Hansen,
P.B. (ed.) The Origin of Concurrent Programming. Springer, New
York,NY (1978). https://doi.org/10.1007/978-1-4757-3472-0_16

46. Holzmann, G.: The Spin Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, Boston (2003)

47. Hordvik, S., Øseth, K., Blech, J.O., Herrmann, P.: A methodol-
ogy for model-based development and safety analysis of transport
systems. In: 11th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE) (2016)

48. Jackson, D.: Software Abstractions: Logic, Language, and Analy-
sis. MIT Press, Cambridge (2012)

49. James, P., Lawrence, A.,Moller, F., Roggenbach,M., Seisenberger,
M., Setzer, A., Kanso, K., Chadwick, S.: Verification of solid state
interlocking programs. In: International Conference on Software
Engineering and Formal Methods, pp. 253–268. Springer (2013)

50. Jansen, L., Meyer Zu Horste, M., Schnieder, E.: Technical issues in
modelling the European train control system (etcs) using coloured
petri nets and the design/cpn tools. In: Proceedings of theWorkshop
on Practical Use of Coloured Petri Nets and Desgin/CPN, pp. 103–
115. Aarhus University (1998). https://pdfs.semanticscholar.org/
8fcd/1cfb8fb098fa75205f51ab00a6700e4db0e7.pdf. Accessed 7
Mar 2018

51. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer, Berlin (2009)

52. Latif-Shabgahi, G., Bass, J.M., Bennett, S.: A taxonomy for soft-
ware voting algorithms used in safety-critical systems. IEEETrans.
Reliab. 53(3), 319–328 (2004)

53. Magree, J.: Behavioral analysis of software architectures using
LTSA. In: Proceedings of the 1999 International Conference on
Software Engineering, 1999, pp. 634–637. IEEE (1999)

54. Mateescu, R., Thivolle, D.: Amodel checking language for concur-
rent value-passing systems. In: FM 2008: Formal Methods, 15th
International SymposiumonFormalMethods,Turku, Finland,May
26–30, 2008, Proceedings, volume 5014 of Lecture Notes in Com-
puter Science, pp. 148–164. Springer (2008)

55. Mazzanti, F.: An experience in Adamulticore programming: paral-
lelisation of amodel checking engine. In:Ada-Europe International
Conference on Reliable Software Technologies, volume 9695 of
LNCS, pp. 94–109. Springer (2016)

56. Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Experiments in formal
modelling of a deadlock avoidance algorithm for a CBTC system.
In: International Symposium on Leveraging Applications of For-
mal Methods, pp. 297–314. Springer (2016)

57. Mazzanti, F., Spagnolo, G.O., Della Longa, S., Ferrari, A.: Dead-
lock avoidance in train scheduling: a model checking approach. In:
International Workshop on Formal Methods for Industrial Critical
Systems, volume 8718 of LNCS, pp. 109–123. Springer (2014)

58. Mazzanti, F., Spagnolo, G.O., Ferrari, A.: Designing a deadlock-
free train scheduler: a model checking approach. In: NASA
Formal Methods Symposium, volume 8430 of LNCS, pp. 264–
269. Springer (2014)

59. Mazzanti, F., Spagnolo, G.O., Ferrari, A.: Formal Tool Diversity—
Experiments Data Repository (2017). https://github.com/ISTI-
FMT/TrainSchedulingModels, http://fmt.isti.cnr.it/WEBPAPER/
TrainSchedulingModels-master.zip. Accessed 7 Mar 2018

60. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking
takes off. Commun. ACM 53(2), 58–64 (2010)

61. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification
system. In: International Conference on Automated Deduction, pp.
748–752. Springer (1992)

62. Powell, D., Arlat, J., Beus-Dukic, L., Bondavalli, A., Coppola, P.,
Fantechi, A., Jenn, E., Rabéjac, C., Wellings, A.: Guards: a generic

123

https://doi.org/10.1007/978-1-4757-3472-0_16
https://pdfs.semanticscholar.org/8fcd/1cfb8fb098fa75205f51ab00a6700e4db0e7.pdf
https://pdfs.semanticscholar.org/8fcd/1cfb8fb098fa75205f51ab00a6700e4db0e7.pdf
https://github.com/ISTI-FMT/TrainSchedulingModels
https://github.com/ISTI-FMT/TrainSchedulingModels
http://fmt.isti.cnr.it/WEBPAPER/TrainSchedulingModels-master.zip
http://fmt.isti.cnr.it/WEBPAPER/TrainSchedulingModels-master.zip

288 F. Mazzanti et al.

upgradable architecture for real-time dependable systems. IEEE
Trans. Parallel Distrib. Syst. 10(6), 580–599 (1999)

63. Qian, J., Liu, J., Chen,X., Sun, J.:Modeling and verification of zone
controller: the scade experience in China’s railway systems. In:
2015 IEEE/ACM 1st International Workshop on Complex Faults
and Failures in Large Software Systems (COUFLESS), pp. 48–54.
IEEE (2015)

64. RTCA. DO-178C Software Considerations in Airborne Systems
and Equipment Certification (2012)

65. ter Beek,M.H., Fantechi, A., Gnesi, S.,Mazzanti, F.: A state/event-
based model-checking approach for the analysis of abstract system
properties. Sci. Comput. Program. 76(2), 119–135 (2011)

66. ter Beek, M.H., Gnesi, S., Mazzanti, F.: From EU projects to a
family of model checkers. In: Software, Services, and Systems,
volume 8950 of LNCS, pp. 312–328. Springer (2015)

67. Vanit-Anunchai, S.: Application of coloured petri nets in mod-
elling and simulating a railway signalling system. In: International
Workshop on Formal Methods for Industrial Critical Systems, pp.
214–230. Springer (2016)

68. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and
verification of interlocking systems featuring sequential release.
Sci. Comput. Program. 133, 91–115(2017)

69. Whalen, M., Cofer, D., Miller, S., Krogh, B.H., Storm,W.: Integra-
tion of formal analysis into a model-based software development
process. In: International Workshop on Formal Methods for Indus-
trial Critical Systems, pp. 68–84. Springer (2007)

70. Winter, K., Johnston, W., Robinson, P., Strooper, P., Van Den Berg,
L.: Tool support for checking railway interlocking designs. In:
Proceedings of the 10th Australian Workshop on Safety Critical
Systems and Software, vol. 55, pp. 101–107. Australian Computer
Society, Inc. (2006)

71. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal
methods: Practice and experience. ACM Comput. Surv. (CSUR)
41(4), 19 (2009)

72. Zave, P.: A practical comparison of alloy and spin. Formal Aspects
Comput. 27(2), 239 (2015)

123

	Towards formal methods diversity in railways: an experience report with seven frameworks
	Abstract
	1 Introduction
	2 The deadlock avoidance algorithm
	3 The UMC model
	4 The NuSMV model
	5 The Promela/SPIN model
	6 The mCRL2 model
	7 The FDR4 model
	8 The CPN tools model
	9 The CADP model
	10 The round-trip model
	11 Discussion
	12 Towards formal methods diversity
	13 Conclusion
	Acknowledgements
	References

