
International Journal on Software Tools for Technology Transfer (2018) 20:289–311
https://doi.org/10.1007/s10009-018-0483-8

FORMAL METHODS FOR TRANSPORT SYSTEMS

Spatio-temporal model checking of vehicular movement in public
transport systems

Vincenzo Ciancia1 · Stephen Gilmore4 · Gianluca Grilletti3 · Diego Latella1 ·Michele Loreti2 ·Mieke Massink1

Published online: 24 January 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
We present the use of a novel spatio-temporal model checker to detect problems in the data and operation of a collective
adaptive system. Data correctness is important to ensure operational correctness in systems which adapt in response to data.
We illustrate the theory with several concrete examples, addressing both the detection of errors in vehicle location data
for buses in the city of Edinburgh and the undesirable phenomenon of “clumping” which occurs when there is not enough
separation between subsequent buses serving the same route. Vehicle location data are visualised symbolically on a street
map, and categories of problems identified by the spatial part of the model checker are rendered by highlighting the symbols
for vehicles or other objects that satisfy a property of interest. Behavioural correctness makes use of both the spatial and
temporal aspects of the model checker to determine from a series of observations of vehicle locations whether the system is
failing to meet the expected quality of service demanded by system regulators.

Keywords Spatio-temporal model checking · Collective adaptive systems · Smart transportation

Mathematics Subject Classification 68N30 · 68Q60 · 03B70

This work is partially supported by the EU project QUANTICOL: A
Quantitative Approach to Management and Design of Collective and
Adaptive Behaviours, 600708.

B Vincenzo Ciancia
vincenzoml@gmail.com; vincenzo.ciancia@isti.cnr.it

Stephen Gilmore
stephen.gilmore@ed.ac.uk

Gianluca Grilletti
grilletti.gianluca@gmail.com

Diego Latella
diego.latella@isti.cnr.it

Michele Loreti
michele.loreti@unicam.it

Mieke Massink
mieke.massink@isti.cnr.it

1 Istituto di Scienza e Tecnologie dell’Informazione
“A. Faedo”, Consiglio Nazionale delle Ricerche, Pisa, Italy

2 Scuola di Scienze e Tecnologie, Università degli studi di
Camerino, Camerino, Italy

3 Institute for Logic, Language and Computation, University of
Amsterdam, Amsterdam, The Netherlands

1 Introduction

Users, operators and regulators of managed services want to
have systems which behave correctly across a wide range of
conditions. Operational correctness is monitored by regula-
tors, and it is the responsibility of system operators to try
to ensure that system operation lies within allowable bounds
as often as possible in practice. A typical example of oper-
ational correctness is to guarantee sufficient separation in
time between subsequent buses in so-called “frequent” bus
services that do not follow a fixed time table.

Adaptive systems depend crucially on real-time data col-
lection subsystems which allow them to reflect on their
operation, detect problems in their service, and report these
problems. These data collection systems are often built from
physical components such as sensors and receivers which
have limits to their engineering, meaning that they some-
times deliver inaccurate measurement data.

In a small-scale supervised system where the measure-
ment data are interpreted by a human before any action is

4 Laboratory for Foundations of Computer Science, University
of Edinburgh, Edinburgh, Scotland, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-018-0483-8&domain=pdf

290 V. Ciancia et al.

taken, erroneous data might not be very problematic because
the data can be checked before any action is taken as a
consequence. In a collective adaptive system, however, the
demands of scale and responsive adaptivity may mean that
there is no human oversight of the data before action is taken
as a consequence of the data received.

Physical components can only deliver accurate infor-
mation up to their physical limits, and size and weight
considerations often severely curtail the amount of pro-
cessing which can be done on an embedded device. These
practicalities mean that the responsibility for dealing with
erroneous data lies with the system itself, and that it must
make efforts to automate the process of data checking and
cleaning before acting in response to data received. The task
of achieving operational correctness comes after the task of
achieving data correctness. In this paper we address exam-
ples of both, exploiting novel purely spatial and combined
spatio-temporal model checking techniques.

Knowing where the system assets are located is often of
critical importance for correct functionality. In amodern pub-
lic transport systemmany aspects ofwell-regulated operation
depend on accurate fleet management, supported by an auto-
matic vehicle location (AVL) system. AVL data drive other
systems such as bus arrival prediction systems and allow
operators to produce quantitative measures of service qual-
ity.

In this paper, we use spatio-temporal model checking to
discover problems related to spatial and operational aspects
of a collective adaptive system.1 We chose bus networks as
a prototypical example of a collective adaptive system in
which analysis is strictly tied to geographical features (see
for instance [18] for an example of how collective adaptive
behaviour may be exploited in bus networks). Specifically,
we assess correctness of geographic data that may come
from agents in the system. GPS data received from buses
are related to a map, in the form of a digital image, that is
meant to incorporate all the information that may be rele-
vant to data correctness. The relevance of specific features
(e.g., size of streets and crossings, morphological consider-
ations such as bend angles, position of buildings or squares,
pedestrian areas, rivers) may only be known at analysis time,
thereforemaking it difficult to use abstractions of amap, such
as the graph of streets and crossings, that may “abstract too
much” and omit useful information. In our approach, instead,
analysis is designed through declarative logical means, that
make explicit use, on a case-by-case basis, of the visual fea-
tures of the map that are needed.

1 A collective adaptive system consists of multiple cooperating compo-
nentswith decentralised control—thesemay be human or non-human—
and adapts itself to unexpected problems arising from the environment
in which it operates.

We consider both purely spatial aspects, namely data cor-
rectness, and spatio-temporal issues, related to the behaviour
of buses in the network. The spatial verification problem we
consider is that of determining whether or not the AVL data
received about vehicles in the fleet indicates an error con-
dition. We show how to identify such problems in the data
by the means of a recently developed spatial model checker
[12]. Using a formal language (namely, the Spatial Logic of
Closure Spaces SLCS, featuring Boolean and spatial oper-
ators), requirements on spatial data can be mathematically
formalised, and themodel checker can verify data correctness
in a fully automated way. The use of logic formulas makes
the approach declarative, in that subtle aspects of the analysis
can be changed by editing the (very short) formulas, with-
out needing tomodify analysis algorithms. Depending on the
intended result, the methods presented here could either be
used for on-line or off-line data processing. In on-line data
processing the smart infrastructure within the system would
attempt to classify problems in real-time, alerting operators
to problems as they occur. In off-line data processing the
infrastructure would attempt to classify problems with the
benefit of hindsight, providing plausible retrospective expla-
nations for events so that the service operators can review
their service and provide reports for service regulators, and
use the insights gained to improve the service at the next
offering (for example, the following day).

Taking different sections from the data allows one to
address different spatial model checking problems.We could
choose to project an instantaneous snapshot of the current
location of all of the buses in the fleet (a “satellite view”,
allowing one to see all buses at one time). Alternatively we
could choose to project the journey of a particular bus in the
fleet as a function of time (a “passenger view”, allowing one
to see one bus at all times).

The satellite view allows one to raise issues about con-
gestion and adjacency; the passenger view allows one to ask
questions about journeys and routes. In this paper we will
use single satellite views when we are investigating data cor-
rectness (“Is this bus really so far off-route?”) and sequences
of successive satellite views when we are investigating oper-
ational correctness (“Is this bus catching up with the one in
front?”).

Besides the purely spatial aspects, we also illustrate the
use of model checking to detect operational problems of
the bus network. We use the spatio-temporal model checker
developed in [11], extending the spatial model checker of
[12,13] with temporal features. The temporal fragment is
developed as a variant of the well-known Computation Tree
Logic (CTL). To exemplify the descriptive capabilities of
such spatio-temporal logics, we show how spatio-temporal
model checking can be used to assess and validate possibly
non-deterministic policies for mitigating operational prob-
lems in adaptive systems. In particular, we use as an example

123

Spatio-temporal model checking of vehicular movement in public transport systems 291

the problem of clumping (also called bunching, convoying,
or platooning) on a bus route.

On bus routes with frequent service, the most relevant
metric is not adherence to a predefined timetable, but rather
maintaining a reasonable separation (known as headway)
between different buses passing by each stop. This is needed
to maintain a good distribution of passengers across buses
and to provide passengers with a predictable service. Clump-
ing is the phenomenon where two or more buses serving
the same route get very close to each other. The problem
is caused by a negative feedback loop (as first explained by
Newell and Potts in [34]) where buses running late find ever
more people waiting at the bus stop, causing further delay,
and buses following such late buses encounter few passen-
gers and no delays, causing them to catch up with the bus in
front. Clumping may therefore occur independently of traf-
fic conditions. Clumping is the most frequent cause of user
dissatisfaction in frequent bus services [18]. Formal speci-
fication of the headway requirement may be interpreted in
different ways. We discuss how such different interpreta-
tions correspond to different spatio-temporal logic formulas,
that can be machine-checked against models of the bus
network.

Finally, we provide some preliminary ideas on how spatio-
temporalmodel checkingmaybe used to analyse and validate
the effect of policies aimed at correcting operational prob-
lems, illustrating this on an example of bus clumping. Bus
clumping, and more general issues related to headway and
slack time of buses, are the subject of an active research field;
see for instance [17,18,28,29,37,38,44]. Promising results
are obtained by bus holding strategies such as those described
in [18,28,29]. Such strategies can be implemented by let-
ting buses wait for some additional time, with a duration that
depends on the headway, at predefined control points in order
to maintain a constant headway between subsequent buses.
These strategies have been shown to be able to self-regulate
the headway of buses also in the presence of perturbations
in the system (e.g., buses breaking down and needing to
stop for repairs, changing traffic conditions, or temporary
changes in bus routes) [18,28,29]. In our example, we derive
a branching-time spatio-temporal model from a single series
of snapshots of bus positions projected onto a city map, that
takes into account the possibility of buses waiting a short
fixed period of time along their path for one or more times.
By augmenting an existing GPS trace, featuring clumping,
with choice points where a given bus may be requested to
wait for a short amount of time, the model checker is then
used to analyse the effects of clumping mitigation strategies.
The idea is that a more elaborate approach along these lines
could provide uswith an alternative framework for validation
of some bus holding strategies in the context of actual traces
of bus movement obtained in real cities. Our method could
be exploited further, e.g., in order to compute the minimal

waiting time needed to guarantee that no incorrect execution
traces exist, or in order to compute probabilities by exploiting
statistical model checking techniques. This is left as possible
future work.

This paper is organised as follows. In Sect. 2 we address
pure spatial model checking, without the temporal dimen-
sion, providing an informal introduction and examples.
Section 3 presents the various categories of data issues
and how they are visualised on a street map. Section 4
illustrates how these data issues can be identified exploit-
ing spatial model checking on a portion of a city map. In
Sect. 5 we extend spatial model checking with a tempo-
ral dimension introducing a spatio-temporal logic. Section 6
addresses some bus operational issues concerning the prob-
lem of clumping, both in time and in space. In Sect. 7 we
show how to use spatio-temporal model checking to assess
the effect of correction strategies to alleviate clumping. We
conclude the paper by an overview of related work in Sect. 8
and conclusions and outlook on future work in Sect. 9.

2 Spatial model checking

In its original conception, model checking [2] is a technique
that was developed for the formal verification of properties of
distributed and concurrent systems. It takes a formal model
of the system and a property of interest, usually expressed
as a temporal logic formula (see for instance [5,15,23]), and
then checks, in an automatic way, whether themodel satisfies
the property. Properties of the temporal evolution of a system
are considered, but properties of (physical) space typically
are not. In recent work [12,13] by some of the co-authors
of this paper, a spatial model checking approach has been
developed. This technique builds on spatial logics, that is,
topological interpretations of modal logics [41], dating back
to Tarski.

Of particular interest to us is a spatial surrounded
operator—inspired by the temporal weak until operator—
that first appeared for topological spaces in [1]. In [12],
the operator has been studied together with a model check-
ing algorithm in the more general setting of closure spaces.
The spatial variant of the connective can be used to define
conditional reachability properties in a spatial setting. The
logical operators have been lifted to closure spaces, so that
they can also be used on discrete, graph-based structures,
which include digital images, and various kinds of geo-
graphic maps. In this paper, we consider specific graphs,
namely digital images, seen as regular grids, where the nodes
are the points in the image and where edges connect each
node to the adjacent nodes in the north, south, east and west
direction.

In [12], an efficient proof-of-concept model checker for
the Spatial Logic of Closure Spaces (SLCS) has been imple-

123

292 V. Ciancia et al.

mented. The tool is able to interpret spatial logic formulas on
general finite graphs (more precisely on quasi-discrete clo-
sure spaces). In the special case in which such graphs are
regular grids representing digital images a graphical under-
standing of the meaning of formulas can be provided, and
thus an immediate form of counterexample visualisation.
Points that satisfy a particular formula can be visualised by
a colour of choice on an image. In this paper, we use the
spatial model checker for some very pragmatic purposes that
are concerned with the automatic identification of potential
errors in AVL data. The approach we follow is to project the
AVL data, including the exact position of the vehicles, on
an existing digital map of the relevant geographical area. We
then use the spatial model checker to identify and highlight
regions of interest on this map.

The spatial logic consists of a very small number of basic
operators that, in turn, are used to define a number of use-
ful derived operators. Among the basic operators are the
standard Boolean constants (true �, false ⊥) and connec-
tives (negation ¬, disjunction ∨ and conjunction ∧), the
near operator N and the surrounded operator S . The near
operator has its origin in the closure operator of topologi-
cal spatial logics. More precisely, models of the logic are
closure spaces. A closure space is a pair (X , C), consisting
of a set of points X and a function C, from 2X to 2X , such
that, for all sets A, B ⊆ X we have: C(∅) = ∅, A ⊆ C(A)

and C(A ∪ B) = C(A) ∪ C(B). Note that the closure oper-
ator is not required to be idempotent; the class of closure
spaces whose closure operator is idempotent coincides with
topological spaces (via the so-called Kuratowski definition
of topological spaces). Topological spaces are therefore a
proper subclass of closure spaces.

In our logic, the near operator is denoted by N . The for-
mulaN φ is satisfied by a point x in space if x satisfies φ or it
is a direct neighbour of a point satisfying φ. The surrounded
operator S is a spatial version of the temporal weak until
operator (also called “unless” in the literature). A point x in
space satisfies the formula φ S ψ whenever it is included in
an area A consisting of points satisfying formula φ, and there
is “no way out” from A unless passing through points in an
area B that satisfies ψ , see Fig. 1. Finally, we assume a set
of basic propositions, which in our specific case identify the
colour of a pixel in the digital map.2

Wewill use a fewderived operators (see Fig. 2) in the prop-
erties shown in the next section. The first derived operator is
the spatial reachability operator φ Rψ . It is defined in terms
of the surrounded operator as φ Rψ � ¬((¬ψ)S (¬φ))

and, abstracting from some details, it identifies those points

2 Note that in general any kind of basic propositions may be chosen.
For example, they may be values representing concentrations of chem-
ical substances or probabilities as shown in the various case studies
presented in [11,14].

B B

B G G B

B G G B

B B

Fig. 1 The green nodes satisfy green surrounded by blue ((G)S (B))
(colour figure online)

Y

R

R

R

B

B

R

Y

B

B

Y

O

O

G

G

O

G

G

G

G

O

Y

G

G

G

G

G

G

Fig. 2 Example of the interpretation of spatial formulas (left: original
model; right: superimposed results of interpretation). The green (G)
nodes (on the right) satisfy the closure of the blue (B) ones (shown in
the picture on the left), and the orange (O) nodes (on the right) satisfy the
formula (R) T (Y) applied to the left figure, reaching yellow (Y) nodes
only from and via red (R) ones. All the nodes in both figures satisfy
E (¬(K)), as there is no node satisfying K , whereas all the nodes on
the left, and no node on the right, satisfy F (B) (colour figure online)

from which ψ can be reached passing only by points sat-
isfying φ. Further examples of derived operators can be
found in [13]. In this paper, we use: the “touch” operator
φT ψ � φ ∧ ((φ ∨ ψ)Rψ) denoting all the points laying
in an area, say A, such that each point in A directly touches
either one point satisfying ψ or another point in A, and all
points in A further satisfying φ; the “everywhere” operator
Eφ � φ S ⊥, that, when the considered space is connected
(this is the case of images), is a “global” assertion, either
denoting all points of the space, when all points satisfy φ, or
no point otherwise; the “somewhere” operatorFφ � ¬E¬φ,
which denotes all points of the space, when there is at least
one point satisfying φ, and no point otherwise.

We briefly recall the formal semantics of SLCS that was
first presented in [12] using slightly different notation.

Definition 1 Given a (finite or countable) set of atomic
propositions P , and a valuation function V : P → 2X , sat-
isfaction is defined in a SLCS model M = ((X , C),V) at
point x ∈ X as follows:

123

Spatio-temporal model checking of vehicular movement in public transport systems 293

M, x |� �
M, x |� p ∈ P ⇐⇒ x ∈ V(p)
M, x |� ¬Φ ⇐⇒ M, x � Φ

M, x |� Φ ∨ Ψ ⇐⇒ M, x |� Φ or M, x |� Ψ

M, x |� N Φ ⇐⇒ x ∈ C({y ∈ X |M, y |� Φ})
M, x |� Φ S Ψ ⇐⇒ ∃A ⊆ X .x ∈ A ∧ ∀y ∈ A.M, y |� Φ∧

∧∀z ∈ B+(A).M, z |� Ψ

In the above definition B+ denotes the closure boundary
which is defined as B+(A) = C(A)\A.

Roughly speaking, the model checker takes as input a
finite model, and a formula φ, and returns all the points
of the given closure space that satisfy φ. The function that
computes the satisfaction set is defined inductively on the
structure of φ following a bottom-up approach. The origi-
nal part of the algorithm concerns the surrounded operator
φ S ψ . The algorithm performs a backwards search from the
set of nodes that do not satisfy φ orψ but that can be reached
in one step from such nodes. The algorithm terminates in
O(k · (|X | + |R|)), where k is the number of operators in
the formula, |X | the number of nodes and |R| the number of
edges in the graph [12,13].

3 Categories of data issues in the case study

In this section we introduce the features of the digital image
representing a city map and see the effect of the spatial prop-
erties which we evaluate on such maps. Figure 3 explains
our conventions for representing buses, bus stops and the
progress in time through observations on the map.

We have several categories of data issues to distinguish:

– Plausible The bus is positioned on a road, and it is a road
where we would expect to see a bus. Nothing about this
data point seems problematic; adaptive behaviour based
on this data observation would seem to be acting on good
data.

– Implausible This data point seems suspicious; the bus
is positioned in an area of the city where we would not
normally expect to see a bus (such as in a field, or a wood,
or a pond). Unsupervised adaptive behaviour based on
this data would be inadvisable.

– Possible This data point has a bus positioned on a road,
but it is a side street when we were expecting to see the

Fig. 3 Representations of buses,
roads and bus stops on maps
(colour figure online) We use an OpenStreetMap representation for the map from which

the names of streets have been removed for clarity. Main streets are
pink, side streets are white.

Buses are represented by blue squares on the map in a range of
shades of blue. Bus stops are represented by orange squares.

Errors in GPS data show up as bus observations which are not on
any road.

In this example, the colour of a bus darkens slightly from one ob-
servation to the next. In this case the observation nearer to the bus
stop has a later timestamp than the observation which is further
away from the bus stop.

Diverted buses are seen as being on side streets which are off the
main bus route.

Unexpected changes in position are significant. If a later time-
stamped observation shows the bus less further along its route then
this usually indicates a data error because buses rarely reverse along
a road.

123

294 V. Ciancia et al.

Fig. 4 Inputmodel. Blue squares are bus positions; their order in time is
described by the increasing darkness. Orange squares are the bus stops
(colour figure online)

bus on a main road. The data are not implausible but
indicate that an unexpected event has perhaps occurred
(a road closure, a traffic accident, or a diversion caused
for another reason). Adaptive behaviour based on this
data observation might be appropriate here.

– Problematic This data point shows a bus on the expected
route, but it is less far along the route than previously
reported. It is likely that either this data point is putting
the bus behind its current position, or the previous data
point put it ahead of its current position (or, possibly, the
bus is reversing). Adaptive behaviour based on this data
should be delayed until the uncertainty about which point
is incorrect is resolved.

4 Identifying data issues usingmodel
checking

The model checker has been used to analyse a coloured dig-
ital image, representing a portion of the map of the city of
Edinburgh, augmented with squares filled in special colours,
denoting particular kinds of entities, as described in Sect. 3.
Logic formulas are used in this example to detect problems in
the data. We also show how to detect other features of inter-
est of bus positions, and of roads. We shall now describe the
formulas we use more in detail; these are interpreted on the
model depicted in Fig. 4. The red circles, as well as the yel-
low balloonwith text, have been superimposed on the images
and are not part of input or output of the tool (this is done for
readability, also in Sects. 6 and 7).

Atomic predicates, when working on images, are actu-
ally colour ranges. Because of this, we can analyse an image
directly, without the need for additional meta-data. For this
example, we selected 14 data points to represent buses,3 rep-

3 In this paper, the points have been selected artificially, in order to
present a clear working example, but use of the spatial model checker
does not differ when dealing directly with the vehicle location data
supplied by Lothian Buses.

resented by different blue squares. The shade of blue depends
upon the time at which the bus was in the given position.
The shade ranges from light to dark, where lighter shades
precede darker ones in time. Then, using atomic predicates
on colours and colour ranges, we defined various basic for-
mulas, among which: formula bus representing all the bus
positions (using a colour range); formulaspos1,…,pos14,
representing the separate bus positions; formulas identifying
streets (street) and main streets (mainStreet).

The spatial model checker accepts an image as input and
produces a transformed image, where the points that satisfy
the formula of interest are coloured in a user-defined colour.
In the current example, the model presented to the model-
checker is the map image with reported bus positions marked
(using blue squares) and the positions of bus stops marked
(using orange squares). For example, positions of diverted
buses can be repainted in red and positions of off-road buses
can be repainted in violet.

In the following examples, we use the concrete input syn-
tax of the SLCS model checker topochecker (described
in more detail in Sect. 5), where the logical symbols �, ⊥,
¬, ∧, ∨, N , S are denoted by TT, FF, !, &, |, N, and S,
respectively.

Spatial features of data pointsIn Fig. 5 we show the result
of identifying a portion of the main street for each position
(depicted in yellow); this is done using the formula:

Let streetPortion(b) =
mainStreet & (Nˆ3 b)
& (! (Nˆ5 (bus & (!b))))

where b is instantiated to pos1, …, pos14, and Nk, for
k a natural number, is the nested application of the near
operator (also called dilation in the context of computa-
tional imaging). The formula dilates b by three pixels, and
avoids points too close to other buses, in order to minimise
possible overlaps. In the same figure, in red, we colour posi-

Fig. 5 Positions close to a stop are repainted in red, the areas of the
road surrounding all bus positions are repainted in yellow (colour figure
online)

123

Spatio-temporal model checking of vehicular movement in public transport systems 295

Fig. 6 Diverted positions (neither off road, nor on a main street) are
repainted in red, off-road positions are repainted in violet (colour figure
online)

tions that are close to a bus stop. This uses the formula
close(bus,stop), where close is defined as follows:

Let close(a,b) = a & (Nˆ30(b))

Thus, the formula intersects the points where the bus has
passed with the points reachable from a stop by 30 pixels.

Implausible pointsData points that are not positioned on a
street are implausible. This is described by the formula:

Let busOutOfStreet =
bus & (! (bus S street))

The formula characterises points that are part of any of the
regions denoting bus positions, and are not surrounded by
a street. Points satisfying this formula (thus, not plausible)
are repainted in violet to produce the spatial model checking
result shown in Fig. 6.

Possible pointsDiverted bus positions are represented by the
formula:

Let divertedBus = bus S smallStreet

and are then repainted in red to produce the result shown in
Fig. 6.

Problematic pointsOur spatial logic is expressive enough
to define properties related to the order of positions of the
same bus at different times on a given road. We analyse
the bus positions. For each position, we detect its imme-
diately neighbouring positions, in order to check that these
correspond to a preceding and following position, respec-
tively. If this is not the case, the position is misplaced, even

Fig. 7 Positions that are found to be out of order (i.e., not between the
previous and next position) are repainted in red (colour figure online)

though it may still be on the main street. In Fig. 7, such
misplaced bus positions are painted in red. The formal spec-
ification of this property is complicated by the fact that the
underlying graph of an image is not directed, thus it is not
completely straightforward to specify precedence relations
between points. The most important step is the definition of
predicate consecutivePos(p1,p2), given below. The
definition uses the reachability predicate a R b, written as
reach(a,b).

Let consecutivePos(p1,p2) = p1 S
reach((streetPortion(p1) | mainStreet | streetPortion(p2)) &

(!(streetPortion(bus & (!(p1 | p2))))),
streetPortion(p2))

The definition of consecutivePos uses the predicate
streetPortion to identify the region of points inp1, sur-
rounded by the area from which streetPortion(p2)
can be reached, passing by the main street, including the
areas surrounding p1 and p2, avoiding the areas surround-
ing other buses. FormulastreetPortion(p2) is defined
in order to denote an area at least as wide as the main
street, depending upon the map considered. By the defini-
tion of streetPortion, no next bus positions can be
reached following only points belonging to the main street.
Using consecutivePos, predicate wrongOrderPos is
defined as follows:

Let wrongOrderPos(p1,p2,p3) =
(p2 S mainStreet) &

(!(consecutivePos(p2,p1) &
consecutivePos(p2,p3)))

Given three positionsp1,p2,p3, positionp2 is selected only
if it is not strictly between p1 and p3. The three positions
are instantiated to all the strictly consecutive triplets between
pos1 and pos14 in order to identify out-of-order positions.

Although the above examples show that purely spatial
logic can be used to deal with some (albeit limited) spatio-

123

296 V. Ciancia et al.

Fig. 8 In spatio-temporal models, a temporal path is a sequence of snapshots that are induced by the time-dependent valuation of the atomic
propositions

temporal properties, in general it is more convenient (and
expressive) to use a dedicated spatio-temporal logic. How
this works is illustrated in the next section.

5 Spatio-temporal model checking

Spatio-temporal logics may be defined by permitting mutu-
ally recursive nesting of spatial and temporal operators.
Several combinations are possible, depending on the chosen
spatial and temporal fragments, and the permitted combina-
tions of the two. A great deal of possibilities is explored in
[31], for spatial logics based on topological spaces. One such
structure was explored in [11,26], in the setting of closure
spaces. The current implementation is provided by the open
source spatio-temporal model checker4 topochecker,
that can verify formulas written in the spatio-temporal logic
of closure spaces STLCS. Such logical language enhances
SLCS with temporal operators, in the spirit of the branching-
time temporal logic CTL (Computation Tree Logic) [15].

In this section we provide a lightweight informal intro-
duction to spatio-temporal model checking; we refer the
interested reader to [11] for further technical details. Like
SLCS, this spatio-temporal logic is developed in the setting
of closure spaces. In addition to the already discussed spa-
tial operators, STLCS features the CTL path quantifiers A
(“for all paths”) and E (“there exists a path”). As in CTL,
such quantifiers must necessarily be followed by one of the

4 Seehttp://topochecker.isti.cnr.it/, andhttps://github.com/vincenzoml/
topochecker; an earlier prototype is available at https://github.com/
cherosene/ctl_logic.

path-specific temporal operators XΦ (“next”), FΦ (“eventu-
ally”), GΦ (“globally”), Φ1UΦ2 (“until”), where Φ, Φ1 and
Φ2 are STLCS formulas. For a further introduction to and
more details on CTL and CTL model checking, the reader
may consult [2].

A modelM of the STLCS logic is composed of a Kripke
structure (S, T) and a closure space (X , C). More precisely:
S is a non-empty set of states; T is an accessibility relation
on states, which is required to be left-total, that is, for each s
in S there is s′ in S with (s, s′) ∈ T ; X is a set of points; C is a
closure operator (see Sect. 2). Every state s has an associated
valuation Vs , making ((X , C),Vs) a closure model according
to Definition 6 of [12]. An equivalent interpretation is that
the valuation function has type S × X → 2P , where P is
the set of atomic propositions; thus, the valuation of atomic
propositions depends both on states and points of the space.
The evaluation contexts are of the formM, s, x |� Φ, where
Φ is a STLCS formula, s is a state of a Kripke structure, and
x is a point in space X . In both notations, the intuition is
that there is a set of possible worlds, i.e., the states in S,
and a spatial structure represented by a closure space. At
each possible world there is a different valuation of atomic
propositions, inducing a different “snapshot” of the spatial
situationwhich “evolves” over time. This is made clear along
a temporal path. A path in the Kripke structure denotes a
sequence of snapshots of the considered space, indexed by
instants of time; see Fig. 8 for a pictorial illustration.

Let us proceed with a few examples. Consider the STLCS
formula EG (green S blue). This formula is satisfied
in a point x in the graph, associated to the initial state s0,
if there exists a (possible) evolution of the system, starting

123

http://topochecker.isti.cnr.it/
https://github.com/vincenzoml/topochecker
https://github.com/vincenzoml/topochecker
https://github.com/cherosene/ctl_logic
https://github.com/cherosene/ctl_logic

Spatio-temporal model checking of vehicular movement in public transport systems 297

from s0, in which point x is always, i.e., in every state in the
path, green and surrounded by blue (‘greenS blue’ in the ter-
minology of Sect. 2). Note that the model checker will return
(or colour) all the points x that satisfy the formula. A fur-
ther, nested, example is the STLCS formula E F (green
S (A X blue)). This formula is satisfied in a point x in
the graph associated to the initial state s0, if there is a (possi-
ble) evolution of the system, starting from s0, in which point
x is eventually green and surrounded by points y that, for
every possible evolution of the system from then on, will be
blue in the next step.

We briefly recall the formal semantics of STLCS that was
first presented in [11].

Definition 2 Satisfaction is defined in a STLCSmodelM =
((X , C), (S,R),Vs∈S) at point x ∈ X and state s ∈ S as
follows:

M, x, s |� �
M, x, s |� p ⇐⇒ x ∈ Vs(p)
M, x, s |� ¬Φ ⇐⇒ M, x, s � Φ

M, x, s |� Φ ∨ Ψ ⇐⇒ M, x, s |� Φ or M, x, s |� Ψ

M, x, s |� N Φ ⇐⇒ x ∈ C({y ∈ X |M, y, s |� Φ})
M, x, s |� Φ S Ψ ⇐⇒ ∃A ⊆ X .x ∈ A ∧ ∀y ∈ A.M, y, s |� Φ∧

∧∀z ∈ B+(A).M, z, s |� Ψ

M, x, s |� Aϕ ⇐⇒ ∀σ ∈ Ps .M, x, σ |� ϕ

M, x, s |� Eϕ ⇐⇒ ∃σ ∈ Ps .M, x, σ |� ϕ

M, x, σ |� XΦ ⇐⇒ M, x, σ (1) |� Φ

M, x, σ |� Φ UΨ ⇐⇒ ∃n.M, x, σ (n) |� Ψ

and ∀n′ ∈ [0, n).M, x, σ (n′) |� Φ

In this definition B+ denotes the closure boundary, as in
Definition 1, and σ denotes a path, starting at index 0, that
is, σ(n) denotes the (n + 1)th element of σ . A path in the
Kripke structure is a sequence of spatial models (in the sense
of [12]) indexed by instants of time and Ps denotes the set
of paths starting from state s.

Spatio-temporal model checking is performed using a
variant of the classical CTL labelling algorithm [2,15], aug-
mented with the algorithm in [12] for the spatial fragment. In
the implementation the temporal component of a model is a
Kripke structure, represented by a graph. The latter uses the
plain text graphdescription languagedot for graph represen-
tation5. The underlying spatial structure is fixed for all states.
It can be either a graph, or a regular grid implicitly defined
when the valuation of atomic propositions is given by digital
images (as done in this paper). In the first case, the graph is
defined using the dot notation, and the valuation of atomic
propositions, depending upon states and points of the space,
is provided separately, using a comma-separated values file.
When digital images are used, for each state, a digital image
is provided for each state in theKripke structure. Imagesmust

5 Further information on the dot notation and the graphviz toolkit can
be found at http://www.graphviz.org/Documentation.php.

have the same size, and the corresponding grid is taken as the
reference closure space (X , C). (Recall that grids are graphs,
and therefore instances of closure spaces, see [12] for further
details.) Colours of the points of the picture for each state
s determine the valuation function Vs . The model checker
receives as input also a list of logic formulas to be verified,
with a colour labelling each formula. The output of themodel
checking algorithm is the model ((X , C), (S, R),V ′

s) where
the closure space (X , C) and the Kripke structure (S, R) are
the same as the input ones, whereas V ′

s(x) = Vs(x) if x does
not satisfy any formula in the list, otherwise it is the colour
assigned in the list to the formula it satisfies (when formulas
overlap in image-basedmodels, the colour of the last formula
is used). Using spatial models based on images makes inter-
active exploration of the model checking results possible.
More precisely, one can use the graphviz toolkit to visualise
the graph corresponding to the Kripke frame given as input,
in such a way that clicking on a state visualises the image
associated to it in the model checker output. This feature
proved to be useful in understanding the results of our case
study (see Sect. 7). Furthermore, with reference to the same
section, we mention that in the implementation of the model
checker, states are numbered, and the output of the model
checking can be accessed by these numbers (more precisely,
in the implementation, to each state s, a coloured image is
associated in the output of the model checker, corresponding
to the projection Vs of the valuation function).

Several derived operators can be defined starting from the
basic ones whose semantics is given in Definition 2. Among
these, we recall the path operators F (“eventually”) and G
(“globally”). For example we have M, x, s |� AFφ when-
ever for all paths σ in Ps , there is i with M, x, σ (i) |� φ;
similarly, for the AG variant, replace “there is i”, with “for
all i”.

6 Bus operational issues: analysing headway

An instance of a short headway problem is illustrated in Fig. 9
using a series of successive “satellite view” images of the bus
data (from the top-right corner to the bottom-left corner of
the picture).

In the literature various proposals exist that aim at dynami-
callymaintaining an acceptable headway in bus systems (see,
for example, some recent work [17,18,29,42] and references
therein). A particular class of such proposals is based on bus
holding strategies. These are self-adaptive strategies where
buses are put on hold for a short period of time. This can be
at predefined control points, such as at the end-points of a
route, or this can be at the bus stops themselves. The wait-
ing time is usually established by a function that depends
on the backward headway, that is, the headway between the
current bus and the bus behind, or the forward headway,

123

http://www.graphviz.org/Documentation.php

298 V. Ciancia et al.

Fig. 9 Because of delays caused by boarding passengers, the headway between buses is successively eroded over time until the buses are essentially
working as a conglomerate

namely, the headway between the current bus and the bus
in front (see [42]), or both. Perhaps the most obvious mea-
sure of headway is chainage, the distance by road between
two vehicles. However, because buses change speed on dif-
ferent parts of the route, this is not the best metric to use. One
usually wishes to address time-related problems with the ser-
vice (passengers waiting for too long a time between buses,
and there not being enough time between buses for passen-
gers to arrive at a bus stop). For this reason, the bus holding
strategies discussed above rather focus on the temporal sep-
aration between buses. In order to express such notions of
headway, one should take into account both spatial and tem-
poral aspects; their interplay may have rather subtle aspects
to consider and require careful formalisation.

Using spatio-temporal logic, clumping of buses can be
detected, both in a system trace (e.g., a GPS trace obtained
at run-time), and in more complex branching models, that
are used in Sect. 7. Consider a single bus route, served by
k buses. At each instant of time, the state of the system is
completely describedbya tuple of kGPSpositions; therefore,

a system trace is a finite sequence of such tuples. As already
discussed, there may be several different ways to formalise
the notion of clumping. We describe two possible variants,
with the idea in mind to check for clumpings that happen
at a bus stop (clumping could happen anywhere, but it is
significant from an user point of view only at bus stops).
Figure 10 contains the input of a model checking session
using three buses. Formulasbus1,bus2,bus3 characterise
different buses on the same route in different shades of red,
and busStop denotes a bus stop indicated by a dark blue
square. In this example, shades of colours (of red in this case)
are used to distinguish the different buses serving the same
route, so that each bus has a specific shade of the colour
through time. The formulas that we explain below are true at
points of a bus stop whenever clumping (i.e., formation of a
conglomerate) is happening at that particular bus stop.

1. A spatial conglomerate happens when two buses serv-
ing the same route, at some point in time, are spatially
close to each other, and also close to a bus stop. This

123

Spatio-temporal model checking of vehicular movement in public transport systems 299

Fig. 10 Spatio-temporal
formulas for conglomerates

// buses are shades of red:
Let bus1 = [red == 155] & [green == 0] & [blue == 0];
Let bus2 = [red == 188] & [green == 0] & [blue == 0];
Let bus3 = [red == 221] & [green == 0] & [blue == 0];
Let bus = bus1 | bus2 | bus3;

//bus stop is dark blue:
Let busStop = [red == 55] & [green == 55] & [blue == 255];

Let close(x) = N^7 x;

Let busAtStop(x) = busStop & close(x);

Let busAfterBus(x) = busAtStop(x) & E X busAtStop(bus & !x);

Let closeToOtherBus(x) = (x & close(bus & !x));
Let conglomerate = busStop & close(closeToOtherBus(bus1)

| closeToOtherBus(bus2) | closeToOtherBus(bus3));

Let timeConglomerate = busAfterBus(bus1) | busAfterBus(bus2) | busAfterBus(bus3);

Check "0x00FF00" (E F timeConglomerate); // stops with conglomerate turned green

event is described by the formula conglomerate.
Points satisfying this formula are those that are close
to a bus, which is in turn close to another bus. Formula
closeToOtherBus,which is parametrised by the cho-
sen bus, is responsible for checking that a bus is close
to another one. The notion of “closeness” is defined by
formula close, using nested applications of the basic
closure operator of the logic (the number of nested appli-
cations has been determined by trial and error in this
example, but it can easily be related to real-world dis-
tances).

2. A spatio-temporal conglomerate happens when two
buses serving the same route pass by the same stop in
a short amount of time. This case is subtler than the
previous one, as it does not necessary imply that the (spa-
tial) distance between two subsequent buses becomes too
small. One way to describe such event is by the formula
timeConglomerate, which features a combination
of spatial operators (used to detect that a bus is close
to a stop) and temporal operators (used to identify the
spatio-temporal conglomerate). For instance, consider
the formula busAfterBus1. This formula is true on
points that are: (i) part of a bus stop, and close to bus1,
because busAtStop must be true for bus1; (ii) such
that, in one6 time step, these will be part of a bus stop,
and close to either bus2 or bus3. Note that the use
of spatial and temporal connectives in the same formula
permits one to refer to the colour of points at a spe-
cific time, and at subsequent time instants. However,
we remark that complexity of model checking spatio-

6 More than one time step can be required. This can be achieved by
repeated nesting of applications of E X operators. We did not do so for
the sake of clarity in Fig. 11.

temporal conglomerates in this way is proportional to
the number of considered buses. In Sect. 7 we will thus
use a slightly more elaborated notion of spatio-temporal
clumping, which does not require to instantiate a sub-
formula for each bus.

Once establishedwhat is the kind of clumping one is inter-
ested in, one may use temporal operators to detect points
where, for example, clumping will happen at some point in
the future. Figure 11 is obtained with topochecker, start-
ing from the positions of three buses serving the same route.
Figures 11a-11e are obtained by mapping bus coordinates
over a basemap.Buses are represented by squares of different
shades of red. The dark blue square is a bus stop. Figure 11f
shows the output of themodel checker in the initial statewhen
checking the formulaE F timeConglomerate. Indeed,
Fig. 11f is the same as Fig. 11a, except for the colour of one
bus stop, whose points are coloured green as the result of the
model checking procedure indicating that clumping happens
at that stop, eventually in the future.

As the model checker is a simple prototype, we do not
provide accurate performance information. We just remark
that execution time is in the order of a few seconds on a
standard laptop for this example, in which over one million
points (approximate size of the image) are examined several
times (proportional to the number of sub-formulas of the
formula to be verified).

7 Analysing the effect of bus holding
strategies for operational issues

Several bus holding strategies suggested in the literature issue
wait instructions to buses to rebalance the headway between
them. The additional waiting period usually depends on the

123

300 V. Ciancia et al.

Fig. 11 Spatio-temporal conglomerate. a Initial state. b Second state. c Bus 1 passes by the stop. d Bus 2 passes by the stop. e Final state. f Result
from the model checker. Points of the initial state that will be involved in a time conglomerate are coloured

forward or backward headway (or both) of a bus at one or
more control points selected along the route (see for exam-
ple [29,42]). Other strategies suggest a maximal speed limit
that is continuously updated and communicated to the driver
based on GPS positioning data of preceding and following
buses. Although the performance of these strategies has been
studied in detail both from a theoretical point of view and by
means of simulations, it is much harder to foresee whether a
particular strategy might work in a real situation. Some tests
in real cities have been performed as well (see, for exam-
ple, [28]), but these may be very costly and time consuming
to perform. In the following we describe a method by which
spatio-temporal model checking could contribute to analyse

the effects of bus holding strategies in real cities by analysing
models obtained from a transformation of linear traces of
actual AVL data of buses on a given route.

We consider a simplified scenario of a richly-instrumented
real-time-informed system where data cleaning has been
applied as described in Sect. 4 to result in a plausible set
of observations of bus positions. In this scenario, either
driven by the central authority of the bus system, or by
an autonomous, adaptive response, buses could intervene
when short headway problems are detected by waiting for
a predefined amount of time to lengthen the headway. This
intervention may not necessarily solve the problem, but it
improves it, and it is always possible to let a bus wait

123

Spatio-temporal model checking of vehicular movement in public transport systems 301

again later if necessary. Differently from the strategies in
the literature, we do not let the waiting time depend on the
headway of preceding or following buses. However, multiple
wait instructions can be issued, which is similar to wait-
ing for a longer time interval. Because the wait instructions
are issued in response to a detection of the shortening of
the forward headway, the strategy is also (self)-adaptive to
some extent. The simplified approach we assume is quite
permissive on when and where wait instructions are sent.
As such, it only serves the purpose of exemplifying how to
use spatio-temporal model checking for assessing the impact
of a mitigation strategy; studying more elaborate holding
strategies is left to future research. Note, however, that our
analysis methodology for policies does not depend on the
chosen policy, and our simplified strategy is used merely for
exemplification purposes. More complex strategies could be
checked as well. The complexity of the model transforma-
tion applied to the traces depends upon the features that are
observed (e.g., distance between buses, headway, number of
passengers, delay, etc.).

Note that the spatio-temporal model checker can be used
both to detect clumping in a system trace, as we have seen,
or to analyse a branching model where at each state, non-
deterministically, there may be several possible steps to
different future states. Such non-deterministic models rep-
resent in a concise way a great number of possible system
behaviours or scenarios, depending on the choices that may
be made at each execution step. The possibility of issuing
wait instructions to specific buses, or not doing so, introduces
non-deterministic choice points.

We designed and implemented an experiment, demon-
strating how, starting from real-world GPS traces of a
bus network, one can generate a branching spatio-temporal
model that mimics the effect of possibly non-deterministic
policies aimed at modifying the system behaviour, analyse
complex spatio-temporal properties by means of the spatio-
temporal model checker, and interactively inspect the results,
as we explained in Sect. 5, by looking at the behaviour of the
system, represented as a tree of possible states, and at maps
with superimposed bus positions and bus stops, coloured
according to the results ofmodel checking several properties.
The model generator that we implemented, and the model
checker, constitute a tool-chain which is able to accept as
input a set of GPS traces and produce as output a spatio-
temporalmodel, coloured according to theBoolean valuation
of user-defined spatio-temporal formulas. We used the tool-
chain on real data and examined the results of some relevant
formulas.

7.1 Model generator

Wedeveloped amodel generator7 taking as input a list ofGPS
positions (in the form of a comma-separated values file) of
several buses of the same route. Each item in the list consists
of a bus fleet number, a pair of GPS coordinates (expressed
in decimal degrees), and a time-stamp (year, month, day,
hour, minute, second). All the buses are operating on the
same route. The GPS traces of the buses are not assumed
to be synchronous, that is, there is no pre-established time
interval at which the GPS positions of all buses on the route
are collected, but rather, the time-stamp of each bus posi-
tion is independent from the others. Furthermore, the model
generator takes as input a list of bus stops, with their GPS
coordinates, a digital image of a portion of a worldmap (used
as background for the output, as described below), a textual
description of the GPS coordinates of its bounding box, and
a set of parameters that affect model generation, namely the
time step length (in minutes), the start and end of the con-
sidered time window (in minutes), the number of time steps
duringwhich a bus should rest in response to a “wait” instruc-
tion, the maximum delay allowed for a bus (in minutes),
and three parameters related to clumping detection, namely
a spatial and a temporal distance, and a clumping duration
expressed in time steps.

The output of the model generator is a synchronous
branching spatio-temporal model (see Fig. 12) suitable for
being loaded by topochecker. The model is synchronous
in the sense that a system state is computed for each “time
step”, that is, a user-defined time interval. The model is
branching, since at each point in time, a “clumping avoid-
ance strategy” (described below) may instruct buses to wait
for a user-defined amount of time. In that case, choice points
are introduced in the temporal flow of the model, as waiting
is considered a possible choice affecting the possible future
behaviours of the system. Model checking is thus used to
exhaustively explore all the possible behaviours.

The generated model consists of a tree representing all
the system states, and, for each state, a digital image (an
example is reported in Fig. 13) consisting of the background
(portion of world map) described above, with superimposed
the computed positions of all buses on the route, and the
bus stops. Each bus position is colour-coded by changing
the RGB coordinates of its colour at each state as follows.
The blue component is fixed to one of three values which
are not present in any point in the background map (this
permits one to pinpoint a bus superimposed to the map).
The three possible values of blue are used to indicate the
direction of the bus along the route; there are two values for

7 The source code, written in the programming language OCaml, is
available as a free andopen source software in the source code repository
of topochecker.

123

302 V. Ciancia et al.

State 40

Fig. 12 Branching spatio-temporal model generated by a bus holding strategy. State 40 is detailed using the corresponding image; this state is
analysed in one of our examples in Sect. 7

Fig. 13 One state in the generated model. Buses are colour-coded according to their direction, fleet number, and current delay. Bus stops are painted
in green (colour figure online)

the two possible end-to-end directions, plus an “unknown”
value, needed since in our experiment, the direction of each
bus is not included in the AVL data; therefore, it needs to be
detected algorithmically, which is not always possible (e.g.,
when there is only one data point, at the beginning or at
the end of the model generation process). The intensity of
the red component is proportional to the bus identifier. The
intensity of the green component is proportional to the delay
of the given bus in the generated state. All buses start with
no delay. Bus stops are painted in green.

Remark 1 We note that, although data about the direction of
buses serving each stop is available, and the model gener-
ator can encode bus stops of each direction differently, we
did not use this feature in our experiment, as the bus stops
corresponding to opposite directions are very close to each
other in the considered route, and using data about their direc-
tion would generate too much noise in this particular case.
Therefore, bus stops of the same location, related to oppo-
site directions, are intentionally painted in the same colour
in our figures and cannot be distinguished by the model
checker.

7.2 Clumping avoidance strategy

We have chosen a simple behavioural strategy for clump-
ing mitigation that detects clumping at each instant of time
using only past information about bus positions, and instruct
buses to wait—up to a maximum delay—when clumping is
detected, lasting a certain amount of time. Such a strategy,
which could be easily implemented even without centralised
control, has obvious drawbacks (e.g., the whole network can
be delayed due to a single local phenomenon), but it serves
well our purpose to check feasibility of spatio-temporal anal-
ysis based on images, using real-world data and a realistic
behavioural model generation.

Getting into more detail, for each bus, the internal state
of the model generator includes the current delay, and the
past positions occupied by the bus at each time step, since
the first time step in which information about that specific
bus was found in its GPS trace. For time steps in which more
than one GPS position is found in the input data, positions
are averaged, whereas for time steps in which no position is
available, the previous position is used. Clumping is defined
by three parameters, namely a temporal distance t , expressed

123

Spatio-temporal model checking of vehicular movement in public transport systems 303

in time steps, a spatial distance s, expressed in metres, and a
clumping duration d, expressed in time steps.We then define
the asymmetric clumping relation c(b1, b2) where b1 and
b2 are bus identifiers. Relation c(b1, b2) holds whenever b1,
following b2, is at a bus stop—therefore able to wait for some
time—and, for each time step x in the last d steps, there is a
time step y between x − t and x in which the spatial distance
between the position of b1 at x and the position of b2 at y
is less than or equal to s. The role of the parameter t is to
define a maximum temporal interval between two buses to
consider them in a situation of clumping. If the situation is
as described above, this means b1 passed by “roughly the
same” (parameter s) points as b2 in a “too short amount of
time” (parameter t), for “too long” (parameter d). Therefore
b1 should be delayed. For instance, taking d = 2, t = 5 and
s = 500 metres, clumping occurs for b1 if b1 passes by a
point x (+/− 500m, i.e., s) within 5 time steps (i.e., t) after
b2 passed by x , and this happens again in the next time step
for a point x ′ where b2 passed by and b1 reached x ′ within 5
time steps after b2. If the current delay of b1, plus the user-
specified waiting time, is less than or equal to the maximum
allowed delay time for a bus (which is also user-defined), then
a choice point is generated, corresponding to the possibility
of letting b1 wait; the future behaviour is thus divided into
two branches. On one branch, model generation proceeds
as if no clumping has been detected. On the other branch,
all the future positions of b1 are delayed by the specified
wait time. Note that there may be a bus b3 following b1, that
becomes in turn too close to b1 because b1 is waiting. This
may indeed be detected as clumping in some subsequent step
of the generation process, and produce another branch in the
generated model.

Themodel generation that we implemented is rather prim-
itive in nature. In particular it does not account for guessing
intermediate positions of a bus when no position is avail-
able in one time interval, and does not take into account the
fact that a bus may be delayed due to external conditions
(e.g., sudden, unpredictable traffic jams) that would there-
fore affect all the future positions of a bus and would require,
e.g., a discounting factor in computing future positions after
a bus rests for a given time. Such considerations, together
with experimentationwithmore complex strategies (see, e.g.,
[17]), can be easily accounted for in our methodology, by
changing the clumping detection function and the computa-
tion of derived traces. However, the simple method that we
implemented is sufficient for interactive experimentation for
model checking purposes, and demonstrates usability and
feasibility of a tool-chain comprising branching model gen-
eration and spatio-temporal model checking in the context of
smart transportation.

7.3 Experiment setup, model size and execution
time

We used as input the GPS traces of 12 buses over route 100
(Airport-City Centre) in Edinburgh, UK, kindly provided by
LothianBuses.We experimentedwith a trace length covering
one hour and a half (drawn from several days of original GPS
traces), which in our tests has proved sufficient to provide
interesting behaviour without giving rise to unmanageable
model sizes. We remark that it would not be very interesting
to employ much longer trace lengths; it is expected that any
reasonable bus holding strategy would “reset” the maximum
delay after some period of time, to permit the strategy to
take place again. Otherwise, the “maximum delay” parame-
ter of the model would quickly prevent any further response
to clumping after all buses have reached the maximum value.
In the model we generate, there are buses that reach the max-
imum delay within the given time frame; therefore, longer
traces would not be significant in evaluating properties of bus
holding strategies such as the one we investigate.

Although we did not compute accurate statistics on our
data, we can provide some estimates onmodel sizes. Approx-
imately, one hour and a half of input data are covered by 2000
input GPS positions. The generated branching model (see
Fig. 12) consists of about 800 states. A digital image (pixel
size: 340x100) is associated to each state. The on-disk size of
the generated model (including all files, suitable for analysis
by topochecker) is about 80MB. All test were executed
on the same machine (see Sect. 7.4). The time for model
generation is in the order of 10 seconds. As we shall see,
analysis via model checking, depending on the considered
formula, ranges between a few seconds and a few minutes
resulting in a rapid work-flow for interactive refinement of
the logic formulas that are used. Such low numbers indicate
that larger models (e.g., using higher-resolution images, or
more detailed input traces) would be tractable. However, as
we already explained, the considered data size is appropriate
for the task that we illustrate, and in our experiments there
was no need for heavier workloads.

The model generation parameters (see Sect. 7.1) were
instantiated as follows. Time step length was set to 1 minute;
the considered time window starts at 7 a.m. and ends at 8.30
a.m.; the number of time steps during which a bus should
rest in response to a wait instruction was set to 2 time steps;
the maximum delay allowed for a bus was set to 6min. The
parameters for clumping detection were set as follows: spa-
tial distance set to 500m; temporal distance set to 5 time
steps; clumping duration set to 2 time steps. As the route is
served on average by one bus every 10min, such parame-
ters seem realistic. We experimented with variations of the
chosen parameters without observing noticeable changes of
model size and computation times.

123

304 V. Ciancia et al.

7.4 Spatio-temporal properties

The spatio-temporal model obtained as described above con-
tains a lot of information, relating bus positions to several
features, e.g., individual bus delay, spatial aspects (such as
the position of bus stops, or the distance between buses) and
temporal aspects. Looking at such highly structured infor-
mation may be a hard task; although numerical indicators
may be derived, these do not capture the complexity of the
observed phenomena. Our spatio-temporal logical language
is used as a query language, in the spirit of queries over
structured data in traditional relational databases, in order to
extract complex structured information from the data of the
generated model.

In the remainder of this section, we illustrate some rele-
vant queries for the smart buses scenario, explain how they
are built, and show the model checker output. Such output
consists of an image for each state s of the model, coloured
according to the truth value of each formula at each point of
themodel at state s.We just show the image associated, in the
model checker output, to the initial state, as this is sufficient to
get a glimpse on how such formulas operate; however, part of
the effectiveness of using topochecker in this case study
is the possibility of interactive exploration of the results (as
we mentioned in Sect. 5), by using graphviz to visualise the
Kripke model, and open the associated image in the model
checker output, when clicking on a state. For each consid-
ered formula, we also provide a rough estimate of execution
times; these are based on a desktop machine equipped with
an intel core i7 processor and 8 gigabytes of central memory.
CPU power directly (linearly) affects execution time, since
the spatio-temporal model checking algorithm is linear in
the size of the model. The algorithm is a global in-memory
model checker, therefore RAM size only affects feasibility
of the analysis, since the model must fit into memory to be
analysed; we note that in our experiment, the model size is
just about 80MB, which is two orders of magnitude smaller
than the maximum available at the machine in use.

First of all, we need to set up some abbreviations for
formulas that have a concrete meaning in our scenario,
namely bus stops, buses, direction, and delays, based on
the colour coding used by the model generator. Such
abbreviations are reported in Fig. 14, and their meaning
should be self-explanatory. Note that formulascentreBus,
airportBus, and unknownBus represent directions
(going to the centre, going to the airport, or unknown). The
direction of a bus is detected algorithmically in the model
generator, and can therefore be unknown, e.g., when there is
only one data point, or when there are zero (both things only
happen at the beginning and end of the given AVL trace).

Furthermore, we need to introduce some general-purpose
definitions of parameterised formulas (that is, derived opera-
tors), reported in Fig. 15, and formally introduced in Sect. 2

Let centreBus = [blue == 10];
Let airportBus = [blue == 15];
Let unknownBus = [blue == 13];

Let bus = centreBus | airportBus | unknownBus;
Let bus1 = bus & [red == 0];
Let bus2 = bus & [red == 15];
Let bus3 = bus & [red == 30];
Let bus4 = bus & [red == 45];
Let bus5 = bus & [red == 60];
Let bus6 = bus & [red == 75];
Let bus7 = bus & [red == 90];
Let bus8 = bus & [red == 105];
Let bus9 = bus & [red == 120];
Let bus10 = bus & [red == 135];
Let bus11 = bus & [red == 150];
Let bus12 = bus & [red == 165];

Let delayed = [green > 0];
Let delayed1min = [green == 5];
Let delayed2mins = [green == 10];
Let delayed3mins = [green == 15];
Let delayed4mins = [green == 20];
Let delayed5mins = [green == 25];
Let delayed6mins = [green == 30];

Let busStop = [red == 0] & [green == 255] & [blue == 0];

Fig. 14 Abbreviations for relevant image features based on the colour
coding of the model generator

Let reach(x,y) = !((!y) S (!x));
Let touch(x,y) = x & reach(x|y,y);
Let everywhere(x) = x S FF;
Let somewhere(x) = !(everywhere(!x));

Fig. 15 Some general-purpose parameterised formulas

and [13]. Let us recall the meaning of the derived operators
with the notation used in the tool. Formula touch(x,y),
based on the inner formula reach(x,y), identifies all
the points laying in an area, say A, such that each point
in A directly touches either one point satisfying y or
another point in A, and all points in A satisfy x . For-
mula everywhere(x) is a global assertion operating
on connected spaces; it denotes all points of the space,
when all points satisfy x , and no point otherwise. For-
mula somewhere(x) is a “global” assertion (on connected
spaces) in turn; it either denotes all points of the space, when
there exists at least one point satisfying x , or no point, if there
is no point satisfying x .

First, one can check whether the considered trace length
(one hour and a half) is enough to capture the interesting
dynamics of the chosen bus holding strategy. In the case of
our simple strategy, we assume that if buses reach their max-
imum waiting time, they should soon be “reset” (e.g., by
allocating a waiting time in the final destination, that can be
adjusted depending on the situation). Long traces become
less significant if some buses reach their maximum delay in
the generated model. This is checked via the formula

somewhere(E F (bus & delayed6mins));

123

Spatio-temporal model checking of vehicular movement in public transport systems 305

The tool topochecker takes 30 seconds to verify this
formula, and colours in red all the points of each state (but
note that it is sufficient to look at thefirst state), demonstrating
that there are buses that reach the maximum delay time. Note
that there are, necessarily, paths where buses do not reach the
maximum delay (as wait instructions generate choice points
in the model, therefore they are “optional”).

One problem of the considered strategy is that it may slow
down the whole network. The considered bus route has an
expected frequency of one bus every 10min. We will now
use the model checker to verify if there are bus stops where
no buses pass by for 15min, which would be a noticeable
delay. This will be done by model checking the generated
model, considering both the case in which no bus is delayed
(therefore, the problem is intrinsic to the considered data),
and the case where delay is permitted (therefore, additional
problems found are to be related to the chosen behavioural
policy).

In order to consider only system states with / without
added delay, we first define the formulas noDelay and
delay:

Let noDelay = everywhere(!(bus & delayed));
Let delay = somewhere(bus & delayed);

Next, we define two formulas related to the presence
of buses at stops. Formula busAtStop(dir) identi-
fies points belonging to a stop where there is a bus
travelling according to the specified direction. Formula

emptyStop(dir) identifies points belonging to a bus
without any bus travelling in the given direction (note that,
by Remark 1, we do not take into account the direction of
each stop).

Let busAtStop(dir) = touch(busStop,dir);
Let emptyStop(dir) = busStop & (!touch(busStop,dir));

The next formula is parameterised with a parameter del,
which will be clarified later and is related to the delay of
buses, a direction, and a continuation cont . It is used to iden-
tify a bus stop that is empty (with respect to buses passing in
the specified direction), satisfies d, and in at least one possible
next time step, also satisfies cont .

Let noBusesStep(del,dir,cont) =
emptyStop(dir) & del & (E X cont);

Passing a continuation is used to simplify formula
noBusesFifteenStepsDir described below. Such for-
mula is still parameterised over del and dir , and computes
the points belonging to a bus stop which is not served by
any bus in the given direction for 15 steps, and satisfies del
at each step. Additionally, we check that the last step is not
a final state (which implies that also intermediate steps are
not final). Not including final states is needed as those states
are the points where the path is artificially truncated by the
end of the model generation process. Therefore such states
exhibit an artificial infinite loop (“deadlock”) that should not
be taken into account, for example, because a bus stop that
is empty in a deadlock state will stay empty forever. Such
deadlocks are the result of using finite models (such as the
model we generate) when considered as Kripke structures in
model checking. Themodel checkertopochecker defines
a special predicate, named deadlock, to denote points of
such states.

Let noBusesFifteenStepsDir(del,dir) =
noBusesStep(del,dir,
noBusesStep(del,dir,
noBusesStep(del,dir,
noBusesStep(del,dir,
noBusesStep(del,dir,
noBusesStep(del,dir,
noBusesStep(del,dir,
noBusesStep(del,dir,
noBusesStep(del,dir,
noBusesStep(del,dir,
noBusesStep(del,dir,
noBusesStep(del,dir,
noBusesStep(del,dir,
noBusesStep(del,dir,
noBusesStep(del,dir,
emptyStop(dir) & del & (![deadlock]))))))))))))))));

In order to get significant results, such property should be
checked twice, with the dir parameter set to airport Bus
and centreBus, respectively. This can be done as follows:

Let noBusesFifteenSteps(del) =
noBusesFifteenStepsDir(del,airportBus) |
noBusesFifteenStepsDir(del,centreBus);

123

306 V. Ciancia et al.

The formula can be instantiated with del set either the
noDelay property defined above, in order to restrict check-
ing to states (and paths) where no delay is introduced at any
step by the chosen clumping mitigation strategy, or passing
as del the TT logical constant (true at every point in every
state) in order to avoid such restriction.

In the initial part of the generated model (first 40min, just
one branching point introduced, middle part of the model
depicted in Fig. 12), this property is true at some states for
some stops, even with no delay added by the clumping mit-
igation strategy. Therefore, the problem was already present
in the input data. After 40 time steps, there is no stop satisfy-
ing this property without considering added delay, whereas
there are several stops where the issue manifests, if added
delay is taken into account. This indicates that the consid-
ered clumpingmitigation strategymay indeed introduce large
delays in the bus network. In Fig. 16, we show the model
checker output8 in State 40 (highlighted in Fig. 12), for
the formulas noBusesFifteenSteps(noDelay) (in
red) andE F noBusesFifteenSteps(noDelay) (in
orange); indeed, no point is coloured in orange or red, as there
is no future state exhibiting bus stops where no bus passes
by for 15min. Cumulative execution time for both formulas
is about 5min. The model checker output can be inspected
by looking at the tree of system states, paired with the corre-
sponding images. In doing so, starting from the initial state,
one observes that evaluating the formulas at later time steps,
some stops turn red, then orange, then red again, then green.
In the initial state, some stations will not be reached by buses
for quite some time, therefore they are red. Such issue could
be considered spurious; however, later in time, as we already
mentioned, there is a point in the input trace where the con-
sidered bus stops actually are not served by any bus for a long
time. This is correctly highlighted by the model checker (the
orange-coloured stops) in all states preceding the problem.
Then the issue manifests, and stations are correctly coloured
in red until a state is reached where the problem is no longer
present.

In Fig. 17, we show the model checker output at state 40,
for the formulas noBusesFifteenSteps(TT) (in red)
and E F noBusesFifteenSteps(TT) (in orange).
Execution time is about 4 minutes. In this case, it is apparent
that there are stops, especially in busy areas such as the airport
and the city centre, that become problematic if the clumping
mitigation strategywe are considering is used. Note that such
results are obtained by looking at all system paths, therefore
one should not think that all the potentially problematic stops
become so in the same run of the system. Further inspection
of the tree of system states can also be used to identify the

8 States are numbered in the implementation and output for each state
can be directly viewed without navigating the Kripke structure.

choices that may lead to states with more stops exhibiting
large delays.

Finally, since our strategy is designed to mitigate clump-
ing, one may wonder if that really happens. We can check
this by a variation of the method we used in formula
noBusesFifteenSteps(d). Intuitively, both clumping
and “too few buses” are indications about the frequency of
buses at stops. This explains the similarity between the two
formulas.

Let clumping(del,dir) =
del & busAtStop(dir) &

(E X ((del & emptyStop(dir)) &
(E X ((del & busAtStop(dir)) |

(E X (del & busAtStop(dir)))))));

Let notDelayedClumping =
touch(busStop,

E F (clumping(noDelay,airportBus)
| clumping(noDelay,centreBus)));

Let delayedClumping =
touch(busStop,

E F (clumping(delay,airportBus)
| clumping(delay,centreBus)));

Formulaclumping(del,dir), similarly tonoBuses
FifteenSteps, only analyses states (and paths) that sat-
isfy the property passed as parameter del. The additional
parameter dir is necessary as, in the particular case of this
route, buses going in opposite directions pass very close to
stops of both directions; therefore one needs to check sepa-
rately for each direction whether a clumping happens.

Once this is clarified, it is easy to see that formula
clumping(del,dir) checks whether a bus of the spec-
ified direction is calling at a certain bus stop, then at step
2 no bus is calling at that stop, and finally, there is another
bus calling at that stop in one or two subsequent steps. Such
a situation is clearly an instance of the clumping problem;
requiring the bus stop to be empty (i.e., no bus calling at it) for
one stepmakes sure that the formula can bemodel checked in
constant time with respect to the number of buses employed
on the route: one does not need to check that the bus calling
at the stop in step 2 is different from the one being there at
step 1. Note that from step 3 on, any bus at the stop can be
expected to be different from the one calling at the same stop
in step 1, since the same bus is guaranteed to have left the
stop in step 2. This way one does not need to instantiate the
clumping formula for each possible “current” bus.

The size of the (simpler) timeConglomerate for-
mula presented in Sect. 6 is linear in the number of buses,
which results in too high model checking time when check-
ing for clumping that lasts more than 1 time step. Indeed
the two formulas can be combined (detect if in the second
step a different bus is present, then use the formula defined

123

Spatio-temporal model checking of vehicular movement in public transport systems 307

Fig. 16 Output at state 40 of the formulas noBusesFifteenSteps(noDelay) andE F noBusesFifteenSteps(noDelay). No point
is coloured by the model checker

Fig. 17 Output of the formulas noBusesFifteenSteps(TT) (in red) and E F noBusesFifteenSteps(TT) (in orange) at state 40
(colour figure online)

in this section to check clumpings with a length of more
than one step), but in this particular experiment, possibly
due to larger than usual distances between stops, we found
very few clumpings of the type detected by the formula of
Sect. 6. The two formulas notDelayedClumping and
delayedClumping identify bus stops that will eventually
contain clumpings, restricting analysis to states and paths
without added delay (that is, the original trace) and to states
and paths that have delay (that is, some buses have been wait-
ing due to the waiting policy). The touch construct is used
as a visual aid, to colour the whole bus stop, as the result
of verification may colour a stop only partially in certain
circumstances, due to a bus being held in a station and over-
lapping with it in the image. The two formulas take about
3 minutes each to be checked. Results (in the initial state)
for the “no delay” case are reported in Fig. 18, whereas
results in the same state for the “delayed” case are reported
in Fig. 19, and clearly show effectiveness of the mitigation
strategy. Almost all the bus stops exhibit clumping if no wait
instruction is sent to buses.

8 Further related work

Spatial analysis has become an increasingly popular and var-
ied area of research. Following is a selection of such research
mainly addressing spatial issues in transportation illustrating
the issues. A spatial time series model for tracking planned
journeys is presented in [43] although their main area of

concern is vehicle speed forecasting rather than detection
of outliers. The detection of outliers has been addressed by
applying stochastic approaches. In [32] amethod is presented
for snapping GPS data onto a road network using a Hidden
Markov Model. Noisy GPS data is identified as being the
largest problemwith snappingGPS readings onto roadmaps.
The authors report that GPS signals can be reasonably mod-
elled as a zero-meanGaussianwith a standard deviation of 10
metres. In [24] the authors present an approach to inferring
the lane structure of roads from GPS data by fitting a mix-
ture of Gaussians to GPS traces. This probabilistic approach
naturally models the inherent noise in GPS data. In [35],
instead, the authors apply the concept of functional depth to
the identification of outliers in GPS observations. Outliers
are identified by detecting curves rather than central values
as in traditional statistical tests for comparing distributions.

The problems of headway computation are also consid-
ered in [36], where Monte Carlo simulation and time series
analysis are used to evaluate a family of interpretations of an
ambiguous regulation governing headway for frequent bus
services.

From a more theoretical point of view, different forms of
spatial logic have been proposed in computer science to refer
to logics expressing properties of structured objects such as
processes or data structures, in particular in the context of
π -calculus (e.g., [8]) and mobile ambients with the related
ambient logic (e.g., [10]). For example, a binary logic oper-
ator has been introduced, Φ|Ψ , that holds for a process P
when this process is a parallel composition of two processes

123

308 V. Ciancia et al.

Fig. 18 Output of the formula notDelayedClumping (in orange) (colour figure online)

Fig. 19 Output of the formula delayedClumping (in orange) (colour figure online)

Q, satisfying Φ, and R, satisfying Ψ . Works such as [9,30]
introduce notions of physical space in the context of process
calculi; it is an interesting futurework to connect this research
line to spatio-temporal model checking. Furthermore, in a
stochastic setting, the Mobile Stochastic Logic (MoSL) [20]
has been proposed to predicate on mobile processes in mod-
els specified in StoKLAIM, a stochastic extension ofKLAIM
based on the tuple-space model of computations. Also log-
ics for reasoning on signals have been enhanced with spatial
aspects [3,6,25,27,33].

Other variants of spatial logics concern the symbolic rep-
resentation of the contents of images, and, combined with
temporal logics, for sequences of images [21]. The latter
is based on a discretisation of the space of the images in
rectangular regions and the orthogonal projection of objects
and regions onto Cartesian coordinate axes such that their
possible intersections can be analysed from different per-
spectives, whereas in [27] a linear spatial superposition logic
is defined for the specification of emergent behaviour. The
logic is applied in the context of medical image analysis for
the recognition of patterns.

The spatial logic SLCS [12,13] and its spatio-temporal
variant STLCS [11] used in the current paper, instead,
addresses properties of discrete, graph-based models; such
kinds of models include geographical maps, but also multi-
dimensional images (see, e.g., [4] for example applications
in the medical imaging domain), and richer data structures
such as bigraphs (see [39] for applications of further spatio-
temporal extensions of SLCS, in the field of verification of
Cyber-Physical Systems).

In the context of self-organising systems, a spatial lan-
guage has been proposed in [19] which can be used to assess
spatial properties of system components to check desired
global properties of the system against emergent global
behaviours arising from local interactions among compo-
nents. Spatial awareness is also an important issue in the
context of pervasive ecosystems [22]. In that context the
development of computationalmodels is considered inwhich
the entire structure of a pervasive system is modelled and
constructed using an explicit spatialmodel, supportingmulti-
level spatial reasoning, and adapting autonomously to spatial
interactions.

9 Conclusions

The use of a spatial model checker provides us with a sophis-
ticated tool for checking complex properties over systems
where location plays an important role, as it does in many
collective adaptive systems (see for instance [40]). Using this
tool we have been able to detect and correct a wide range of
location-related errors in vehicle location data. By enhancing
the logic and the model checker with a temporal perspective,
the interplay of space and time has allowed us to define com-
plex spatio-temporal formulas, predicating over the relation
between points of a coloured image that evolves over traces or
branching models. This methodology achieves a declarative
approach to verification of spatio-temporal properties. This
has a clear advantage over ad-hoc implementations of spatial
analysis algorithms, because slight changes in the interpreta-
tion of given requirements do not impact the implementation

123

Spatio-temporal model checking of vehicular movement in public transport systems 309

of the verification tools, as only the logical formalisation of
requirements needs to be changed.

From the experiment that we presented in Sect. 7, one can
conclude that model sizes and model checking times are rea-
sonable for analysing simulations of bus holding strategies
on real-world data using spatio-temporal model checking.
Furthermore, the output format of the model checker makes
it possible to explore the results of model checking inter-
actively, by looking at the tree of all system states in the
generatedmodel, and looking at colouredmaps for each state;
a user of the system can therefore inspect the temporal evolu-
tion of theBoolean properties that are computed by themodel
checker. This can help users to detect correlations between
the results of different spatio-temporal formulas. Such intrin-
sically “intelligent” process could as well be the object of
machine learning procedures.

We note that our setup does not yet cater for statistical
analysis of the strategy taken into account. Indeed, our exper-
iment could be repeated for several different time intervals
of our input data, and the Boolean results could be turned
into measures by counting the number of positive and nega-
tive results. This approach has already been demonstrated, in
the context of bike sharing systems in [14], under the name
of “statistical spatio-temporal model checking”. Porting the
methodology to the case study of bus networks will be the
subject of future work. However, this is not straightforward,
since the models we generate are branching, whereas tradi-
tional approaches to statistical model checking only operate
on linear models. Future work will therefore need to address
concerns such as estimating statistical confidence and accu-
racy of the results in statistical model checking of branching
models.

Furthermore, it would be useful to get a more precise indi-
cation of when a wait instruction should be sent to a bus, e.g.,
by enumerating the traces that have no clumpings. An algo-
rithmic way to obtain examples of such promising traces in
which clumping is avoided is to generate a counterexam-
ple for AF f, where f is a formula indicating clumping.
Counterexample generation for CTL (and more in particular
for a subset of ACTL for which trace-like counterexamples
can be generated in polynomial time) is a well-studied area
(see for example [7,16]). In particular, it is known that trace-
like counterexamples can be generated in polynomial time
using the algorithm described in [7]. The formula above is
indeed of the type forwhich trace-like counterexamples exist.
The generation of counterexamples in the context of spatio-
temporal model checking is planned as future work; earlier
experiments in this direction were made in the first prototype
spatio-temporal model checker that was implemented before
topochecker, but have not yet been ported to the new
tool.

Recentwork [13] is focused on defining collective variants
of spatial and spatio-temporal properties; that is, the satisfac-

tion value of a formula is defined on a set of points, rather
than on a single point, so that the satisfaction value of a for-
mula with respect to a set of points (a collective property)
is not necessarily determined by the satisfaction values over
the points composing the set (an individual property). Such
interpretation of spatio-temporal logics is particularly moti-
vated by the setting of collective adaptive systems and could
as well bring interesting developments in the bus clumping
case study.

An orthogonal, but nevertheless interesting, aspect of
computation is the introduction of probability and of stochas-
tic features. In future work, the statistical spatio-temporal
model checking approach of [14] could be used to address
questions like “how likely it is that a given strategy fixes
the problem?” or “how frequently does the problem mani-
fest itself, before and after applying a given strategy?”. The
task is, however, non-trivial, as one should first understand
how statistical methods can be applied to the branchingmod-
els that we derive from traces, whereas traditional statistical
model checking only deals with traces that do not contain
non-deterministic choice points.

Acknowledgements The authors thank Bill Johnston of Lothian Buses
and Stuart Lowrie of the City of Edinburgh council for providing access
to the data related to bus positions.

References

1. Aiello, M.: Spatial reasoning: theory and practice. Ph.D. thesis,
ILLC, University of Amsterdam (2002)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press,
Cambridge (2008)

3. Bartocci, E., Gol, E.A., Haghighi, I., Belta, C.: A formal methods
approach to pattern recognition and synthesis in reaction diffusion
networks. IEEE Trans. Control Netw. Syst. PP, 1–12 (2016)

4. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: From col-
lective adaptive systems to human centric computation and back:
spatial model checking for medical imaging. In: Proceedings of the
Workshop on FORmal Methods for the Quantitative Evaluation of
Collective Adaptive SysTems, FORECAST@STAF 2016, Vienna,
Austria, 8 July 2016, volume 217 of EPTCS, pp. 81–92 (2016)

5. Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branch-
ing time. Acta Inform. 20(3), 207–226 (1983)

6. Bortolussi, L., Nenzi, L.: Specifying and monitoring properties
of stochastic spatio-temporal systems in signal temporal logic. In:
VALUETOOLS (2014)

7. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: OnACTL formulas
having linear counterexamples. J. Comput. Syst. Sci. 62(3), 463–
515 (2001)

8. Caires, L.: Behavioral and spatial observations in a logic for the
π -calculus. In: Proceedings of the 7th International Conference
on Foundations of Software Science and Computation Structures
(FOSSACS’04), volume 2987 of LNCS, pp. 72–87. Springer
(2004)

9. Cardelli, L., Gardner, P.: Processes in space. Theor. Comput. Sci.
431(0), 40–55 (2012). Modelling and Analysis of Biological Sys-
tems Based on papers presented at the Workshop on Membrane
Computing and Bio-logically Inspired Process Calculi (MeCBIC)
held in 2008 (Iasi), 2009 (Bologna) and 2010 (Jena)

123

310 V. Ciancia et al.

10. Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for
mobile ambients. In: Proceedings of the 30th SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’00),
pp. 365–377 (2000)

11. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.:
An experimental spatio-temporal model checker. In: Software
Engineering and FormalMethods—SEFM 2015 CollocatedWork-
shops, volume 9509 of Lecture Notes in Computer Science, pp.
297–311. Springer (2015)

12. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and
verifying properties of space. In: Springer (ed.) The 8th IFIP Inter-
national Conference on Theoretical Computer Science, TCS 2014,
Track B, volume 8705 of Lecture Notes in Computer Science, pp.
222–235 (2014)

13. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking
spatial logics for closure spaces. Log.Methods Comput. Sci. 12(4),
1–51 (2016)

14. Ciancia, V., Latella, D., Massink, M., Paskauskas, R., Vandin,
A.: A tool-chain for statistical spatio-temporal model checking of
bike sharing systems. In: Margaria, T., Steffen, B. (eds.) Leverag-
ing Applications of Formal Methods, Verification and Validation:
Foundational Techniques—7th International Symposium, ISoLA
2016, Imperial, Corfu, Greece, 10–14 October 2016, Proceedings,
Part I, volume 9952 of Lecture Notes in Computer Science, pp.
657–673 (2016)

15. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In: Logic
of Programs, volume 131 of Lecture Notes in Computer Science,
pp. 53–71. Springer (1986)

16. Clarke, E.M., Veith, H.: Counterexamples revisited: principles,
algorithms, applications. In: Dershowitz, N. (ed.) Verification:
Theory and Practice, Essays Dedicated to Zohar Manna on the
Occasion of His 64th Birthday, volume 2772 of Lecture Notes in
Computer Science, pp. 208–224. Springer, Berlin (2003)

17. Daganzo, C.F.: A headway-based approach to eliminate bus bunch-
ing: systematic analysis and comparisons. Transp. Res. Part B
Methodol. 43(10), 913–921 (2009)

18. Daganzo, C.F., Pilachowski, J.: Reducing bunching with bus-to-
bus cooperation. Transp. Res. Part B Methodol. 45(1), 267–277
(2011)

19. De Angelis, F.L., Di Marzo Serugendo, G.: Towards a spatial lan-
guage for run-time assessments in self-organizing systems. In:
2015 IEEE 9th International Conference on Self-Adaptive and
Self-Organizing Systems, Cambridge, MA, USA, 21–25 Septem-
ber 2015, pp. 174–175. IEEE Computer Society (2015)

20. De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., Massink,
M.: Model checking mobile stochastic logic. Theor. Comput. Sci.
382(1), 42–70 (2007)

21. Del Bimbo, A., Vicario, E., Zingoni, D.: Symbolic description and
visual querying of image sequences using spatio-temporal logic.
IEEE Trans. Knowl. Data Eng. 7(4), 609–622 (1995)

22. Dobson, S.A., Viroli, M., Fernandez-Marquez, J.L., Zambonelli,
F., Stevenson, G., Di Marzo Serugendo, G., Montagna, S., Pianini,
D., Ye, J., Castelli, G., Rosi, A.: Spatial awareness in pervasive
ecosystems. Knowl. Eng. Rev. 31(4), 343–366 (2016)

23. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J.
(ed.)HandbookofTheoreticalComputer Science (Vol.B), pp. 995–
1072. MIT Press, Cambridge (1990)

24. Fathi, A., Krumm, J.: Detecting road intersections fromGPS traces.
In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder,
C. (eds.) Geographic Information Science, Lecture Notes in Com-
puter Science, vol. 6292, pp. 56–69. Springer, Berlin (2010)

25. Gol, E.A., Bartocci, E., Belta, C.: A formal methods approach to
pattern synthesis in reaction diffusion systems. In: 53rd IEEE Con-
ference on Decision and Control, pp. 108–113 (2014)

26. Grilletti, G.: Spatio-temporal model checking: Explicit and
abstraction-based methods. Master’s thesis, Dipartimento di
Matematica, Università di Pisa (2016)

27. Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva,
E., Bartocci, E.: Learning and detecting emergent behavior in net-
works of cardiac myocytes. Commun. ACM 52(3), 97–105 (2009)

28. John III, J.B., Clark, R.J., Williamson, D.W., Eisenstein, D.D.,
Platzman, L.K.: Building a self-organizing urban bus route. In:
Sixth IEEE International Conference on Self-Adaptive and Self-
Organizing Systems Workshops, SASOW 2012, Lyon, France,
10–14 September 2012, pp. 66–70. IEEEComputer Society (2012)

29. John III, J.B., Eisenstein, D.D.: A self-coordinating bus route to
resist bus bunching. Transp. Res. Part BMethodol. 46(4), 481–491
(2012)

30. John, M., Ewald, R., Uhrmacher, A.M.: A spatial extension to the
pi calculus. Electron. Notes Theor. Comput. Sci. 194(3), 133–148
(2008). Proceedings of the First Workshop From Biology To Con-
currency and back (FBTC 2007)

31. Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spa-
tial logic + temporal logic = ? In: Aiello, M., Pratt-Hartmann, I.,
van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 497–564.
Springer, Berlin (2007)

32. Letchner, J., Krumm, J., Horvitz, E.: Trip router with individual-
ized preferences (TRIP): incorporating personalization into route
planning. In: Proceedings of the 18th Conference on Innovative
Applications of Artificial Intelligence—volume 2, IAAI’06, pp.
1795–1800. AAAI Press (2006)

33. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.:
Qualitative and quantitative monitoring of spatio-temporal proper-
ties. In: Runtime Verification—6th International Conference, RV
2015 Vienna, Austria, 22–25 September 2015. Proceedings, vol-
ume 9333 of Lecture Notes in Computer Science, pp. 21–37.
Springer (2015)

34. Newell, G.F., Potts, R.B.: Maintaining a bus schedule. In: Pro-
ceedings of 2nd Australian Road Research Board, volume 2, pp.
388–393 (1964)

35. Ordoñez, C., Martínez, J., Rodríguez-Pérez, J., Reyes, A.: Detec-
tion of outliers in GPS measurements by using functional-data
analysis. J. Surv. Eng. 137(4), 150–155 (2011)

36. Reijsbergen, D., Gilmore, S.: Formal punctuality analysis of fre-
quent bus services using headway data. In: Horváth, A., Wolter,
K. (eds.) Computer Performance Engineering—11th European
Workshop, EPEW 2014, Florence, Italy, 11–12 September 2014.
Proceedings, volume 8721 of Lecture Notes in Computer Science,
pp. 164–178. Springer (2014)

37. Ruan, Mi., Lin, J.: An investigation of bus headway regularity and
service performance in Chicago bus transit system. In: Transport
Chicago, Annual Conference, vol. 14 (2009)

38. Strathman, J.G.,Kimpel, T.J., Callas, S.:Headwaydeviation effects
on bus passenger loads: analysis of Tri-Met’s archived AVL-APC
data. Technical Report PR126, Portland State University, Centre
for Urban Studies, Oregon (2003)

39. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Modeling and verification of
evolving cyber-physical spaces. In: Proceedings of the 2017 11th
JointMeeting onFoundations of SoftwareEngineering, ESEC/FSE
2017, Paderborn, Germany, 4–8 September 2017, pp. 38–48. ACM
(2017)

40. Tsigkanos, C., Pasquale, L., Ghezzi, C., Nuseibeh, B.: Ariadne:
topology aware adaptive security for cyber-physical systems. In:
2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 2, pp. 729–732 (2015)

41. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In:
Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook
of Spatial Logics, pp. 217–298. Springer, Berlin (2007)

123

Spatio-temporal model checking of vehicular movement in public transport systems 311

42. Xuan,Y.,Argote, J.,Daganzo,C.F.:Dynamic bus holding strategies
for schedule reliability: optimal linear control and performance
analysis. Transp. Res. Part B Methodol. 45(1), 1831–1845 (2011)

43. Yan, Z.: Traj-ARIMA: a spatial-time series model for network-
constrained trajectory. In: Proceedings of the Second International
Workshop on Computational Transportation Science, IWCTS ’10,
pp. 11–16. ACM, New York (2010)

44. Zhao, J., Dessouky, M., Bukkapatnam, S.: Optimal slack time
for schedule-based transit operations. Transp. Sci. 40(4), 529–539
(2006)

123

	Spatio-temporal model checking of vehicular movement in public transport systems
	Abstract
	1 Introduction
	2 Spatial model checking
	3 Categories of data issues in the case study
	4 Identifying data issues using model checking
	5 Spatio-temporal model checking
	6 Bus operational issues: analysing headway
	7 Analysing the effect of bus holding strategies for operational issues
	7.1 Model generator
	7.2 Clumping avoidance strategy
	7.3 Experiment setup, model size and execution time
	7.4 Spatio-temporal properties

	8 Further related work
	9 Conclusions
	Acknowledgements
	References

