
Int J Softw Tools Technol Transfer (2019) 21:203–219
https://doi.org/10.1007/s10009-017-0467-0

REGULAR PAPER

What’s decidable about parametric timed automata?

Étienne André1

Published online: 29 July 2017
© Springer-Verlag GmbH Germany 2017

Abstract Parametric timed automata (PTAs) are a power-
ful formalism to reason, simulate and formally verify critical
real-time systems. After 25years of research on PTAs, it is
now well understood that any non-trivial problem studied is
undecidable for general PTAs. We provide here a survey of
decision and computation problems for PTAs. On the one
hand, bounding time, bounding the number of parameters
or the domain of the parameters does not (in general) lead
to any decidability. On the other hand, restricting the num-
ber of clocks, the use of clocks (compared or not with the
parameters), and the use of parameters (e. g., used only as
upper or lower bounds) leads to decidability of some prob-
lems. We also put emphasis on open problems. We also
discuss formalisms close to parametric timed automata (such
as parametric hybrid automata or parametric interrupt timed
automata), and we study tools dedicated to PTAs and their
extensions.

Keywords Decidability · Decision problems · Parametric
timed model checking · Parameter synthesis · L/U-PTAs ·
Hybrid automata

1 Introduction

The absence of undesired behaviors in real-time critical
systems is of utmost importance in order to ensure the

This work is partially supported by the ANR national research
program PACS (ANR-14-CE28-0002).

B Étienne André
eandre93430@lipn13.fr

1 Université Paris 13, LIPN, CNRS, UMR 7030,
F-93430 Villetaneuse, France

system safety. Model checking aims at formally verify-
ing a model of the system against a correctness property.
Timed automata (TAs) are a popular formalism to model
and verify safety critical systems with timing constraints.
TAs extend finite state automata with clocks, i. e., real-
valued variables increasing linearly [5]. These clocks can
be compared with integer constants in guards (sets of linear
inequalities that must be satisfied to take a transition) and
invariants (sets of linear inequalities that must be satisfied
to remain in a location). TAs have been widely studied (see
e. g., [8]), and several state-of-the-art model checkers (such
as Uppaal [57] or PAT [68]) support TAs as an input lan-
guage.

TAs benefit from many interesting decidable properties,
such as the emptiness of the accepted language, the reach-
ability of a control state. Other problems are undecidable
though, such as the universality of the accepted timed lan-
guage; in addition, given a TA, building a TA recognizing the
complement of the timed language of the first TA cannot be
achieved in general. TAs were also studied in a robust ver-
sion, i. e., when all timing guards can be enlarged or shrinked
by an infinitesimal constant factor, without changing the lan-
guage, the reachability of a control state, etc. (see [32,59] for
surveys).

However, TAs also suffer from some limitations. First,
they cannot be used to specify and verify systems incom-
pletely specified (i. e., whose timing constants are not known
yet), and hence cannot be used in early design phases. Sec-
ond, verifying a system for a set of timing constants usually
requires to enumerate all of them one by one if they are sup-
posed to be integer valued; in addition, TAs cannot be used
anymore to verify a system for a set of timing constants that
are to be taken in a rational- or real-valued dense interval.
Third, robustness in TAs often assumes that all guards can
be enlarged or shrinked by the same small variation; consid-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-017-0467-0&domain=pdf

204 É. André

ering independent variations or considering both enlarging
and shrinking was not addressed.

Parametric timed automata (PTAs) overcome these lim-
itations by allowing the use of parameters (i. e., unknown
constants) in guards and invariants [7]. This increased expres-
sive power comes at the price of the undecidability of most
interesting problems—at least in the general case.

In this paper, we consider decision problems for PTAs
proposed in the past 25 years. On the one hand, bounding
time, bounding the number of parameters or the domain
of the parameters does not (in general) lead to any decid-
ability. On the other hand, restricting the number of clocks,
the use of clocks (compared or not with the parameters),
and the use of parameters (e. g., used only as upper or
lower bounds) can lead to the decidability of some prob-
lems. In addition, an extension to parameters of some
variants of timed automata benefit from some decidability
results, such as reset-PTAs and parametric interrupt timed
automata.

1.1 Related surveys

To the best of our knowledge, no surveywas dedicated specif-
ically to decisionproblems for PTAs.Moreover, in addition to
numerous results in the past 25 years proved in various set-
tings with different syntax and assumptions, recent results
in the field in the past 3years justify the need for a clear
picture of these updated (un)decidability results. Further-
more, surveying decision problems for PTAs has important
practical implications as, for undecidable decision prob-
lems, the associated synthesis problems cannot be solved
exactly.

Related works include [8] that studies decidability results
of timed automata. In [32,59], various problems related to
the robustness in TAs are studied. Then, [48] is not a sur-
vey, but exhibits decidable subclasses of hybrid automata,
an extension of timed automata where variables can have
(in general) arbitrary rates. Then, [23] acts both as a survey
and as a contribution paper that studies hybrid automata with
“low dimensions”, i. e., with few variables. Our survey is also
concerned (in Sect. 4) with decidability results for PTAswith
few variables (i. e., clocks and parameters).

1.2 About this manuscript

This manuscript is a revised and extended version of [10].
New results unpublished at the time of [10] were added.
Moreover, Table 2 was improved, and its description and
summary was significantly enhanced. In addition, two new
sections were added: formalisms beyond PTAs are studied in
Sect. 6, and tools and applications of PTAs are reviewed in
Sect. 7.

1.3 Outline

In Sect. 2, we propose a unified syntax for PTAs, and
we define the decision problems that we will consider
throughout this manuscript. In Sect. 3, we recall general
undecidability results for PTAs. We then study in Sect. 4
the decidability when restricting the syntax of PTAs (num-
ber of variables, syntax of the constraints, etc.). We consider
specifically in Sect. 5 the subclass of PTAs where parame-
ters must be used either always as lower bounds or always as
upper bounds, namely L/U-PTAs. Formalisms beyond PTAs,
including parametric versions of hybrid automata, interrupt
timed automata and time Petri nets, are studied in Sect. 6.
Tools supporting PTAs and known applications of PTAs are
reviewed in Sect. 7.We conclude by emphasizing open prob-
lems in Sect. 8.

2 Parametric timed automata and problems

2.1 Clocks, parameters and constraints

Let Z, N, Q+ and R
+ denote the sets of (possibly nega-

tive) integer numbers, (nonnegative) natural numbers, non-
negative rational numbers, and nonnegative real numbers,
respectively. In the following, T denotes the domain of time,
and P the domain of the parameters; these domains will be
instantiatedwithN,Q+ orR+ subsequently. Throughout this
survey, let d denote an integer constant in Z, and d+ denote
a nonnegative constant in N.

Let us assume a set X = {x1, . . . , xH } of clocks, that are
T-valued variables that evolve at the same rate. Let us assume
a set P = {p1, . . . , pM } of parameters, i. e., unknown con-
stants. A parameter valuation v is a function v : P → P.
Throughout this survey, symbols x , xi denote clocks,whereas
p, pi denote parameters.

A parametric linear term is
∑

1≤i≤M αi pi + d, with αi ∈
Z; in the following plt will denote a parametric linear term.

A (linear) inequality is x �� plt, where x is a clock,
plt a parametric linear term, and �� ∈ {<,≤,≥,>}. We
give in Table 1 the conventions used throughout this survey
concerning comparison operators. A (linear) constraint is a
conjunction of linear inequalities. A (linear) diagonal con-
straint is a conjunction of either linear inequalities, or linear
diagonal inequalities of the form xi − x j �� plt.

A simple inequality is either x �� p or x �� d+. A simple
constraint is a conjunction of simple inequalities.

2.2 A unified syntax for parametric timed automata

The syntax of PTAs varies a lot in the literature; we give
below a definition that should include most definitions in
the literature, and at least all definitions of the papers con-

123

What’s decidable about parametric timed automata? 205

Table 1 Syntax of operators in
guards

Operator Definition

�� {<,≤,≥,>}
≤≥ {≤,≥}
<> {<,>}
� {<,≤}

sidered in this survey. That is, any definition of PTAs can
be obtained from the following one by adding restrictions
such as removing the set of accepting locations, forbidding
invariants, restricting the domain of clocks or parameters,
simplifying the syntax of the guards and invariants (e. g., for-
bidding diagonal constraints).

Definition 1 (Parametric timed automaton) A parametric
timed automaton (PTA) is a tupleA = (Σ, L , l0, F, X, P, I,
E), where:

– Σ is a finite set of actions,
– L is a finite set of locations,
– l0 ∈ L is the initial location,
– F ⊆ L is a set of accepting (or final) locations,
– X is a set of clocks with domain T = R

+,
– P is a set of parameters with domain P = R

+,
– I is the invariant, assigning to every l ∈ L a diagonal
constraint I (l), and

– E is a set of edges (l, g, a, R, l ′) where l, l ′ ∈ L are
the source and destination locations, g is a diagonal con-
straint which is the transition guard, a ∈ Σ , and R ⊆ X
is a set of clocks to be reset.

Given a PTA A and a parameter valuation v, the valuation
of A with v, denoted by v(A), is the nonparametric PTA
where each occurrence of p is replacedwith v(p). If v assigns
an integer (or rational) value to each parameter, then v(A)

is a TA. However, if some parameters are assigned to an
irrational value, then v(A) belongs to the class of TAs with
irrational constants, for which the reachability of a given
location is undecidable [61].

A clock is said to be a parametric clock if it is compared
with at least one parameter in at least one guard or invariant;
otherwise, it is a nonparametric clock. This notion is central
when studying the decidability of problems for PTAs with
few clocks and parameters.

Example 1 Consider the coffee machine in Fig. 1, modeled
using a PTA with 4 locations, 2 clocks (x1 and x2) and 3
parameters (p1, p2, p3). Both clocks x1 and x2 are para-
metric clocks. No diagonal constraints are used (in fact all
constraints are simple constraints). The machine can initially
idle for an arbitrarily long time. Then, whenever the user
presses the (unique) button (action press), the PTA enters
location “add sugar”, resetting both clocks. The machine can
remain in this location as long as the invariant (x2 ≤ p2) is
satisfied; there, the user can add a dose of sugar by pressing
the button (action press), provided the guard (x1 ≥ p1) is sat-
isfied, which resets x1. That is, the user cannot press twice
the button (and hence add two doses of sugar) in a time less
than p1. Then, p2 time units after the machine left the idle
mode, a cup is delivered (action cup), and the coffee is being
prepared; eventually, p2 time units after the machine left the
idle mode, the coffee (action coffee) is delivered. Then, after
10 time units, the machine returns to the idle mode—unless
a user again requests a coffee by pressing the button.

2.2.1 Semantics

The semantics of a PTA A can be defined as the union over
all parameter valuations v of the semantics of v(A). In the
following, given δ ∈ R

+, w + δ denotes the valuation such
that (w+δ)(x) = w(x)+δ, for all x ∈ X . Given R ⊆ X , we
define the reset of a clock valuation w, denoted by [w]R , as
the valuation resetting the clocks in R, and keeping the other
clocks unchanged. Given a rational parameter valuation v,
v(C) denotes the constraint over X obtained by replacing
each parameter p in C with v(p). Likewise, given a clock
valuation w, w(v(C)) denotes the expression obtained by
replacing each clock x inv(C)withw(x).Weuse the notation

Fig. 1 A coffee machine
modeled using a PTA

idle add sugar
x2 ≤ p2

preparing coffee
x2 ≤ p3

done

x1 ≤ 10

press
x1 := 0
x2 := 0

x1 ≥ p1
press
x1 := 0

x2 = p2
cup

x2 = p3
coffee
x1 := 0

press
x1 := 0
x2 := 0

x1 = 10
idle

123

206 É. André

w|v |
 C to indicate thatw(v(C)) evaluates to true.Wewrite
0 for the clock valuation that assigns 0 to all clocks.

Definition 2 (Concrete semantics of a TA) Given a PTA
A = (Σ, L , l0, F, X, P, I, E), and a rational parameter val-
uation v, the concrete semantics of v(A) is given by the timed
transition system (S, s0,→), with

– S = {(l, w) ∈ L × R
+X | w|v |
 I (l)},

– s0 = (l0, 0),
– → consists of the discrete and (continuous) delay transi-
tion relations:

– discrete transitions: (l, w)
e→ (l ′, w′), if (l, w),

(l ′, w′) ∈ S, there exists e = (l, g, a, R, l ′) ∈ E ,
w′ = [w]R and w|v |
 g.

– delay transitions: (l, w)
δ→ (l, w + δ), with δ ∈ R

+,
if ∀δ′ ∈ [0, δ], (l, w + δ′) ∈ S.

Moreover, we write (l, w)
e�→ (l ′, w′) for a sequence of

delay and discrete transitions where ((l, w), e, (l ′, w′)) ∈ �→
if ∃δ,w′′ : (l, w)

δ→ (l, w′′) e→ (l ′, w′).
Given a TA v(A) with concrete semantics (S, s0,→), we

refer to the states of S as the concrete states of v(A). A
concrete run of v(A) is an alternating sequence of concrete
states of v(A) and edges starting from the initial concrete

state s0 of the form s0
e0�→ s1

e1�→ · · · em−1�→ sm , such that for all
i = 0, . . . ,m − 1, ei ∈ E , si+1 ∈ S, and (si , ei , si+1) ∈ �→.
Given a concrete state s = (l, w), we say that s is reachable
(or that v(A) reaches s) if s belongs to a concrete run of
v(A). By extension, we say that l is reachable in v(A). A run
is maximal if it is either infinite, or cannot be extended by
any discrete transition (possibly after some delay transition).

A finite run s0
e0�→ s1

e1�→ · · · em−1�→ (lm, wm) is accepting if
lm ∈ F .

The accepted timed language is the set of timed words
(alternating sequences of actions and time elapsing) associ-
ated with an accepting run, i. e., a run ending in a location
of F (or, in some works, passing infinitely often by a loca-
tion in F). Note that some works make a difference between
finite and infinite runs. The untimed language of a TA is the
timed language projected onto the actions. The set of traces
(or trace set) is the set of accepting runs projected onto the
locations and actions, i. e., a set of alternating locations and
actions. This is a nonstandard definition of traces (compared
to e. g., [45]), but we keep this term as it is used in, e. g.,
[11,21].

A symbolic semantics is also defined for PTAs in [11,52,
53] as a parametric zone graph, where a symbolic state is
made of a discrete part (the current location) and a symbolic,
continuous part (a set of diagonal constraints, i. e., xi − x j ��
plt, sometimes allowing disjunctions).

2.2.2 Simple PTAs

We define simple PTAs as the subclass of PTAs where guards
and invariants are simple constraints. We propose this class
to show that, even in this restricted situation, all non-trivial
problems are undecidable (Sect. 3).

2.2.3 Variants of the PTA syntax

PTAs were first defined in [7] using a set of accepting loca-
tions. This is similar to timed automata [5]. Timed safety
automatawere introduced later in [50] by removing the final
locations, but adding invariants to locations; many subse-
quent papers then refer to timed safety automata as simply
“timed automata”. When timed automata with accepting
locations are equipped with Büchi conditions (to be accept-
ing, an infinite timed word must pass infinitely often through
at least one of the accepting locations), they are referred to as
timed Büchi automata. It was shown that the timed expres-
sive power of timed safety automata is strictly less than that
of timed Büchi automata [49].

The syntax of PTAs differs in most of the papers in the
literature. Concerning guards and invariants, in [7] (resp.
[61]), guards (resp. guards and invariants) are conjunctions
of inequalities of the form x �� p. In [33,52], guards are
conjunctions of inequalities of the form xi − x j � plt∪{∞};
in [52] invariants have the same form as guards (invariants
are not considered in [33]). In [11], any linear constraint over
X∪P is allowed in guards and invariants. In [42], guards and
invariants are all open, i. e., of the form x <> p or x <> d+.
In [17,53], guards and invariants are conjunctions of inequal-
ities of the form x �� plt; in addition, in [53] invariants can
only bound clocks from above (i. e., x � plt). In [26], guards
are conjunctions of inequalities of the form x �� p and invari-
ants can only bound clocks from above (i. e., x � p). In [21],
guards and invariants are conjunctions of inequalities of the
form x �� p + d, x �� d+ or p �� d (although the proofs of
undecidability only need inequalities of the form x �� p or
x �� d+). In [15,16], guards and invariants are conjunction
of simple inequalities.

A set of accepting locations is considered in [7,17,26,
33], but only [33] is interested in infinite accepting runs,
i. e., runs that pass infinitely often by an accepting location;
hence, this latter work considers what could be referred to as
parametric timed Büchi automata. In contrast, [11,16,21,42,
52,53,61] consider parametric timed safety automata (i. e.,
without accepting locations).

Remark 1 The restriction that the invariants can only bound
clocks from above (i. e., x � plt) is not a real restriction:
in timed automata, invariant that bound clocks from below
(i. e., d � x) can be moved to all incoming edges. The same
applies to PTAs. In other words, papers defining PTAs requir-

123

What’s decidable about parametric timed automata? 207

ing invariants to use only invariants with clocks bounded
from above are equivalent to PTAs with no restrictions at all
on the invariants.

2.2.4 Expressiveness

A comparison of the expressiveness of these different syn-
tactic models remains to be done. Whereas it is likely that
allowing constraints of the form x �� plt may be simulated
using constraints of the form x �� p | d+ (perhaps adding
additional locations, clocks and parameters), the expressive-
ness may differ when adding a set of accepting locations.
In fact, the expressiveness of a PTA was not even defined,
until we recently proposed two first possible definitions [17]:
the expressiveness of a PTA A (with accepting locations) is
either the union over all parameter valuations of the accepted
untimed words (“untimed language of A”), or the union over
all parameter valuations of pairsmadeof an accepted untimed
word and the associated valuation (“constrained untimed lan-
guage ofA”). Then, several subclasses of PTAs are compared
w.r.t. these two definitions.

However, no comparison of the syntax used in guards and
invariants was proposed. A challenging future work would
be to show that a PTA with constraints of the form x �� plt
can be for example translated into an equivalent PTA with
constraints of the form x �� p | d+ at the cost of n additional
clocks and/or parameters.

2.3 Decision and computation problems

Following the presentation in [53], given a class of decision
problems P (reachability, unavoidability, etc.), let us define
the P-emptiness, the P-universality and the P-finiteness.
P-emptiness problem:
Input: A PTA A and an instance φ of P
Problem: Is the set of parameter valuations v such that
v(A) satisfies φ empty?

P-universality problem:
Input: A PTA A and an instance φ of P
Problem: Are all parameter valuations v such that v(A)

satisfies φ?

P-finiteness problem:
Input: A PTA A and an instance φ of P
Problem: Is the set of parameter valuations v such that
v(A) satisfies φ finite?

In this survey, we mainly focus on reachability and unavoid-
ability properties and call themEF andAF, respectively.1 For

1 The names EF, AF, EG, AG were first used for PTAs in [53], and
come from the CTL syntax.

example, given a PTA A and a subset G of its locations2, EF-
emptiness asks: “is the set of parameter valuations v such that
at least one location of G is reachable in v(A) empty?” And
AF-universality asks: “are all parameter valuations v such
that any location in G is unavoidable in v(A)?” We will also
mention the EG property that checks whether there exists a
maximal run along which the locations remain in G, and the
AG property that checks whether the locations remain in G
for all runs.3

Additionally, we will consider the language (resp. trace)
preservation (emptiness) problem [21]: given a PTA A and a
parameter valuationv, does there exist another valuationv′ �=
v such that the untimed languages (resp. sets of traces) of
v(A) and v′(A) are the same?

We finally define the following computation problem:
P-synthesis problem:
Input: A PTA A and an instance φ of P
Problem: Compute the parameter valuations such that
v(A) satisfies φ.

For example, given aPTAA and a subsetG of its locations,
EF-synthesis consists in synthesizing parameter valuations v

such that at least one location of G is reachable in v(A) from
the initial state.

Example 2 Let us exemplify some decision and computation
problems for the PTA in Fig. 1. Assume the unique target
location is “done”, i. e., G = {done}. EF-emptiness asks
whether the set of parameter valuations that can reach loca-
tion “done” for some run is empty; this is false (e. g., p1 = 1,
p2 = 2, p3 = 3 can reach “done”). EF-universality asks
whether all parameter valuations can reach location “done”
for some run; this is false (no parameter valuation such that
p2 > p3 can reach “done”). AF-emptiness asks whether the
set of parameter valuations that can reach location “done” for
all runs is empty; this is false (e. g., p1 = 1, p2 = 2, p3 = 3
cannot avoid “done”). EF-synthesis consists in synthesizing
all valuations for which a run reaches location “done”; the
resulting set of valuations is 0 ≤ p2 ≤ p3 ≤ 10 ∧ p1 ≥ 0.

3 Almost everything is undecidable for simple
PTAs

In this entire section, we consider simple PTAs without
restriction on the number of clocks and parameters. In that
situation, all non-trivial problems studied in the literature are
undecidable, with the exception of the membership prob-
lem (that asks whether the language of a valuated PTA is

2 In general, it can be handful to set G = F ; but as not all definitions
of PTAs in the literature have accepting locations, we use here the set G
to denote goal locations.
3 Note that EF-, AF-, EG-, and AG-emptiness are equivalent to AG-,
EG-, AF-, EF-universality, respectively.

123

208 É. André

empty)—which is rather a problem for TAs. By non-trivial,
we mean requiring a semantic analysis, and not, e. g., a sole
analysis of the syntax of the PTA (e. g., “is the number of
clocks even”, or any problem defined in Sect. 2.3 by setting
G = L).

We also show that bounding time (Sect. 3.3) or bound-
ing the parameter domain for rational-valued parameters
(Sect. 3.4) preserves the undecidability. However, we will
show in Sect. 4 that bounding the number of clocks and/or
parameters brings decidability.

All proofs of undecidability reduce from either the halt-
ing problem, or the boundedness problem, of a 2-counter
machine, both known to be undecidable [62].

3.1 Decidability of the membership

In [7], the membership problem for PTAs is defined as fol-
lows: given a PTA A and a parameter valuation v, is the
language of v(A) empty? The membership problem is not
strictly speaking a problem for PTAs, but rather for TAs,
since it considers a valuated PTA. As a consequence, the
decidability of this problem only relies on known results
for TAs.

On the one hand, the membership problem is decidable
(and PSPACE-complete) for PTAs over discrete time (T = N

and P = N), over dense time with integer-valued parameters
(T = R

+ and P = N), and over dense time with rational-
valued parameters (T = R

+ and P = Q) [5].
On the other hand, the membership problem becomes

undecidable with real-valued (in fact irrational) parameters.
Indeed, the reachability of a location in a TA with irrational
constants is undecidable [61]. The idea is to encode a 2-
counter machine using 2 clocks x1 and x2 (plus an additional
third clock), where the value ci of counter i is encoded using
xi = ci × τ , for i ∈ {1, 2}, with τ the irrational constant (the
value

√
2 is suggested for τ).

3.2 General undecidable problems

3.2.1 EF-emptiness

The seminal paper on PTAs [7] showed that the EF-
emptiness problem is undecidable for PTAs, both over
discrete time, and over dense time (real-valued clocks and
real-valued parameters). The proof consists in reducing
from the halting problem of a 2-counter machine. The
idea of the encoding of the 2-counter machine is to use
parameters (the value of which can be arbitrarily large)
to encode the maximum value of the counters. Although
not explicitly stated in [7], the proof of undecidability also
works for real-valued clocks with integer-valued parame-
ters.

3.2.2 AF-emptiness

In [53], it is proved that the AF-emptiness is undecidable
for L/U-PTAs (a subclass of PTAs, see Sect. 5) with 3 clocks
and 4 integer-valued parameters, and hence for PTAs as well.
Again, the proof of undecidability consists in reducing from
the halting problem of a 2-counter machine. Another proof is
provided in [16] that uses 3 clocks and only 2 rational-valued
parameters.

3.2.3 AG-emptiness

In [16], it is proved that the AG-emptiness problem is unde-
cidable with 3 clocks and 2 rational-valued parameters.

3.2.4 EG-emptiness

In [13], it is proved that the EG-emptiness problem is unde-
cidable with 4 clocks and 3 parameters.

Remark 2 For all three previous problems (AF-emptiness,
AG-emptiness and EG-emptiness), the result is in fact proved
for a subclass of PTAs—namelyL/U-PTAs forAF-emptiness
and EG-emptiness, and bounded integer-points PTAs (see
Sect. 6.3) for AG-emptiness—so the number of clocks and
parameters needed for the encoding is certainly not mini-
mal for general PTAs, and might therefore be reduced using
smarter constructions.

Remark 3 Note that the undecidability of all of these prob-
lems rules out the possibility to perform exact parametric
model checking of CTL-like properties on PTAs.

3.2.5 Language and trace preservation problems

Both the language preservation and the trace preservation
problems are undecidable for simple PTAs [21]. The con-
tinuous (or robust) versions of those problems additionally
require that the language (resp. set of traces) is preserved
under any intermediary valuation of the formλ·v+(1−λ)·v′,
for λ ∈ [0, 1] (with the classical definition of addition and
scalar multiplication).

The language preservation problems and its continuous
version are undecidable for a PTA with at least 4 parametric
clocks [21].

The trace preservation and its continuous version are unde-
cidable too; the proof of this result comes with three flavors:

1. the first proof involves diagonal constraints (i. e., of the
form xi−x j �� plt, which goes beyond the syntax of sim-
ple PTAs), but only a fixed number of parametric clocks
[21];

2. the second proof does not involve diagonal constraints.
It involves a bounded number of locations (but with an

123

What’s decidable about parametric timed automata? 209

unbounded number of transitions) and an unbounded
number of parametric clocks; by unbounded we mean
not constant but depending on the size of the counter
machine [21];

3. the third proof uses a bounded number of clocks and
parameters, and an unbounded number of locations [14].

The need for an unbounded number of clocks in the first
two versions of this proof comes from the fact that the proof
encodes the 2-counter machine with a fixed number of loca-
tions (to reduce easily from language preservation to trace
preservation), which thus requires to encode each location
with a different clock. Note that the first two versions of the
proof are, to the best of our knowledge, the only attempt
to model a 2-counter machine using PTAs with a constant
number of locations (at the cost of an unbounded number of
clocks).

3.3 Bounding time

Bounded time model checking consists in checking a prop-
erty within a bounded time domain. That is, we assume a
predefined time bound (say T), and we only consider the
system behavior in the time interval [0, T]. Undecidable
problems might become decidable in this situation, or be
of a lower complexity. For example, the language inclu-
sion for timed automata becomes decidable over bounded
time [64], although it is undecidable in general. In addition,
time-bounded reachability becomes decidable for a special
subclass of hybrid automata with monotonic (either nonneg-
ative or non-positive) rates [34], although it is undecidable
in general.

In contrast, the EF-emptiness problem remains unde-
cidable for (general) PTAs over bounded, dense time [54,
Theorem 3.4].

This said,we emphasize that (quite trivially)model check-
ing discrete-time PTAs over bounded time would become
decidable; the same is likely to hold for dense-timePTAswith
integer-valued parameters over bounded time. (This remains
to be shown formally though.)

3.4 Bounding the parameter domain

Bounding the parameter domain consists in setting aminimal
and amaximal (non-infinite) boundon the possible parameter
valuations of a PTA.

3.4.1 Decidability for integer-valued parameters

For integer parameters, any problem for a PTA over a
bounded parameter domain is decidable iff the corresponding
problem is decidable for a TA. In fact, theP-emptiness prob-
lem for PTAs with bounded integer is PSPACE-complete for

any class of problems P that is PSPACE-complete for TAs
[53]. Indeed, it suffices to enumerate all parameter valuations,
of which there is a finite number. As a consequence, EF-,
AF-, EG-, AG-emptiness are all decidable, and so are lan-
guage and trace preservation. More generally, the whole
TCTL model checking, including reachability and unavoid-
ability, is PSPACE-complete [2], and therefore the corre-
sponding emptiness problems are PSPACE-complete for
PTAs with bounded integer parameters.

In [53], a symbolic method is proposed to compute EF-
and AF-synthesis; experiments showed that this symbolic
computation is faster than an exhaustive enumeration (using
Uppaal).

3.4.2 Undecidability for rational-valued parameters

For rational-valued parameters, the EF-emptiness problem
is undecidable for a single parameter in [1, 2] [61]. EG-
emptiness [13], AF- and AG-emptiness [16], as well as
language and trace preservation [21] are also undecidable for
one or two rational-valued bounded parameter(s) (typically
bounded by [0, 1]).

4 Bounding the numbers of clocks and parameters

4.1 EF-emptiness

Since the seminal paper on PTAs [7], the decidability of the
EF-emptiness problem was studied in various settings, by
bounding the number of parametric clocks, of nonparametric
clocks, and of parameters. The syntax was also restrained.

We summarize these results in Table 2.4 We only keep in
Table 2 the best known results as of the current state of the
art. For example, the decidability of the EF-emptiness prob-
lem over dense time with 1 parametric clock and arbitrarily
many nonparametric clocks and integer-valued parameters
as proved in [7] with a non-elementary complexity does not
appear in Table 2 as it is subsumed by Beneš et al. [26] with
an NEXPTIME complexity and a more permissive syntax
(use of invariants).

The open question of the syntax expressiveness requires to
consider a multi-dimensional table: we need to consider not
only the number of clocks and parameters, but also the syn-
tax allowed in guards and invariants. For example, for the
undecidability over discrete time, [26] improves the num-
ber of parameters when compared to [7] (6 instead of 1),
but requires both strict and non-strict inequalities, whereas
[7] uses only equalities in their construction; it is therefore
unclear whether the result of [7] is really subsumed by Beneš

4 This table is partially inspired by a similar table in [42], improved
by adding more dimensions, and of course more recent results.

123

210 É. André

Table 2 Decidability of the EF-emptiness problem for general PTAs

T P Guards Invariants P-clocks NP-clocks Params Decidability Main ref.
N N x �� p|d 1 0 fixed (at most) PTIME [61] (consequence)
N N x �� p|d 1 0 any (at most) NP-complete [61] (consequence)
N N x �� p|d 1 any any NEXPTIME-complete [37,26] (consequence)
N N x ≤≥ p|d+ 2 any 1 PSPACENEXP-hard [37]
N N any 2 any > 1 open
N N x �� p|d None 3 0 1 undecidable [26]
N N x = p|d None 3 0 6 undecidable [7]
N N x <> p any any any open
N N bounded x �� plt any any any (at most) PSPACE-complete [54] (consequence)
R+ N x �� p|d 1 0 fixed (at most) PTIME [61] (consequence)
R+ N x �� p|d 1 0 any (at most) NP-complete [61] (consequence)
R+ N x �� p|d 1 any any NEXPTIME [26]
R+ N any 2 any any open
R+ N x �� p|d None 3 0 1 undecidable [26]
R+ N x = p|d None 3 0 6 undecidable [7] (consequence)
R+ N x <> p any any any open
R+ N bounded x �� plt any any any PSPACE-complete [54]
R+ Q+ x �� p|d 1 0 fixed PTIME [61]
R+ Q+ x �� p|d 1 0 any NP-complete [61]
R+ Q+ any 1 1 or 2 any open
R+ Q+

[1;2] x �� p|d 1 3 1 undecidable [61]
R+ Q+ any 2 0 or 1 any open
R+ Q+

[1;2] x �� p|d 2 2 1 undecidable [61] (consequence)
R+ Q+

[1;2] x �� p|d 3 0 1 undecidable [61]
R+ R+ x = p|d None 3 0 6 undecidable [7]
R+ Q+ x <> p < 2 3 2 open
R+ Q+ x <> p 2 < 3 2 open
R+ Q+ x <> p 2 3 < 2 open

Q+/R+ Q+/R+ x <> p 2 3 2 undecidable [42]

et al. [26]. However, following Remark 1, we considered that
theworks requiring invariants to contain only clocks bounded
from above impose in fact no constraint on the invariants
form (as the clocks bounded from below can be moved to the
incoming guards).

“Consequence” indicates a result originally proved for a
less expressive or a more expressive setting; “at most” in
the complexity column indicates in the latter case that the
complexity is necessarily lower or equal to that of the more
expressive setting. For example, [61] proved that the single
clock case is PTIME over dense time with a fixed number of
rational-valued parameters, and therefore the corresponding
problem cannot be harder over discrete time (with integer-
valued parameters).

In the following, we extract the most important results
out of Table 2. The decidability is clearly impacted by the
number of parametric clocks, and we therefore reason by the
number of parametric clocks.

4.1.1 Main results: 1 parametric clock

First, let us consider PTAs with a single parametric clock:
The EF-emptiness problem is (at most) NP-complete over

discrete and dense time with no nonparametric clock and
arbitrarily many parameters [61].

It is decidable and NEXPTIME-complete over discrete
time with arbitrarily many nonparametric clocks [26]. Over
dense time with arbitrarily many nonparametric clocks and
integer-valued parameters, it is NEXPTIME [26].

It is undecidable with three nonparametric clocks [61]
over dense time with rational-valued parameters; note that
this problem is decidable over discrete time [7,26,37] and
over dense time with integer-valued parameters [26], which
exhibits a difference between dense and discrete time [61],
as well as between integer- and rational-valued parameters
over dense time.

4.1.2 Main results: 2 parametric clocks

Second, let us consider PTAswith two parametric clocks: the
EF-emptiness problem is decidable over discrete time with
arbitrarilymany nonparametric clocks and a single parameter
and is PSPACENEXP-hard [37].

Over dense time with rational-valued parameters, the case
with 2 parametric clocks and 2 nonparametric clocks is unde-
cidable: [61] gives a proof of undecidabilitywith 1parametric

123

What’s decidable about parametric timed automata? 211

clock and 3 nonparametric clocks: comparing one of the non-
parametric clocks with a parameter in an additional location
(e. g., after the halting location) does not impact the proof
and turns a nonparametric clock into a parametric one.

Any other case with two parametric clocks remains open.

4.1.3 Main results: other undecidability

The EF-emptiness problem is undecidable in all settings with
three (or more) parametric clocks.

Finally, using only strict inequalities, the EF-emptiness
problem is undecidable over dense time for two parametric
clocks, three nonparametric clocks and two parameters [42];
this situation was not considered over discrete time.

4.1.4 Open cases

The main open case is the “two parametric clocks” case. The
decidability is open for 2 parametric clocks with:

– over discrete time: arbitrarilymany nonparametric clocks
and more than one parameter;

– over dense time with integer-valued parameters: arbitrar-
ily many nonparametric clocks and parameters;

– over dense time with rational-valued parameters: 0 or 1
nonparametric clock and any number of parameters.

In addition, the decidability remains open over dense time
with rational-valued parameters for 1 nonparametric clock, 1
or 2 nonparametric clocks and arbitrarily many parameters.

Finally, the decidability using only strict inequalities
remains open for cases not considered by Doyen [42]: less
clocks and parameters, or with integer-valued parameters
(both over dense and discrete time).

4.2 Language and trace preservation

Let us first recall the definition of determinism from [21].
We say that a PTA is deterministic if, for any l ∈ L , for any
a ∈ Σ , there exists at most one edge (l, g, a, R, l ′) ∈ E ,
for some g, R, l ′. (Note that it differs from a rather common
definition of determinism for TAs, that allows two or more
outgoing transitions with the same action label provided that
the corresponding guards are pairwise disjoint.)

The language and trace preservation problems are decid-
able for deterministic PTAs with a single (parametric) clock
and with linear parameter constraints allowed in guards and
invariants, i. e., of the form x �� plt or plt �� 0 [21]. A proce-
dure to compute parameter valuations with the same trace set
as a given valuation is proposed in [21] (close to the “inverse
method” [11]), that is complete for deterministic PTAs, and
terminates in the case of a single clock.

4.3 Parametric model checking

Parametric model checking was addressed in different set-
tings: verifying a nonparametric model against a parametric
formula, or a parametric model against a nonparametric for-
mula, or a parametric model against a parametric formula.

4.3.1 Nonparametric model/parametric formula

In [6], an extension of LTL with parameters in the formula
(“PLTL”) is studied. When only parametric “always” modal-
ities are allowed of the form “≤ p”, checking emptiness of
the valuation set is PSPACE-complete. The solution to the
synthesis problem is doubly exponential in the number of
parameters. However, when allowing equality in PLTL, the
emptiness problem becomes undecidable [6].

4.3.2 Parametric model/nonparametric formula

In [65], it is shown that model-checking PTAs with the (non-
parametric) logicMTL [56] is undecidable, evenwith a single
clock and a single parameter and even when the PTAs is
deterministic. This negative result comes in contrast to the
decidability of theEF-emptiness problem for one-clockPTAs
and to the decidability of MTL model checking for (non-
parametric) timed automata in the pointwise semantics over
finite timed words [63]. Note that the proof of undecidability
of [65] requires the parameters to be rational-valued (integer-
valued parameters are not sufficient—and this latter case can
hence be considered as open).

4.3.3 Parametric model/parametric formula

Model checking a PTA over discrete time with a single para-
metric clock against a PTCTL formula (a parametric version
of TCTL) is decidable, provided the formula does not use
equality constraints; otherwise the problem becomes unde-
cidable [36].

4.4 Other problems: open

Other problems are open. However, two constructions were
recently proposed for the one parametric clock case, that
may help solve most problems in this particular setting.
First, in [21], we show that the parametric zone graph is
finite for a single (parametric) clock and arbitrarily many
rational-valued parameters over dense time. This implies that
all problems that reason on the zone graph can be decided.
This includes in particular EF-, EG-, AF and AG-emptiness,
as well as the language and trace preservation problems.

Second, in [26], an abstraction is proposed for one para-
metric clock and arbitrarily many nonparametric clocks and
integer-valued parameters over dense time. Although this

123

212 É. André

remains to be shown formally, this abstraction (based on
the elimination of the nonparametric clocks followed by
a corner-point abstraction on the subsequent region graph)
apparently preserves enough elements of the region graph to
be used to solve all aforementioned problems.

In both cases, the synthesis seems also to be feasible.

5 The (quite) disappointing class of L/U-PTAs

Lower-bound/upper-bound parametric timed automata (L/U-
PTAs), proposed in [52], restrict the use of parameters in the
model. A parameter is said to be an upper-bound parameter
if, whenever it is comparedwith a clock, it is necessarily com-
pared as an upper bound, i. e., it only appears in inequalities
of the form x � p. Conversely, a parameter is a lower-
bound parameter if it is only compared with clocks as a
lower bound, i. e., of the form p � x .

An L/U-PTA is a PTA where the set of parameters is
partitioned into upper-bound parameters and lower-bound
parameters. In [33], two additional subclasses are introduced:
L-PTAs (resp. U-PTAs) are PTAs with only lower-bound
(resp. upper-bound) parameters.

Example 3 Consider again the coffee machine in Fig. 1,
modeled using a PTAA. This PTA is not anL/U-PTA; indeed,
in the guard x2 = p2 (resp. x2 = p3), p2 (resp. p3) is com-
pared with clocks both as a lower bound and as an upper
bound. (Recall that = stands for ≤ and ≥.)

However, if one replaces x2 = p2 with x2 ≤ p2 and one
replaces x2 = p3 with x2 ≤ p3, thenA becomes an L/U-PTA
with lower-bound parameter p1 and upper-bound parameters
{p2, p3}. Note that equalities are not forbidden in L/U-PTAs
(e. g., x1 = 10), but only equalities involving parameters.

Several case studies fit into the class of L/U-PTAs: the
root contention protocol, the bounded retransmission proto-
col and the Fischermutual exclusion protocol are allmodeled
with L/U-PTAs in [52]; in [52,55], both the Fischer mutual
exclusion protocol and a producer–consumer are verified
using L/U-PTAs. Interestingly, the two case studies of the
seminal paper onPTAs [7] (viz., a toy railroad crossingmodel
and a model of Fischer mutual exclusion protocol) are also
L/U-PTAs, although the concept of L/U-PTAs had not been
proposed yet at that time. In addition, most models of asyn-
chronous circuits with bi-bounded delays (i. e., where each
delay between the change of an input signal and the change
of the corresponding output is a parametric interval) can be
modeled using L/U-PTAs.

L/U-PTAs were first known for their decidability results
(Sect. 5.1); then, new undecidability results (Sects. 5.2 and
5.3) rendered this class less interesting. Themost disappoint-
ing aspect of L/U-PTAs is the impossibility to perform exact
synthesis even when the associated decision problems are

decidable. We review these results in the remainder of this
section.

5.1 A main decidability result

The first (and main) positive result for L/U-PTAs is the
decidability of the EF-emptiness problem [52]. L/U-PTAs
benefit from the following interestingmonotonicity property:
increasing the value of an upper-bound parameter or decreas-
ing the value of a lower-bound parameter necessarily relaxes
the guards and invariants, and hence can only add behav-
iors. Hence, checking the EF-emptiness of an L/U-PTA can
be achieved by replacing all lower-bound parameters with 0,
and all upper-bound parameters with ∞; this yields a non-
parametric TA, for which emptiness is PSPACE [5]. This
procedure is not only sound but also complete.

Further decidability results are exhibited in [33], for infi-
nite runs acceptance properties, i. e., where a location is
met infinitely often (a problem to which we refer here-
after as Büchi). Note that, in contrast to [52] where the
parameters are valued with nonnegative reals, the results
in [33] consider integer-valued parameters (though time is
dense, i. e., clocks are real-valued). It is shown in [33] that
Büchi-emptiness, Büchi-universality, and Büchi-finiteness
are PSPACE-complete. Remark that the decidability of the
Büchi-finiteness is due to the fact that the parameters are
integer-valued; in short, a sufficient bound is computed on
the parameters, and then valuations smaller or equal to this
bound are enumerated, which would not be feasible for real-
or rational-valued parameters.

Oddly, the decidability of EF-universality was never
shown for L/U-PTAs. On the one hand, EF-emptiness
is decidable for L/U-PTAs with rational-valued parame-
ters [52]. On the other hand, Büchi-universality is decidable
for L/U-PTAs with integer-valued parameters [33], and this
result extends in a very straightforward manner to EF-
universality for L/U-PTAs with integer-valued parameters.
Let us first extend Büchi-universality to rational-valued
parameters. The result mainly consists in a reasoning dual
to [13, Lemma 2].

Proposition 1 The Büchi-universality problem is PSPACE-
complete for L/U-PTAs with rational-valued parameters.

Proof We aim at proving that, given an L/U-PTA A and a
subset of its locations G, the problem of the universality
of the set of parameter valuations v such that v(A) has a
run passing infinitely often through G is PSPACE-complete.
Let us prove that the set of rational valuations satisfying the
property is not universal iff the set of integer valuations doing
so is not universal.

⇐ Considering that integer valuations are also rational val-
uations, the result trivially holds.

123

What’s decidable about parametric timed automata? 213

⇒ Assume there exists a rational-valued parameter valua-
tion v for which v(A) contains no infinite run passing
infinitely often through locations of G. Let v′ be the inte-
ger parameter valuation obtained from v as follows:

v′(p) =

⎧
⎪⎨

⎪⎩

v(p) if v(p) ∈ N

�v(p)� if p is an upper-bound parameter

�v(p)� if p is a lower-bound parameter

That is, v′ is more restrictive than p, and less guards will
be enabled, and therefore less behaviors will be possible
in v(A). Formally, from the well-known monotonicity
property of L/U-PTAs (recalled in e. g., [13, Lemma 1]),
if v(A) yields no infinite run passing infinitely often
through locations of G, then neither does v′(A).

Now, in [33, Theorem 8], it is proved that the problem of
the universality of the set of integer parameter valuations
for which there exists an infinite run passing infinitely often
through G is PSPACE-complete. This concludes the proof.

��
This result extends trivially to EF-universality (by adding

self-loops with no guard on all accepting locations).

Corollary 1 The EF-universality problem is PSPACE-
complete for L/U-PTAs with rational-valued parameters.

5.2 Undecidability results

The first undecidability results for L/U-PTAs are shown
in [33]: the constrained Büchi-emptiness problem and con-
strained Büchi-universality problem are undecidable for
L/U-PTAs. By constrained, it is meant that some parame-
ters of the L/U-PTA can be constrained by an initial linear
constraint, e. g., p1 ≤ 2 × p2 + p3. Indeed, using linear
constraints, one can constrain an upper-bound parameter to
be equal to a lower-bound parameter, and hence build a
2-counter machine using an L/U-PTA. However, when no
upper-bound parameter is compared to a lower-bound param-
eter (i. e., when no initial linear inequality contains both an
upper-bound and a lower-bound parameter), these two prob-
lems retrievedecidability [33]. The exact decidability frontier
may not be found yet: the case where a lower-bound param-
eter is constrained to be less than or equal to an upper-bound
parameter fits in none of the considered cases.

A second negative result is shown in [53]: the AF-
emptiness problem is undecidable for L/U-PTAs. This is
achieved by a reduction from a 2-counter machine where
a lower-bound parameter is equal to an upper-bound param-
eter iff AF holds. This restricts again the use of L/U-PTAs,
as AF is essential to show that all possible runs of a system
eventually reach a (good) state.

Then, in [21], it is shown that the language preservation
problem is undecidable for L/U-PTAs.Again, this is achieved
by a reduction from a 2-counter machine where a lower-
bound parameter is equal to an upper-bound parameter iff
the language is preserved.

5.3 A frontier between decidability and undecidability

The EG-emptiness problem stands at the frontier between
decidability and undecidability [13]. Recall that the EG-
emptiness problem is false if there exists at least one parame-
ter valuation forwhich amaximal run remains entirelywithin
some predefined set G of locations. That is, either this run
is an infinite run, and therefore contains a cycle (remaining
withinG); or this run is a finite run (remainingwithinG), and
therefore ends with a deadlock, i. e., ends with a state from
which no discrete transition can be taken, even after letting
some time elapse.

On the one hand, deciding whether there exists a valuation
in an L/U-PTA yielding a cycle is decidable (and PSPACE-
complete). On the other hand, deciding whether there exists a
valuation in an L/U-PTA yielding a deadlock is undecidable.
(These two problems, not studied in this survey, are without
surprise shown to be undecidable for general PTAs.)

The EG-emptiness problem stands in between decidabil-
ity and undecidability: while this problem is decidable for
L/U-PTAs with a bounded parameter domain with closed
bounds, it becomes undecidable if either the assumption of
boundedness or of closed bounds is lifted.

5.4 Model-checking L/U-PTAs

In [33], a parametric extension of the dense-time lin-
ear temporal logic MITL0,∞ (denoted “PMITL0,∞”) is
proposed; when parameters are used only as lower or
upper bound in the formula (to which we refer as L/U-
PMITL0,∞), satisfiability and model checking are PSPACE-
complete; this is obtained by translating the formula into
an L/U-PTA and checking an infinite acceptance prop-
erty.

Then, in [41], an extension of MITL allowing parametric
linear expressions in bounds is proposed (yielding PMITL).
Two sets of (integer-valued) parameter valuations are con-
sidered: (1) the set of valuations for which a PMITL formula
is satisfiable, i. e., for which there exists a timed sequence
(possibly belonging to a given L/U-PTA) satisfying it, and
(2) the set of valuations for which a PMITL formula is valid,
i. e., for which all timed sequences (possibly belonging to
a given L/U-PTA) satisfy it. Under some assumptions, the
emptiness and universality of the valuation set for which
a PMITL property is satisfiable or valid (possibly w.r.t. a
given L/U-PTA) are decidable, and EXPSPACE-complete.
Essential assumptions for decidability include the fact that

123

214 É. André

Table 3 Decision problems for
L/U-PTAs over dense time

Problem P Complexity Main ref.

EF-emptiness Q
+ PSPACE-complete [52]

AG-emptiness Q
+ PSPACE-complete Corollary 1

AF-emptiness Q
+ Undecidable [53]

Cycle-existence-emptiness Q
+ Decidable [13]

Deadlock-existence-emptiness Q
+ Undecidable [13]

EG-emptiness (closed bounded) Q
+ Decidable [13]

EG-emptiness (general) Q
+ Undecidable [13]

Büchi-emptiness Q
+ PSPACE-complete [13]

Büchi-universality Q
+ PSPACE-complete Proposition 1

Büchi-finiteness N PSPACE-complete [33]

Constrained Büchi-emptiness N Undecidable [33]

Constrained Büchi-universality N Undecidable [33]

L/U-constrained Büchi-emptiness N PSPACE-complete [33]

L/U-constrained Büchi-universality N PSPACE-complete [33]

Language preservation N Undecidable [21]

Language preservation Q
+ Undecidable [21]

L/U-PMITL0,∞-emptiness N PSPACE-complete [33]

L/U-PMITL0,∞-universality N PSPACE-complete [33]

PMITL model-checking N EXPSPACE-complete [41]

parameters should be used with the same polarity (positive
or negative coefficient, as lower or upper bound in the inter-
vals) within the entire PMITL formula, and each interval
can only use parameters in one of the endpoints. Addi-
tional assumptions include that no interval of the PMITL
formula should be punctual (nor empty), and linear para-
metric expressions are only used in right endpoints of the
intervals (single parameters can still be used as left end-
points). In addition, two fragments of PMITL are showed
to be in PSPACE, including one that allows for expressing
parameterized response (“if an event occurs, then another
event shall occur within some possibly parametric time inter-
val”).

5.5 Summary of decidability problems for L/U-PTAs

We summarize in Table 3 decision problems for L/U-PTAs.
Cases not considered in the literature are not depicted.

5.6 Intractability of the synthesis

The most disappointing result concerning L/U-PTAs is
shown in [53]: despite decidability of the underlying decision
problem (EF-emptiness), the solution to the EF-synthesis
problem for L/U-PTAs cannot be represented using a for-
malism for which the emptiness of the intersection with
equality constraints is decidable. The proof relies on the
undecidability of the constrained emptiness problem of [33].
A very annoying consequence is that such a solution can-

not be represented as a finite union of polyhedra (since the
emptiness of the intersection with equality constraints is
decidable).

5.7 Two open classes: L-PTAs and U-PTAs

L-PTAs and U-PTAs (introduced in [33]) are very open
classes, in the sense that to the best of our knowledge,
no result known to be decidable for L-PTAs (or U-PTAs)
was shown undecidable for L/U-PTAs (and is hence either
decidable or open). Conversely, and even stronger, no
result known to be undecidable for L/U-PTAs was shown
decidable for L-PTAs (or U-PTAs)—and remains
open.

To summarize, the EG-emptiness, AG-emptiness and AF-
emptiness problems, as well as the language and trace
preservation problems, are all undecidable for (general) L/U-
PTAs, but remain open for L-PTAs and U-PTAs.

5.7.1 Synthesis

The synthesis for L-PTAs and U-PTAs did not receive much
attention, with the exception of integer-valued parameters:
in that case, it is possible to synthesize the solution to the
Büchi-synthesis problem in the form of a union of linear con-
straints doubly exponential in the number of parameters [33].
The authors note that it remains open whether one can con-
struct a linear constraint with a single exponential blow-up.
This result does not extend in a straightforward manner to

123

What’s decidable about parametric timed automata? 215

rational-valued parameters, as the technique in [33] (for U-
PTAs) requires the computation of a sufficient upper bound,
and then an exhaustive enumeration of parameters below this
bound.

6 Beyond parametric timed automata

6.1 Parametric hybrid automata

Hybrid automata [3,4,46] are an extension of timed automata
where clocks (called continuous variables) can have an arbi-
trary rate (i. e., non-necessarily equal to 1).

The reachability of a location in linear hybrid automata is
undecidable, although semi-algorithms were proposed [3].
Interestingly, the simple extension of timed automata to
stopwatch automata (where the elapsing of some clocks
may be stopped in selected locations) yields a formalism
as expressive as linear hybrid automata [38], and for which
reachability is undecidable too.

First, remark that parameters can be encoded naturally
in the general class of hybrid automata, provided diagonal
constraints are allowed (of the form vi − v j �� c, with vi , v j

variables and c a constant): a parameter is a variable that
is not initialized (its initial value is arbitrary), the rate of
which is always 0 (therefore constant), and that is never reset
along any transition. However, the undecidability results for
linear hybrid automata rule out the possibility of exhibiting
any decidability results for (general) parametric linear hybrid
automata.

Second, several subclasses of linear hybrid automata were
defined in the literature andwere shown to enjoy some decid-
able results (e. g., [23,31,34,35,48]). However, obviously,
any such subclass at least expressive as timed automata
(such as [34,48]) would necessarily lead to undecidability
when adding parameters. This is not the case of some of
subclasses of linear hybrid automata, which are incompa-
rable (at least from a syntactic point of view) with timed
automata (e. g., [31,35]), or restrict the use and the number
of variables [23]. We believe studying parametric exten-
sions of these formalisms represent an interesting direction
of research.

6.2 Parametric interrupt timed automata

Interrupt timed automata (ITAs) are a subclass of hybrid sys-
tems where clock variables only have a rate of 0 (stopped)
or 1 (processing): in fact, ITAs define levels such that, at
each level, exactly one clock is active (rate 1), while clocks
of lower levels are stopped (rate 0) [31]. In addition, guards
can only involve clocks from the current level and the lower
levels. Clock updates allow the use of linear expressions
involving clocks from lower levels. The model is well suited

to define real-time systems with multiple tasks running on a
single processor and subject to interruption (where a lower-
priority task can be preempted by a higher-priority task). A
main positive result for ITAs is that reachability is in NEX-
PTIME (and in PTIME when the number of clocks is fixed).
Interrupt timed automata and timed automata are incompa-
rable in terms of timed language.

In [29], ITAs are extended with parameters, which yields
parametric ITAs (PITAs). When parameters are combined
with clock values in linear expressions as additive coef-
ficients, the reachability in PITAs reduces to the same
problem in nonparametric ITAs and is therefore decid-
able (with an upper bound of 2EXPTIME on the com-
plexity, due to the reduction). When parameters are com-
bined with clock values in linear expressions as both
additive and multiplicative coefficients, the reachability
in PITAs remains decidable, with an upper bound of
2EXPSPACE on the complexity. This significantly increases
the expressiveness of ITAs and allows to model clock
drifts.

Finally, ITAs are extended to polynomial ITAs (PolITAs)
in [30], where polynomial expressions on clocks are allowed
in guards. Reachability remains decidable, and parameters
can be used (without harming the complexity) in polynomi-
als.

6.3 Integer-point parametric timed automata

Integer-point parametric timed automata (IP-PTAs) were
introduced in [16] as a subclass of PTAs in which each
state in the parametric zone graph (a construction with loca-
tion and symbolic convex constraints over X ∪ P) contains
an integer point. The main positive result for IP-PTAs with
bounded (rational-valued) parameters is the decidability of
the EF-emptiness problem. However, the AF-emptiness and
AG-emptiness problems are both undecidable.

A more disappointing result is the undecidability of the
membership problem, i. e., it is undecidable whether a PTA
is an IP-PTA. In addition, synthesis is proved to be intractable
(as for L/U-PTAs).

However, a sufficient syntactic condition for the member-
ship of IP-PTAs is the class of reset-PTAs [16]: whenever a
clock is compared to a parameter in a transition guard (resp. in
location invariant), then all clocksmust be reset on that transi-
tion (resp. along all transitions going out from that location).
As a consequence, the EF-emptiness problem is decidable
for bounded reset-PTAs too. In addition, we conjecture that
the parametric zone graph of reset-PTAs should be finite,
which would allow to prove the decidability of the AF, AG
and EG-emptiness problems. This remains to be shown for-
mally.

123

216 É. André

6.4 Other formalisms

6.4.1 Time Petri nets

In parallel to timed automata, many works in the literature
were dedicated to time Petri nets [60], which are an extension
of Petri nets where transitions are labeled with a firing inter-
val, which represents the duration between the time when
the transition becomes enabled (enough tokens are present
in the incoming places) and the time it can actually fire.
Time Petri nets and timed automata were compared in, e. g.,
[27,28,66].

In [69], time Petri nets are extended with rational-
valued parameters in firing intervals. Using translations
between time Petri nets and timed automata [27,39], it
is shown that the emptiness and reachability problems
are undecidable for bounded parametric time Petri nets,
and turn decidable when parameters are only used as
lower bounds or upper bounds, in the spirit of L/U-
PTAs. Then, semi-algorithms are defined for the parametric
model checking of a subset of parametric TCTL formu-
las applied on parametric time Petri nets extended with
inhibitor arcs (which play a similar role as stopwatches in
timed automata). The tool Roméo implements these algo-
rithms.

6.4.2 Stateful timed CSP

In [19], the process algebra stateful timed CSP [67] (itself
an extension of Hoare’s communicating sequential pro-
cesses [51]) is extended with parameters in syntactic con-
structs such as Wait, Deadline or Within, yielding
PSTCSP.Without surprise (as the expressiveness of PSTCSP
is very close to that of PTAs), the emptiness of the valuation
set for which a configuration is reachable is undecidable.
Although most of the (timed) syntactic constructs allowed
are not necessary for the proof of undecidability, the Wait
construct (used to test an exact amount of time, simi-
lar to equality in timed automata), is extensively used.
Decidability for subsets of the syntax without the Wait
construct was not studied. PSTCSP is implemented in a
tool PSyHCoS [20] implementing some parameter synthe-
sis algorithms.

7 Tools and applications

7.1 Tools

The first tool to supportmodeling and verification using para-
metric timed automata was HyTech [47]. In fact, HyTech
supports linear hybrid automata (including clocks, parame-
ters, stopwatches and general continuous variables); it can

compute the state space and perform operations (such as
intersection, convex hull, difference) between sets of sym-
bolic states. Therefore, it can be used to perform parametric
model checking using reachability checking [1]. HyTech is
not maintained anymore, but can still be found online in the
form of a standalone binary for Linux.5

In [52], an extension of Uppaal implementing parametric
difference bound matrices (PDBMs) and hence allowing for
verification using PTAs ismentioned.However, this tool does
not seem to be available anywhere online.

Roméo [58] primarily supports parametric time Petri nets
(extended with stopwatches), a formalism shown to be close
to PTAs in terms of expressiveness [27,69].Roméo supports
the use of parametric linear expressions in the time inter-
vals of the transitions and allows to add linear constraints on
the parameters to restrict their domain. Roméo also imple-
ments an original algorithm for integer parameter synthesis
using a symbolic (continuous) representation [53]. In addi-
tion, Roméo provides a simulator and an integrated model
checker supporting a subset of the TCTL syntax (including
EF-synthesis and AF-synthesis).Roméo is mainly written in
C++ and makes use of the Parma Polyhedra Library [25].

IMITATOR [12] is a software tool for parametric veri-
fication and robustness analysis of PTAs augmented with
integer variables and stopwatches. Parameters can be used
both in the model and in the properties. Verification capabil-
ities include EF-synthesis, deadlock-freeness-synthesis [9],
non-Zeno model checking [22], and trace preservation syn-
thesis. IMITATOR is fullywritten inOCaml andmakes use of
the Parma Polyhedra Library [25]. It also features distributed
capabilities to run over a cluster.

7.2 Applications

The formalism of PTAs has been used to model and ver-
ify various case studies featuring real-time constraints and
parameters.

Beyond the usual academic examples (such as variants of
train controllers [7,52]), PTAs were also used to successfully
specify and verify numerous interesting case studies such as
the root contention protocol [52], Philip’s bounded retrans-
mission protocol [52], a 4-phase handshake protocol [55], the
alternating bit protocol [53], an asynchronous circuit com-
mercialized by ST-Microelectronics [40], (non-preemptive)
schedulability problems [53], a distributed prospective archi-
tecture for the flight control system of the next generation
of spacecrafts designed at ASTRIUM Space Transporta-
tion [44], an unmanned aerial video system by Thales,6 and
even analysis of music scores [43].

5 https://embedded.eecs.berkeley.edu/research/hytech/.
6 http://www.imitator.fr/static/FMTV15/.

123

https://embedded.eecs.berkeley.edu/research/hytech/
http://www.imitator.fr/static/FMTV15/

What’s decidable about parametric timed automata? 217

8 Open questions and perspectives

8.1 Syntax and expressiveness

Afirst perspective is to compare the expressiveness of the var-
ious syntaxes of guards and invariants for general PTAs used
in the literature. The definitions of expressiveness recently
proposed in [16] could be reused for that purpose, using
either untimed or timed languages. Comparing the expres-
siveness of the syntaxes in the literature would reduce the
number of dimensions for the various decidability results of
the EF-emptiness problem studied in Table 2.

8.2 Open decision problems

A main open problem is the decidability of PTAs with
two parametric clocks, that was only studied with a single
integer-parameter [37]. Studying further the EG-, AF- and
AG-emptiness problems for few clocks and parameters (as
it was quite extensively done for EF-emptiness) remains to
be done too, although the practical interest may be somehow
debatable.

In addition, with the exception of [21], all proofs of unde-
cidability in the literature use aboundednumber of clocks and
parameters, but an unbounded number of locations. Exhibit-
ing a minimal number of locations (at the possible cost of
an unbounded number of variables) may be of theoretical
interest.

More interesting (and promising) are the two open classes
of L-PTAs and U-PTAs. These classes are non-trivial and
relate to the robust analysis of TAs: most robustness prob-
lems (see [32,59]) consider an enlargement of all guards by
(usually) the same constant factor, whereas U-PTAs allow
to enlarge or decrease some of the upper-bound guards by a
possibly different rational-valued parameter, which gives an
orthogonal definition of robustness. The language preserva-
tion problem remains open for U-PTAs [21] (except in the
case of a single integer-valued parameter where it becomes
decidable), and the question of the synthesis is also challeng-
ing.

8.3 Hidden decidable subclasses?

Despite many undecidability problems, PTAs were often
used to model and verify various case studies (see Sect. 7).
This can be seen as a paradox considering the numerous
undecidability results PTAs suffer from. In fact, as the afore-
mentioned analyses terminate almost always with an exact
result, it is challenging to understand why, and perhaps to
exhibit further classes for which the problems considered in
this survey become decidable.

8.4 Hybrid systems with parameters

Some subclasses of linear hybrid automata are incompa-
rable with timed automata (e. g., [23,35]), and parametric
extensions could be studied. Recall that the class of interrupt
timed automata benefits from decidability results even when
extended with parameters [30].

8.5 Synthesis

Whereas decision problems (considered in this document)
were much studied, little interest has been dedicated to the
synthesis of parameters, which should, however, be a main
practical challenge. Despite undecidability (in general [7])
or intractability (for L/U-PTAs [53]), semi-algorithms or
approximated procedures could be devised; SMT-based tech-
niques [55], or the integer hull approximation [15,53] can
serve as a basis for future works. Also note that two recent
orthogonal works aimed at performing synthesis in a com-
positional manner [18,24].

Also, combining nonparametric analysis (e. g., with the
efficient model checker Uppaal) with parametric analysis,
so as to find perhaps not all valuations, but at least some of
them, is certainly a promising direction of research.

Acknowledgements This manuscript benefited from discussions with
Didier Lime, Nicolas Markey, and Olivier H. Roux, as well as from the
useful comments and suggestions of all three anonymous reviewers.

References

1. Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of
reachability testing for timed automata. In:Arvind,V.,Ramanujam,
R. (eds.) FSTTCS. LNCS, vol. 1530, pp. 245–256. Springer, New
York (1998)

2. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense
real-time. Inf. Comput. 104(1), 2–34 (1993)

3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho,
P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorith-
mic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34
(1995)

4. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid
automata: an algorithmic approach to the specification and veri-
fication of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn,
A.P., Rischel, H. (eds.) Hybrid Systems 1992. LNCS, vol. 736, pp.
209–229. Springer, New York (1993)

5. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput.
Sci. 126(2), 183–235 (1994)

6. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal
logic for “model measuring”. ACM Trans. Comput. Logic 2(3),
388–407 (2001)

7. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time rea-
soning. In: STOC, pp. 592–601. ACM (1993)

8. Alur, R., Madhusudan, P.: Decision problems for timed automata:
a survey. In: Bernardo, M., Corradini, F. (eds.) Formal Methods for
the Design of Real-Time Systems, International School on Formal
Methods for the Design of Computer, Communication and Soft-
ware Systems, SFM-RT 2004, Bertinoro, Italy, September 13–18,

123

218 É. André

2004, Revised Lectures. LNCS, vol. 3185, pp. 1–24. Springer, New
York (2004)

9. André, É.: Parametric deadlock-freeness checking timed automata.
In: Sampaio, A.C.A.,Wang, F. (eds.) ICTAC. LNCS, vol. 9965, pp.
469–478. Springer, New York (2016)

10. André, É.: What’s decidable about parametric timed automata?
In: Artho, C., Ölveczky, P.C. (eds.) FTSCS. Communications in
Computer and Information Science, vol. 596, pp. 1–17. Springer,
New York (2016)

11. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse
method for parametric timed automata. IJFCS 20(5), 819–836
(2009)

12. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5:
a tool for analyzing robustness in scheduling problems. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM. LNCS, vol. 7436, pp. 33–36.
Springer, New York (2012)

13. André, É., Lime, D.: Liveness in L/U-parametric timed automata.
In: Legay, A., Schneider, K. (eds.) ACSD, pp. 9–18. IEEE, New
York (2017)

14. André, É., Lime, D., Markey, N.: Language preservation problems
in parametric timed automata (journal version). Technical report
(2016), submitted

15. André, É., Lime, D., Roux, O.H.: Integer-complete synthesis for
bounded parametric timed automata. In: Bojańczyk,M., Lasota, S.,
Potapov, I. (eds.) RP. LNCS, vol. 9058. Springer, NewYork (2015)

16. André, É., Lime, D., Roux, O.H.: Decision problems for parametric
timed automata. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM
(2016), to appear

17. André, É., Lime,D., Roux,O.H.:On the expressiveness of paramet-
ric timed automata. In: Fränzle, M., Markey, N. (eds.) FORMATS
(2016), to appear

18. André, É., Lin, S.W.:Learning-based compositional parameter syn-
thesis for event-recording automata. In: Bouajjani, A., Alexandra,
S. (eds.) FORTE. LNCS, vol. 10321, pp. 17–32. Springer, New
York (2017)

19. André, É., Liu, Y., Sun, J., Dong, J.S.: Parameter synthesis for
hierarchical concurrent real-time systems. In: Perseil, I., Pouzet,
M., Breitman, K. (eds.) ICECCS, pp. 253–262. IEEE Computer
Society, Silver Spring (2012)

20. André, É., Liu, Y., Sun, J., Dong, J.S., Lin, S.W.: PSyHCoS: param-
eter synthesis for hierarchical concurrent real-time systems. In:
Sharygina, N., Veith, H. (eds.) CAV. LNCS, vol. 8044, pp. 984–
989. Springer, New York (2013)

21. André, É., Markey, N.: Language preservation problems in para-
metric timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.)
FORMATS. LNCS, vol. 9268, pp. 27–43. Springer, New York
(2015)

22. André, É., Nguyen, H.G., Petrucci, L., Sun, J.: Parametric model
checking timed automata under non-Zenoness assumption. In: Bar-
rett, C.,Kahsai, T. (eds.)NFM.LectureNotes inComputer Science,
vol. 10227, pp. 35–51. Springer, New York (2017)

23. Asarin, E., Mysore, V., Pnueli, A., Schneider, G.: Low dimensional
hybrid systems—decidable, undecidable, don’t know. Inf. Comput.
211, 138–159 (2012)

24. Aştefănoaei, L., Bensalem, S., Bozga, M., Cheng, C., Ruess, H.:
Compositional parameter synthesis. In: Fitzgerald, J.S., Heitmeyer,
C.L.,Gnesi, S., Philippou,A. (eds.) Proceedings of the 21st Interna-
tional Symposium on Formal Methods (FM 2016). Lecture Notes
in Computer Science, vol. 9995, pp. 60–68 (2016)

25. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra
Library: toward a complete set of numerical abstractions for the
analysis and verification of hardware and software systems. Sci.
Comput. Program. 72(1–2), 3–21 (2008)

26. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness
of continuous-time parametric timed automata. In: Halldórsson,

M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP,
Part II. LNCS, vol. 9135, pp. 69–81. Springer, New York (2015)

27. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Compar-
ison of the expressiveness of timed automata and time Petri nets.
In: Pettersson, P., Yi, W. (eds.) FORMATS. LNCS, vol. 3829, pp.
211–225. Springer, New York (2005)

28. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: The
expressive power of time Petri nets. Theor. Comput. Sci. 474, 1–20
(2013)

29. Bérard, B., Haddad, S., Jovanovic, A., Lime, D.: Interrupt timed
automata with auxiliary clocks and parameters. Fundamenta Infor-
mormatica 143(3–4), 235–259 (2016)

30. Bérard, B., Haddad, S., Picaronny, C., Din, M.S.E., Sassolas, M.:
Polynomial interrupt timed automata. In: Bojanczyk, M., Lasota,
S., Potapov, I. (eds.) RP. LNCS, vol. 9328, pp. 20–32. Springer,
New York (2015)

31. Bérard, B., Haddad, S., Sassolas, M.: Interrupt timed automata:
verification and expressiveness. Form. Methods Syst. Des. 40(1),
41–87 (2012)

32. Bouyer, P., Markey, N., Sankur, O.: Robustness in timed automata.
In: Abdulla, P.A., Potapov, I. (eds.) RP. LNCS, vol. 8169, pp. 1–18.
Springer (2013), invited paper

33. Bozzelli, L., LaTorre, S.:Decision problems for lower/upper bound
parametric timed automata. Form. Methods Syst. Des. 35(2), 121–
151 (2009)

34. Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.,Wor-
rell, J.: Time-bounded reachability for monotonic hybrid automata:
complexity and fixed points. In: Hung, D.V., Ogawa, M. (eds.)
ATVA. LNCS, vol. 8172, pp. 55–70. Springer, New York (2013)

35. Brihaye, T., Michaux, C., Rivière, C., Troestler, C.: On O-minimal
hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC. LNCS, vol.
2993, pp. 219–233. Springer, New York (2004)

36. Bruyère, V., Raskin, J.F.: Real-time model-checking: parameters
everywhere. Log. Methods Comput. Sci. 3(1:7), 1–30 (2007)

37. Bundala, D., Ouaknine, J.: Advances in parametric real-time rea-
soning. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.)
MFCS. LNCS, vol. 8634, pp. 123–134. Springer, NewYork (2014)

38. Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In:
Palamidessi, C. (ed.) CONCUR. LNCS, vol. 1877, pp. 138–152.
Springer, New York (2000)

39. Cassez, F., Roux, O.H.: Structural translation from time Petri nets
to timed automata. J. Syst. Softw. 79(10), 1456–1468 (2006)

40. Chevallier, R., Encrenaz-Tiphène, E., Fribourg, L., Xu, W.: Timed
verification of the generic architecture of a memory circuit using
parametric timed automata. Form.Methods Syst.Des. 34(1), 59–81
(2009)

41. Di Giampaolo, B., La Torre, S., Napoli, M.: Parametric metric
interval temporal logic. Theor. Comput. Sci. 564, 131–148 (2015)

42. Doyen, L.: Robust parametric reachability for timed automata. Inf.
Process. Lett. 102(5), 208–213 (2007)

43. Fanchon, L., Jacquemard, F.: Formal timing analysis of mixed
music scores. In: International ComputerMusic Conference (2013)

44. Fribourg, L., Lesens, D., Moro, P., Soulat, R.: Robustness analysis
for scheduling problems using the inverse method. TIME, pp. 73–
80. IEEE Computer Society Press, Silver Spring (2012)

45. van Glabbeek, R.J.: The linear time-branching time spectrum
(extended abstract). In: Baeten, J.C.M., Klop, J.W. (eds.) CON-
CUR. LNCS, vol. 458, pp. 278–297. Springer, New York (1990)

46. Henzinger, T.A.: The theory of hybrid automata. In: Vardi, M.Y.,
Clarke, E.M. (eds.) LICS. pp. 278–292. IEEE Computer Society,
Silver Spring (1996)

47. Henzinger, T.A., Ho, P.H.,Wong-Toi, H.: HyTech: amodel checker
for hybrid systems. Softw. Tools Technol. Transf. 1, 110–122
(1997)

123

What’s decidable about parametric timed automata? 219

48. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decid-
able about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124
(1998)

49. Henzinger, T.A., Kopke, P.W.,Wong-Toi, H.: The expressive power
of clocks. In: Fülöp, Z., Gécseg, F. (eds.) ICALP. LNCS, vol. 944,
pp. 417–428. Springer, New York (1995)

50. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic
model checking for real-time systems. Inf. Comput. 111(2), 193–
244 (1994)

51. Hoare, C.: Communicating sequential processes. Commun. ACM
21, 666–677 (1978)

52. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear para-
metric model checking of timed automata. JLAP 52–53, 183–220
(2002)

53. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthe-
sis for timed automata. IEEE Trans. Softw. Eng. 41(5), 445–461
(2015)

54. Jovanović, A.: Parametric verification of timed systems. Ph.D. the-
sis, École Centrale Nantes, France (2013)

55. Knapik, M., Penczek, W.: Bounded model checking for parametric
timed automata. ToPNoC 5, 141–159 (2012)

56. Koymans, R.: Specifying real-time properties withmetric temporal
logic. Real-Time Syst. 2(4), 255–299 (1990)

57. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J.
Softw. Tools Technol. Transf. 1(1–2), 134–152 (1997)

58. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.M.: Romeo:
a parametric model-checker for Petri nets with stopwatches. In:
Kowalewski, S., Philippou, A. (eds.) TACAS. LNCS, vol. 5505,
pp. 54–57. Springer, New York (2009)

59. Markey, N.: Robustness in real-time systems. In: Bate, I.,
Passerone,R. (eds.) SIES, pp. 28–34. IEEEComputer SocietyPress
(2011)

60. Merlin, P.M.: A study of the recoverability of computing systems.
Ph.D. thesis, University of California, Irvine, CA, USA (1974)

61. Miller, J.S.: Decidability and complexity results for timed automata
and semi-linear hybrid automata. In: Lynch, N.A., Krogh, B.H.
(eds.) HSCC. LNCS, vol. 1790, pp. 296–309. Springer, New York
(2000)

62. Minsky, M.L.: Computation: Finite and Infinite Machines.
Prentice-Hall Inc, Englewood Cliffs, NJ (1967)

63. Ouaknine, J., Worrell, J.: On the decidability and complexity of
metric temporal logic over finite words. Log. Methods Comput.
Sci. 3(1), 1–27 (2007)

64. Ouaknine, J., Worrell, J.: Towards a theory of time-bounded verifi-
cation. In: Abramsky, S., Gavoille, C., Kirchner, C., auf der Heide,
F.M., Spirakis, P.G. (eds.) ICALP Part II. Lecture Notes in Com-
puter Science, vol. 6199, pp. 22–37. Springer, New York (2010)

65. Quaas, K.: MTL-model checking of one-clock parametric timed
automata is undecidable. In: André, É., Frehse, G. (eds.) SynCoP.
EPTCS, vol. 145, pp. 5–17OpenPublishingAssociation,Waterloo,
Australia (2014)

66. Srba, J.: Comparing the expressiveness of timed automata and
timed extensions of Petri nets. In: Cassez, F., Jard, C. (eds.) FOR-
MATS. LNCS, vol. 5215, pp. 15–32. Springer, New York (2008)

67. Sun, J., Liu, Y., Dong, J.S., Liu, Y., Shi, L., André, É.: Modeling
and verifying hierarchical real-time systems using stateful timed
CSP. ACM Trans. Softw. Eng. Methodol. 22(1), 1–29 (2013)

68. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible ver-
ification under fairness. In: Bouajjani, A., Maler, O. (eds.) CAV.
LNCS, vol. 5643, pp. 709–714. Springer, New York (2009)

69. Traonouez, L.M., Lime, D., Roux, O.H.: Parametric model-
checking of stopwatch Petri nets. J. Univers. Comput. Sci. 15(17),
3273–3304 (2009)

123

	What's decidable about parametric timed automata?
	Abstract
	1 Introduction
	1.1 Related surveys
	1.2 About this manuscript
	1.3 Outline

	2 Parametric timed automata and problems
	2.1 Clocks, parameters and constraints
	2.2 A unified syntax for parametric timed automata
	2.2.1 Semantics
	2.2.2 Simple PTAs
	2.2.3 Variants of the PTA syntax
	2.2.4 Expressiveness

	2.3 Decision and computation problems

	3 Almost everything is undecidable for simple PTAs
	3.1 Decidability of the membership
	3.2 General undecidable problems
	3.2.1 EF-emptiness
	3.2.2 AF-emptiness
	3.2.3 AG-emptiness
	3.2.4 EG-emptiness
	3.2.5 Language and trace preservation problems

	3.3 Bounding time
	3.4 Bounding the parameter domain
	3.4.1 Decidability for integer-valued parameters
	3.4.2 Undecidability for rational-valued parameters

	4 Bounding the numbers of clocks and parameters
	4.1 EF-emptiness
	4.1.1 Main results: 1 parametric clock
	4.1.2 Main results: 2 parametric clocks
	4.1.3 Main results: other undecidability
	4.1.4 Open cases

	4.2 Language and trace preservation
	4.3 Parametric model checking
	4.3.1 Nonparametric model/parametric formula
	4.3.2 Parametric model/nonparametric formula
	4.3.3 Parametric model/parametric formula

	4.4 Other problems: open

	5 The (quite) disappointing class of L/U-PTAs
	5.1 A main decidability result
	5.2 Undecidability results
	5.3 A frontier between decidability and undecidability
	5.4 Model-checking L/U-PTAs
	5.5 Summary of decidability problems for L/U-PTAs
	5.6 Intractability of the synthesis
	5.7 Two open classes: L-PTAs and U-PTAs
	5.7.1 Synthesis

	6 Beyond parametric timed automata
	6.1 Parametric hybrid automata
	6.2 Parametric interrupt timed automata
	6.3 Integer-point parametric timed automata
	6.4 Other formalisms
	6.4.1 Time Petri nets
	6.4.2 Stateful timed CSP

	7 Tools and applications
	7.1 Tools
	7.2 Applications

	8 Open questions and perspectives
	8.1 Syntax and expressiveness
	8.2 Open decision problems
	8.3 Hidden decidable subclasses?
	8.4 Hybrid systems with parameters
	8.5 Synthesis

	Acknowledgements
	References

