International Journal on Software Tools for Technology Transfer (2018) 20:243-262
https://doi.org/10.1007/s10009-018-0482-9

FORMAL METHODS FOR TRANSPORT SYSTEMS

@ CrossMark

Modelling and simulating a Thai railway signalling system using
Coloured Petri Nets

Somsak Vanit-Anunchai’

Published online: 17 January 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Itis well known that formal verification of a large railway signalling system encounters the state explosion problem. To alleviate
the problem, researchers usually concentrate on only route interlocking and abstract away other properties. Besides the route
interlocking, there are also other vital properties to which failure to comply could potentially lead to danger. According to
our experience, most of train accidents often involve human error and errors in other properties rather than errors in the route
interlocking. Thus, we encounter a dilemma between fully automated validation of an incomplete model or partial validation
of a complete model. We argue that formally modelling the complete model will be more valuable for the on-going projects
of the State Railway of Thailand (SRT) because it provides insights and can be used to train new signal engineers. This
paper focuses on the complete Coloured Petri Net model of a typical Thai railway signalling system: a double-line station
with one passing loop. The model includes train movements that can be simulated and graphically visualized. According to
SRT’s signalling principles, we have identified nine properties: route interlocking, alternative overlap, flank protection, aspect
sequence, approach signal release, approach lock, back lock, sectional route release and quick route release. Lessons learnt

from using CPN Tools to model and validate the railway signalling systems are also discussed.

Keywords Interlocking tables - Route-based Interlocking - Approach lock - Back lock - Visualization extension

1 Introduction

Currently, the State Railway of Thailand (SRT) is undertak-
ing several projects expanding and upgrading their railway
lines. These projects involve design and installation of new
signalling systems. Although SRT and contractors have been
working together, the line of responsibility between both
parties is quite clear. Usually SRT works on functional
requirement and specifications that are arranged in the form
of interlocking tables. The tables are the tabular representa-
tion specifying the routes (the allowed passage of the train)
and the states/actions of all related signalling equipment.
Taking the approved interlocking tables as their input, the
contractors are more interested in providing the hardware
and software that conform to the tables. For example, based
on the approved interlocking table, the contractors create the

B Somsak Vanit-Anunchai
somsav @sut.ac.th

School of Telecommunication Engineering, Institute of
Engineering, Suranaree University of Technology, Muang,
Nakhon Ratchasima, Thailand

ladder logic diagrams and rigorously test them using their
simulators. Based on the tested ladder logic diagrams, the
hardware and software of the interlocking equipment are
manufactured. Hence, the contractors focus on verifying the
ladder logic diagrams against the interlocking table, while
SRT focuses on verifying the interlocking tables against their
rules and regulations (signalling principles).

During the last 30 years, many research groups have been
working on the application of formal methods to railway sig-
nalling systems. A comprehensive review of the research in
this area can be found in [5,6]. Although most researchers
focus on formal verification and validation, this paper places
emphasis on formal specification instead for two reasons.
First, the motivation for using formal methods is to reduce
costs and increase productivity. To achieve this, the tools must
be used by signal engineers. However, it is likely that signal
engineers will be unable to comprehend theorem provers or
model checking algorithms, so that formal validation and
verification processes should be hidden. On the other hand,
the signal engineers are more interested in developing the
requirement specification and simulating the critical scenar-
ios. Thus, they require modelling and simulation tools that

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-018-0482-9&domain=pdf

244

S. Vanit-Anunchai

are easy to use and have high expressive modelling power.
Second, to alleviate the state explosion problem, researchers
usually abstract away a lot of the details of operating pro-
cedures and concentrate only on the route interlocking' that
prevents train collision. Besides the route interlocking, there
are other vital safety properties to which failure to com-
ply could potentially lead to danger. There are also other
properties that reduce train delay and increase flexibility
as well as efficiency. Are these properties independent or
could they interact? Could an error in a property mask out
or cause an error in another property? According to our
experience, most of the train accidents often involve human
error and errors in the other properties rather than errors in
the route interlocking. Thus, we believe that formal spec-
ification and simulation of the complete model are more
valuable for the on-going projects of the State Railway of
Thailand.

1.1 Related work

One of the good candidates for the modelling of railway
signalling systems is Petri nets. There have been many
researchers using Petri Nets for modelling railway signalling
systems, e.g. [1,8,17], but they transform the Petri Net models
into other tools in order to conduct simulation or verification.
For example, Sun [17] transformed Coloured Petri Net (CPN)
model to a B-machine model. Hagalisletto et al. [8] also trans-
formed their CPN model into Maude [3]. The verification
and validation of the railway interlocking challenge drew a
lot of attention from model checking researchers. A com-
parison study of applicability bounds when using NuSMV
and SPIN was conducted in [7]. Their result showed that
the verification of medium and large interlockings was still
out of reach. To push the applicability bounds further, sev-
eral techniques have been proposed. Winter [22] pursued a
significant improvement in run-time and memory usage by
optimizing variable and transition orderings. A pioneering
work by Haxthausen [10] systematically compared mod-
elling and verification approaches developed by two different
research groups: DTU/Bremen [9,11] and Surrey/Swansea
[12,13]. Both approaches were able to detect all injected
errors. Haxthausen et al. [9] proposed to apply bounded
model checking combined with inductive reasoning for ver-
ification and validation of interlocking systems. James et al.
[13] suggested that the nature of railway systems involved
events (e.g. train movement) and state-based reasoning (the
interlocking). To combine event-based with state-based mod-
elling, James et al. proposed to use CSP||B for the modelling
language. Incidentally, we point out that Petri Nets already
combines event-based and state-based modelling. In [13]

! No conflicting route can be used at the same time by multiple trains.

@ Springer

James et al. also suggested three abstraction techniques. First,
they reduced the verification problem for any number of
trains to that of a two-train scenario. Second, they decom-
posed a large scheme plan into a set of smaller ones such
that the safety of all smaller scheme plans implied the safety
of the original scheme plan. Third, they abstracted a scheme
plan such that checking the abstract scheme plan was enough
to ensure that the required safety properties hold for the con-
crete plan. Although James et al. [13] assumed that the train’s
length was shorter than a track segment, in [12] they pushed
further by allowing trains to span any number of track seg-
ments.

1.2 Previous work

In 2009 we [18] used CPNs [14] and CPN tools [2] to model
and analyse the signalling system of a single track railway
station. To build the model, we needed two pieces of data:
the signalling layout and the interlocking tables. The CPN
model was divided into two parts according to the data. First,
a CPN model that mimics the signalling layout and simu-
lates the train movements was created. Second, a generic
model of the interlocking tables coded the content of the
interlocking table into ML functions which are called on
arc inscriptions or in guards. Modelling interlocking tables
of other railway stations was simply done by changing the
content of the ML functions. These ML functions were
automatically generated from the interlocking table using
Extensible Stylesheet Language Transformations (XSLT).
By exhaustively searching for the states where trains col-
lide, we formally verified this CPN model [18]. Nevertheless
[18] had two problems. Firstly, where we had many signalling
devices working together, the CPN diagram became too com-
plex. Secondly, although the system was safe, the signalman
could give sequences of route setting instructions that led the
train traffic into a deadlock. Using state space generation,
our CPN model generated a lot of safe terminal states that
had no train collision but in which the train traffic was in
a deadlock. This was inconvenient when investigating ter-
minal states. To eliminate the first problem, we modelled in
[19] the signalling layout by encoding the geographic infor-
mation into fokens, data values that can have an arbitrarily
complex (user defined) data structure. When the signalling
layout is modified or rebuilt, we simply change the initial
state of the model without having to modify the model struc-
ture itself.

To avoid the traffic deadlocks in the second problem,
the CPN model in [20] included the automatic route set-
ting and automatic route cancelling functions. The automatic
route setting is when the route setting is triggered by track
occupancy. According to SRT’s rules and regulations, the
signalman can set the route only when the train is approach-
ing. The track occupancy will alarm the signalman so that

Modelling and simulating a Thai railway signalling system using Coloured Petri Nets 245

he will set a route accordingly. On the other hand, if a route
has been set but no train arrives, the signalman must can-
cel that route. Instead of manually setting and cancelling the
route by a signalman, it is possible to implement both auto-
matic route setting and automatic route cancelling functions.
However, these functions are not defined in the current SRT
interlocking tables.

Despite having solved the two problems of [18] in [19]
and [20], there are still another two fundamental problems.
Firstly, encoding the geographic information into fokens
in [19] made the CPN model too difficult to read. Our
counterparts, SRT’s signal engineers, prefer the CPN model
that mimics the signalling layout and simulates the train
movements. To solve this problem, in [21] we used the
visualization extension” of CPN Tools to display the status
of signalling equipment representing train movements and
signal aspects. Secondly, because of abstraction and assump-
tions, none of our previous CPN models had included all
properties in the interlocking table. Thus, we rebuilt a com-
plete model of a double-line station with one passing loop,
named Don Si Non. Our new model has included all proper-
ties in the interlocking table.

1.3 Contributions

For the sake of clarity, in [21] we avoided the complex
ML functions and illustrated the unfolded version of the
CPN model by instantiating arc functions with the con-
tents excerpted from the interlocking tables. This paper is
an extension version of our work in [21]. The contribution
of this paper is threefold. First, this paper summarizes SRT’s
signalling principles and identifies nine desired properties.
Second, in addition to the unfolded CPN model in [21], this
paper illustrates the folded version of the CPN model which
covers nine desired properties. Third, this paper introduces
the generic CPN model of the train movements. It has been
further refined from [19] so that the simulated train can span
over one or two track circuits. By replacing the configuration
data (tokens), we can reuse the same CPN diagram with other
station layouts as well.

The rest of this paper is organized as follows. Section 2
summarizes the SRT’s signalling principles and desired prop-
erties. Section 3 describes the CPN model of the interlocking
and the train movements. Section 4 discusses lesson learnt
and perspective. Section 5 presents conclusions and outlines
suggested future work. We assume that the readers have
some knowledge about Coloured Petri Nets and CPN Tools
[14,16].

2 Visualization Extension v.0.9 Developed By M. Westergaard and M.
Assiri.

2 Introduction to Thai railway signalling
system

2.1 Railway signalling plan

Typically, a railway signalling system divides the railway
tracks into multiple sections. Inside each section only one
train is allowed at a time. An example of signalling plan
shown in Fig. 1a® comprises a collection of railway tracks
and signalling equipment such as track circuits, points and
signals. Each signalling equipment has an identification num-
ber and the operating function as follows.

Track circuits A track circuit is used to detect the presence
of a train. A grey track circuit in Fig. 1a (e.g. 63T, 2-2T) is
cleared indicating no train on the track. A yellow track circuit
inFig. la(e.g. 61T, 4-4T)is set indicating thatitis reserved. A
red track circuit is occupied indicating the possible presence
of a train.

Warner signals A warner signal (e.g. 2-2, 4-2) displays
two aspects: yellow or green. It informs drivers about the
status of the next signal.

Inner and outer home signals An inner home signal
(e.g. 1-5, 3-5, 2-4, 4-4) or an outer home signal (e.g. 1-
3, 3-3) displays three aspects: red, yellow or green. The
red aspect forbids the train entering the section. The yellow
aspect allows the driver moving the train into the section but
preparing to stop at the next signal. The green aspect allows
the driver moving the train passing the section and entering
the next section. The square below the red lamp in Fig. lais
a “call-on" signal. The call-on signal informs a driver that he
could pass the home signal at stop but the track may be occu-
pied. The driver shall proceed the train at caution speed and
watch out for any object blocking the passage of the train.

Starter signals A starter (e.g. 15,16, 17, 18,31, 32) display
two aspects: red or green. The red forbids the train leaving
the station area. The green allows the train leaving the station
area.

Points A point (e.g. 101A, 101B, 111, 112, 102A, 102B)
or switch is an installation used to guide a train from one to
another track. Usually a point has a straight through track
called “mainline” and a diverging track called “loop line”.
A point in the normal position lets the train move straight
through but a point in the reverse position diverges the train
into a loop line.

Blocks Usually a railway signalling system is divided into
“within station area” and “between two stations". “Block sec-
tion" is the section between two station yards. The signalling
equipment that allows the train entering the block section is
called Block Instruments. The possible states of block sec-
tions are Normal (no train in the block section), Coming

3 For the complete picture see also Fig 4a.

@ Springer

246 S. Vanit-Anunchai
61T S31H@O
10187 OW-532 102AT
51-5 112
SO = 00 10187 g o 111 62T S15H@O o Ny 102AT 2-72T 2-4T 22T 793-1TC N G
I I i] | | » Ik | | 111
1717 1018 O_# 1018T O@-isie B 01024 e =1 OO0+
$2-4 52-2
333 028
¥ o101A 63T 517 H@O0%8 ¢ W 4721 44T 4-2T 7933TC N G
| . 11T
3717 101AT O®- 518 " 10287 OO+
S4-4 S4-2
(a)
TYPE [ROUTE | TO REQUIRES DETECTS POINTS Require Track Circuits
NO. ROUTE NORMAL CLEAR OCC__[TIME
OUTER|[3-3(M) | 3-5 [4-4(1M) 4-4(1C) 18 |[<N101> OR 3-3T 3-71T 101AT (N102 OR 101BT) (3-1BT OR| 60 Sec
HOME <R101 N111 AFTER 3-5(2M)R 3-5(2C)R> OR 3-1AT OR
<R101 R111 AFTER 3-5(1M)R 3-5(1C)R>] 3-5R)
INNER [3-5(IM)| 31 [2-4(2M) 3-3(C) 32(1) |R101 R111 R112 [<N102> OR 101AT 101BT 61T 102AT (N102 OR 102BT) | (3-71T | 60 Sec
HOME <R102> AFTER 31(2)R] = 2-72T 2-4T OR *U OR
= N102 OR 4-72T 4-4T OR *U 3-3T)

(b)

Fig. 1 a The signalling plan when routes 31(2) and 3-5(1M) are set consecutively. b The content in the interlocking tables for setting routes no.

3-3(M) and 3-5(1M)

(a train coming into the station) and Going (a train going
out of the station).

2.2 Signalling principles and desired properties

A collection of track circuits between the entry and the exit
signal along the reserved section is called “route”. The train
may enter the route only when the entry signal is cleared
(either yellow or green). Unlike the road traffic signals, after
a train passes the entry signal, the signal is replaced to red in
order to prevent another train entering that section. The route
entry permission is decided by the interlocking system using
safety rules and control methods specified in the agreed inter-
locking tables shown in Fig. 1b. The second column of the
table (“ROUTE NO.") lists the route identifications which
are labelled by the entry signal. The third column of the table
(“TQO") lists the ends of the route or the exit signals. From the
entry signal 3-5, to the exit signals 31, 15 and 17 are the routes
3-5(1M), 3-5(2M) and 3-5(3M), respectively. Instead of the
main signal, when the call-on signal is used, the route identi-
fications become 3-5(1C), 3-5(2C) and 3-5(3C), respectively.
The state of an unreserved route is called “Normal” otherwise
“Reverse" (e.g. 3-5(1M)R, 3-5(2M)R, 31(2)R in Fig. 1b).
For ease of understanding, we define the state transition
diagram of a route illustrated in Fig 2. The route is initially
in the Route Normal state. After receiving the route setting
command, the route enters the SigClearing state and the inter-
locking attempts to clear the entry signal. After the signal
clearing conditions are fulfilled, the entry signal is cleared
and the route moves to the SigCleared state. When the train
is approaching and the approach locked conditions are ful-

@ Springer

Sectional
The last route route
releasing conditions / release

Normalized route conditions
Route g Route)]
Normal Releasing

Route The first
setting condition
Back lock conditions for route
released releasing
conditions -)
BACKLOCKED_————¥SigClearing
Back lock
conditions
Approach Two-stage Two-stage
signal condition condition
relea_s_e to initiate route to initiate route
conditions normalization normalization

Approach

SigCleared
Approach Lock

locked conditions

Fig.2 Route’s life cycle

filled, the route enters the ApproachLock state. After the train
passes the entry signal, the interlocking checks the route nor-
malization initiated conditions. When the conditions are met,
the route enters the Route Releasing state and the interlock-
ing starts releasing the route section by section. When the
train arrives at the exit signal, the whole route is released.
The route returns to the Route Normal state.

2.2.1 Route setting

When a signalman attempts to set a route for a passage of a
train, to assure the safety the interlocking system must verify
the status of related track circuits, points as well as the state

Modelling and simulating a Thai railway signalling system using Coloured Petri Nets 247

of other routes. The entry signal shall not display a proceed
aspect (green or yellow) unless the reserved route is proven
safe. Hence there is no train collision or derailment. This is
called “route interlocking” property.

Firstly, the interlocking checks that the opposing routes
listed in Column “REQUIRES ROUTE NORMAL” of
Fig. 1b are not already set. These opposing routes require
the same lying of point positions and track circuits, while the
other conflicting routes not listed in this column are already
protected by the different setting of the point positions. Sec-
ondly, the points along the route are locked in the correct
position. If the related points are in the incorrect position
and unlocked, the controller will attempt to move and lock
them in the correct position (Column “DETECTS POINTS”
of Fig. 1b). Thirdly, the track circuits along the required route
are all cleared or unoccupied so that nothing obstructs the
passage of the train (Column “Require Track Circuits” of
Fig. 1b).

Alternative Overlap Overlap is a section beyond a stop signal
that must be cleared, and points must be locked before the
reserved route is set. The overlap is required because some-
times the train stops beyond a stop signal. It is possible that
a route may have more than one possible overlap depending
on the previous route locked with its point lying positions.

For example, route 3-5(1M) in Fig. 1b requires track cir-
cuits 101AT, 101BT, 61T, 102AT unoccupied as well as point
102 in the normal and locked position. However, if route
31(2) is already set (31(2)R) so that point 102 is already
reverse and locked, route 3-5(1M) requires an additional
track circuit 102BT to be cleared. Track circuits 102AT and
102BT are called “alternative overlap”.

Flank protection This is an important class of fail safe
requirement. The equipment within the surrounding area
(outside) of the reserved route that may cause an accident
shall be in the safe position even if no train is expected to
pass such signals, points or tracks. The points must lay in
a position such that they do not give any immediate access
to the route. The tracks must be either unoccupied or occu-
pied by the object that is idle or moving in the safe direction.
Even though those equipments are not located on the required
route, when the route is set, they shall be locked in the safe
position until the route is released.

The symbol “=" in the interlocking table (Fig. 1b) means
the “flank protection”. The symbol “*U” means the train is
going in the upward* direction. For example, route 3-5(1M)
requires track circuits 2-72T, 2-4T to be cleared or occupied
by the train going in the upward direction. In the case of
alternative overlap, route 3-5(1M) also requires track circuits
4-T72T, 4-4T to be cleared or occupied by the train moving in
the upward direction.

4 Outward from Bangkok.

After the route is set, the route’s state moves from Normal
to SigClearing.

Block system Although this paper focuses on the signalling
system within the station area, without the block system it
is not complete. The State Railway of Thailand uses various
kinds of Block Instrument with different operating proce-
dures. This paper selects a simplified procedure as follows.
Setting the outgoing route from the starter signal into the
block section requires the associated block to be Normal.
After the outgoing route is set, the block state is changed to
Going. The home signal can be cleared regardless of the
state of associated block section. The block normalization
process starts when the train passes the home signal of the
designation and the last wheels are cleared from the berth’
track.

2.2.2 Signal clearing

When the interlocking changes any signal aspects, it must
maintain the “aspect sequence" such that the driver must see
a yellow aspect before a red one otherwise he cannot stop
the train at the red signal. After the mainline route [e.g. 1-
5(2M), 3-5(3M), 2-4(1M), 4-4(1M)] is set, the entry signal
is immediately cleared. However, when the train diverges to
the loop line, the turnout speed must be significantly less than
the mainline speed, otherwise the train may derail. The speed
restriction is enforced by keeping the entry signal red until
its berth track is occupied for 60s. This condition is called
“approach signal release".

The first row of the table of Fig. 1b, and columns “Occ”
show two conditions on how to clear the outer home signal
3-3. Firstly, the train occupies the berth track for 60s. Or
secondly, 3-5R means that the next inner home signal 3-5
is cleared. After the entry signal is cleared, the route’s state
moves to the SigCleared State.

2.2.3 Approach lock

When the driver sees a green aspect at the entry signal, the
train usually approaches the entry signal with the full speed.
If the signalman cancels this route in order to set another route
instead, the entry signal suddenly turns into the red aspect.
The driver will not be able to stop the train at the entry signal.
To prevent a collision with other conflicting routes, the route
must be maintained and locks all related signalling devices
until the train stops at the exit signal. This function is called
“approach locking". The approach lock condition usually is
the track circuit in front of (approaching) the entry signal
being occupied. During the approach lock state, if the entry

3 The track circuit in front of the (approaching) home or starter signal.

@ Springer

S. Vanit-Anunchai

248
Route APPROACH LOCKED WHEN Type
SIGNAL CLEARED AND TC OCC
15(1) |62T 1
[101 BT (1-71T OR 1-5N)
(101AT (3-71T OR 3-5N) OR N101)
ORR 111]
2-4(2M) |WHEN CLEARED 2
3-3(M) |WHEN CLEARED WITH
(3-1AT 3-1BT 718-7T AFTER 3-5R) OR 3
3-1AT 3-1BT OCC 60 sec 4
31(2) |WHEN CLEARED
%B[101BT (61T OR 61T OCC 60 sec) Backlock
AFTER 1-5(1M)]
%B[10AT 101BT (61T OR 61T OCC 60 sec)
AFTER 3-5(1M)]

Fig.3 Examples of approach lock for routes 15(1), 2-4(2M) and 3-3(M)
and back lock for route 31(2)

signal is changed to red before the train passes, the route will
be held for 2 min before it can be released.

Among all of the properties, the approach lock property
is the most complex because the approach lock conditions
vary and depend not only on the track layout but also the
terrain and the train speed. However, we classify the approach
lock conditions into four types illustrated by examples of the
interlocking table in Fig. 3.

Type 1 is when the entry signal of the mainline route is
cleared. For example, route 15(1) (mainline) after the starter
signal 15 is cleared, the approach lock conditions are the
following:

(1) (Track 62T is occupied) or;

(2) (Track 101BT is occupied) and (Point 111 is normal) or;

(3) (Track 1-71T is occupied) and (Point 111 and 101 are
normal) and (Signal 1-5 is cleared) or;

(4) (Track 101AT is occupied) and (Point 111 is normal)
and (Point 101 is reverse) or;

(5) (Track 3-71T is occupied) and (Point 111 is normal) and
(Point 101 is reverse) and (Signal 3-5 is cleared)

Type 2 is when the approach signal condition is used to
clear the signal. For example, the approach lock of the diverg-
ing route 2-4(2M) occurs when the home signal 2-4 is cleared.

Type 3 and Type 4 are when the outer home signal is
cleared. For example, route 3-3(M), there are two approach
lock conditions:

1) Track 3-1AT or 3-1BT or 718-7T° is occupied and the
inner home 3-5 is cleared (Type 3).
2) Track 3-1AT or 3-1BT is occupied for 60s (Type 4).

After the approach lock condition is fulfilled, the route
changes its state from SigCleared to ApproachLock. Approach
lock function is released when the route normalization initi-
ates.

6 See Fig. 4a.

@ Springer

2.2.4 Back lock

An example of two consecutive routes 31(2) and 3-5(1M)
is shown in Fig. la (yellow line). When route 3-5(1M) is
set after routes 31(2) is set, route 3-5(1M) must use the
alternative overlap. If route 31(2) could be cancelled, point
102 would be in the reverse position. Consequently, route 3-
5(1M) would violate the flank protection requirement. This
situation is unsafe. Thus, route 31(2) cannot be cancelled
unless route 3-5(1M) is Normal. This is called “Back Lock"
condition. If route 31(2) is in SigClearing and route 3-5(1M)
is set, route 31(2) changes its state to BACKLOCKED. It
returns to SigClearing after 3-5(1M) returns to Normal. An
example of the back lock release conditions for route 31(2)
is shown in Fig. 3.

2.2.5 Route normalization

We classify the “route normalization” process into two
procedures: automatic route release by the train move-
ment and manual route cancellation by the signalman. The
manual cancellation is divided into three categories. First,
the emergency route release is used when some signalling
equipment fails. After the signalman issues this emergency
command, the entry signal turns to red immediately and
the interlocking will delay for 4min before normalizing
the route. Second, when the signalman attempts to can-
cel the approach locked route, the entry signal turns to red
immediately and the interlocking will delay for 2 min before
normalizing the route. Third, when the signalman cancels
the route without approach lock, the entry signal turns to
red and the route is normalized immediately. This paper
focuses on only automatic route release by the train move-
ment.

Figure 4a shows the station yard when route 16(1) is set.
The tracks in yellow are the reserved route. The track in red
is occupied by a train. Figure 4b illustrates an example of the
conditions to release route 16(1) excerpted from the inter-
locking tables. The fourth and fifth columns of Fig. 4b show
two-stage condition to initiate normalizing procedure: (Track
101BT occupied and cleared) and (Track 101AT occupied).
After this two-stage condition is fulfilled, the route enters
RouteReleasing state. The routes that uses the call-on sig-
nal do not have the approach lock property. Therefore, the
two-stage condition could also be applied to the routes using
call-on in the SigCleared state.

7 Route normalization: bring the route to the Normal state. Route
Release: cease the route reservation so that the other routes can reuse
the released resources.

Modelling and simulating a Thai railway signalling system using Coloured Petri Nets 249

61T 531-@0
10187 i O@- 532 K § 102AT
s1-1 s1-3 S1-5 r 1%
GNC OO @00 @00 1187 g1 62T S15.@0 e My 102AT 2.72T
I I — - I - .
718-5T 1-1AT 1-1BT 1-3T 1-71T 101B - @OH s16 T ® 102A
$3-1 $3-3 $3-5 1023 L
GNC +00 @00 @00 o 101A 637 S17+-@0 e'lly 4727
i [1 -
718-7T 3-1AT 3-1BT 3-3T 3-71T 101AT O®+ 518 102BT
(a)
TYPE |ROUTE| TO |ROUTE NORMALIZATION INITIATED SECTIONAL ROUTE RELEASING ROUTE LOCKING RELEASED BY
NO. TC OCC and TC RELEASES POINT REQUIRES WHEN SETTING TC
CLEAR OCCUPIED TC CLEAR ROUTE CLEAR
STATER| 16(1) | 696-8 101BT 101AT 101 101BT,101AT 3-5(1M), 3-5(1C) 101AT
111 101BT 3-5(2M), 3-5(2C)| 101AT, 101BT
3-3(M), 3-3(C) | 3-3T, 3-71T
None 3-3T,3-71T
101AT,101BT

(b)

Fig.4 a The station yard when route 16(1) is set. b The content excerpted from the interlocking table for releasing route no. 16(1)

2.2.6 Sectional route release

The route reservation enforces that all points along the route
cannot be used by another train until the train clears the last
point. This is inconvenient for a large yard with more con-
current train movements. A relaxation called “sectional route
release” is adopted. While the train passes each section, it
releases the locking affecting that section so that the points
cleared by the train can be reused by other trains. The con-
ditions of sectional route release for each point are shown in
the sixth and seventh columns of Fig. 4b.

2.2.7 Quick route release

For shunting or track work, the train may leave the plat-
form track into the block section and then return to the
station. Before the incoming route can be set, the outgoing
route has to be cancelled. The cancellation usually involves
along delay which is inconvenient and inefficient. Instead of
cancelling, the outgoing route can be released earlier when
the signalman attempts to set the return route. The last two
columns in the table of Fig. 4b are the conditions of “quick
route release . Instead of driving the train beyond outer home
signal 3-3 before releasing the route 16(1), the route 16(1)
can be released earlier (in front of the inner home 3-5) if the
signalman attempts to set route 3-5(1M) or 3-5(2M).

3 The Coloured Petri Net model

Formal methods are techniques based on mathematically
defined syntax and semantics for the specification, devel-

opment and verification of software and hardware systems.
They remove ambiguities and are indispensable for check-
ing correctness of high-integrity systems. Coloured Petri Net
(CPN) [14,16] is a formal method widely used for construct-
ing and analysing models of concurrent systems. Extending
from classical Petri Nets, CPNs inherit the concept of places,
transitions, tokens and firing. They preserve useful properties
of Petri Nets and extend the formalism to allow the distinc-
tion between tokens by attaching a data value to them. This
attached data value has an arbitrarily complex type and can be
manipulated using a functional programming language, Stan-
dard ML. An important advantage of CPNs is its graphical
notation with the abstract data types providing conciseness
with a high level of expressive modelling power. Our CPN
model has been created and maintained using CPN Tools
[2], a software package for the creation, editing, simulation
and state space/reachability analysis of CPNs. It supports the
hierarchical construction of CPN models [16], using con-
structs called substitution transitions. These transitions hide
the details of subnets and allow further nesting of substitu-
tion transitions. This allows a complex specification to be
managed as a series of hierarchically related pages which
are visualized in a hierarchy page, automatically generated.

Figure 5 shows the hierarchy structure of our railway sig-
nalling CPN model. It comprises 24 pages, 44 places and
56 transitions. The station yard comprises 4 point machines,
16 main signals, 6 call-on signals, 25 track circuits and 34
routes.

The CPN model is divided into two parts, interlocking
and train movements. The first part is the CPN model of
the interlocking comprising CPN pages: RouteReleased;

@ Springer

250

S. Vanit-Anunchai

Top_Level

>

>

>

>

>

>

Home_CallOn

>

MV_Starter
Starter_CallOn

>

LD[ApproachLockReleased]

RouteCancel

Unlockpoint(2)

Fig.5 The Hierarchy page

>

>

RouteSetting; SIGNALClearing; ApproachLoc
ked; Approach-LockReleased; BackLocked; and
RoutCancel shownin Fig. 5. In these CPN pages, the ML
functions on the arc and guard inscriptions contain the infor-
mation from each column of the interlocking tables. Usually,
these ML functions are the “case (route) of" commands com-
prising the content from every row of the interlocking table
that is very lengthy. To made it easier to understand in [21],
we instantiated these ML functions (case command) with
the content from a single row (single route). Differing from
[21], this paper adds the folded version of the CPN model
and its associated ML functions. These ML functions are
too long to be listed in this paper so that only a portion of
each ML function related to the explanation is shown in the
figures.

Although the interlocking table of each railway station has
different contents, their properties are essentially the same.
To create a prototype model, we manually extract the con-

@ Springer

[Exceitie H— Excel }—»[Swime | Word |—p{ swiie |
A

Easy to M!_
| XSD file I edit functions
Schema

Interlocking
Table

| xsL fie |

Fig.6 Transformation of the interlocking table to ML functions using
XSLT (from [18])

tent of the interlocking table and code them into the ML
functions. To model interlocking tables of other railway sta-
tions, we simply change the content of the ML functions
while using the same CPN net structures. In 2009 we [18]
successfully extracted the ML functions (Text) from the
interlocking tables (Excel). [llustrated in Fig. 6, the interlock-
ing table in Microsoft Excel was transformed to XML and
then it was transformed to ML functions using Extensible
Stylesheet Language Transformations (XSLT). All opera-
tions were done automatically using Microsoft Excel and
Microsoft Word. Unfortunately, the CPN model described
in this paper is more complex than the one presented in
[18]. Currently, we are still developing tools using XSLT
script to automatically extract the contents from the inter-
locking tables to the ML functions. On the other hand, we
discover that updating the ML function manually together
with model simulation is very useful for training new signal
engineers so that they can learn how the interlocking process
works.

The second part is the CPN model of the train move-
ments comprising CPN pages (Fig. 5): TrainMovement
and Ending_Move_DSN. The model contains the track lay-
out information used for simulating the train movements.
Our previous work [18-20] assumed that the train had no
length and occupied one track at a time. Instead this paper
requires two conditions on the train presence. First, when
the front wheels occupy the track ahead of the movement,
this condition triggers the approach lock function. Second,
when the last rear wheels do not occupy the track behind
of the movement, this condition triggers the block normal-
ization and turns off the call-on lamp. Thus, this paper
shall assume that the train’s length is shorter than a track
segment and a train may span either one or two track seg-
ments.

The railway signalling model comprises nine substitution
transitions (represented by double-line rectangles in Fig. 7)
arranged according to the typical operating sequence of a
route. Due to the space limitation, we choose to discuss
SetRoutes; ClearSignals; ApproachLocked;
BackLocked; ReleaseRoutes; TrainMovement;
Home; and MV_HOME. These in fact cover vital information
of our CPN model.

Modelling and simulating a Thai railway signalling system using Coloured Petri Nets 251

1‘|IEH
NextRouteCMD
ROUTE A
Y
< N
/—) ReleasedRoutes
RouteReleased
InitRoute InitPoint
RouteNormal RouteCMD Points
ROUTE L_NRxPIDxLU
A ROUTE — A1‘("E", "E", None) Y
N 7 > SetRoutes < A »{ RouteState
RouteSetting
ROUTEXROUTEXSTATE
Init_Block ApproachlLock
@ States
) ROUTEXAPP_STATE ~ A]
v Init_Track InitSignal
Tracks MovingTrain < 4 > Signals
TrainMovement \\
A TIDxPOS SIGNALA
CFG_T2T
\% MovingEnd
Ending Move DSN
\% ClearSignals <« / v
SIGNALClearing
/ y
\—) ApproachLocked -«
ApproachlLocked
\—) ApproachLockReleased |«
TApprachLockReleased |
N N > BackLocked -« J v
BackLocked
- \ > CancelRoutes -« J J J J
RouteCancel |
RouteCancelCMD EMZRouteCancel
ROUTE ROUTE

Fig.7 The Top_Level page

3.1 Global Declarations and route’s state

SIGNAL; Points typed by L_NRxPIDxLU; and Blocks
typed by BLOCK. The data types of signalling apparatus

Figure 8 shows the global declarations that define the data are a product or record of device identification and its
structures associated with the model. The status of signalling status (line 1-16 of Fig. 8). State transitions (line 19 of
apparatus is captured by four places in Fig. 7 (represented as ~ Fig. 8) are defined according to the route’s life cycle in
ellipses): Tracks typed by TIDxPOS; Signals typedby Fig. 2.

@ Springer

252

S. Vanit-Anunchai

(x Point -*)-

colset NR = with Normal | Reverse;

colset PID = int with 98..115;

colset LU = with LOCK | UNLOCK;

colset NRxPIDxLU = product NR * PID * LU;

colset L_NRxPIDxLU = list NRxPIDxLU;

(x———Track Circuits————-%*)-

colset TD = with noTrain | TrainCallOn | TrainUP
| TrainDOWN | TrainSTOP | TrackFailed;

colset TIDxPOS = product STRING * TD;

(x Signal *)-

: colset GYR = with G | Y | R | CCC;

. colset SIGNAL = product STRING * GYR ;

(¥————Block————— -*)-

: colset BLOCK_POS = with COMING | NORMAL| GOING;

. colset BLOCK = record bid:STRING * pos:BLOCK_POS;

(x————Route’s State———*)-

18: colset ROUTE = STRING;

19: colset STATE = with SigClearing | SigCleared

= e
NPTHWNROOOIPT R W

20: | AppLocked | BACKLOCKED | Normalize_Init

21: | RouteReleasing | None;

22: colset APP_STATE = with APP_LOCKED | BACK _LOCKED
23: | APP_LOCK_Releasing;

24: colset ROUTExREVXSTATE = product ROUTE * ROUTE
25: * STATE;

26: colset ROUTExAPP_STATE = product ROUTE

27: * APP_STATE;

28: colset CFG_T2T = product STRING

29: * STRING;

Fig.8 Global Declarations

3.2 Setting routes

Substitution transition SetRoutes in Fig. 7 is linked
to the second level CPN page named RouteSetting
which plays the central role of the route interlocking. The
states of signalling equipments are contained and linked via
the port—socket places: Points; Tracks; Blocks;
and RouteNormal. Figure 9a shows the unfolded ver-
sion of the RouteSetting page that illustrates the route
setting condition of the route 3-5(1M). Using pattern match-
ing, transition SetRoute is enabled and then executed when
the states of signalling equipments (tokens) match the input
arcs and guard expressions.

3.2.1 Checking the opposing routes

The expression on the input arc from place RouteNormal
(Fig.9a) illustrates that setting route 3-5(1M) requires tokens,
typed by multi-set of string, 1’“2-4(2M)"++ 1’“3-3(C)" ++
1732(1)" ++ 17“3-5(1M)".8 After transition SetRoute is
executed, all tokens return to the place except “3-5(1M)"
because route 3-5(1M) is no longer Normal. Figure 9a illus-
trates the conditions of route setting for only one route,
3-5(1M). This station yard has a total of 34 routes so that
34 unfolded CPN pages are required. However, we can fold
the CPN diagrams of all 34 routes into one CPN diagram as

8 «14" is the addition operator over multi-set.

@ Springer

shown in Fig. 9b. In the folded version (Fig. 9b), this required
route listed in Column “REQUIRES ROUTE NORMAL”
(Fig. 1b) is modelled by the function rroute (route).

3.2.2 Checking the points

According to the guard expression in Fig. 9a, if any of the
points (101, 111, 112) are locked in normal position, the
route 3-5(1M) cannot be set. If point 102 in the overlap is
locked in reverse position without route 31(2) being used,
the route 3-5(1M) cannot be set. The output arc expression
towards transition Set POINTLock shows that points (101,
111, 112) will be set to reverse and then locked. However,
the required position of point 102 depends on whether route
31(2) is set or not.

In the folded version of Fig. 9b, we divide the required
points into two groups: first the points that are located along
the routes (inside) and second the points that are located
within the overlap tracks and flank protection areas (outside).
The required points within the route listed in the inter-
locking table is stored in the function rpoint (route).
The required positions will be checked against their cur-
rent states by the guard function ck_points_inside_
route (). The required points outside the route listed in the
interlocking table, is stored in the function rWhenPoint
(route, rev). This required positions will be checked
against their current states by guard function ck_points
_outside_route (). It is possible that some routes do
not have any point along their routes and some routes do not
have any point inside their overlap tracks.

3.2.3 Checking the track circuits

According to the expression on the input—output arc from
place Tracks in Fig. 9a, the required track circuit condi-
tions can be divided into four groups. First, route 3-5(1M)
requires track circuits 101AT, 101BT, 61T, 102AT unoc-
cupied. Second, for alternative overlap when point 102 is
reverse, route 3-5(1M) also requires track circuit 102BT to
be cleared. Third, for flank protection, route 3-5(1M) requires
track circuits 2-72T, 2-4T to be cleared or occupied by the
train going in the upward direction. Fourth, for flank pro-
tection in case of alternative overlap, it also requires track
circuits 4-72T, 4-4T to be cleared or occupied by the train
moving in the upward direction. Figure 9b models the track
circuit requirements using four ML functions on the arc con-
nected to the place Tracks. Each function corresponds to
each group in Fig. 9a, respectively.

3.2.4 Checking the block status

The details of block conditions are not included in this paper
because they involve a lot of signalling equipments of adja-

Modelling and simulating a Thai railway signalling system using Coloured Petri Nets

253

In
1°"2-4(2M)"++1""3-3(C)"

SetRoute
Command
[In]

t"3-5(1M)"

+4+1°"32(1)"
RouteNormal /(
A"
[[n/Out f—or=" 1 "3-5(IM) 41 "2-4(2M)"
ROUTE

++1""3-3(C)"++1""32(1)"

[(trl = noTrain orelse trl = TrainUP) andalso
(tr2 = noTrain orelse tr2 = TrainUP) andalso
(case (rev, pos101,lock101 ,p0s102, lock102,
pos111, lock111, pos112, lock112) of
(_,_+_+_+_s_, _ Normal, LOCK) => false
(_/,_ _ _ _, Normal, LOCK, _, _) => false
_, Reverse, LOCK, _, _, _, _)=> true
_, _,_) => false

1'(pos101, 101, lock101)++
1°(pos102, 102, lock102)++
1'(pos1ll, 111, lock111)++

_ +_s _s Reverse, LOCK, _,
_ => false)]

|

I(
1("31(2)",_,
I(

SetRoute lelse empty)
Y

1°("101AT", noTrain)++

1°("101BT", noTrain)++

1°("61T", noTrain)++

1" ("102AT", noTrain)++

(if pos102 = Reverse then 1°("102BT", noTrain)
else empty) ++

(17("2-72T", trl) ++4 1 ("2-4T", tr1))++

(if pos102 = Reverse then

(17 ("4-72T", tr2) ++ 17 ("4-4T", tr2))

N,
Ll
TIDxPOS A

1 (rev,rev2, state)
« —{ RouteState
1
+

Y ("3-5(1M)", rev, SigCIearingﬁ

+ 1°(rev,rev2, state) ROUTEXREVXSTATE

1 “(pos112, 112, lock112)
<

>

NRxPIDxLU | A

if pos1 = Reverse then NRxPIDxLU

1" (Reverse, i, LOCK)

1" (Reverse, 101, LOCK)++

1" (Reverse, 111, LOCK)++

1" (Reverse, 112, LOCK)++

(if rev = "31(2)" then 1" (Reverse, 102, LOCK)
else 1" (Normal, 102, LOCK))

_ else 1'(Normal, i, LOCK)

» SetPOINTLock |«

2, i, lock_i
(pos2, i, lock_i) P s

case (i) of
101 => 1" ("101AT", noTrain) ++
1'("101BT", noTrain)
[102 => 1°("102AT", noTrain) ++
. 1'("102BT", noTrain)
posL/i, lu) | 111 => 1'("101BT", noTrain)
| 112 => 1" ("102AT", noTrain)
|_ => empty Y,

[(lock_i = UNLOCK

fun rtrack(route) = case (route) of
.In(.".é.—.é.(.lifl)") => [("3-3T",noTrain), ("3-71T",noTrain),
"101AT",noTrain)]
| ("3-5(1M)") => [("101AT",noTrain), ("101BT",noTrain),
("61T",noTrain), ("102AT",noTrain)]

I_=>1[1; ROUTE
fun addTrackWhenPoint(route, posi,i) =
case (route, posli, i) of

(a)

SetRoute
Command

orelse posl = pos2)]

[(ck_points_inside_route(rpoint(route), Inr)

orelse no_point_inside_route(route)) andalso
(ck_ponts_outside_route(rWhenPoint(route, rev), Inr)
orelse no_point_outside_route(route))

andalso [(pos1, i)] =rWhenPoint(route,rev)

andalso (trl = noTrain orelse tri=RA(route))

andalso (tr2 = noTrain orelse tr2=RA(route))

andalso (route <> "E")]

1" route

("2-4(2M)", Reverse, 101) => [("101AT", noTrain)]
("3-3(M)", Reverse, 101) => [("101BT", noTrain)]
("3-5(1M)", Reverse, 102) => [("102BT", noTrain)]
_=>1[I

un FIank’Track(route, trl, tr2) = case (route) of

1("3-5(1M)") => [("2-72T",
[—=>1T];

fun addFlankTrackWhenPoint(route, pos1, i,trl, tr2) =
case (route, posli, i) of
1("3-5(1M)",Reverse,102)=>[("4-72T",tr1), ("4-4T" tr2)]
l—=>11;

e

trl), ("2-4T", tr2)]

list_to_ms (rtrack(route)~»
(addTrackWhenPoint(route, posl, i))~"
(FlankTrack(route, tri1,tr2))~»
addFlankTrackWhenPoint

@ l(route, posi, i, trl, tr2))
-

Inr
A TIDxPOS

Y VY

SetRoute | ++1"route
w4

| fun rroute(route) = case (route) of

i1 ("3-3(M)") => ["4-4(1M)", "4-4(1C)", "18"]
E1("3-3(C)") => ["3-5(1M)", "3-5(2M)", "3-5(3M)",
| "4-4(1M)", "4-4(1C)", "18"]

| ("3-5(1M)") => ["2-4(2M)", "3-3(C)", "32(1)"]

_=>1[1

list_to_ms (rroute(route))

«

-)/ RouteNormal
list_to_ms (rroute(route))

ROUTE
1" (rev, rev2, sv)

list_to_ms(rpoint(route)~»
rWhenPointE(route,rev))

L_NRxPIDxLU

delPoint(i, Inr)A~ (posi,i)

SetPoint

& /m
A
1" (route, rev, SigClearing) * RouteState
++ 17 (rev, rev2, sv)
set_block(route) RO\UTExROUTExSTATE
< o)
list_to_ms (req_CNG(route))
BLOCK

fun req_CNG(route) =
case (route) of
("15(1)")=>[{bid ="BlockUp2",pos=NORMAL}]
| ("15(2)")=>[{bid ="BlockUp4",pos=NORMAL}]
| ("16(1)")=>[{bid = BlockDown3",pos=NORMAL}]

NRxPID

[(pos1, i, LOCK)]

| ("16(2)")=>[{bid ="BlockDown1",pos=NORMAL}]

> | o
L Inr ; SetPOINTLock I_=>11;
PointTrack(i) P_5

(b)

Fig.9 a Anunfolded CPN page: RouteSetting [only 3-5(1M)]. b The folded CPN page: RouteSetting (all routes)

@ Springer

254

S. Vanit-Anunchai

cent stations on both sides. Figure 9a does not include place
Blocks because the routes from the signal 3-5 are the
routes coming inside the station area. They do not require the
blocks between stations. On the other hand, when the train
departs from the starter signal into the block, the routes (e.g.
15, 17, 16, 18) require the block to be Normal (no train
in the block). Figure 9b models this event using the func-
tion reqg CNG (route). After the outgoing route is set,
function set_block (route) changes the block state to
Going. The block normalization is modelled in the CPN
page named MV_Home.

3.2.5 Transition Set POINTLock

When no train occupies the associated point track, transition
SetPOINTLock sets and locks the point in the required
position. Setting the next route cannot proceed unless place
SetPoint is empty or all points previously required are set
and locked. This requirement is modelled using an inhibitor
arc from place SetPoint to transition SetRoute. In
our previous CPN model [18-20], we moved and locked
the points before checking all route setting conditions. We
found that there were a lot of states in which the required
points were locked in the conflict position because they were
already in use by other routes. To alleviate the state explo-
sion, in the first transition SetRoute checks all conditions
of route setting. If all conditions are matched, the route is
set. Then transition Set POINTLock moves and locks all
related points. However, before transition Set POINTLock
finishes its task, no other transition can be executed. Thus,
transition Set POINTLock has the highest priority. A tran-
sition of CPN Tools has a priority inscription which is an
integer expression. The lesser value of the priority inscrip-
tion is, the higher priority transition has. CPN Tools provides
a default priority value set to 1000. For example, in Fig. 9b,
transition Set POINTLock has a priority variable P_5 set
to 5.

3.3 Clearing signals

Substitution transition ClearSignals in Fig. 7 is linked to
the second level CPN page named SIGNALCle
aringinFig. 10a. This CPN page demonstrates the clearing
of outer home signal 3-3 and warner 3-1 when the route’s state
is SigClearing. The warner 3-1 is simply a repeater of the
home 3-3. When 3-3 is red, 3-1 must be yellow. When 3-3 is
yellow or green, 3-1 must be green. This properties are cap-
tured by transitions HOME_Y and HOME_G. The outer home
3-3 can be changed from red to yellow by two methods. First,
transition TrainSTOP is when the train occupies the berth
track (3-1AT or 3-1BT) more than 60 s. The token TrainSTOP
is used to represent 60 s of train presence. Second, transition
Sig_ahead Clearedis when the nextinner home signal

@ Springer

3-5 is cleared (either yellow of green). After the signal 3-3
is cleared, the route’s state goes to SigCleared.

Figure 10b demonstrates the folded version of SIGNAL
Clearing page. Transition TrainStop models the app-
roach signal release property of every home and starter
signals. Besides approach signal release, we also bind the
immediate clearing of mainline routes into this transition by
assigning tc_1d1 to a dummy track circuit which is always
occupied.

3.4 Approach locked

Substitution transition ApproachLocked in Fig. 7 is
linked to the second level CPN page named ApproachLoc
ked shown in Fig. 11b. An unfolded version in Fig. 11a
illustrates examples of approach locking the routes 15(1),
2-4(2M) and 3-3(M). Each transition corresponds to each
example in Sect. 2.2.3, respectively.

The folded version of the ApproachLocked page is
shown in Fig. 11b. Transition Typel MainLine mod-
els the approach lock conditions of all mainline routes.
The conditions vary and depend on which tracks the train
approaches. The diverging route is approach locked imme-
diately after the entry signal is cleared. Transition Type2
DivergingRoute represents this behaviour.

After the outer home signal is cleared, transition Type3
OuterHome locks the route when the berth track is occupied
and the inner home signal is cleared. Another approach lock
condition modelled by transition Type4 OuterHome is
when the berth track is occupied with a token TrainSTOP.

3.5 Back locked

Substitution transition BackLocked in Fig. 7 is linked to
the second level CPN page named BackLocked shown in
Fig. 12b. An unfolded version in Fig. 12a illustrates an exam-
ple of back locking the route 31(2) after 3-5(1M) is set.

The folded version of the BackLocked page is shown in
Fig. 12b. In the guard of the first transition, function Lock-
After(route, after) contains all possible pairs of the routes
that have this back lock property. After the first transition
is executed, the route’s state enters the BACKLOCKED state
and a token is put into place AppLock State to inhibit
the route cancel command. When the second transition is
executed, the route returns to SigClearing state and the
token in place AppLock State is taken out.

3.6 Releasing route

Substitution transition ReleasedRoutes in Fig. 7 is
linked to the second level CPN page named RouteRele
ased shown in Fig. 13b. An unfolded version in Fig. 13a
illustrates an example of releasing the route 16(1) corre-

Modelling and simulating a Thai railway signalling system using Coloured Petri Nets

255

1°("3-3(M)", "E", SigClearing)

[(GYR2 = Y orelse GYR2 = G)]

Vs

| 1°("3-3", R)++1"("3-5", GYR2)

1°("3-3(M)", "E", SigCleared)

_1°("3-3(M)","E", SigCleared)

Sig_ahead Cleared

N
1°("3-3", Y)++1'("3-5", GYR2) l

("3-1",Y) ++1°("3-3", G)

A OUTEXREVXSTATE

RouteState))«
In/Out
\| R

1°("3-3(M)","E",SigCleared)

Ll “("3-3(M)", "E", SigClearing)

("3-1", G) ++1°("3-3", GJ

1°("3-1", Y) ++1°("3-3", V)

P_985
.
>l
> HOME_G <
P_985 R
> HOME_Y <
P_985

«((Signals

[tc_id1l = "3-1BT" orelse tc_id1 = "3-1AT"]

N
-

1°("3-1", G) ++1°("3-3", Y) J

1°("3-3", R)

TrainSTOP <«

1'("3-3(M)", "E", SigCleared)

I
SIGNA/T\
y
J

Cal
P_985

17 (tc_id1 , TrainSTOP)

TIDxPOS

(a)

1°("3-3",Y)

[outer_home = SigEntry (route) andalso inner_home = rSigClr(route)
andalso warner = Warn (route) andalso (GYR2 =Y orelse GYR2 = G)]

1" (route, rev, SigClearing) -~

4

-

1" (outer_home , R)++
1" (warner, Y)++
1 (inner_home, GYR2)

>

Y

— 1" (route, rev, sv)
RouteState

ROUTEXROUTEXSTATE

N

>

(1‘(route, rev, SigCleared)

1" (route, rev, sv)

~

Sig_ahead
Cleared

P_985

[(sv = AppLocked orelse sv = SigCleared)
andalso warner = Warn(route) andalso home = SigEntry(route)]

1" (outer_home , CLR(route))\
++1" (warner, G)
++1" (inner_home, GYR2)

1" (warner, Y) ++
P 1" (home, G)

Y

HOME_G [~

In/Out

Y Signals

P_985

[(sv = AppLocked orelse sv = SigCleared)
andalso warner = Warn(route) andalso home = SigEntry(route)]

1" (warner, G)
++ 1" (home, G)

>

SIGNAL

\1 " (route, rev, SigClearing) |

&

1" (route, rev, SigCleared)

1* (warner, Y) ++
< 1" (home, Y) Y,
> HOME_Y
1" (warner, G)
++ 1" (home, Y)
P_985
> < 1" (home, R))/
TrainSTOP N
1" (home, CLR(route))
P_985 [home = SigEntry(route) andalso

17 (tc_id1 , tr)

TIDXPOS
(b)

Fig. 10 a An unfolded CPN page: SIGNALClearing. b The folded CPN page: SIGNALClearing

A (tc_id1 = BerthTrack(route) orelse
tc_idl = BerthTrack2(route))
andalso (tr = TrainSTOP

Y orelse tr = TrainCallOn)]

@ Springer

256

S. Vanit-Anunchai

(case tc_id1 of

[(case tc_id1 of

. "62T" => true
"101BT" => 1" (Normal,111, LOCK) | "101BT" => true
["1-71T" => 1°(Normal,111, LOCK) ++ | "{.71T" => true
1‘(Norma|, 101, LOCK) I "101AT" => true
["101AT" => 1'(Normal,111, LOCK) ++ | "3.71T" =5 trye
1" (Reverse, 101, LOCK) |_ => false)
NRXPIDXLU |"3-71T" => 1'(Normal,111, LOCK) ++ andalso (GYR1 = Y orelse GYR1 = G)
1" (Reverse,101, LOCK) andalso tr <> noTrain]
| => empty) -
.] - ("15(1)", rev,SigCleared)
1 (tc_id1, tr) o Typel (
4 > MainLine ("15(1)", rev, AppLocked7
case tc_id1 of
"1-71T" => 1'("1-5", GYR1) |P=999

| "3-71T" => 17 ("3-5", GYR1)
| _ => empty

RouteState

[A ROUTEXREVXSTATE

[(GYRL =

Y orelse GYR1 = G)]

("15(1)", APP_LOCKED)

("2-4", GYR1) Type2

SIGNAL

“| DivergingRoute
P_999

< ("2-4(2M)", "E", SigCleared) |

("2-4(2M)", "E", AppLocked)

[(tc_id1 = "3-1AT" orelse tc_id1 = "3-1BT" orelse
tc_idl = "718-7T") andalso (GYR1 =Y orelse GYR1 = G)

andalso tr <> noTrain]

("2-4(2M)", APP_LOCKED)

.
>

AQLockState

ROUTEXAPP_STATE A

("3-5", GYR1) % ("3-3(M)", "E", SigCleared)
~
-~ Type3 ("3-3(M)", "E", A
- , , AppLocked)
4 (tc_id1, tr) - OuterHome Y
P_999 ("3-3(M)", APP_LOCKED)
(tc_id1l = "3-1AT" orelse tc_id1 = "3-1BT")
Y _ ("3-3(M)", "E", SigCleared)
\ , , <
< (tc_id1, TrainSTOP) > Typed Y,
OuterHome ("3-3(M)", "E", AppLocked)
TIDXPOS P_999 =
@) ("3-3(M)", APP_LOCKED)
[TYPE1(route, tc_id1,sid) andalso
(GYR1 =Y orelse GYR1 = G) andalso
ck_App_point(PointAppLock(route, tc_id1), Inr)
| Trai
L_NRXPIDxLU andalso tr <> noTrain] (route, rev, SigCleared)
< =\ RouteState
1 (tc_id1, tr) Typel >
s > MaimLine (route,rev, AppLocked) A ROUTEXROUTEXSTATE
(sid, GYR1) | P-999
(route, APP_LOCKED)
[TYPE2(route, sid) andalso
(GYR1 = ¥ orelse GYR1 = G)] __ (route, rev, SigCleared) y
Y
)
(sid, GYR1) Type2 (route,rev, AppLocked) >((AppLockState
DivergingRoute (route, APP_LOCKED) ’\
P_999
SIGNAL — ROUTEXAPP_STATE A
[TYPE3(route, tc_id1, sid)
andalso (GYR1 = Y orelse GYR1 = G)
andalso tr <> noTrain]
(route, rev, SigCleared)
(sid, GYR1) Type3 < |
: OuterHome (route, rev, AppLocked)
e e | p_999 |
1 (tc_id1,) = (route, APP_LOCKED)
[TYPE4(route, tc_id1)]
Y (route, rev, Si
, , SigCleared)
*(tc_id1, TrainSTOP) Typed < =)
OuterHome (route, rev, AppLocked))
TIDxPOS P_999

(b)

(route, APP_LOCKED)

Fig. 11 a An unfolded CPN page: ApproachLocked. b The folded CPN page: ApproachLocked

@ Springer

Modelling and simulating a Thai railway signalling system using Coloured Petri Nets 257

1°("31(2)", "E", SigClearing)++
1°("3-5(1M)", "31(2)", state)

BACKLOCK

('31(2)", "3-5(1M)") BackLocked
LOG -

AfterRouteSet o
P_999

ROUTEXROUTE

1°("31(2)", "E", BACKLOCKED)++
1°("3-5(1M)", "31(2)", state)
("31(2)", BACK_LOCKED)

Ag;gla_?eck RouteState

("31(2)", BACK_LOCKED) | ROUTEXAPP_STATE ROUTEXREVXSTATE

("31(2)", "3-5(1M)") [tr = noTrain orelse tr= TrainSTOP]

17("31(2)", "E", BACKLOCKED)

A

>» BackLockedReleased -
"101AT", noTrain) ++ 1°("31(2)", "E", SigClearing)

TIDXPOS

17°(

1°("101BT", noTrain) ++| P_999
1°("61T", tr)

1°"3-5(1M)"

RouteNormal

ROUTE

(a)

[LockAfter(route,after)]

1" (route, rev, SigClearing)++

1° (after, route, state)
Backlock > (route, after) BackLocked <
Log - AfterRouteSet 1" (route, rev, BACKLOCKED)++
ROUTEXROUTE P 999 1" (after, route, state)

1" (route, BACK_LOCKED)

(route, after)

RouteState
ROUTEXAPP_STATE

ROUTEXROUTEXSTATE
1" (route, BACK_LOCKED)

| 1" (route, rev, BACKLOCKED)

BL_Release(route,after,tr)
< >» BackLockedReleased

1" (route, rev, SigClearing)

TIDXPOS P_999

[(tr = noTrain orelse tr= TrainSTOP)
andalso LockAfter(route,after)]

(b)

Fig.12 a An unfolded CPN page: BackLocked. b The folded CPN page: BackLocked

sponding to the interlocking table in Fig. 4b. The two-stage =~ and SetPOINTUnLock release and unlock each point
condition to initiate route normalization of 16(1), (Track one by one. The last transition executes the quick route
101BT occupied and cleared) and (Track 101AT occu- release (if any) and restores route 16(1) to the Normal
pied), is modelled by the two transitions on the top of state. Similarly, Fig. 13b illustrates the folded version of
Fig. 13a. While the train is passing each point and the associ- ~ RouteReleased page. Every route shares the same net
ated track circuit is unoccupied, transitions SRR_Release structure by instantiating the value of “route" into the ML

@ Springer

258

S. Vanit-Anunchai

[tr <> noTrain
andalso (state = AppLocked
orelse state = SigCleared)]

ROUTEXREVXSTATE

("16(1)", "E",

RouteReleasing)

1°("101BT",tr)

Pre_Condition
Normalization

P_983

("16(1)", ("101BTT", tr)) TIDXPOS A
("16(1)", [1) Y
("16(1)", "E", Track_was_Occupied
i i "16(1)", "E", state -
Normalize_Init) | | ("16(1)) ROUTEXTIDXPOS
R W wew [tr <> noTrain] "16(1)", ("101BT"tr
4 ("16(1)", "E", e (¢ ”
Normalize_Init)
RouteState RouteNormalized_Initiate - - J
"16(1)" "E" 982 17 ("101BT",noTrain)++
('16(1)", "E", T blotar

case i of

111 => 1" ("101BT",noTrain)

n not (member(i,|_pid
A 4 " F— RouteReleasing) [not ((LPIAD] 151 23 10 ("101AT 0T rain)+4
("16(1)", I_pid) S W :
5 1°("101BT ,noTraln)J
SRR_Rel d) e SRR_Release «<
Y
("16(1)", I_pid~~[i]) [P-981
ROUTExL_PID
[PIDT . |
r= noTrain orelse
161 empty | Ltr = TrainSTOP)]
" " ey
! ’ NRxPIDxLU
"16(1)", I_pid RouteReleasin
(16" Lpid) S 9) > RoutelLockReleasedByTC |« —/
P 982 list_to_ms (case (NextRouteCMD) of
= ("3-3(M)") => [("3-3T",noTrain),("3-71T",noTrain)]
. | ("3-5(1M)") => [("101AT",noTrain)]
1" NextRouteCMD | ("3-5(2M)") => [("101AT",noTrain),("101BT",noTrain)]
|

then 1'"E"
else empty

if NextRouteCMD = "E"

=>"[("101BT", n

"16(1)"

if NextRouteCMD = "E"
then empty
else 1" NextRouteCMD

NextRouteCmd) <&
ROUTE

ROUTE

[tr <> noTrain
andalso (state = AppLocked
orelse state = SigCleared)]

(route, [1) [

Pre_Condition
p_983 Normalization

require_tc_occ_clr(route,trg @ t

(route, rev, state)

(route, rev,
Normalize_Init)

ROUTEXTIDxPOS
(route, rev,

(route,

]
TIDXPOS A i
require_tc_occ_clr(route,tr)) !

(route, (tc_id1, tr))

Normalize_Init),

RouteState

RouteNormalized_Initiate

1" require_tc_occ(route,tr)++
1" require_tc_occ_clr(route, noTrain)j
<

1" NextRouteCMD

if NextRouteCMD = "E"
then 1" "E" else empty

route,tr))

route

if NextRouteCMD = "E"
then empty
else 1 NextRouteCMD

(route, rev, P_982
ROUTEXROUTEXSTATE RouteReleasing) !
(route, rev, :
RouteReleasing) - [not (member2(i,l_pid))] 1
h > |
R(route, I_pid) list_to_ms (SRR_tc_clr(route,)) !
Previous) SRR_Release < :
- (route, I_pid~AALi]) P_981 i
ROUTExL_PID |
SetPOINTUnLock :
Unlockpojt :
|
’ |
list_to_ms _ PID In/Qut |
(release_point_SRR [(tr= noTrain orelse @ !
(route)) tr = TrainSTOP)] i
) (route, rev, L_NRXPIDxLU I
k(route, 1_pid) KRouteReIeasmg)) |
| RouteLockReleasedByTC (& 1
> P 982 list_to_ms (RRelease(NextRouteCMD, :
|
|
|
|
I
|
|
|

NextRouteCMD) J&
ROUTE

@ Springer

Normal_Route

RouteCMD

ROUTE

(b)

Fig. 13 a An unfolded CPN page: RouteReleased. b The folded CPN page: RouteReleased

|
: | ("16(1)")
Track_was_Occupied |
|
1

oTrain),("101AT",noTrain),

("3-3T",noTrain),("3-71T",noTrain)])

Out
‘ RouteCmd)

fun require_tc_occ_clr(route,tr) =
case (route) of

=> ("101BT", tr);
fun require_tc_occ(route,tr) =
case (route) of

1 ("16(1)") => ("101AT", tr);

|
|

|

|

|

|

|

I

|

|

1

l

|

|

fun SRR_tc_clr(route,pid) = |
case (route,pid) of :
1C16(1)", 111) |
| ("16(1)",101) |
1

l

1

|

|

|

|

|

|

I

|

=> [("101BT",noTrain)]
=> [("101AT",noTrain),
("101BT",noTrain)];

fun RRelease(cmd, route, tr) =
case (cmd, route) of

(" 16(1)"
("3-5(1C)", "16(1)"
("3-5(2M)", "16(1)"

)
)=

=>[("101AT",noTrain)]

>[("101AT",noTrain)]

>[("101AT",noTrain),
"101BT",noTrain)]

1("3-5(2C)", "16(1)")=>[("101AT",noTrain), |
("101BT",noTrain)]|
1("3-3(M)", "16(1)") => [("3-3T",noTrain), |

("3-71T",noTrain)] :

[("3-3(C)", "16(1)") => [("3-3T",noTrain),
("3-71T",noTrain)] |

| ("E", "16(1)") => [("101BT", noTrain), !
("101AT",noTrain), |
("3-71T",noTrain), |
("3-3T",noTrain")] 1

| ("E", "4-4(3M)")=> [("4-4T",noTrain), !
("4-72T",noTrain), :

("102BT",noTrain), |

("102AT",noTrain), |

("61T",tr)]; }

Modelling and simulating a Thai railway signalling system using Coloured Petri Nets 259

EnableRR
CFG_T2T

Track2Track
MV_Track to_Track

w

A L_NRxPIDxLU

Signals

SIGNAL

InitBlock

mzo{_Biocks)

BLOCK

CFG_T2T

Fig. 14 The CPN page: TrainMovement

functions. Function SRR_tc_clr (route, pid) con-
tains the sectional route release conditions listed in the sixth
and seventh columns of Fig. 4b. The conditions of quick route
release listed in the last two columns of (Fig. 4b) are stored
in function RRelease (cmd, route, tr). When the vari-
able cmdis “E", RRelease (cmd, route, tr) isreduced
to the typical route release.

3.7 Train movements

Figure 5 does not only show the hierarchy structure of the
interlocking but also of the train movement. Substitution
transition MovingTrain in Fig. 7 is linked to the second
level CPN page named TrainMovement shown in Fig. 14.
After experimenting various styles and structures of the CPN
model, we have divided the CPN model of the train move-
ments between two adjacent track circuits into three groups:
no signal; passing a home signal; and passing a starter signal.
Each group is further divided into three kinds of movement:
forward or facing the front of the signal; backward or facing
the back of the signal; and train movement using call-on.

PassingHome Substitution transition PassingHome in
Fig. 14 is linked to the third level CPN page named Home
shown in Fig. 15. It comprises three substitution transitions
and one executable transition. Place CONFIG_T2T stores
geographical information, order pairs of two adjacent track
circuits that have a home signal between them. Transition
TrainSTOP represents an event when the train cannot pro-
ceed further and stops in front of the home signal. Because
we do not model the time, occupying track for 60s is mod-
elled by transition TrainSTOP. Substitution transition BWD
represents the train passing from the back of the home signal
so that it is simply the movement from track to track in the
backward direction. Substitution transition CallOn repre-

sents the event consisting in the train passing the home signal
using the call-on signal. The call-on signal will be turned off
when the last wheels are cleared from the berth track (in
front of the home signal). In case of using call-on, the block
normalization shall be handled manually.

Substitution transition FWD represents the event consist-
ing in the train passing the home signal using the main
aspect (yellow or green). It is linked to the fourth level
CPN page named MV_HOME shown in Fig. 16. MV_HOME
comprises two executable transitions: FWD_FRONT and
FWD_REAR. Transition FWD_FRONT in Fig. 16 represents
the front wheels occupying the track ahead of the train.
After FWD_FRONT is executed, the train spans over two
tracks. Place Accident is used to detect any train collision.
Transition FWD_REAR in Fig. 16 represents the last wheels
moving out of the track behind the train. After FWD_REAR is
executed, the train spans over one track. Because train move-
ments are folded and use the same CPN pages, each token
in place EnableFR and EnableRR is used to enable and
trace each train movement.

Enabling transition FWD_FRONT requires the home sig-
nal displaying the yellow or green aspect. After transition
FWD_FRONT is executed, the associated signals (both home
and warner) are normalized accordingly. The execution of
transition FWD_REAR also normalizes the associated block
equipment.

3.8 Simulation and visualization extension

Since [18] we have attempted to mimic the train move-
ments along track circuits and signal aspects using places
and transitions. The major problem is that for checking the
conditions (e.g. route setting) we need all apparatus infor-
mation of each kind contained in one place. Thus, we have
duplicated information: one in the centralized place and the
otherin distributed places along the track layout. The duplica-
tion made modelling very inconvenient. Mimicking the train
movement is one of the most important requirements from
our counterparts. To comply with this requirement, we adopt
an extension of CPN Tools, visualization extension (VE). The
VE code itself is written in JAVA, but the VE is called via
ML functions in the code segments of the transitions. This
graphical visualization is useful when we conduct simulation
for testing desired properties.

Examples of VE functions are illustrated in the code seg-
ment of the transitions in Fig. 16. The input variables are
a track circuit pair (pre, post), home, warner and GYR2.
Red_Track(pre, post) changes the colour of both tracks to red
(occupied). Red_Home(home, Y, warner, GYR2) changes
the home aspect to red and the warner aspect to yellow
or red depending on GYR2. These actions occur when the
front wheels occupy the track circuit behind the home sig-
nal. Grey_Track(pre) changes the colour of the track circuit

@ Springer

260

S. Vanit-Anunchai

Fig.15 The CPN page: Home

(bef, aft)

[(tr =direction(pre,post) orelse

tr = TrainCallOn) andalso

home = T2HS(pre) andalso aft =pre

andalso member (point_pos(pre, post), Inr)]

re, post
TrainSTOP (b post)

1" (home, R)

4
W
4
Y

Y VY

BWD

CFG_T2T

in front of the home signal to grey (unoccupied). Yel-
low_Normal(post) changes the colour of associated block
indicator “N" to yellow. These actions happen when the last
wheels clear the track circuit in front of the home signal.
Examples of graphic visualization are displayed in Figs. la
and 4a.

4 Lessons learnt and perspective
4.1 Route interlocking validation

Our previous work [18-20] did not successfully validate the
“Route Interlocking” property because we tried to set any
combination of non-conflicting routes at the same time. Of
course, this leads to state explosion. However, [4] suggested
that to prove “global no-collision” properties it is enough to
prove only “no two-train collision”.

Thus, we test the route interlocking by adding the CPN
model of Fig. 17 to the Top_Level page and adding an ML
function call to conduct automatic route setting [20]. The stop
option in the state space tool in CPN Tools is set such that

@ Springer

1" (pre, TrainSTOP) ++
1" (post, noTrain)

Inr

17 (pre, tr)++
1" (post, noTrain)

CallOn

detecting a train collision will stop the state space generation.
The analysis result gives the size of the state space as 29,049
states and 53,853 transitions. It takes 2h 15min and 18s to
generate the state space. No train collision is detected.

4.2 Formal specification

With reference to the discussion in Sect. 3, the interlocking
table well presents the specification of route interlocking, but
the specification of the other properties are incomprehensi-
ble. Contents in the interlocking table are usually very short
abbreviations and scattered across various pages. Different
railways have different interlocking tables so that even the
signalling experts sometimes have trouble with the tables.
With pattern matching and a graphical notation, the Petri
Net formalism is a natural choice for formalising interlocking
tables. With the abstract data type and hierarchical structure
of Coloured Petri Nets, we can fold CPN diagrams of var-
ious routes into a single CPN diagram, hence producing a
much more compact and generic model. Although the con-
tent in the tables is hidden inside the ML functions, the signal

Modelling and simulating a Thai railway signalling system using Coloured Petri Nets

261

Fig.16 The CPN page:
MV_HOME

[(tr = direction(pre,post)

orelse tr = TrainSTOP)

andalso home = T2HS(pre)

andalso warner = T2WS(pre)
andalso (GYR1 = G orelse GYR1 =)

input (pre, post, home,
warner, GYR2);

action

(Red_Track(pre, post);

andalso aft =pre
andalso member (

point_pos(pre, post), Inr)]
1" (home, GYR1) ++1" (warner, GYR2

if trl<> noTrain
then 1’ e else empty -« ~

Red_Home(home, Y, warner, GYR2)
)i

(if GYR2= R then 1" (warner, R) else
1°(warner, Y))++ 1" (home, R)

1" (post, trl)++1"(pre, tr)

SIGNAL

Accident (<€

Inr

1" (post,direction(pre,post))
++1" (pre,direction(pre,post))

L_NRxPIDxLU

Inr

>» FWD_FRONT

pre, post)

EnableRR

CFG_T2T

CFG_T2T CFG_T2T

(pre, post)

TIDxPOS

pre, post)

1" (pre, noTrain)
++41" (post, tr)

(pre, post)

Y

GetBlk(post, CNG)

FWD_REAR |€— . /
1" (pre, tr)++1" (post, tr)

A
e sl
-
nBLK(post)

BLOCK

engineers can view the content via multiple windows on the
computer. By changing the content of ML functions in arc
and guard inscriptions according to the content in the inter-
locking table, our CPN diagram can be reused with other
interlockings. It can scale up to reuse with a larger inter-
locking as long as no additional properties not already in the
model are required. As railway networks become larger, pas-
sengers demand shorter delays, and the railway operators are
asking for more efficiency and flexibility, interlocking tables
have progressively become too complicated to comprehend.
This argument can be witnessed by the tables of Figs. 1b,
3 and 4b. To cope with the complexity, we may need other
formal forms of representation rather than the interlocking
tables. Coloured Petri Nets are a promising formal specifica-
tion for the railway signalling systems.

4.3 Modelling with prioritized transitions

Normally the interlocking controller works faster than train
movements. To make the model compact, we assign train
movements a lower priority than interlocking controllers,
using prioritized transitions, hence avoiding additional net
structure required to implement the prioritization otherwise.
Moreover, we also adjust the order of precedence of each
transition to make the model compact and work properly. It

input (pre, post);

action
(Yellow_Normal(post);
Yellow_NormalOTH(post);
White_Coming(post);
White_Going_OTH(post) ;
Grey_Track(pre)

)i

[tr = direction (pre,post)
andalso CNG <> GOING
andalso member (
point_pos(pre, post), Inr)]

list_to_ms([("1-1BT", TrainSTOP),
("1-71T", TrainSTOP),
("3-1BT", TrainSTOP),
("3-71T", TrainSTOP),
("2-2T", TrainSTOP),
("4-2T", TrainSTOP),
(
(
(

BerthTrack

"62T", TrainSTOP),
"63T", TrainSTOP),
"61T", TrainSTOP)])

TIDxPOS

1" (tc_id1, TrainSTOP)++
1 (tc_id2, TrainSTOP)

1 (tc_id1, tr)++ InitTrack
e 1" (tc_id2, tr2)
. E ; Init [o Track
E 1 (tc_id1, TrainSTOP)++
P_983 1 (tc_id2, TrainSTOP) TIDxPOS

Fig.17 Additional CPN diagram to the Top_Level page

seems to be very useful but we discovered two drawbacks.
Firstly, a slightly different order of precedence causes the
model to behave differently. Secondly, the prioritized tran-
sitions cause a lower speed of state space generation (and
simulation). Because of its drawbacks, attempts are made
to revise the CPN model without prioritized transitions but
using other constructions such as timed tokens and fusion
places instead. We discover that regardless of the state space
reduction, the use of prioritized transitions provide us a better
way to construct the CPN model. Without prioritized tran-
sitions, it is very difficult to have the revised model worked
out correctly.

@ Springer

262

S. Vanit-Anunchai

5 Conclusion and suggested work

This paper presents the complete CPN model of a typical
railway station of Thai railways. We illustrate how well our
CPN diagrams capture all nine desired properties from the
interlocking table. Route locking and flank protection prop-
erties are formally validated using state space analysis. Other
properties have been simulated and visualized using a visu-
alization extension. The paper focuses on the folded version
of the CPN model. Our counterparts use this version as the
example applied to other stations in order to gain insights and
train new engineers. In future we have planned to analyse our
model using sweep-line technique [15] and study its scalabil-
ity. To assist the users and facilitate the work, we envisage the
need of specific integrated development environment (IDE).
The State Railway of Thailand starts to adopt the technology
such as Balise, Automatic Train Stop (ATP), Cab Signalling.
Of course, this will affect SRT signalling principles as well
as our CPN model.

Acknowledgements This work is supported by Research Grant from
the National Science and Technology Development Agency and
National Research Council of Thailand. The author is thankful to anony-
mous reviewers and Dr. Guy E. Gallasch. Their constructive feedback
has helped the author improve the quality of this paper. The author is also
grateful to his colleagues from the State Railway of Thailand, Patama
Sridaranop, Anan Phonimdang, Sommart Klinsukol, Ittipon Kansiri,
Kittisak Siripen, Surapol Eiamsaart and Navaporn Rittisuk.

References

1. Basten, T., Bol, R., Voorhoeve, M.: Simulating and analyzing rail-
way interlockings in exspec. IEEE Parallel Distrib. Technol. Syst.
Appl. 3(3), 50-62 (1995)

2. CPN Tools home page. http://cpntools.org

3. Clavel, M. et al.: Maude Manual. http://maude.cs.uiuc.edu/

4. Fantechi, A.: Distributing the challenge of model checking inter-
locking control tables. In: Leveraging Applications of Formal
Methods, Verification and Validation. Applications and Case
Studies—>5th International Symposium, ISoLA 2012, Heraklion,
Crete, Greece, 15-18 Oct 2012, Proceedings, Part II, pp. 276289
(2012)

5. Fantechi, A.: Twenty-five years of formal methods and railways:
what next? In: Software Engineering and Formal Methods—SEFM
2013 Collocated Workshops: BEAT2, WS-FMDS, FM-RAIL-Bok,
MoKMaSD, and OpenCert, Madrid, Spain, 23-24 Sept 2013,
Revised Selected Papers, pp. 167-183 (2013)

6. Fantechi, A., Fokkink, W., Morzenti, A.: Some trends in formal
methods applications to railway signaling. In: Gnesi, S., Mar-
garia, T. (eds.) Formal Methods for Industrial Critical Systems: A
Survey of Applications, pp. 61-84. John Wiley & Sons (2012).
ISBN:9780470876183 (print). ISBN:9781118459898 (online).
https://doi.org/10.1002/9781118459898

7. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking
interlocking control tables. In: FORMS/FORMAT 2010—Formal
Methods for Automation and Safety in Railway and Automotive
Systems, 8th Symposium on Formal Methods for Automation and
Safety in Railway and Automotive Systems, Braunschweig, Ger-
many, 2-3 Dec 2010, pp. 107-115 (2010)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Hagalisletto, A.M., Bjgrk, J., Yu, I.C., Enger, P.: Constructing and

refining large-scale railway models represented by petri nets. IEEE
Trans Syst Man Cybern Part C 37(4), 444-460 (2007)

. Haxthausen, A., Peleska, J., Pinger, R.: Applied bounded model

checking for interlocking system designs. In: Software Engineer-
ing and Formal Methods—SEFM 2013 Collocated Workshops:
BEAT2, WS-FMDS, FM-RAIL-Bok, MoKMaSD, and OpenCert,
Madrid, Spain, 23-24 Sept 2013, Revised Selected Papers, pp. 205—
220 (2013)

Haxthausen, A.E.,Nguyen, H.N., Roggenbach, M.: Comparing for-
mal verification approaches of interlocking systems. In: Reliability,
Safety, and Security of Railway Systems. Modelling, Analysis,
Verification, and Certification—First International Conference,
RSSRail 2016, Paris, France, 28-30 June 2016, Proceedings, pp.
160-177 (2016)

Hong, L.V., Haxthausen, A.E., Peleska, J.: Formal modeling and
verification of interlocking systems featuring sequential release.
In: Formal Techniques for Safety-Critical Systems—Third Inter-
national Workshop, FTSCS 2014, Luxembourg, 6-7 Nov 2014.
Revised Selected Papers, pp. 223-238 (2014)

James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider,
S.A., Treharne, H.: On modelling and verifying railway interlock-
ings: tracking train lengths. Sci. Comput. Program. 96, 315-336
(2014)

James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider,
S.A., Treharne, H.: Techniques for modelling and verifying railway
interlockings. STTT 16(6), 685-711 (2014)

Jensen, K., Kristensen, L.M.: Colored petri nets: a graphical lan-
guage for formal modeling and validation of concurrent systems.
Commun. ACM 58(6), 61-70 (2015)

Jensen, K., Kristensen, L.M., Mailund, T.: The sweep-line state
space exploration method. Theor. Comput. Sci. 429, 169-179
(2012)

Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer, Heidelberg (2009)
Sun, P.: Model based system engineering for safety of railway crit-
ical systems. PhD thesis, Université Lille Nord de France, France,
July (2015)

Vanit-Anunchai, S.: Verification of railway interlocking tables
using coloured petri nets. In: The Tenth Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools, DAIMI PB
590, pp. 139—158. Department of Computer Science, University of
Aarhus (2009)

Vanit-Anunchai, S.: Modelling railway interlocking table using
coloured petri nets. In: Clarke, D., Agha, G. (eds.) Proceedings
of the 12th International Conference on Coordination Models and
Languages, (Coordination 2010). Lecture Notes in Computer Sci-
ence, vol. 6116, pp. 137-151. Springer, Heidelberg (2010)
Vanit-Anunchai, S.: Experience using coloured petri nets to model
railway interlocking tables. In: Proceedings 2nd French Singa-
porean Workshop on Formal Methods and Applications, FSFMA
2014, Singapore, 13 May 2014, pp. 17-28 (2014)
Vanit-Anunchai, S.: Application of coloured petri nets in modelling
and simulating a railway signalling system. In: Critical Systems:
Formal Methods and Automated Verification—Joint 21st Interna-
tional Workshop on Formal Methods for Industrial Critical Systems
and 16th International Workshop on Automated Verification of
Critical Systems, FMICS-AVoCS 2016, Pisa, Italy, 26-28 Sept
2016, Proceedings, pp. 214-230 (2016)

Winter, K.: Optimising ordering strategies for symbolic model
checking of railway interlockings. In: Leveraging Applications
of Formal Methods, Verification and Validation. Applications and
Case Studies—5th International Symposium, ISoLA 2012, Her-
aklion, Crete, Greece, 15-18 Oct 2012, Proceedings, Part II, pp.
246-260 (2012)

http://cpntools.org
http://maude.cs.uiuc.edu/
https://doi.org/10.1002/9781118459898

	Modelling and simulating a Thai railway signalling system using Coloured Petri Nets
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Previous work
	1.3 Contributions

	2 Introduction to Thai railway signalling system
	2.1 Railway signalling plan
	2.2 Signalling principles and desired properties
	2.2.1 Route setting
	2.2.2 Signal clearing
	2.2.3 Approach lock
	2.2.4 Back lock
	2.2.5 Route normalization
	2.2.6 Sectional route release
	2.2.7 Quick route release

	3 The Coloured Petri Net model
	3.1 Global Declarations and route's state
	3.2 Setting routes
	3.2.1 Checking the opposing routes
	3.2.2 Checking the points
	3.2.3 Checking the track circuits
	3.2.4 Checking the block status
	3.2.5 Transition SetPOINTLock

	3.3 Clearing signals
	3.4 Approach locked
	3.5 Back locked
	3.6 Releasing route
	3.7 Train movements
	3.8 Simulation and visualization extension

	4 Lessons learnt and perspective
	4.1 Route interlocking validation
	4.2 Formal specification
	4.3 Modelling with prioritized transitions

	5 Conclusion and suggested work
	Acknowledgements
	References

