
Int J Softw Tools Technol Transfer (2019) 21:401–423
https://doi.org/10.1007/s10009-018-0485-6

REGULAR PAPER

Parallel reachability analysis of hybrid systems in XSpeed

Amit Gurung1 · Rajarshi Ray1 · Ezio Bartocci2 · Sergiy Bogomolov3 ·
Radu Grosu2

Published online: 19 February 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract Reachability analysis techniques are at the core
of the current state-of-the-art technology for verifying safety
properties of cyber-physical systems (CPS). The current lim-
itation of such techniques is their inability to scale their
analysis by exploiting the powerful parallel multi-core archi-
tectures now available in modern CPUs. Here, we address
this limitation by presenting for the first time a suite of
parallel state-space exploration algorithms that, leveraging
multi-core CPUs, enable to scale the reachability analysis
for linear continuous and hybrid automaton models of CPS.
To demonstrate the achieved performance speedup on multi-
core processors, we provide an empirical evaluation of the
proposed parallel algorithms on several benchmarks com-
paring their key performance indicators. This enables also to
identify which is the ideal algorithm and the parameters to
choose that would maximize the performances for a given
benchmark.

B Amit Gurung
amitgurung@nitm.ac.in; rajgurung777@gmail.com

Rajarshi Ray
rajarshi.ray@nitm.ac.in

Ezio Bartocci
ezio.bartocci@tuwien.ac.at

Sergiy Bogomolov
sergiy.bogomolov@anu.edu.au

Radu Grosu
radu.grosu@tuwien.ac.at

1 National Institute of Technology Meghalaya, Shillong, India

2 Vienna University of Technology, Vienna, Austria

3 Australian National University, Canberra, Australia

Keywords Hybrid systems ·Reachability analysis · Support
functions · Parallel algorithms · Multi-core processors ·
Breadth-first-search

1 Introduction

Hybrid automaton (HA) is a popular formal framework for
modeling and verifying safety properties in biological [7,8]
and cyber-physical systems [42]. HA combines the logical,
discrete-mode-based representation of finite automata with a
dynamical, continuous-state-based representation (for each
mode) of differential equations. An HA is called safe, if a
given set of bad states is not reachable from a set of initial
states. Hence, safety can be proved in a HA through reacha-
bility analysis. Even though safety verification for HA [35]
is in general an undecidable problem, there has been a great
effort to introduce semi-decision procedures based on over-
approximation techniques [29,30] where the set of reachable
states is generally stored as a collection of continuous sets,
each of which being represented in a symbolic fashion. How-
ever, the main two challenges to be addressed within such
set-based methods remain precision and scalability. In the
last decade, there has been an increasing interest in devel-
oping efficient techniques for reachability analysis in HA,
using different symbolical representations to compute and
to approximate the reachable sets. The tool Checkmate [48]
uses convex polyhedral approximations for computing reach-
able regions, and it has been applied in the verification of a
fairly complex analog circuit design such as the delta-sigma
(AI) modulator [32].

The same circuit was analyzed using the tool d/dt [3],
which employs linear differential inclusions and non-convex
polyhedra for approximating reachable sets. PHAVer [28],
which implements the HyTech algorithms [36], adopts

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-018-0485-6&domain=pdf

402 A. Gurung et al.

instead polytopes to compute and to approximate the reach-
able sets. SpaceEx [12,13,15,27] extends the capabilities
of PHAVer [28], by implementing also the Le Guernic–
Girard (LGG) method [30,31], a very scalable reachability
technique that uses support functions to compute the over-
approximations by guaranteeing a certain level of precision
of the reachable sets in linear HA. HModest [34] and
Hydentify [15] use, respectively, PHAVer and SpaceEx

in their toolchain as back-end applications for their analysis.
Other tools, such as Flow* [17], NLTOOLBOX [19],

HySAT/iSAT [25,26], dReach [38], C2E2 [21,23] and
CORA [1], can perform the reachability analysis also on
nonlinear hybridmodels. Flow* [17] andNLTOOLBOX [19]
use polynomial approximations for the flowpipe computation
such as Taylor models [11] and Bernstein polynomials [20],
respectively. HySAT/iSAT [25,26] and dReach [38] are sat-
isfiability checkers computing reachable sets for nonlinear
hybrid systems using interval constraint-propagation tech-
niques [45]. CORA [1] is a MATLAB toolbox integrating
various matrix set representations and operations on them as
well as reachability algorithms of various dynamic system
classes.

All the aforementioned tools use only a single core of the
CPU, and they are currently not able to scale the reachability
analysis by taking advantage of the powerful parallel multi-
core architectures available for free in our modern CPUs.

RelatedWorkAlthoughwe are not aware of similar attempts
in the field of hybrid systems, there has been instead a great
effort in the past to develop distributed andmulti-core parallel
algorithms for reachability analysis in the field of explicit-
state [5,6,22,37,39] and timed automata [9,10,16,18]model
checking.

A first generation of algorithms [5,9,10] was conceived
to run on distributed systems consisting of several intercon-
nected nodes, each one with its own processor and memory.
The main performance bottleneck of these algorithms is gen-
erally the communication overhead required to exchange the
states (yet to be explored) among the nodes. In particular,
in [10] Behrmann showed that when the communication
overhead is high, a random load balancing strategy may lead
to an unstable workload distribution where the load of one
or more nodes drops quickly to zero staying idle some of
their time and causing a waste of the available computational
resources. Tomitigate such problem, the author proposed the
use of a proportional controller with the current average load
as a set point to decide, with low overhead, whether some
successors states generated by a node should be redirected
or not to another node. However, it is not clear whether such
load balancing strategy and its relative overhead would be
also beneficial for parallel algorithms running on multi-core
architectures.

The increased availability of economic multi-cores CPU
and many-cores GPU has lead more recently to the develop-
ment of a second generation of parallel reachability analysis
algorithms [6,22,37,39] that can benefit of the lower com-
munication overhead of the shared-memory systems. In these
architectures, the performance depends also on the efficiency
of the shared data structures used to keep track of the visited
states [39] or of the states to explore [18,37], and on the use
of lockless algorithms to access these data structures avoid-
ing mutual exclusion [18,37]. For example, lockless shared
hash tables to store visited states for multi-core reachability
of timed automata were provided in [18] as an adaptation of
Laarman et al. [39]. Part of our work took instead inspira-
tion from the parallel lock-free breadth-first-search algorithm
introduced by Holzmann [37] for the SPINmulti-core model
checking implementation.

Our contributionWe propose a suite of parallel state-space
exploration algorithms that enable to scale the reachability
analysis for linear continuous and hybrid automaton (HA)
models of CPS by leveraging multi-core CPUs. For lin-
ear continuous models, we propose two algorithms, ParSup
and Time-Slice. ParSup is an implementation of a support
function-based algorithm by sampling functions in parallel.
Time-Slice is an algorithm by slicing the time horizon and
computing the reachable states in the time slices in parallel.
Time-Slice, however, is limited on dynamics with fixed deter-
ministic input. For HAmodels, we propose three algorithms,
A-GJH,TP-BFS andAsyncBFS.A-GJH is an adaptationofG.
J. Holzmann’s lock-free, parallel breadth-first-search algo-
rithm [37] that was recently implemented in the SPINmodel
checker.We show that the adapted algorithm forHAand sym-
bolic states has a drawback in load balancing and many CPU
cores remain underutilized for certain models. For this rea-
son, we provide TP-BFS that improves considerably the load
balancing, by estimating the cost of the post-operations (both
discrete and continuous), and using this estimate to balance
the load by a task-level parallelization. Lastly, AsyncBFS is
an asynchronous HA exploration algorithm which removes
the thread synchronization overhead necessary for a breadth-
first exploration. We provide an empirical evaluation of the
parallel algorithms onvarious benchmarks on continuous and
hybrid systems and demonstrate the achieved performance
speedup on multi-core processors. We provide a comparison
of the algorithms on the benchmarks and identify parameters
to choose the ideal algorithm to drawmaximum performance
on any benchmark.

This work is an extension of our earlier published work
[33,46]. The additional contributions presented here are:

– We improve theTime-Slice algorithm towork for systems
having singular dynamics.

123

Parallel reachability analysis of hybrid systems in XSpeed 403

– We evaluate ParSup and Time-Slice on diverse bench-
marks for linear continuous systems and demonstrate its
performance in comparisonwith the SpaceEx-LGG sce-
nario.

– We propose an asynchronous breadth-first exploration
algorithm AsyncBFS for HA, in order to avoid synchro-
nization overhead.

– We evaluate the proposed parallel HA exploration algo-
rithms on a diverse set of hybrid systems benchmarks.We
provide a comparison of the proposed algorithms on the
benchmarks and identify parameters to choose the ideal
algorithm to draw maximum performance on any HA.

– The reachability algorithm in the toolXSpeed is extended
with fixed point computation.

XSpeed can analyze SpaceExmodels using theHyst [4]
model transformation and translation tool for HA. Experi-
ments show a significant speed up on various benchmarks
using our parallel exploration algorithms, when compared
to SpaceEx-LGG (Le Guernic–Girard) algorithm [27,40].
The tool and the benchmarks reported in the paper can be
downloaded from http://xspeed.nitmeghalaya.in.

Paper organization The rest of the paper is organized as
follows. Section 2 presents the preliminaries for the paper.
In Sect. 3, we present our state-space exploration algorithms
for linear continuous models. In Sect. 4, we discuss the chal-
lenges of parallelHAexploration, particularly load balancing
and synchronization, and present our proposed solutions. An
empirical evaluation of our algorithms is presented in Sect.
5. We conclude in Sect. 6.

2 Preliminaries

A hybrid automaton is a mathematical model of a system
exhibiting both continuous and discrete dynamics. A state
of a hybrid automaton is an n-tuple (x1, x2, . . . , xn) rep-
resenting the values of the n continuous variables in an
n-dimensional system at an instance of time.

Definition 1 A hybrid automaton is a tuple (L,X , I nv,

Flow, I ni t, μ,G,M) where:

– L is the set of locations of the hybrid automaton.
– X is the set of continuous variables of the hybrid automa-
ton.

– I nv : L → 2R
n
maps every location of the automaton

to a subset of R
n , called the invariant of the location. An

invariant of a location defines the constraint on the states
within the location of the automaton.

– Flow is a mapping of the locations of the automaton to
ODE equations of the form ẋ = f (x), x ∈ X , called the

flow equation of the location. A flow equation defines the
evolution of the system variables within a location.

– I ni t is a tuple (�ini t , Cini t) such that �ini t ∈ L and
Cini t ⊆ I nv(�ini t). It defines the set of initial states of
the automaton.

– G ⊆ 2R
n
is the set of guard sets of the automaton.

– M ⊆ R
n → R

n is the set of assignment maps of the
automaton.

– μ ⊆ L×G×M×L is the set of transitions of the automa-
ton. A transition from a source location to a destination
location in L may trigger when a state s of the hybrid
automaton lies in the guard set of the transition from G.
The map M of the transition transforms the state s in
the source location to the new state s′ in the destination
location. �

A reachable state is a state attainable at any time instant
0 ≤ t ≤ T under its flow and transition dynamics starting
from an initial state in I ni t . The flow dynamics in a loca-
tion � evolves a state x to another state y after T time units
such that f low(x, T) = y and f low(x, t) ∈ Inv(�) for all
t ∈ [0, T], where f low is the solution to the flow equation of
Flow(�). Reachability analysis tools produce a conservative
approximation of the reachable states of the automaton over
a time horizon. Reachable states can be expressed as a union
of symbolic states. A symbolic state is a tuple (loc, C) such
that loc ∈ L and C ⊆ R

n is a continuous set. Reachability
analysis algorithms require an efficient representation of the
continuous set C. In this paper, our focus will be on repre-
senting the continuous set as a compact convex set using its
support function.

Definition 2 [47] Given a non-empty compact convex set
X ⊂ R

n , the support function of X is a function supX :
R
n → R defined as:

supX (�) = max{� · x : x ∈ X } (1)

�

where � · x denotes the inner product of the vectors �, x
∈ R

n . Intuitively, the support function of a convex set X in a
direction � defines the hyperplane given by: � · x = supX (�)

that is tangent to X . Figure 1 shows this intuition [40]. A
compact convex set X is uniquely determined by its support
function with the following equality:

X =
⋂

�∈Rn

{x ∈ R
n : � · x ≤ supX (�)} (2)

Equation 2 says that a convex set can be defined as the inter-
section of infinitely many halfspaces with normal � ∈ R

n

and distance supX (�).

123

http://xspeed.nitmeghalaya.in

404 A. Gurung et al.

X

H2 : �2 · x = supX (�2)

H4 : �4 · x = supX (�4)

H1 : �1 · x = supX (�1)

�4

�3

H3 : �3 · x = supX (�3)
�1

�2

Fig. 1 Illustration of the notion of support function of a convex set X

Definition 3 Let X be a non-empty compact convex set and
D be a finite set of arbitrary directions � ∈ R

n , called the
template directions. A template polyhedral approximation
of the convex set X is then defined as:

PolyD(X) =
⋂

�∈D
� · x ≤ supX (�) (3)

�

It is easy to see that a template polyhedral approximation of
a convex set X is an over-approximation of X , i.e., X ⊆
PolyD(X).

Algorithm 1 Reachability Algorithm for Hybrid Automata
1: procedure Reach- ha(ha,I ni t)
2: Wlist ← I ni t ; R ← ∅;
3: while Wlist
= ∅ do
4: delete S from Wlist ; R′ ← PostC(S)

5: R ← R ∪ R′
6: R′′ ← Post D(R′);
7: if R′′ ⊆ R then go to step 3
8: else add R′′ \ R to Wlist
9: end if
10: end while
11: end procedure

In Algorithm 1 [27], we show a generic reachability algo-
rithm for hybrid automata. The algorithmmaintains two data
structures, Wlist and R. Wlist is the list of symbolic states
waiting to be explored for reachable states, and R is the list
of already visited reachable symbolic states. Wlist and R
are commonly known as the waiting list and the passed list,
respectively. I ni t is a symbolic state depicting the initial
states given as an input. Wlist and R are initialized to I ni t
and ∅, respectively, in line 2. A symbolic state S is removed
from the Wlist at each iteration and explored for reachable
states in line 4. The operators PostC and Post D are applied
consecutively. PostC takes a symbolic state as argument and
computes a conservative over-approximationof the reachable
states under the continuous dynamics of the location, com-
monly referred as the flowpipe. The flowpipe is a symbolic
state, say R′ which is included in R in line 5. The opera-
tor Post D is applied on R′ which returns a set of symbolic

states under the discrete dynamics, shown as R′′ in line 6.
If R′′ is not contained in R, it is added to Wlist for further
exploration in line 8.

FixedPointComputationAreachability algorithm is said to
have reached the fixed-point solution when it can find no new
reachable states. In order to reach a fixed point, we perform
a containment operation. The containment operation checks
whether a successor symbolic state is contained in the list
of already explored states, i.e., the passed list R. When it is
contained in R, it is not added to the waiting list. When a
symbolic state, say s, is partially contained in R, the differ-
ence symbolic state of s− R can be added to the waiting list.
However, computing the exact difference of symbolic states
is expensive, and therefore, tools like SpaceEx implement an
approximate but cheap difference computation on symbolic
states. In order to avoid an expensive difference, we choose
to include a partially contained symbolic state entirely in the
waiting list in our implementation. However, when a suc-
cessor symbolic state is subsumed by a symbolic state in the
passed list R, it is not added to the waiting listWlist , in order
to avoid duplication of work and to detect a fixed point. Cur-
rently, we do not replace symbolic states in the waiting list
by a subsuming successor state. This, along with the cheap
difference operation, may result in some redundant computa-
tions in our proposed algorithms. The containment operation
in parallel algorithms needs to be handled carefully when the
Wlist and R data structures are shared by the threads. We
explain the details when we describe each of the proposed
algorithms later in the text.

3 Parallel reachability analysis of continuous
systems

In this section, we consider continuous linear systems with
inputs and initial states. The dynamics of the systems is of
the form:

ẋ = Ax(t) + u(t), u(t) ∈ U , x(0) ∈ X0 (4)

where x(t) ∈ R
n , A is a n × n matrix, X0, U ⊆ R

n is the set
of initial states and the set of inputs, respectively, given as
compact convex sets. We assume that both the initial and the
input set are given by their support function representation.
The input set U essentially models the uncertainty in the
dynamics or the control inputs to the system.We first discuss
the algorithmproposed in [31] for computing reachable states
using support functions. The algorithm partitions the time
horizon T into discrete time steps δ = T/N with N ∈ N.
It computes an over-approximation of the reachable set in
the time horizon by a set of convex sets represented by their
support functions, as shown in Eq. 5.

123

Parallel reachability analysis of hybrid systems in XSpeed 405

Reach[0,T](X0) ⊆
N−1⋃

i=0

(Ωi) (5)

Reach[0,T](X0) denotes the set of reachable states from the
initial set X0, in the closed time interval [0, T]. Each convex
setΩi is an over-approximation of the set of reachable states
in the time interval [iδ, (i + 1)δ]. The Ωi ’s are given by the
following relation:

Ωi+1 = ΦδΩi ⊕ W
Ω0 = CH(X0, ΦδX0 ⊕ V)

(6)

where ⊕ and CH stand for Minkowski sum and convex hull
operation over sets, respectively, Φδ = eδA and W , V are
convex sets given as follows:

V = δU ⊕ αB
W = δU ⊕ βB (7)

α, β are constants depending on X0, U , δ and the matrix A
of the dynamics. B is a unit ball in the considered norm.
Ω0 subsumes the reachable states in the interval [0, δ], i.e.,
Reach[0,δ](X0). In Eq. 6, it is computed by considering the
reachable states at time δ when there is no input, given by
ΦδX0 and bloating it with the set V using the Minkowski
sum operation in order to include the effect of inputs. The set
V also additionally ensures that the convex hull of X0 and
the bloated set ΦδX0 ⊕ V subsumes Reach[0,δ](X0). The
computation of the subsequent Ωi s in Eq. 6 is based on the
following relation:

Reach[(i+1)δ,(i+2)δ](X0) ⊆ Reach[δ,δ](Ωi) (8)

where i goes from 0 to N − 2. Reach[δ,δ](Ωi) is computed
by taking the reachable states at time δ when there is no
input, given by ΦδΩi and bloating it with the set W using
the Minkowski sum operation in order to include the effect
of inputs. Template polyhedral approximation of the set Ωi

can be obtained by sampling its support function in the set of
template directions in D. A template polyhedral approxima-
tion of a convex set from its support function representation
makes some of the inefficient operations on support func-
tions like the symbolic set intersection efficient. However,
this efficiency comes at the expense of loss of precision of
the set representation depending on the number of template
directions and the choice of directions.

The algorithm considers a set of bounding directions,
say D, to sample the support functions of Ωi and obtains
a set of template polyhedra PolyD(Ωi) whose union over-
approximates the reachable set. The support function of Ωi

is computed with the following relation obtained using the
properties of support functions:

supΩi+1(�) = supΩi (Φ
T
δ �) + supW (�)

supΩ0(�) = max
(
supX0(�), supX0(Φ

T
δ �) + supV (�)

) (9)

Simplification of Eq. 6 yields the following relation:

supΩi (�) = supΩ0

(
(Φ t

δ)
i�

) +
i−1∑

j=0

supW
(
(Φ t

δ)
j�

)
(10)

We now present two approaches to parallelize reachability
algorithm for continuous systems using support functions
presented in Sects. 3.1 and 3.2.

3.1 Parallel samplings over template directions

The LGG scenario implemented in SpaceEx [27] com-
putes reachable states using support function algorithm with
the provision of templates in box, octagonal and p uni-
form direction. Bounding box directions has 2n directions
(xi = ± 1, xk = 0, k
= i), whereas Octagonal has 2n2

directions (xi = ± 1, x j = ± 1, xk = 0, k
= i, k
= j),
which gives more precise polyhedral approximations. The
support function algorithm scales well for high-dimensional
systems when the number of template directions are linear in
the dimension n of the system. To compute finer approxima-
tions with directions quadratic in n, we trade-off scalability.

Conceptually, the support function algorithm is easy to
parallelize by sampling over the template directions in paral-
lel [31]. In our approach, we have adopted a multithreading
architecture consisting of a master thread spawning a worker
thread for each direction in the template D. We refer to this
parallel implementation of the support function algorithm
as ParSup. The pseudocode of a master thread is shown in
Algorithm 2. A shared support function matrix M having
R rows and N columns is allocated to store the computed
support function samples by different worker threads, where
R is the number of template directions in D and N = T/δ

is the number of iterations. An entry M(i, j) in the matrix
stores the support function of Ω j in the i th direction di ∈ D.
Each worker thread is given an exclusive access to a unique
row of M to store the computed support function samples,
resulting in no write contention among the threads (see lines
2–4 in Algorithm 3). The master thread waits for all the
worker threads to complete, populating the matrix M . After
all the worker threads have finished, the master thread com-
putes the template polytope PolyD(Ω j) for each convex set
Ω j , obtained from the support functions (see lines 7–9 in
Algorithm 2). However, computing each template polytope
PolyD(Ω j) is independent from one another; therefore, they
can be evaluated in parallel. Finally, each computed template
polytope can be stored in a unique location in Rapprox [j] rep-
resented by an array data structure comprising the reachable
set.

123

406 A. Gurung et al.

Algorithm 2 Pseudocode of Master Thread
1: procedure Reach- Parallel- Master(D,N)
2: for all �i ∈ D do
 Master Thread
3: Spawn a thread ti to sample sup of Ω0 . . . ΩN−1 along �i
4: end for
5: Wait for all threads to finish.
6: Rapprox ← ∅
7: for threads with id j = 0 to N − 1 do
8: PD(Ω j) ← ∧|D|

i=1 di .x ≤ M(i, j)
9: Rapprox [j] ← PD(Ω j)

10: end for
 Reach[0, T] ⊆ Rapprox
11: end procedure

Algorithm 3 Pseudocode of Worker Thread
1: procedure Reach- Parallel- Worker(M ,N ,�,i)
 Worker

Thread
 Each thread gets a unique id i ∈ [0, R − 1]
2: for j ← 0, N − 1 do
3: M[i][j] ← supΩ j (�)

4: end for
5: end procedure

3.1.1 Running multiple instances of GLPK

It is worth noting that when the initial set X0 in a location
dynamics in Eq. 4 is given as a polytope, the convex sets Ωi

in Eq. 6 are also polytopes. Sampling the support function
of a polytope corresponds in solving a linear programming
problem (LPP). For example, the support function algorithm
implemented in SpaceEx-LGG scenario expects an initial
set X0 and an input set U to be polytopes and samples their
support function using the GLPK (GNU Linear Program-
ming Kit) library [44], an open-source and optimized linear
program solver. ParSup also assumes the initial and input
sets to be polytopes and uses the same library to sample the
support functions. Since the multithreading architecture in
ParSup proposes to sample the support functions along dif-
ferent directions in parallel, it corresponds to solving LPPs in
parallel by the threads. We implement this by running multi-
ple instances of the solver, one instance per thread. However,
the original GLPK implementation is not thread-safe since
it defines a global shared data. The shared data can be mod-
ified by the different running instances in threads to result
in a race condition. To overcome this, we modify the library
code by defining the shared data as thread local by allocating
it from the stack. This ensures thread safety of the implemen-
tation and allows the multiple instances to solve the LPPs in
parallel.

3.2 Time-sliced reachability analysis

We also explore another possible parallelization approach
where we compute the reachable states at distinct time in
the time horizon and treat them as initial states, from which
computing independently in parallel new reachable states.

Essentially, the idea is to partition the time horizon into inter-
vals and to compute the reachable states in these intervals in
parallel. The union of the reachable states in each interval
will be the reachable states over the entire time horizon. We
refer to this parallelization technique as Time-Slice. For load
balancing, the time horizon T can be partitioned equally of
size Tp = T/N , N being the degree of parallelization. The
limitation of Time-Slice is that it requires the input set U to
be a singleton set.

Proposition 1 Given a linear dynamics of the form ẋ =
Ax(t) + u(t), u(t) ∈ U , if the input set U = v is a sin-
gleton set, the set of states reachable at time ti = iTp is
defined as:

S(ti) = eAiTp .X0 ⊕ A−1
(
eAiTp − I

)
(v) (11)

where I is the identity matrix.

Proof Solving the differential equation ẋ = Ax(t) +
u(t), u(t) ∈ U gives:

x(t) = et Ax0 +
∫ t

0
e(t−y)Au(y)dy

= et Ax0 +
∫ t

0
e(t−y)Avdy

= et Ax0 + A−1(eAt − I)(v)

When x(0) ∈ X0, we apply Minkowski sum to get:

X (t) = et AX0 ⊕ A−1(eAt − I)(v)

Substituting t = iTp:

X (i(Tp)) = S(ti) = eA(iTp).X0 ⊕ A−1
(
eA(iTp) − I

)
(v)

��
LetΦ1 = eA(iTp) andΦ2 = A−1(eA(iTp)− I), the support

function of the S(ti) is given by:

supS(ti)(�) = supX0

(
ΦT

1 �
)

+ supv

(
ΦT

2 �
)

(12)

Note that if thematrix A is not invertible,we can still compute
Φ2 using Eq. (13) [27].

⎛

⎝
Φ1 Φ2 Φ3

0 I I δ
0 0 I

⎞

⎠ = exp

⎛

⎝
Aδ I δ 0
0 0 I δ
0 0 0

⎞

⎠ (13)

where δ = iTp, exp is matrix exponentiation function and
Φ3 = A−2(eAδ − I − I δ).

123

Parallel reachability analysis of hybrid systems in XSpeed 407

The reachable states in each time interval Ii = [iTp, (i +
1)Tp] starting from states x ∈ S(ti) are defined as R(Si) and
can be computed sequentially using Eq. 6. Computation of
R(Si) can also be in parallel over the template directions as
proposed in Sect. 3.1.

Proposition 2 An approximation of the reachable states in
time horizon T can be computed by the following relation:

Reach[0,T](X0) ⊆
N−1⋃

i=0

R(Si) (14)

Proof R(Si) is computed using Eq. 6 with a discretization
time step δwithSi as the initial set. Since Si gives the exact set
of states reachable at time instant t = iTp, the correctness
argument shown in [31] guarantees that Reach[Ii](X0) ⊆
R(Si). Therefore, we have:

Reach[0,T](X0) =
N−1⋃

i=0

Reach[Ii](X0) ⊆
N−1⋃

i=0

R(Si) ��

In Sect. 5, we show empirically that computing the reachable
states using Time-Slice sometimes produces more precise
resultswith respect to the sequential counterpart. The approx-
imation error in the computation ofΩ0 in Eq. 6 propagates in
the sequential algorithm. In our algorithm, since we compute
the exact reachable states at partition time points in the time
horizon and re-compute Ω

ti
0 using them, the propagation of

the error in Ω0 may diminish.

4 Parallel HA exploration

In this section, our focus will be on the problem of reachabil-
ity analysis of hybrid systems modeled as HA. Reachability
analysis of hybrid systems introduces greater challenges due
to itsmultimodal nature, wheremodes signify potentially dif-
ferent dynamics of the system. There is switching between
the system modes which is generally guarded by constraints
and there can be instantaneous changes in the system states
upon switching. Reachability analysis of HA presents further
scopes of parallelization. We discuss some of them here.

4.1 Parallel breadth-first search

Our parallel breadth-first search (BFS) is based on the obser-
vation that in Algorithm 1, and the post-operations on the
symbolic states in Wlist are independent and therefore can
be potentially parallelized. In a multithreading BFS imple-
mentation, threads can compute the PostC and Post D
operations in parallel on the symbolic states in Wlist . One
may choose to have the data structuresWlist and R as either

local to the thread or shared among the threads. Both choices
have its pros and cons. In an implementation with shared
Wlist and R, read andwrite access to the data structuresmust
be disciplined with semaphores or locks in order to have con-
sistency. Locking, however, incurs an additional overhead in
terms of performance. On the other hand, an implementation
with local copies ofWlist and Rmayhave redundant compu-
tations since threads do not have a global view of the waiting
and the passed lists, and therefore, symbolic statesmay be re-
explored redundantly by threads. As a result, although such
an implementation may not incur any locking overhead, it
still may incur a performance overhead due to redundant
computations. In our implementation, we propose to have a
shared Wlist and R, however, with no locking overhead.

In Algorithm 4, we show how to avoid the overhead of the
mutual exclusion discipline by adapting the parallel lock-free
breadth-first search algorithm proposed in [37] to HA explo-
ration. Our adapted algorithm is referred as A-GJH (Adapted
Gerard J. Holzmann’s) algorithm in the paper. The algorithm
uses a three-dimensional array Wlist as the data structure
for storing the symbolic states to be explored (see line 3).
An element of the array Wlist is a list of symbolic states.
Essentially, it provides two copies of Wlist , each being a
two-dimensional array of list of symbolic states. At each iter-
ation, symbolic states are read from the Wlist[t] copy and
new symbolic states are written to the Wlist[1 − t] copy.
At the first iteration, the value of t is set to 0, and at each
subsequent iteration of the main while loop (see line 36), it
is re-assigned to 1 − t . In this way, the write Wlist copy
becomes the read Wlist copy and vice versa, after the end
of each iteration of the main loop. There are N threads, one
thread per core, which computes the post-operations in paral-
lel. All the symbolic states present in the rowWlist[t][w] are
sequentially processed by the thread indexed by w (see lines
9–14). The reachable states explored by the threads using the
PostC operator are accumulated in the temporary array of
passed list R′ (see line 12). Each thread gets an access to a
unique row of R′, and therefore, locking the data structure
is not required. The synchronization at line 16 ensures that
the PostC computation by the threads is complete. This is
when the contents of the temporary passed list R′ are copied
to the global passed list R (see line 18) sequentially.

Amulti-threaded computation of Post D is shown in lines
20–31. The symbolic states in R′[w] are sequentially pro-
cessed by the thread indexed by w (see the loop at line 21).
An application of the Post D operator on a symbolic state
results in a list of successor symbolic states to be processed
in the next iteration (see line 23). Each successor state is
checked for containment in the global passed list R (see line
25). Note that here too, no locking on the passed list R is
required, since all threads have only read accesses on R.
When a successor state is not contained in R, it is added to
the list Wlist[1− t][w′][w], where w′ is randomly selected

123

408 A. Gurung et al.

between 0 and N − 1 (see line 27). This random distribu-
tion of new states across rows of Wlist[1 − t] is with the
intention of balancing the load. Since each thread indexed
at w writes to the list at Wlist[1 − t][w′][w], there is no
write contention in Wlist[1 − t]. When all the N threads
terminate and synchronize (see line 32), the exploration of
symbolic states ofWlist[t] is complete. The synchronization
of threads ensures a breadth-first exploration. The algorithm
terminates when there are no successor states inWlist[1− t]
for further exploration or when the exploration reaches a cer-
tain depth. A proof of correctness of the algorithm is shown
in Appendix.

Algorithm 4 Adapted G.J. Holzmann’s Algorithm
1: procedure Reach- PBFS(ha, I ni t , bound)
2: t = 0, depth = 0, N = Cores
3: Wlist[2][N][N]
 2 × N × N array
4: Wlist[t][0][0] = I ni t
5: R′[N] = ∅
 temporary shared passed-list
6: R = ∅
 Global shared passed-list
7: repeat
8: for threads with id w = 0 to N − 1 do
9: for q = 0 to N − 1 do
10: for each s in Wlist[t][w][q] do
11: delete s from Wlist[t][w][q]
12: R′[w] ← R′[w] ∪ PostC(s)
13: end for
14: end for
15: end for
16: Barrier synchronization
17: for w = 0 to N -1 do
 Update R Sequentially
18: R ← R ∪ R′[w]
19: end for
20: for threads with id w = 0 to N − 1 do
21: for each s in R′[w] do
22: delete s from R′[w]
23: successors ← Post D(s)
24: for each s′ ∈ successors do
25: if s′ not contained in R then
26: w′ = choose random 0 . . . N − 1
27: add s′ to Wlist[1 − t][w′][w]
28: end if
29: end for
30: end for
31: end for
32: Barrier synchronization
 ensures BFS
33: if Wlist[1 − t] is empty then
34: done = true;
35: else
36: t = 1 − t
 Read/Write switching
37: depth ← depth + 1
38: end if
39: until done OR depth = bound
40: end procedure

4.2 Load balancing

The clever use of the data structures inA-GJH algorithm pro-
vides freedom from locks and a reasonable load balancing
when there are sufficiently large number of symbolic states

in the waiting list at each BFS iteration. At the iterations
where the waiting list has a few symbolic states, A-GJH
does not result in an ideal load balancing since a random
distribution of the symbolic states in the waiting list may
not occupy all the available of cores of the processor. For
this reason, there are benchmarks for hybrid systems reach-
ability analysis where an improper load balancing results in
a low utilization of the available cores. Table 1 shows the
performance and CPU utilization of A-GJH algorithm when
compared to the sequential counterpart (denoted as Seq-
BFS) and SpaceEx-LGG scenario (denoted as SpaceEx).
The results are taken on a four-core CPU, with hyperthread-
ing disabled. It can be seen that while A-GJH running on
a four-core processor provides some improvements in per-
formance when compared to SpaceEx-LGG LGG and the
sequential BFS, the CPU core utilization remains very mod-
est. The best utilization is 76% in the NAV 5 × 5 benchmark
for an exploration bounded to a depth of seven, and the worst
is 25% in the Bouncing ball, Platoon and TTEthernet bench-
marks. In these models, there are very few symbolic states
for exploration at each BFS iteration, keeping most of the
CPU cores idle. A 25%CPU core utilization means that only
one of the four cores is utilized by the algorithm. This says
that there is, on an average, only one symbolic state in the
waiting list at each iteration during the BFS of the HA. The
algorithm maps the exploration of the only symbolic state to
a core, keeping the other three cores idle.

Moreover, Holzmann’s state-space exploration algorithm
in SPIN is intended for explicit states in concurrent and dis-
tributed systems where states are equivalent in terms of its
exploration cost. Hence, a random distribution of states to
available cores balances the exploration load. This is not the
case for symbolic states in HA since they can be substan-
tially different from each other in terms of the cost of its
exploration. This is illustrated on a 3 × 3 navigation bench-
mark [24] in Fig. 2. The benchmark models the motion of
an object in a 2D plane partitioned as a 3 × 3 grid. Each
cell in the grid has a width and height of one unit and has a
desired velocity vd . In Fig. 2, the cells are numbered from
1 to 9 and the respective desired velocities are shown with a
directed vector. Note that there is no desired velocity shown
in cell 3 and 7 to distinguish them from the others. Cell 3
is the target, whereas cell 7 is the unsafe region. The actual
velocity of the object in a cell is given by the differential
equation v̇ = A(v − vd), where A is a 2 × 2 matrix. There
is an instantaneous change of dynamics on crossing over
to an adjacent cell. The green box is an initial set where
the object can start with an initial velocity. The red region
shows the reachable states under the hybrid dynamics after a
finite number of cell transitions. Figure 2 shows the reachable
states after two and three levels in depth of BFS exploration
in Algorithm 4. There are four symbolic states, S1, S2, S3
and S4, waiting to be explored after a BFS till two levels of

123

Parallel reachability analysis of hybrid systems in XSpeed 409

Table 1 Moderate CPU utilization and performance speedup with A-GJH on a four-core machine

Models Breadths CPU Utilization (%) Speedup

SpaceEx (LGG) XSpeed (Seq-BFS) XSpeed (A-GJH) A-GJH vs. Seq-BFS A-GJH vs. SpaceEx

Bouncing ball 2 25.0 25.0 25.3 0.9 0.9

4 25.0 25.0 25.1 0.9 1.2

Circle 4 25.0 25.0 43.5 1.4 0.7

6 25.0 25.0 62.4 1.9 0.5

Nav 3 × 3 3 25.0 25.0 43.6 1.5 8.6

5 25.0 25.0 56.7 2.0 5.9

Nav 5 × 5 5 25.0 25.0 55.3 1.9 8.3

7 25.0 25.0 76.1 2.4 5.3

Oscillator 2 25.0 25.0 27.8 0.8 3.0

4 25.0 25.0 26.5 0.9 1.8

Platoon 2 25.0 25.0 25.0 0.9 2.4

4 25.0 25.0 25.0 0.9 2.2

TTEthernet 4 25.0 25.0 25.0 1.0 2.0

6 25.0 25.0 25.1 1.0 2.0

Fig. 2 Illustrating load
balancing problem with
flowpipes of varying cost. a
Reachable states after two levels
in depth of BFS, having four
new symbolic states to explore.
b Reachable states after three
levels in depth of BFS

depth, shown in blue. The symbolic states S1, S2 are {1, B1},
{1, B2} and S3, S4 are {5, B3} and {5, B4}, respectively,
where 1 and 5 are the location ids and B1, B2, B3 and B4

are the blue regions in the boundary of location with ids 1
and 4, 1 and 2, 4 and 5, 2 and 5, respectively. Algorithm 4
spawns four threads, one each to compute the flowpipe from
the symbolic states. In a four core processor, this seems an
ideal load division. However, observe in Fig. 2b that out of
the four flowpipes, the two from S1 and S2 do not lead to
new states since they start from the boundary of location id
1 and the dynamics pushes the reachable states outside the
location invariant. This implies that the flowpipe computa-
tion cost for S1 and S2 is low and the two cores assigned
to these flowpipe computation finish early and wait at the
synchronization point until the remaining two busy cores
complete. Such a situation keeps the available cores under-
utilized due to the idle waiting of 50% of the cores. Similarly,

the cost of Post D operation also varies causing idle wait-
ing of threads assigned to low-cost computations. Therefore,
we see that an adaptation of the Holzmann’s parallel BFS
to HA exploration does not always result in an ideal load
balancing.

4.3 Task parallel algorithm

In the following, we propose an alternative approach to
address the problem of improper load balancing in A-GJH.
Our idea is to quantify the cost of the PostC operation on
a symbolic state, based on the number of atomic tasks it
involves.Wemeasure the atomic tasks across all PostC oper-
ation on symbolic states during a BFS iteration as the total
workload, at the present iteration. For an effective load bal-
ancing, this workload is distributed evenly between the cores
of the processor by assigning nearly equal number of atomic

123

410 A. Gurung et al.

tasks to each core. Similar tasks distribution is applied also to
the computation of discrete transitions (Post D).Algorithm5
shows this approach. Note that the notion of an atomic task
is algorithm dependent and is also based on intuition. For
example, in the PostC implementation using the support
function algorithm, we choose a function sampling as the
atomic task since we believe it is the logically non-divisible
and independent task in the operation. In principle, one may
further disintegrate a support function sampling into lower
level tasks, though that might not be intuitive in the context
of a PostC operation in HA.

In particular, the algorithm uses a shared two-dimensional
arrayWlist of list of symbolic states (see line 3) and a shared
passed list R of symbolic states. The first dimension of size
two provides two copies of Wlist , one for reading and one
for writing, similar to Algorithm 4. The size of the second
dimension is N and equals the number of symbolic states in
Wlist waiting for exploration. Initially, N is set to one and
it is modified after each iteration (see line 40). An estimate
of the cost of computing a flowpipe (PostC) from a sym-
bolic state is obtained using the function f low_cost (see
line 9). After the flowpipe costs for all symbolic states in
Wlist are computed, the flowpipe computations are broken
into atomic tasks and inserted into a tasks list (see line 10).
The atomic tasks are evenly assigned to the processor cores
(see lines 12–14). The results of the atomic tasks computed
in parallel are then joined together to obtain a flowpipe (see
line 19). The flowpipes computed by the threads are added
to the passed list R (see lines 22–24). Similar load division
is carried out for Post D operation. The results of the atomic
tasks for Post D are similarly joined together to obtain the
successor symbolic states (see lines 26–28) computed in par-
allel. The successor states obtained from each flowpipe are
tested for containment in R (see line 32). A successor state is
added to the write list Wlist[1 − t][w], by a thread indexed
atw (see line 33) only when it is not contained in R (see lines
31–35). This is to avoid work duplication and for fixed point
detection. The exclusive access of the threads to the columns
ofWlist[1−t] eliminates anywrite contention. Note that for
the containment checking at line 32, the threads do not need
to acquire a lock on R since the access is only for reading.
The algorithm terminates when there is no symbolic state
in Wlist , or when the number of completed BFS iterations
equals the preset bound. A proof of correctness of the algo-
rithm is shown in Appendix.

In this proposed algorithm, it is important to devise an
efficient method to find the cost of PostC and Post D oper-
ations, for an effective load balancing. Efficient methods and
data structures for splitting the PostC and Post D operations
into atomic tasks and merging the task results are important
in order to ensure that the extra overhead incurred in the
algorithm is not more than the gain due to parallelism. In
the next section, we propose procedures to efficiently com-

pute the cost of post-operations in a support function-based
algorithm.

Algorithm 5 Task Parallel Breadth-First Exploration
1: procedure Reach- Task- PBFS(ha, I ni t , bound)
2: t = 0, depth = 0, N = 1, CostC = 0
3: Wlist[2][N]
 2D list of symbolic states
4: Wlist[t][0] = I ni t
5: R = ∅
 Shared Passed List
6: repeat
7: for threads with id w = 1 to |Wlist[t]| do
8: s = Wlist[t][w]
9: Cost = Cost + f low_cost (s)
10: Add atomic tasks of PostC(s) to Tasks
11: end for
12: tasksPerCore = �CostC/#Cores�

 Balanced distribution of tasks to cores
13: for threads with id w = 1 to #Cores do
14: Exec. tasksPerCore excl. tasks from Tasks
15: Add results to Res[w]
16: end for
17: Barrier Synchronization
18: for threads with id w = 1 to |Wlist[t]| do
19: R′[w] = Res.merge()

 Merge task results to get flowpipe
20: end for
21: Barrier Synchronization
22: for w = 1 to |Wlist[t]| do
23: R = R ∪ R′[w]
 Update R Sequentially
24: end for
25: Similarly, repeat steps 7-17 with cost of Post D
26: for threads with id w = 1 to |Wlist[t]| do
27: R′′[w] = Res.merge()

 Merge task results to get successor symb states
28: end for
29: Barrier Synchronization
30: for threads with id w = 1 to |Wlist[t]| do
31: for each s ∈ R′′[w] do
32: if s not contained in R then
33: Add s to Wlist[1 − t][w]
34: end if
35: end for
36: end for
37: if Wlist[1 − t] is empty then done = true
38: else
39: t = 1 − t
 Read/Write switching
40: N = sum of size of all lists in Wlist[t]
41: Resize Wlist[1-t][N], depth = depth + 1
42: Cost = 0
43: end if
44: until done OR depth = bound
45: end procedure

4.3.1 Task parallelism in support function algorithm

In this section, we show a realization of the task parallel algo-
rithm, particularly in the support function-based algorithm
discussed in Sect. 3. In the task parallel version, we consider
a support function sample as the logical atomic task. The cost

123

Parallel reachability analysis of hybrid systems in XSpeed 411

of a PostC computation is defined as the number of function
samples required in the computation.

Definition 4 Given a time horizon T , a time discretization
factor N , a set of template directions D and an initial sym-
bolic state S = (loc, C), the cost of computing the flowpipe
with PostC(S) is given by f low_cost (S) = j.|D| where
j = max

{
i | 0 ≤ i ≤ N and ∀ 0 ≤ k ≤ i,Ωk � I nv(loc)

}
.

We say that a convex set Ω � I nv(loc) if and only if
Ω ∩ I nv(loc)
= ∅. Since computing a polyhedral approxi-
mation of convex sets Ω requires sampling support function
in each direction of the set of template directions D, the
f low_cost essentially gives us the number of support func-
tion samplings, i.e., the atomic tasks to be completed in order
to compute the flowpipe. To compute f low_cost , it is nec-
essary to find the longest sequence Ω0 to Ω j satisfying the
location invariant I nv(loc). Assuming polyhedral invariants,
checking the invariant satisfaction canbeperformedusing the
following proposition.

Proposition 3 [41] Given a polyhedron I = ∧m
i=1 �i · x ≤

bi and a convex set Ω represented by its support function
supΩ , Ω � I if and only if −supΩ(−�i) ≤ bi , for all
1 ≤ i ≤ m.

A procedure to identify the largest sequence is to apply
Proposition 3 to each convex set starting from Ω0 iteratively
until we find a Ω j such that Ω j � I nv(loc). The time com-
plexity of the procedure is O(m · N · f), where f is the time
for sampling the support function,m is the number of invari-
ant constraints and N is the time discretization factor. We
propose a cheaper algorithm with fewer support functions
samplings for a class of linear dynamics ẋ = Ax(t) + u,
with u being a fixed input. Fixed input leads to deterministic
dynamics allowing to compute the reachable states symbol-
ically at any time point.

Proposition 4 Given an initial set X0 and dynamics ẋ =
Ax(t) + u, the set of states reachable at time t is given by:

X (t) = eAt x0 ⊕ A−1(eAt − I)(v) (15)

where⊕ denotes Minkowski sum operator. If A is not invert-
ible, then the expression A−1(eAt− I) can be computed using
relation (13). The idea of the procedure shown inAlgorithm6
is to use a coarse time step to compute reachable states using
Proposition 4 and detect an approximate time of crossing the
invariant. Once the invariant crossing time is detected, simi-
lar search is followed by narrowing the time step for a finer
search near the boundary of the invariant for a desired preci-
sion. The procedure is illustrated on a toy model of a counter
clockwise circular rotation dynamics as shown in Fig. 3a.
The model has two locations with the same dynamics but
different invariants. The transition assignment maps do not

modify the variables. Figure 3b illustrates the procedure. The
initial set on the location is shown in blue. The red sets are the
reachable images of the initial set computed at coarse time
steps to detect invariant crossing, followed by computing the
images at finer time steps shown in green near the invariant
boundary for detecting an upper bound on the time of cross-
ing the invariant with a desired precision. After computing
this time, say t ′, the f low_cost is obtained using Definition
4 with j = t ′/τ . However, the problem with the procedure is
when it is possible for a reachable image to exit and re-enter
the invariant within the chosen time step. In such cases, the
approximation error in the time returned by the procedure
can be substantial. Constant dynamics and convex invariant
I will not have such a scenario and the approximation error
on the detected time of invariant crossing can be bounded.

Theorem 1 For a class of dynamics ẋ = k , where k is a
constant, let t be the exact time when reachable states from
a given initial set X0 violate the convex location invariant
I. Let δC and δF be the coarse and fine time steps chosen
to detect approximate time t ′ of invariant violation, then the
approximation error |t − t ′| ≤ δF .

Proof Constant dynamics have a fixed direction of evo-
lution, and therefore, convexity property of the invariant
set I ensures that the reachable states cannot exit and re-
enter the invariant set. The set of reachable states at time t ,
X (t) = X0 ⊕ kt , is a convex set when X0 is a convex set and
can be exactly represented using its support function. Algo-
rithm 6 samples the support function of X (t) at δF time steps
to identify the time instant t ′ of crossing I, which implies
|t − t ′| ≤ δF . ��

Note that the precision of the cost function only decides
the quality of load balancing. It does not affect the approx-
imation error in the resulting reachable set in Algorithm 5.
Approximation guarantees of the algorithm follow from the
proves in the paper [31].

Algorithm 6 Detecting Time of Invariant Crossing with
Varying Time Step
1: procedure Invariant- Crossing(I, X0, T)
2: discr = 10 , τ = T/discr
 Coarse Time-step
3: i = 0, R(0) = X0
4: while R(τ.i) � I do i = i + 1
 Widened Search
5: end while
6: if i > 1 then t1 = τ ∗ (i − 1)
7: else return 0
8: end if
9: τ = τ/discr , i = 0
 Fine Time-step
10: while R(t1 + i ∗ τ) � I do
11: i = i + 1
 Narrowed Search
12: end while
13: return t1 + i ∗ τ

 An upper bound on invariant crossing time
14: end procedure

123

412 A. Gurung et al.

Loc1 Loc2

y ≥ 0

ẋ = −y, ẏ = x

y ≤ 0

ẋ = −y, ẏ = x

y ≤ 0

y ≥ 0

(a) (b)

Fig. 3 a A hybrid automaton of a system with rotation dynamics. b Searching time of invariant crossing with widening and narrowing time steps.
The red and the green sets are computed at coarse and fine time steps, respectively

4.4 Discrete-jump cost computation

The Post D computation performs the flowpipe intersection
with the guard set followed by image computation. Consid-
ering a flowpipe having sets Ω0 to Ω j , each of these sets is
applied with intersection operation and a map for non-empty
intersection. Assuming intersection and image computation
as the atomic task, the cost of Post D on a flowpipe ∪ j

i=0Ωi

will be j , which can be obtained from the f low_cost com-
putation in Definition 4. The addition of the cost of post-
operations for all symbolic states in the waiting list is used to
uniformly distribute atomic tasks of post-operations across
the cores using multithreading. Further details on the data
structures and task distribution are omitted for simplicity.
The task parallel version of the support function algorithm is
referred as TP-BFS in the text.

4.5 Asynchronous HA exploration

The symbolic states of a HAmay also be explored by threads
asynchronously, unlike in Algorithm 1. A reachability algo-
rithm for HA can be seen as an iterative application of the
PostC and Post D operators, resulting in a sequence of sym-
bolic states. A BFS of an HA may be desirable when the
goal is to obtain a shortest sequence of successive symbolic
states, obtained upon PostC and Post D operations, that
leads to an unsafe state. An asynchronous BFS (AsyncBFS)
may be advantageous in safety checking routines, to effi-
ciently find the reachability to an unsafe state, not necessarily
via the shortest such sequence. This is because the search of
an unsafe state can be performed by threads in parallel, by
exploring the different sequences of symbolic states. The dif-
ference of this algorithm to the earlier proposed parallel BFS
is the absence of threads synchronization at the end of each
BFS iteration, incurring no waiting time delay. PostC and
Post D computations for symbolic states are computed inde-

Fig. 4 The structure of the hash table storing the passed list

pendently by threads in parallel. The AsyncBFS algorithm
needs noWlist , saving inmemory, and it has a thread-shared
passed list R. When new symbolic states are generated due
to the application of post-operations, the algorithm creates
threads for the newly generated symbolic states to compute
their successors. The absence of a shared waiting list pro-
vides no global view of the symbolic states to be explored at
an instance of time. This may result in threads redundantly
computing reachable regions. The passed list is implemented
as a lockless hash table, a data structure borrowed from [39].
The hash table structure is shown in Fig. 4. Recall from Def-
inition 1 that a symbolic state is a tuple (loc, C), loc ∈ L and
C ⊆ R

n . Symbolic states (loc, C) are stored as records in
the hash table, with their loc as the hash key. When a thread
needs to write a symbolic state in the passed list, it can do so
by only locking the hash table bucket corresponding to the
key loc of the symbolic state. In this way, threads can mod-
ify the passed list without needing to lock it entirely. Figure
5 shows a pictorial view of a multi-threaded asynchronous
exploration of HA. The figure shows that the symbolic state
ini t is explored by thread T 1. The k new symbolic states
are explored by the threads that are spawned by T1, namely
T 1.1–T 1.k and similarly for the symbolic states in the depths
further.

123

Parallel reachability analysis of hybrid systems in XSpeed 413

Algorithm 7 Asynchronous Exploration of HA
1: procedure AsyncBFS(HA, s, depth)
2: R′ ← PostC(s)
3: lock(R[s.loc])
4: R[s.loc] ← R[s.loc] ∪ R′
5: unlock(R[s.loc])
6: succ ← Post D(R′)
7: if depth < bound then
8: tid = 0
 initialize thread ID
9: depth ← depth + 1
 local to each thread
10: for each s′ ∈ succ do
11: lock(R[s′.loc])
12: if s′ not contained in R[s′.loc] then
13: unlock(R[s′.loc])
14: Create thread W [tid]
15: Run AsyncBFS(HA, s′, depth) in W [tid]
16: tid = tid + 1
17: end if
18: end for
19: for i = 0 to tid − 1 do
20: W [i]. join()

21: end for
22: end if
23: end procedure

Fig. 5 A schematic of a multi-threaded asynchronous exploration of
HA

Algorithm 7 shows the details of the asynchronous BFS.
R is the hash table implementation of the passed list, initially
empty. It is invoked in a thread by passing the initial symbolic
state s and an initial depth of zero. Application of PostC on
s results in the flowpipe R′, a symbolic state with the same
location component as in s. Therefore, a lock is acquired on
R[s.loc] by the thread before inserting the flowpipe R′ into
R[s.loc] (see lines 3–5). The Post D operation is applied
on R′ to get a list of successor states in succ. A thread is
created to explore each symbolic state in succ, that is not
already contained in R, recursively (see lines 10–18). The
main thread waits for the completion of its spawned threads
(see line 20). The union of all the passed list R stored in the

data structure L for each L[loc] gives the reachable states of
the HA.

5 Evaluation

We have implemented the proposed parallel state space
exploration algorithms in the tool XSpeed. We present an
evaluation of the algorithms on various benchmarks on con-
tinuous and hybrid systems. The tool and the benchmarks
reported in the paper can be downloaded from http://xspeed.
nitmeghalaya.in. We make a performance comparison with
the SpaceEx-LGG (Le Guernic– Girard) scenario [27] and
with a sequential implementation of the support function-
based algorithm in [31], which is referred as SeqSup in the
text.

5.1 Evaluation on continuous systems

In the following, we provide a brief description of the bench-
marks we have used to test and evaluate the ParSup and
Time-Slice algorithm.

Five-Dimensional System We consider a five- dimensional
linear continuous system as a benchmark from [29]. The
dynamics of the system is of the form ẋ = Ax(t) + u(t),
where u(t) ∈ U . Since we require the inputs set U to be a
singleton set for our parallel state space exploration algo-
rithm, we consider U = (0.01, 0.01, 0.01, 0.01, 0.01). We
consider the initial set X0 as a hyperbox of side 0.02 cen-
tered at (1, 0, 0, 0, 0). For the matrix A, the reader may refer
to [29].

Vehicle Platoon This benchmark is proposed in [43] to eval-
uate reachability analysis methods and tools for continuous
and hybrid systems. Itmodels a platoon of threemoving vehi-
cles and a leader. The vehicles communicate with each other,
its relative distance, velocity and acceleration w.r.t. the vehi-
cle ahead. The state variables of the model are [e1, v1, a1,
e2, v2, a2, e3, v3, a3], where ei , vi and ai denote the relative
distance, the relative velocity and the relative acceleration
of vehicle i to its successor. The dynamics of the system is
defined as ẋ = Ax(t)+BaL , where A is a constant dynamics
matrix, B is a constant input matrix and aL is the accelera-
tion of the leader vehicle as an uncertain input. The bound
on the uncertainty in acceleration is aL ∈ [−9, 1]. The goal
is to verify that the relative distance ei between the vehicles
keeps within the safety limits. The effect of loss of commu-
nication between the vehicles can be modeled as an hybrid
automaton. The model of the system with no loss of commu-
nication is purely continuous. We provide results here on the
continuous model, assuming no loss of communication.

HelicopterController To evaluate the performance on high-
dimensional systems, we consider the benchmark of Heli-

123

http://xspeed.nitmeghalaya.in
http://xspeed.nitmeghalaya.in

414 A. Gurung et al.

Table 2 Speedup, memory overhead and CPU utilization gain using ParSup

Benchmarks Time (s) Speedup Memory overheads
(MB)

Gain in CPU
utilization (%)

SpaceEx (LGG) SeqSup ParSup Vs SeqSup Vs SpaceEx

Buildr-6 (8 Dim) 3.82 1.34 0.51 2.62 7.46 −0.07 69.08

Buildr-15 (17 Dim) 16.94 4.98 1.54 3.23 11.00 −0.07 68.94

Buildr-25 (27 Dim) 43.66 12.94 3.35 3.86 13.03 1.16 75.08

Five-Dimensional System 1.53 1.22 0.48 2.55 3.21 0.59 56.51

Platoon continuous (9 Dim) 6.52 2.31 0.84 2.77 7.80 2.50 66.87

Helicopter Controller (28 Dim) 23.11 17.81 3.94 4.52 5.87 8.54 83.26

Helicopter Controller (29 Dim) 33.51 27.30 9.22 2.96 3.63 1.20 44.12

copter Controller from [27,49]. This models the controller
of a Westland Lynx military Helicopter with 8 continuous
variables. The controller is a 20 variables LTI system and the
control system having 28 variables in total. We consider an
initial set X0 to be a hyperbox and the input set U to be the
origin {0}.

Building The benchmarks models the 8 floors of the Los
Angeles University building, where each floor has three
degrees of freedom [2]. We consider three reduced order
models with 7, 17 and 25 state variables. The reduced order
models have lower dimension than the original model of
48 state variables, but they retain the characteristics of the
original model. The system follows affine dynamics ẋ =
Ax(t)+ Bu(t), u(t) ∈ U . The uncertain input U is the set of
values in [0.8, 1].

Table 2 shows the performance speedup, memory over-
head and the gain in CPU utilization with ParSup in Sect.
3.1. The speedup w.r.t SpaceEx and the sequential imple-
mentation (SeqSup) is separately shown in the table. The
memory overhead column shows the memory in excess used
in ParSup w.r.t. SeqSup. The gain in CPU utilization is com-
puted as (CPU utilization of ParSup minus CPU utilization
of SeqSup). For instance, the CPU utilization of the first
benchmark (Buildr-6) using ParSup and SeqSup are 81.49
and 12.41%, respectively, resulting in a total gain of 69.08%.
The experiments were performed on i7-4770, 3.40GHz, 4
cores, hyperthreading enabled processor with 8 GB RAM.
The results are an average of 10 runs over a time horizon of
20 units and a time step of 0.001 s in box template directions.
A maximum speedup of 13.03×, 3.21×, 7.80× and 5.87×
is observed for the Building, Five-Dimensional System, Pla-
toon and Helicopter Controller benchmarks, respectively,
when compared to the SpaceEx-LGG algorithm. The gain
in CPU utilization shows how our parallel algorithm exploits
the cores of the processor effectively with a reasonable mem-
ory overhead due to thread management.

Figure 6 illustrates our idea of parallel exploration by slic-
ing the time horizon. The figure shows that a time horizon

of 5 units is sliced into five intervals each of size 1 unit. Five
threads compute the reachable sets in parallel starting from
initial sets S(t = 0), S(t = 1), S(t = 2), S(t = 3) and
S(t = 4). Figure 7 shows the gain in precision in the Heli-
copter Controller model in a time horizon of 10 units, with
box template directions and a time step of 1e−3, for partition
sizes of 16, 64 and 1000, respectively. The algorithm shows
a performance gain of 1.5× compared to SeqSup by parti-
tioning the time horizon into 16 intervals. However with 64
and 1000 partitions, the performance degrades without any
considerable gain in precision.

Figure 8 shows the performance speedup by Time-Slice
with varying partition size in comparison with SeqSup and
SpaceEx-LGG in a time horizon of 20 units, time step
of 1e−3, box template directions. We show that selecting
the right partition size is important to obtain the best per-
formance. Partitioning beyond a limit may result in better
precision but degrades the performance due to the overhead
of parallelization. We observe that the best partition size is
related to the number of cores in the processor. In our exper-
iments, the best partition size shows to be around 8, which
is the same as the number of parallel threads (4 × 2) in a
hyperthreading enabled quad core processor.

5.2 Evaluation on hybrid systems

We present an evaluation of the A-GJH, TP-BFS and the
AsyncBFS algorithms on hybrid systems benchmarks. We
implement A-GJH and TP-BFS with multithreading using
the OpenMP compiler directives and the AsyncBFS algo-
rithm using the standard thread class in C++. We evaluate
on a 12 core Intel Xeon(R) CPU E5-2670 v3, 2.30GHz,
hyperthreading disabled processor with 62 GB RAM. We
first provide a brief description of the hybrid systems bench-
marks that we have used for the evaluation.

Navigation The navigation benchmark is described in Sect.
4.2. We consider here a variant of the navigation bench-
mark [12]. The variant adds a non-deterministic disturbance

123

Parallel reachability analysis of hybrid systems in XSpeed 415

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x1

x2

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x1

x2

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x1

x2

(a) (b) (c)

Fig. 6 An illustration of parallel state-space exploration in sliced time horizon. a Reachable states computed by individual threads in 0.5 time unit.
b Reachable states computed by individual threads in 0.75 time unit. c Reachable states computed by individual threads in 1 time unit

Fig. 7 Reachable state space of the state vector [x8, time] of the Helicopter model is shown (green by Time-Slice and red by SeqSup). Time-Slice
shows more precise results than the sequential counterpart. a 16 slices. b 64 slices. c 1000 slices

(a) (b)

Fig. 8 Performance speedup using Time-Slice w.r.t. the sequential algorithm and SpaceEx-LGG. a Time-Slice versus SeqSup. b Time-Slice versus
SpaceEx-LGG

to the position dynamics, ẋ = v + u, v̇ = A(v − vd),
umin ≤ u ≤ umax . Moreover, some of the transitions are
blocked to model obstacles between certain grids. The size
of the problem instances varies from 400 to 900 locations.
The Nav01 andNav02 instances have 400 locations, whereas

Nav03–Nav09 and Nav10–Nav15 instances have 625 and
900 locations, respectively. These benchmarks are suitable
for evaluating the performance of our parallel exploration
algorithms since they contain many HA locations.

123

416 A. Gurung et al.

SM3:

back

syncsnd

sync sync

sync2

CM1:

correct1waiting 2tcerroceviecer
snd

back

sync
send sync1work

x := 0

x := 0

cm1 := 0 x ≤ delay

sm3 :=
sm3 + drift3

cm1 := sm3
ẋ = 1, ˙cm1 = 0 ẋ = 1, ˙cm1 = 0 ẋ = 1, ˙cm1 = 0 ẋ = 1, ˙cm1 = 0

x ≤ xyaled ≤ 0 x ≤ 0 x ≤ 0

˙sm3 = 1

(cm1 + cm2)/2
sm3 :=

˙sm3 = 1 ˙sm3 = 1˙sm3 = 1

sm3 := 0

Fig. 9 HA model of a switch (CM1) and an end system (SM3) of a fault-tolerant Time-Triggered Ethernet

Vehicle Platoon This benchmark extends the one described
in Sect. 5.1 with the assumption that the communication
between the vehicles may get lost and get restored non-
deterministically. The dynamics of the system varies in the
communicating and non-communicating modes, making it a
hybrid system[43].

TTEthernet Time-Triggered Ethernet (TTEthernet) is a HA
model of a clock synchronization algorithm in a fault-tolerant
network configuration consisting of switches and end sys-
tems [14]. The end systems and switches communicate with
each other in order to have the local clocks of the end systems
synchronized. The maximal clock drift between any two end
systems is observed, defined as the precision of the synchro-
nization algorithm. Safety property of the fault-tolerant clock
synchronization algorithm is defined by providing bounds on
themaximal clock drift. The benchmark is scalable by includ-
ing asmany switches and end systems.Weconsider a network
with two switches and five end systems. Figure 9 shows the
HA model of a switch and an end system only. The switches
are denoted as CMs and the end systems as SMs in the HA.
The automaton CM1 consists of the real variables x , the local
clock with rate 1, and cm1 which stores the data particular
to the clock synchronization algorithm. The automaton SM3
consists of the real variables sm3, the local clock with rate 1
and dri f t3 which ranges from − 1e−3 to 1e−3, describing
the absolute value of the maximum clock drift in the SM.
The communication between the CMs and SMs is modeled
by transitions in the HA with synchronization labels as snd

and sync. The value of the parameter delay is considered as
20.

Filtered Oscillator This is a switched oscillator systemwith
a series of first-order filters. The oscillator has two variables,
x and y with an affine dynamics such that x , y oscillate
between two equilibria. The dynamics of a filter reduces the
oscillation amplitude of the output variable x . The HAmodel
consists of four locations, each having the dynamics to reach
one of the two equilibria. In addition, all the locations have
the same filtering dynamics. The guards of the HA are shown
by the blue lines in Fig. 10, which are at the boundary of
the location invariants. Addition of filters in series further
diminishes the oscillation amplitude x . The number of filters
in series is a parameter, giving a k + 2-dimensional oscilla-
tor system with k filters. To test the performance scalability
with increasing dimensions, we run our algorithms on sys-
tems having no filter (Oscillator), 4 filters (F-Osci4), 8 filters
(F-Osci8), 16 filters (F-Osci16) and 32 filters (F-Osci32),
respectively.

In Figures 11 and 12, we report the performance speedup
of the proposed algorithms w.r.t. SpaceEx (LGG) scenario
on 4, 6, 8 and 12 cores CPU, respectively. A comparison of
speedup of our proposed parallel algorithmsw.r.t. the sequen-
tial implementation is shown in Fig. 13. The results for the
navigation instances are for a local time horizon of 40 units in
each HA location. The time horizon for the Filtered Oscilla-
tor, Platoon and TTEthernet models are set to 10, 20 and 500
units, respectively, in each HA location. The time step for
the experiments on the Filtered Oscillator models is 1e−4,

123

Parallel reachability analysis of hybrid systems in XSpeed 417

Fig. 10 Reachable state space of a Filtered Oscillator in depth 4. The
blue lines show the switching planes

and it is 1e−3 for the TTEthernet and Platoon models, 1e−2
for navigation instances 1–12 and 0.005 unit for navigation
instances 13–15, respectively. All flowpipe computations are
using the box template directions. For performance compari-
son, the parameters in SpaceEx-LGG and XSpeed are set to
similar values. The performance on reaching a fixed point is
compared. The clustering and set-aggregation parameter is
set as 100 and thull in SpaceEx-LGG. XSpeed performs
similar clustering and set aggregation. In the TTEthernet
model, a fixed point is not found in both the tools. For a com-
parison on the TTEthernet model, we compute the reachable
states bounded by a depth of 11 levels of BFS in XSpeed.
We count the number of post-operations for this depth in
XSpeed and apply the same number of post-operations in
SpaceEx-LGG using the iter-max parameter. The results
show that our proposed parallel algorithms perform better
than the sequential counterpart and SpaceEx-LGG on all the

Fig. 11 A speedup comparison
of sequential BFS, A-GJH,
TP-BFS and AsyncBFS w.r.t.
SpaceEx-LGG on 4, 6 cores. a
Speedup comparison on 4 cores.
b Speedup comparison on 6
cores

(a)

(b)

123

418 A. Gurung et al.

Fig. 12 A speedup comparison
of sequential BFS, A-GJH,
TP-BFS and AsyncBFS w.r.t.
SpaceEx-LGG on 8, 12 cores. a
Speedup comparison on 8 cores.
b Speedup comparison on 12
cores

(a)

(b)

benchmarks. The performance also automatically increases
with the increase in the number of cores in the processor.

5.3 Discussion

We observe that the performance of A-GJH, TP-BFS and
AsyncBFS is related to the average number of symbolic states
in the waiting list during the HA exploration.We define aver-
agewaiting symbolic states = (

∑k
i=1 Si)/k, where Si denotes

the number of symbolic states in the waiting list after i levels
of exploration during a BFS.We refer this indicator as AvgW.
Since the key idea in A-GJH and AsyncBFS is to explore the
symbolic states in the waiting list in parallel, the AvgW pro-
vides a measure of the degree of parallelism in the model.
Note that although AsyncBFS is asynchronous and does not
follow a breadth-first search, AvgW still gives a measure of
the degree of parallelism that AsyncBFS can exploit.

Remark 1 The AvgW depends on the HA model, the reach-
ability algorithm and its parameters.

The AvgW for the benchmarks using the BFS algorithm in
XSpeed with the standard parameter options is shown in
Table 3. Our first observation from Figs. 11 and 12 is that the
performance speedup in models having high AvgW is gener-
ally greater than the models with low AvgW. This is intuitive
and says that the parallel exploration algorithms results in
greater speedup on models having a larger degree of paral-
lelism. Our second observation is that the TP-BFS algorithm
gives better performance speedup than the other two parallel
algorithms, on models with low AvgW. It can be verified on
the FilteredOscillator, TTEthernet and Platoonmodels, all of
which have AvgW of 1. In these models, A-GJH, AsyncBFS
does not enhance the performance of the sequential counter-
part since there is no scope of parallel exploration of symbolic
states in the waiting list. On the other hand, TP-BFS disin-
tegrates the PostC and Post D operations over a symbolic

123

Parallel reachability analysis of hybrid systems in XSpeed 419

(a) (b) (c)

(d) (e) (f)

Fig. 13 A speedup comparison of parallel algorithms w.r.t. the sequential version on 4, 6, 8 and 12 cores. a Nav01. b Nav10. c Nav15. d Platoon.
e TTEthernet. f 16th order Filtered Oscillator

state into atomic tasks and executes them in parallel on the
CPU cores. Therefore, it shows a performance speedup even
on models with AvgW of 1.

Figures 11 and 12 also show that for models with AvgW
greater than 1, AsyncBFS displays the maximum speedup in
some models, whereas TP-BFS shows maximum speedup
in the other models. We observe that the AvgW of these
benchmarks on the BFS algorithm in XSpeed with the cho-
sen parameters is not very high. In order to understand the
relation between the algorithms performance to AvgW, we
conducted further experiments on models by varying the
AvgW. In order to have high AvgW on models, we disable
the set-aggregation parameter in the Post D operation in
XSpeed. In a Post D operation, the convex sets of the flow-
pipe that intersects with the guard are identified, followed by
the application of transition assignment operation. When the
set-aggregation parameter is enabled, the resulting convex
sets are aggregated into a few convex sets by the aggrega-
tion method. Such an aggregation results in fewer flowpipe
computations in the following BFS iterations. However, this
operation introduces approximation error in the computed
reachable set. When set aggregation is disabled in Post D,
every guard intersected and transformed convex set, which is
not already contained in the passed list, is added to thewaiting
list. This increases theAvgW of themodel and incurs an addi-
tional performance penalty. Therefore, the set-aggregation

parameter of a reachability algorithm allows to tune the accu-
racy versus performance trade-off.Weconsidered an instance
of the navigation benchmark with 625 locations and dis-
abled the set aggregation in the Post D operation in order
to increase the number of symbolic states in the waiting
list. We observe that with no set aggregation in XSpeed,
the number of threads in the AsyncBFS algorithm increased
rapidly, with an increase in the exploration levels. The algo-
rithm consumed the memory of the experimenting system
just in exploring states till three levels of BFS and did not
terminate the execution even after one hour. The sequential
BFS terminated exploring the same depth with 85,510 sym-
bolic states in 287.67 s and the A-GJH algorithm explored
the same in 56.80 s. However with set aggregation enabled,
an average of 215 symbolic states were explored till depth
six and the execution completed in 1.23, 0.43, 0.40 and 0.38 s
by the sequential BFS, A-GJH, TP-BFS and AsyncBFS algo-
rithms, respectively. We further perform an experiment on a
smaller instance of the navigation benchmark (9 locations)
by increasing the exploration depth and with the set aggre-
gation disabled. Figure 14 shows the performance speedup,
memory and CPU utilization of all the algorithms with vary-
ing AvgW on the horizontal axis. Along the horizontal axis,
the AvgW is shown for increasing levels of BFS exploration,
from left to right. In Fig. 14a, it is evident that the memory
overhead of AsyncBFS grows rapidly with increasing AvgW.

123

420 A. Gurung et al.

Table 3 Average symbolic states in the waiting list-AvgW

Model SpaceEx(LGG) Xspeed
Symbolic states passed Depth explored Symbolic states passed Avg. Symbolic states/depth

Nav01 176 57 176 3.1

Nav02 213 99 211 2.1

Nav03 192 50 192 3.8

Nav04 268 193 269 1.4

Nav05 166 82 166 2.0

Nav06 214 69 214 3.1

Nav07 228 36 228 6.3

Nav08 310 78 336 4.3

Nav09 383 59 346 5.9

Nav10 332 70 513 7.3

Nav11 434 74 449 6.1

Nav12 411 90 411 4.6

Nav13 506 71 506 7.1

Nav14 443 73 443 6.1

Nav15 491 119 491 4.1

Platoon 2 5 5 1.0

TTEthernet 11 11 11 1.0

Oscillator 5 5 5 1.0

F-Osci-4 5 5 5 1.0

F-Osci-8 7 7 7 1.0

F-Osci-16 9 9 9 1.0

F-Osci-32 13 13 13 1.0

We observe that the A-GJH algorithm performs better than
the other algorithms when the AvgW is sufficiently larger
than the number of available cores, as illustrated in Fig. 14c.
AsyncBFS performs better than the others till a certain explo-
ration depth d. Approximately AvgWd threads are spawned
by the algorithm in a d depth exploration. Therefore, formod-
els with high degree of parallelism, the number of threads in
AsyncBFS grows rapidly with an increase in the exploration
depth. This in turn increases the memory consumption and
other thread resources in the system. However, the absence
of thread synchronization overhead keeps it a viable option
to draw performance on models with not very high AvgW,
for small depths of exploration. Figure 14b shows that all the
proposed parallel algorithms display more than 90% CPU
utilization when AvgW is high, far better than 20% CPU
utilization in the sequential counterpart.

6 Conclusion

We introduce a suite of two parallel state-space exploration
algorithms, ParSup and Time-Slice for linear continuous sys-
tems and three parallel state-space exploration algorithms,
A-GJH, TP-BFS and AsyncBFS for HA models. ParSup and

Time-Slice show considerable performance speedup on con-
tinuous system benchmarkswith linear dynamics.Time-Slice
algorithm also shows a gain in accuracy w.r.t. the sequen-
tial algorithm; however, it is limited to systems with fixed
input. A-GJH is an adaption of the parallel breadth-first
search algorithm in the SPIN model checker. We show that
A-GJH algorithm does not show an ideal load balancing on
certain HA models, and therefore, we present a task par-
allel variant for an improved load balancing. Both A-GJH
and TP-BFS algorithm incur a necessary thread synchroniza-
tion overhead in order to have a breadth-first exploration.
We also present an asynchronous HA exploration algorithm
to avoid the synchronization overhead. Performance evalua-
tion on benchmarks displays considerable speedup in all the
proposed algorithms w.r.t. the sequential counterparts and
SpaceEx-LGG. We show that the performance of the par-
allel algorithms is dependent on the parameter AvgW , the
average number of symbolic states in the waiting list during
a BFS. We illustrate that A-GJH algorithm shows the best
performance when AvgW is much larger than the available
cores. TP-BFS shows the best performance when AvgW is
very low. AsyncBFS shows the best performance when AvgW
is large and the BFS is bounded to a small depth.

123

Parallel reachability analysis of hybrid systems in XSpeed 421

(a) (b)

(c)

Fig. 14 Comparison of memory, CPU utilization and speedup of the proposed algorithms A-GJH, TP-BFS and AsyncBFS w.r.t. the sequential BFS
algorithm on a 3 × 3 navigation benchmark. a Memory. b CPU utilization. c Performance speedup

Acknowledgements The authorswould like to thankNational Institute
of Technology Meghalaya, for providing the computational facilities
and infrastructure for carrying out this work. This work was supported
in part by the National Institute of Technology Meghalaya, India and
DST-SERB, GoI under project grant No. YSS/2014/000623. This work
was also partially supported by the Doctoral Program Logical Methods
in Computer Science (W1255-N23) and theAustrianNational Research
Network RiSE/SHiNE (S11405-N23 and S11412-N23) project, both
funded by theAustrian Science Fund (FWF) and by theAir ForceOffice
of Scientific Research under award no. FA2386-17-1-4065, and by the
ARC project DP140104219 (Robust AI Planning for Hybrid Systems).

Appendix

Claim 1 A-GJH algorithm performs a BFS of a HA with the
number of BFS levels = bound.

Proof We show the correctness of the algorithm by the
following loop invariant of the repeat–until loop of the
algorithm:

At the beginning of the j th iteration of the repeat–until
loop, the data structure R contains all the states of the HA
reachable from I ni t with j − 1 levels of BFS.

We use a level of a BFS to signify the frontiers of states
reachable from I ni t . For example, PostC(I ni t) denotes all
states reachable up to a BFS level/frontier of 1 from I ni t , and
PostC(Post D(PostC(I ni t))) denotes all states reachable
up to a BFS level/frontier of 2 from I ni t and so on.

At initialization, R is assigned to I ni t . Therefore, the loop
invariant is true at initialization, which says that at the begin-
ning of the first iteration of the repeat–until loop, R contains
all the states of the HA reachable from I ni t with no BFS.

We now show that the loop invariant is maintained. In
lines 8 to 15, PostC operator is applied to every symbolic
state in Wlist[t] and the result is included in R. The states
reachable by Post D transitions are added to Wlist[1 − t]
for exploration in the next iteration. Therefore, at each iter-
ation, the BFS frontier is increased by 1, maintaining the
loop invariant. Parallel exploration causes no race condition

123

422 A. Gurung et al.

and write contention on the shared data structure Wlist and
R. The justifications are the same as in the G.J. Holzmann’s
algorithm in the SPIN model checker [37].

The termination of the algorithm is evident from the ter-
mination condition of the repeat–until. The loop terminates
either when there are no new symbolic states for further
exploration in Wlist[t] or when the predetermined bound
on the BFS levels is reached. It is clear that one of the condi-
tion must be eventually true, and hence, the algorithm must
terminate.

At termination, the loop condition must be false, which
means either level = bound or Wlist[t] = ∅. In the for-
mer condition, the loop invariant at termination says that R
contains all the states of the HA reachable from I ni t with
bound levels of BFS, which is our claim. Termination due to
the later condition implies that the fixed point has been found
before BFS levels could reach the bound. In both cases, our
claim holds. ��
Claim 2 TP-BFS algorithm performs a BFS of a HA with
the number of BFS levels = bound.

Proof The correctness of the algorithm can be proved using
the same loop invariant used in the proof of claim 1. The argu-
ments for the validity of the loop invariant are same except
for the invariantmaintenance. In lines 7 to 28, the PostC and
Post D operations increase theBFS frontier/level by 1,main-
taining the loop invariant. The PostC and Post D operations
are split into atomic tasks and inserted into a tasks list data
structure. Since the algorithm provides a partitioned access
of the tasks in the tasks list data structure to the threads exe-
cuting in parallel in the cores, the threads access exclusive
portions in memory, with no read–write contention. Such an
exclusive access to the tasks list data structure by the threads
makes locking needless. The read–write switching of the data
structureWlist is the same as in theA-GJH algorithm,which
makes the accesses to the symbolic states in the waiting list
lock-free, during the BFS [37].

The termination proof of the algorithm is the same as the
termination proof of A-GJH algorithm in claim 1. ��

References

1. Althoff, M., Grebenyuk, D.: Implementation of interval arithmetic
in CORA 2016. In: Proceedings of the 3rd International Workshop
on Applied Verification for Continuous and Hybrid Systems, pp
91–105 (2016)

2. Antoulas, A.C., Sorensen, D.C., Gugercin, S.: A survey of model
reduction methods for large-scale systems. Contemp. Math. 280,
193–219 (2001)

3. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of
hybrid systems. In: CAV, pp 365–370 (2002)

4. Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source trans-
formation and translation tool for hybrid automaton models. In:
Proceedings of HSCC’15, ACM, pp 128–133 (2015)

5. Barnat, J., Brim, L., Rockai, P.: Divine multi-core—a parallel
LTL model-checker. In: Automated Technology for Verification
and Analysis, 6th International Symposium, ATVA 2008, Seoul,
Korea, October 20–23, 2008. Proceedings, Springer, Lecture Notes
in Computer Science, vol 5311, pp 234–239. https://doi.org/10.
1007/978-3-540-88387-6 (2008)

6. Bartocci, E., DeFrancisco, R., Smolka, S.A.: Towards a gpgpu-
parallel SPIN model checker. In: Proceedings of SPIN 2014: The
International Symposium on Model Checking of Software, ACM,
pp 87–96. https://doi.org/10.1145/2632362.2632379 (2014)

7. Bartocci, E., Lió, P.: Computational modeling, formal analysis, and
tools for systems biology. PLoS Comput. Biol. 12(1), 1–22 (2016).
https://doi.org/10.1371/journal.pcbi.1004591

8. Bartocci, E., Corradini, F., Berardini, M.R.D., Entcheva, E.,
Smolka, S.A., Grosu, R.: Modeling and simulation of cardiac tis-
sue using hybrid I/O automata. Theor. Comput. Sci. 410(33–34),
3149–3165 (2009). https://doi.org/10.1016/j.tcs.2009.02.042

9. Behrmann, G., Hune, T., Vaandrager, F.W.: Distributing timed
model checking—How the search ordermatters. In: Proceedings of
CAV 2000: The 12th International Conference on Computer Aided
Verification, Springer, Lecture Notes in Computer Science, vol
1855, pp 216–231. https://doi.org/10.1007/10722167_19 (2000)

10. Behrmann, G.: Distributed reachability analysis in timed
automata. STTT 7(1), 19–30 (2005). https://doi.org/10.1007/
s10009-003-0111-z

11. Berz, M., Makino, K.: Verified integration of odes and flows using
differential algebraic methods on high-order taylor models. Reli-
able Comput. 4(4), 361–369 (1998). https://doi.org/10.1023/A:
1024467732637

12. Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., Johnson, T.T.,
Ladan H., Podelski, A., Wehrle, M.: Guided search for hybrid sys-
tems based on coarse-grained space abstractions. In: STTT, pp
1–19. https://doi.org/10.1007/s10009-015-0393-y (2015)

13. Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasare-
anu, C.S., Podelski, A., Strump, T.: Assume-guarantee abstrac-
tion refinement meets hybrid systems. In: Proceedings of HVC,
Springer, LNCS, pp 116–131 (2014)

14. Bogomolov, S., Herrera, C., Steiner, W.: Verification of fault-
tolerant clock synchronization algorithms. In: Frehse G, Althoff
M (eds) ARCH16. 3rd International Workshop on Applied Verifi-
cation for Continuous andHybrid Systems, EasyChair, EPiCSeries
in Computing, vol 43, pp 36–41 (2017)

15. Bogomolov, S., Schilling, C., Bartocci, E., Batt, G., Kong, H.,
Grosu, R.: Abstraction-based parameter synthesis for multiaffine
systems. In: Proceedings of HVC, LNCS, vol 9434, pp 19–35.
https://doi.org/10.1007/978-3-319-26287-1_2 (2015)

16. Braberman, V.A., Olivero, A., Schapachnik, F.: Dealing with prac-
tical limitations of distributed timed model checking for timed
automata. Formal Methods Syst. Des. 29(2), 197–214 (2006).
https://doi.org/10.1007/s10703-006-0012-3

17. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer
for non-linear hybrid systems. In: Proceedings of CAV’13, LNCS,
vol 8044, pp 258–263 (2013)

18. Dalsgaard, A.E., Laarman, A., Larsen, K.G., Olesen, M.C., van de,
Pol, J.: Multi-core reachability for timed automata. In: Proceed-
ings of FORMATS 2012: The 10th International Formal Modeling
and Analysis of Timed Systems, Springer, Lecture Notes in
Computer Science, vol 7595, pp 91–106. https://doi.org/10.1007/
978-3-642-33365-1 (2012)

19. Dang, T., Guernic, C.L., Maler, O.: Computing reachable states
for nonlinear biological models. In: Proceedings of CMSB 2009:
The 7th International Conference on Computational Methods in
Systems Biology, vol 5688, pp 126–141. Springer, LNCS. https://
doi.org/10.1007/978-3-642-03845-7_9 (2009)

20. Dang, T., Salinas, D.: Image computation for polynomial
dynamical systems using the bernstein expansion. In: Com-

123

https://doi.org/10.1007/978-3-540-88387-6
https://doi.org/10.1007/978-3-540-88387-6
https://doi.org/10.1145/2632362.2632379
https://doi.org/10.1371/journal.pcbi.1004591
https://doi.org/10.1016/j.tcs.2009.02.042
https://doi.org/10.1007/10722167_19
https://doi.org/10.1007/s10009-003-0111-z
https://doi.org/10.1007/s10009-003-0111-z
https://doi.org/10.1023/A:1024467732637
https://doi.org/10.1023/A:1024467732637
https://doi.org/10.1007/s10009-015-0393-y
https://doi.org/10.1007/978-3-319-26287-1_2
https://doi.org/10.1007/s10703-006-0012-3
https://doi.org/10.1007/978-3-642-33365-1
https://doi.org/10.1007/978-3-642-33365-1
https://doi.org/10.1007/978-3-642-03845-7_9
https://doi.org/10.1007/978-3-642-03845-7_9

Parallel reachability analysis of hybrid systems in XSpeed 423

puter Aided Verification, 21st International Conference, CAV
2009, Grenoble, France, June 26–July 2, 2009. Proceedings,
Springer, LNCS, vol 5643, pp 219–232. https://doi.org/10.1007/
978-3-642-02658-4_19 (2009)

21. Duggirala, P.S.,Mitra, S.,Viswanathan,M., Potok,M.:C2E2: a ver-
ification tool for stateflowmodels. In: TACAS, pp 68–82. Springer
(2015)

22. Evangelista, S., Laarman, A., Petrucci, L., van de, Pol J.: Improved
multi-core nested depth-first search. In: Proceedings of ATVA
2012: The 10th International Symposium on Automated Tech-
nology for Verification and Analysis, Springer, Lecture Notes in
Computer Science, vol 7561, pp 269–283. https://doi.org/10.1007/
978-3-642-33386-6 (2012)

23. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Auto-
matic reachability analysis for nonlinear hybridmodels with C2E2.
In: International Conference on Computer Aided Verification, pp
531–538. Springer (2016)

24. Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verifica-
tion. In: Proceedings of HSCC, vol 2993, pp 326–341. Springer,
LNCS (2004)

25. Fränzle, M., Herde, C.: Hysat: An efficient proof engine for
bounded model checking of hybrid systems. Formal Meth-
ods Syst. Des. 30(3), 179–198 (2007). https://doi.org/10.1007/
s10703-006-0031-0

26. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Effi-
cient solving of large non-linear arithmetic constraint systems with
complex boolean structure. J. Satisfiabil. BooleanModel. Comput.
1(3–4), 209–236 (2007)

27. Frehse, G., LeGuernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel,
O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable
verification of hybrid systems. In: Proceedings of CAV, vol 6806,
pp 379–395. Springer, LNCS (2011)

28. Frehse,G.: PHAVer: algorithmic verification of hybrid systems past
HyTech. STTT 10(3), 263–279 (2008)

29. Girard, A.: Reachability of uncertain linear systems using zono-
topes. In: Proceedings of HSCC 2015, vol 3414, pp 291–305.
Springer, LNCS (2005)

30. Girard, A., Le Guernic, C.: Efficient reachability analysis for linear
systems using support functions. Proc IFACWorld Congress 41(2),
8966–8971 (2008)

31. Guernic, C.L., Girard, A.: Reachability analysis of hybrid systems
using support functions. In: Proceedings of CAV 2009, vol 5643,
pp 540–554. Springer, LNCS (2009)

32. Gupta, S., Krogh, B.H., Rutenbar, R.A.: Towards formal veri-
fication of analog designs. In: Proc. of ICCAD ’04: the 2004
IEEE/ACM International Conference on Computer-aided Design,
IEEE Computer Society, Washington, DC, USA, pp 210–217.
https://doi.org/10.1109/ICCAD.2004.1382573 (2004)

33. Gurung, A., Deka, A., Bartocci, E., Bogomolov, S., Grosu, R.,
Ray, R.: Parallel reachability analysis for hybrid systems. In:
2016 ACM/IEEE International Conference on Formal Methods
and Models for System Design (MEMOCODE), IEEE, pp 12–22
(2016)

34. Hartmanns, A., Hermanns, H.: The Modest Toolset: An Integrated
Environment for QuantitativeModelling and Verification. In: Proc.
of TACAS’14, Springer, LNCS, vol 8413, pp 593–598 (2014)

35. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decid-
able about hybrid automata? J. Comput. Syst. Sci. ACM Press, pp
373–382 (1995)

36. Henzinger, T., Ho, P.H., Wong-Toi, H.: HyTech: a model checker
for hybrid systems. Softw. Tools Technol. Transf. 1, 110–122
(1997)

37. Holzmann, G.J.: Parallelizing the SPIN model checker. In: Pro-
ceedings of SPIN 2012, vol 7385, pp 155–171. Springer, LNCS
(2012)

38. Kong, S., Gao, S., Chen, W., Clarke, E.M.: dReach: δ-reachability
analysis for hybrid systems. In: Proceedings of TACAS’15,
Springer, Lecture Notes in Computer Science, vol 9035, pp 200–
205 (2015)

39. Laarman, A., van de Pol, J., Weber, M.: Boosting multi-core reach-
ability performance with shared hash tables. In: Proc. of FMCAD
2010: the 10th International Conference on Formal Methods in
Computer-Aided Design, IEEE, pp 247–255 (2010)

40. Le Guernic, C., Girard, A.: Reachability analysis of linear systems
using support functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–
262 (2010)

41. Le Guernic, C.: Reachability analysis of hybrid systems with linear
continuous dynamics. Ph.D. thesis, Université Grenoble 1 - Joseph
Fourier (2009)

42. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems—
ACyber-Physical Systems Approach, 2nd edn. (2015)

43. Makhlouf, I.B., Kowalewski, S.: Networked cooperative platoon
of vehicles for testing methods and verification tools. In: ARCH@
CPSWeek, pp 37–42 (2014)

44. Makhorin,A.: GNULinear ProgrammingKit, v.4.37. (2009) http://
www.gnu.org/software/glpk

45. Ramdani, N., Nedialkov,N.S.: Computing reachable sets for uncer-
tain nonlinear hybrid systems using interval constraint-propagation
techniques. Nonlinear Anal. Hybrid Syst. 5(2), 149–162 (2011).
https://doi.org/10.1016/j.nahs.2010.05.010

46. Ray, R., Gurung, A., Das, B., Bartocci, E., Bogomolov, S., Grosu,
R.: Xspeed: Accelerating reachability analysis on multi-core pro-
cessors. In: 11th International Haifa Verification Conference on
Hardware and Software: Verification and Testing, HVC 2015,
Haifa, Israel, November 17–19, 2015, Proceedings, Springer,
LNCS, vol 9434, pp 3–18 (2015)

47. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317.
Springer, New York (1998)

48. Silva, B.I., Richeson, K., Krogh, B.H., Chutinan, A.: Modeling
and verification of hybrid dynamical system using checkmate. In:
ADPM (2000)

49. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control:
Analysis and Design. Wiley, New York (2005)

123

https://doi.org/10.1007/978-3-642-02658-4_19
https://doi.org/10.1007/978-3-642-02658-4_19
https://doi.org/10.1007/978-3-642-33386-6
https://doi.org/10.1007/978-3-642-33386-6
https://doi.org/10.1007/s10703-006-0031-0
https://doi.org/10.1007/s10703-006-0031-0
https://doi.org/10.1109/ICCAD.2004.1382573
http://www.gnu.org/software/glpk
http://www.gnu.org/software/glpk
https://doi.org/10.1016/j.nahs.2010.05.010

	Parallel reachability analysis of hybrid systems in XSpeed
	Abstract
	1 Introduction
	2 Preliminaries
	3 Parallel reachability analysis of continuous systems
	3.1 Parallel samplings over template directions
	3.1.1 Running multiple instances of GLPK

	3.2 Time-sliced reachability analysis

	4 Parallel HA exploration
	4.1 Parallel breadth-first search
	4.2 Load balancing
	4.3 Task parallel algorithm
	4.3.1 Task parallelism in support function algorithm

	4.4 Discrete-jump cost computation
	4.5 Asynchronous HA exploration

	5 Evaluation
	5.1 Evaluation on continuous systems
	5.2 Evaluation on hybrid systems
	5.3 Discussion

	6 Conclusion
	Acknowledgements
	Appendix
	References

