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Abstract Ad hoc routing protocols are responsible for
searching a route from the source to the destination under the
dynamic network topology. Hybrid routing protocols com-
bine the features of proactive and reactive approaches. So,
the formal specification of a hybrid routing protocol in the
dynamic network environment is a challenge. In this paper,
we formally analyze the Zone Routing Protocol (ZRP), a
hybrid routing framework, using Event-B. We develop the
formal specification by the refinement mechanism. It allows
us to graduallymodel the network environment, the construc-
tion of routing zones, route discovery based on bordercasting
service and routing update. We prove the stabilization prop-
erty in the inactive environment. In addition, we demonstrate
that discovered routes hold the loop freedom and validity in
each reachable system state. To present that the formaliza-
tion is consistentwith the informally expressed requirements,
we adopt an animator, ProB, to validate our model. Our work
provides reference to analyze extensions of theZRPandother
hybrid routing protocols.

Keywords Formal verification · Hybrid routing protocols ·
Zone Routing Protocol · Event-B · Refinement

1 Introduction

An ad hoc network is built on a number of mobile nodes
which work in cooperation without any fixed infrastructure.
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Each node is considered as both a host and a router. Since
nodes can move around freely, the network topology may
change at any time. Therefore, ad hoc routing protocols have
to find a route from the source to the destination under the
dynamic environment.

In terms of the routing information update mechanisms,
the existing routing protocols can be classified into three
categories [1]: proactive routing protocols, reactive rout-
ing protocols and hybrid routing protocols. Proactive (table
driven) ones maintain a fresh view of the topological map
via periodic and/or event-triggered routing updates, e.g., the
Destination Sequenced Distance Vector (DSDV) [21] pro-
tocol and the Optimized Link State Routing (OLSRv2) [10]
protocol,while reactive (ondemand) protocols initiate a route
discovery on demand, such as the Dynamic Source Routing
(DSR) [16] protocol and the Ad-hoc On-demand Distance
Vector Routing (AODV) [22] protocol. Hybrid routing pro-
tocols combine the features of above two approaches, such as
the Zone Routing Protocol (ZRP) [14]. A major issue is how
to guarantee their desirable goal, discovering the required
routes, in the active environment.

Formal methods, especially formal verification, can en-
hance the quality of a verified system. Formal verification
techniques can determine whether a system has or has not
a given property by strict mathematical proof. So far, there
has been much work on using model checkers or theorem
provers to verify routing protocols [6,7,19,24,25]. To the
best of our knowledge, few people focus on the formal veri-
fication for hybrid routing protocols. In this paper, we present
a formal specification for the ZRP in Event-B and prove
the correctness of the route discovery mechanism. Event-
B [3], a refinement-based method, allows system details to
be gradually added to the corresponding models. Any prop-
erties that are already proved to hold in the early models are
ensured to hold in the later models. It relieves the user of the
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burden of modeling and proving. With a friendly assistant
Rodin [4] tool, the proof task is automatically divided into
manageable pieces that depend on the structure of a model.
Moreover, this approach has been applied to systems from
various domains [3,5].

With the ZRP, each node regularly broadcasts its link state
information throughout its routing zone. To model the peri-
odic broadcast behavior, it requires to introduce some time
constraints in the formalization. Additionally, the formaliza-
tion has to limit the propagation scope for a node’s link state
information within its routing zone. A node processes route
requests with bordercasting service, rather than broadcasting
usually adopted by reactive protocols. Furthermore, a node
updates its routing table if there exists changes in its routing
zone or it receives route replies carrying discovered routes.

Consequently, the formalization for the ZRP is more com-
plicated than purely a proactive or a reactive protocol. This
is a significant issue that needs to be addressed and an inter-
esting challenge as to how to formally specify it.

We analyze the system via refinement. It permits us to
develop a system from abstract to concrete. The correct-
ness for refinements is assured through discharging some
proof obligations. Here, we concentrate on modeling the
highlighted aspects of the system: the connectivity of the
network topology; the construction of routing zones accord-
ing to the periodically exchanged neighbor information; the
route discovery with the bordercasting service; the routing
update in the reactive component.We also prove the stabiliza-
tion property in the stable environment and the preservation
of system properties, e.g., the loop freedom and validity of
discovered routes, in each reachable system state. For the
purpose of ensuring that our model has formalized the sys-
tem requirements, we utilize the ProB, an animation tool,
which is available for the Rodin, to validate our model.

The paper is organized as follows. The introduction about
the Event-B method is presented in sect. 2. In sect. 3, we
give an overview of the ZRP framework. Furthermore, we
present system requirements and environment assumptions
considered in our development. We show the entire for-
mal development process, including the formalization with
Event-B and the validation with the ProB, in sect. 4. At last,
we discuss related work and draw a conclusion in sect. 5.

2 Modeling in Event-B

2.1 Event-B Method

Event-B is a state-of-the-art formal method for system level
modeling and analysis [3]. It is a simplification and exten-
sion of the B-Method [2]. Event-B is developed on basis of
set theory and first-order predicate logic. The syntax spec-
ification of the Event-B language is presented in [20]. By

now, this approach has been applied to verify many complex
systems [3,5,9].

An Event-B model is composed of two structures: con-
texts and machines. Contexts describe the static part of a
model, and machines specify the dynamic part of a model.
The explicit definitions for context and machine are as fol-
lows.

Definition 1 A context structure is a tuple (S, C,A, T ),
where S is a set of user-defined sets, C is a set of constants,A
is a set of axioms which S and C obey, T is a set of theorems.

Definition 2 A machine structure is a tuple (V, I, T ,

VA, E), where

- V is a set of variables which describe the states of a sys-
tem,

- I is a set of predicates which declare the properties of
variables. The predicates inI should be preserved in each
reachable system state,

- T is a set of theorems which have to be proved in the
machine,

- VA is a set of variants defined in the machine containing
some convergent events,

- E is a set of eventswhichmodel the behaviors of a system.

An event, a relation on the state set or a before-after predi-
cate, has twomain parts: guardswhich state preconditions for
event execution and actions which assign values to variables.
The most general form of an event is as follows:

any x where G(x, v) then A(x, v) end (1)

where x represents a collection of parameters, v represents a
set of variables, G(x, v) represents for the conjunction of
some guards and A(x, v) represents for the actions. The
parameters and guards are optional. So, an event may be
in a simplified form without parameters or guards. Actions
contain several assignments that are supposed to happen
simultaneously. Each assignment is a before-after predicate
describing the change of a variable.

The Rodin [4] platform provides a support for the con-
struction andverification ofEvent-Bmodels. The verification
is performed by proving (automatically or interactively) the
automatically generated proof obligations. Additionally, this
platform is extensible and configurable [8] since it has a plu-
gin architecture. One plugin provided is ProB [17], a tool for
model animation and model checking.

2.2 Model refinement

Refinement, a powerful modeling mechanism, allows us to
build a model in a step-by-step manner [3]. Through the
refinement, both context and machine can be extended to
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develop the concrete models. A context can extend one
or more contexts. Then, it contains the static information
defined in extended ones. A machine can refine only one
existing machine, while it can see several contexts. For the
refined model, we can replace abstract variables by concrete
ones and refine abstract events. For an existing event, we
can preserve the event, split it into several concrete events or
refine it to another event by strengthening guards or adding
new actions. Moreover, we can also introduce new events
which refine the skip event doing nothing.

To ensure the correctness of refinements, we need to prove
someproof obligations to guarantee that (1) the abstract event
is enabled when the concrete one is enabled, referred to as
guard strengthening, (2) the gluing invariants relating to the
variables of the concrete machine and the abstract machine
are preserved, (3) each action in the abstract event is stim-
ulated in the corresponding concrete event. We show the
generated rules for the proof obligations in the following
definition.

Definition 3 Let M1,M2 be machines. Let e1, e2 be events
such that e1 ∈ M1, e2 ∈ M2. If M2 refines M1, in addition,
e2 refines e1 and

- A is the set of all axioms seen byM2,
- T is the set of theorems seen byM2 or defined inM1,M2,
- I is the set of invariants introduced inM1,M2,
- G is the set of guards of e2,
- J is a gluing invariant introduced inM2 and e2 modifies
J ,

- BA1, an action of e1, is the before-after predicate for
the assignment of an abstract variable, the corresponding
concrete behavior is given by BA2, an action of e2.

Then, we have to prove

- A, T , I,G � grds, where grds is the conjunction of
guards of e1;

- A, T , I,G � J ′, where J ′ is the modified J ;
- A, T , I,G,BA2 � BA1.

3 Overview of the ZRP

3.1 Informal description

The hybrid ZRP protocol combines some features of the
proactive and reactive schemes [14]. Note that it is only a
framework instead of a specific routing protocol. It includes
two components: the IntrazoneRouting Protocol (IARP) [13]
used within routing zones and the Interzone Routing Proto-
col (IERP) [12] used beyond routing zones. Both of them
are not specific protocols, they are families of proactive link

state routing protocols and reactive routing protocols, respec-
tively. With a proper zone radius, its performance is at least
as well as the pure constituents.

By the IARP, each node maintains the local routing infor-
mation on the basis of the periodically exchanged neighbor
discovery messages. A node’s routing zone is a set of nodes
whose minimum distance (in hops) from this node is no
greater than a value called zone radius. For building routing
zones, each node has to get the knowledge of its neigh-
bors. Here, the current neighbor information is provided by
a separate Neighbor Discovery Protocol (NDP). Then, the
node sends its own link state throughout the limited scope
restricted by the zone radius.

The IERP, the reactive part of ZRP, is responsible for
the route discovery and route maintenance [12]. With the
network topology provided by the IARP, the routes to the
destinations within a routing zone are available. If a destina-
tion is outside the routing zone, the sourcewith IERP initiates
the route discovery based on bordercasting service known as
the Bordercast Resolution Protocol (BRP) [11].

The route discovery process consists of the route request
phase and the route reply phase. A source node searches
routes by bordercasting. It constructs its bordercast tree
which is a multicast tree spanning all the peripheral nodes
whose minimal distance from the source is exactly equal to
the zone radius. Then, it forwards the route request to the
neighbors in the bordercast tree. When the request has been
forwarded, the routing zone of source is covered. A node in
the bordercast tree of the previous forwarding node is referred
to as an intended recipient. Note that only intended recipients
are required to process the request. If the intended receiver
has a valid route to the destination within its routing zone,
it sends a route reply containing the complete route toward
the source node. Otherwise, it builds a bordercast tree which
spans all uncovered peripheral nodes around it and border-
casts the route request. By this way, it prunes the branches
leading to the peripheral nodes inside covered regions (rout-
ing zones of previous bordercasting nodes). After forwarding
this request, it marks the routing zone as covered. With the
routing zones and the bordercasting service, it is efficient to
probe the entire network topology.

After a route has been discovered, knowledge of the rout-
ing zone can be utilized to bypass link failures and identify
suboptimal route segments [12].

3.2 System requirements

Rather than modifying a proactive link state protocol as the
IARP and a reactive protocol as the IERP, we analyze the
system based on the description in [11–13]. In our develop-
ment, we adopt the sequence number, tracking the link state
history of a node described in [13], to avoid dealing with
old link state information. The loop freedom of discovered
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routes is ensured by the reactive protocol, such as DSR. In
addition, we consider a uniform zone radius for the whole
network. If the zone radius is one hop, ZRP turns into a reac-
tive protocol. To focus on the special aspects of the ZRP, we
pay our attention on the general situation that the zone radius
is greater than one hop.

The main system requirements are:

REQ-1. The Zone Routing Protocol is a hybrid ad hoc
network routing framework. Its goal is to discover new
routes on demand with the knowledge of local zone in
the dynamic network environment.
REQ-2. The route between two distinct nodes can be
eventually discovered if there exists a valid route in the
real network environment.

The REQ-1 describes the overall purpose of the protocol.
Since the network topology may change frequently, a con-
nected link can become down after a few seconds. Hence,
the discovered route may be invalid when the query source
receives it. But the route between the source and the des-
tination can be eventually discovered if there exists a path
between them in the network topology. This is the correctness
requirement about route discovery stated by [24]. REQ-2
specifies this requirement. In what follows, we present the
definition of correct route considered in this paper.

Definition 4 (Correct Route) Let v1, . . . , vk , with k a pos-
itive natural number and k > 1, be arbitrary distinct nodes
in the network. The discovered route denoting by route =
{v1 �→ v2, . . . , vk−1 �→ vk} for the source s and destination
t is correct if it satisfies

1. s and t are nodes in the network;
2. for all vi �→ vi+1 ∈ route with i ∈ 1..k − 1, vi , vi+1 are

nodes belonging to the network;
3. there is no loop in the route;
4. route is a complete path from s to t .

REQ-3. Each node can periodically obtain the link sta-
tus with its neighbors and then exchange the neighbor
information with other nodes.
REQ-4. The scope of link state update is limited by the
routing zones.
REQ-5. Each node maintains the up-to-date topology
map within its routing zone. So, it has routes to the des-
tinations within its routing zone.

A node periodically consults its neighbor information pro-
vided by theNDP.Then, it broadcasts its link state throughout
its routing zone. Based on REQ-3 to REQ-5, each node has
a fresh view of its local zone. Although the view of nodes
may be inconsistent with the actual network topology, those
requirements ensure the view of nodes is more closer to the
real environment.

REQ-6. Route discovery relies on the routing zones. The
source node initiates the route discovery if there is no
route to the destination in its routing table.

By the bordercasting service, the source node forwards
the route request to a subset of its neighbors. That is not all
neighbors can receive this request.

REQ-7. The route request can only be received by the
intended recipients determined by the previous forward-
ing nodes.
REQ-8. The reaction of an intended recipient depends on
whether the destination is in its routing zone and can be
one of the following: (1) upon within the routing zone,
it delivers a route reply to the source, (2) otherwise, it
appends its address to the accumulated path and border-
casts the request.
REQ-9. With the zone-based query control, a route
request can be guided away from the query source and
the regions covered by the request.

According to the zone-based query control, a node shall
mark its routing zone as covered if it has forwarded the
request or the reply. Then, it is unnecessary to process the
request again.

The next requirement concerns the routing update.

REQ-10. Every node updates its routing information if
there exists changes within its routing zone or it relays a
route reply packet.

When the source node receives a valid route reply, it
implies that a route has been found in the dynamically chang-
ing environment.

3.3 Environment assumptions

Before we engage in the formal development, we list the
environment assumptions as follows:

ENV-1.There are finitely many nodes in the network.
ENV-2.The bidirectional links between somepairs of dif-
ferent nodes may be up or down. There is no intermediate
status.
ENV-3. When a link from node m to node n becomes up
or broken, m is aware of the changes.
ENV-4. If the environment is inactive for a long time, then
each node has a correct view of its surrounding topology
map.

We assume the links are bidirectional in the network
(ENV-2). That is if node m and n are connected, then m
can send packets to n and vice versa. Thus, it is able to prop-
agate a route reply toward the source with the discovered
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route. In what follows, we refer to a link from m to n as an
outward link from m. If m and n directly connect, then it
indicates that directed linksm �→ n and n �→ m are up in the
network environment. Based on the ENV-3, each node can
sense its outward links. Note that it does not require that a
node immediately detects the changes. TheENV-4 describes
the system will eventually reach the temporary stable state
if the network environment is static for a long time. Then,
each node’s view about its routing zone is consistent with the
actual network topology.

4 Formal development

In this section, we present the formal development of the
ZRP. Firstly, we present the refinement strategy for our anal-
ysis. Through the step-by-step refinement, we derive amodel
formalizing the goal of the protocol (REQ-1) and the correct-
ness requirement REQ-2. At last, we show the validation of
our model.

Initial Model. This model constructs the dynamic network
architecture.

Refinement 1. In this step, we introduce the abstract update
events for the link state table and routing table, respectively.
Moreover, we consider the stable state of the system under
the quiescent environment.

Refinement 2. We formalize the updating for link state
table in detail. This refinement briefly introduces that each
node periodically broadcasts its link state. The refresh event
excludes links whose survival time exceeds the longest time
to live in the link state table.

Refinement 3. With a uniform zone radius, we model the
construction of routing zones based on Refinement 2. To
avoid processing the old link information, we utilize the
sequence number to keep track of each packet.

Refinement 4. To take into account the distributed behavior
of each node, we use variables to record the being transmitted
information on the connected links.

Refinement 5. In this refinement, we analyze the route
request phase briefly. The bordercast delivery process with-
out query control is formalized.

Refinement 6. We develop concrete events to state that an
intended recipient deals with the received route request.

Refinement 7. In this refinement,we consider the zone-based
query control during the route request phase.

Refinement 8. The route reply phase is modeled in this
refinement. A node updates its routing table based on the
notification derived from IARP or a received route reply. We
refine the routing table update event in this step.

The Event-B formalism allows us to model the interaction
between the system and its environment. So, we formal-
ize the dynamic network environment in the initial model.
Figure 1 shows that each subsequent refinement considers
different requirements. For instance, the refinement 2 ensures
the ENV-3 and REQ-3, and the refinement 5 considers the
requirementsREQ-6 andREQ-7. Based on the Definition 4,
we prove points 1 and 2 in the refinement 1, the loop free-
dom and validity of discovered routes in the refinement 5 and
refinement 8, respectively. So, the correctness of discovered
routes is ensured in the final model. The REQ-1 is fairly
general, and in fact taken account at each refinement step.
As a result, the final refinement completes the requirements
REQ-1 and REQ-2.

Since the space is limited, we just present some parts of
the development.

4.1 Modeling the environment

In the initial context, we introduce a carrier set Nodes denot-
ing the set of all nodes in the network. According to ENV-1,

Fig. 1 Overview of the formal development
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we axiomatize Nodes as a finite set. Then, we can obtain
the following theorem: a relation defined over finite sets
is finite (thm1). It shall facilitate the following proof task,
e.g., the well-definedness proof for parameter collection of
receiveRequest_HasRoute presented in the SixthRefine-
ment.

axm1 : finite(Nodes)
thm1 : ∀a, b, f · a ∈ P(Nodes) ∧ b ∈ P(Nodes) ∧ f ∈ a ↔ b

⇒ (finite(a) ∧ finite(b) ⇒ finite( f ))

To characterize the connectivity of the dynamic network
topology, we use the variable Neighbor Link to record the
currently up link information in the network. The vari-
able DNeighbor Link denotes the set of currently down
links that were up. From thm1 and Neighbor Link, we
can see that there are finitely many connected links in
the network topology. Hence, it is possible to propagate
a route request throughout the whole network. In order to
formalize the changes about the network topology, we con-
struct three events: Add_NewLink, Add_BrokenLink and
Remove_Link. The first two state that two distinct nodes
become connect, and then the corresponding links are added
to Neighbor Link.Remove_Link removes the invalid links,
up links at some point in the past, from Neighbor Link.
We present the events as follows. Guard node1 �= node2
ensures that a pair of nodes are distinct. The fourth guard
in Add_NewLink states that the current network topology
does not contain the up links between node1 and node2.
Add_BrokenLink also requires this condition. The differ-
ence between these two events is that the former considers
new links, not initially broken, and the latter considers some
up links, broken in the past.

Add_NewLink
any node1 node2 where
node1 ∈ Nodes
node2 ∈ Nodes
node1 �= node2
node1 �→ node2 /∈ Neighbor Link
∧node2 �→ node1 /∈ Neighbor Link
node1 �→ node2 /∈ DNeighbor Link
∧node2 �→ node1 /∈ DNeighbor Link

then
Neighbor Link := Neighbor Link∪

{node1 �→ node2, node2 �→ node1}

Add_BrokenLink
any node1 node2 where
node1 ∈ Nodes
node2 ∈ Nodes
node1 �= node2
node1 �→ node2 /∈ Neighbor Link
∧node2 �→ node1 /∈ Neighbor Link
node1 �→ node2 ∈ DNeighbor Link
∧node2 �→ node1 ∈ DNeighbor Link

then
Neighbor Link := Neighbor Link∪

{node1 �→ node2, node2 �→ node1}
DNeighbor Link := DNeighbor Link\

{node1 �→ node2, node2 �→ node1}

Remove_Link demands that the removed links are
in Neighbor Link. Then, it adds these links to the set
DNeighbor Link.

Remove_Link
any node1 node2 where
node1 ∈ Nodes
node2 ∈ Nodes
node1 �= node2
node1 �→ node2 ∈ Neighbor Link
∧node2 �→ node1 ∈ Neighbor Link

then
Neighbor Link := Neighbor Link\

{node1 �→ node2, node2 �→ node1}
DNeighbor Link := DNeighbor Link∪

{node1 �→ node2, node2 �→ node1}

To constitute the ENV-2, we also introduce some invari-
ants. Each link in Neighbor Link consists of distinct nodes
(inv3). Additionally, if Neighbor Link contains a directed
link node1 �→ node2, then the reverse of this link,
i.e., node2 �→ node1, is also in Neighbor Link (inv4).
Neighbor Link and DNeighbor Link are disjoint (inv5).

inv1 : Neighbor Link ∈ Nodes ↔ Nodes
inv2 : DNeighbor Link ∈ Nodes ↔ Nodes
inv3 : ∀node1, node2 · node1 ∈ Nodes ∧ node2 ∈ Nodes∧

node1 �→ node2 ∈ Neighbor Link ⇒ node1 �= node2
inv4 : ∀node1, node2 · node1 ∈ Nodes ∧ node2 ∈ Nodes∧

node1 �→ node2 ∈ Neighbor Link
⇒ node2 �→ node1 ∈ Neighbor Link

inv5 : Neighbor Link ∩ DNeighbor Link = ∅

4.2 Construction of routing zones

The main aim of our development is to construct a model
thatmeets the system requirements and environment assump-
tions. We abstractly formalize the final result of the protocol
in the first refinement. Then, following refinements model
the construction of routing zones.
First Refinement.We define closure to represent the transi-
tive closure of links. Its properties are shown as follows.

axm1 : closure ∈ (Nodes ↔ Nodes) → (Nodes ↔ Nodes)
axm2 : ∀r · r ⊆ closure(r)
axm3 : ∀r · closure(r); r ⊆ closure(r)
axm4 : ∀r, s · r ⊆ s ∧ s; r ⊆ s ⇒ closure(r) ⊆ s
axm5 : ∀r · closure(r); closure(r) ⊆ closure(r)

We define a variable LinkStateT able to specify the link
state information recorded in each node. A node updates this
table when it periodically consults its neighbor information,
receives another node’s neighbor information or removes
some expired links. With the purpose of updating a node’s
link state table, the abstract updateLinks requires to remove
some useless links and add some new links. In terms of above
mentioned cases, theaddlinks and removelinks are twodis-
joint sets except in the second one. To model this case, we
choose to remove the stored old neighbor information and
then add the received neighbor information. So, we decide to
first remove some links and then add useful links. We refine
this event in the next step.
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updateLinks
any node addlinks removelinks where
node ∈ Nodes
addlinks ∈ Nodes ↔ Nodes
removelinks ∈ Nodes ↔ Nodes

then
LinkStateTable(node) := (LinkStateTable(node)

\removelinks) ∪ addlinks

Weformalize a node’s routing table as a collection of links.
The variable RoutingTable specifies this information.

inv1 : LinkStateT able ∈ Nodes → (Nodes ↔ Nodes)
inv2 : RoutingTable ∈ Nodes → (Nodes ↔ Nodes)
inv3 : ∀n · n ∈ Nodes ⇒ RoutingTable(n) ⊆

Nodes × Nodes

The updateRoutingTable event models the routing
update for node. If there is no links to add or remove, the
routing table of node is unchanged. Each node updates its
routing table if it receives a route reply with a discovered
route or detects some changes within its routing zone. In the
latter case, the addRoutes represents the set of links in the
current routing zone, and the removeRoutes denotes the set
of links in the original routing zone. Theremay be some links
in the intersection ofaddRoutes and removeRoutes. So,we
prefer to first remove those old routes and then add current
routes. This abstract event just states the final result of the
system. From the guards, we can prove inv3. We gradually
introduce the details in the subsequent refinements.

updateRoutingTable
any node addRoutes removeRoutes
where
node ∈ Nodes
addRoutes ∈ Nodes ↔ Nodes
removeRoutes ∈ Nodes ↔ Nodes
¬(addRoutes = ∅ ∧ removeRoutes = ∅)

then
RoutingTable(node) := (RoutingTable(node)

\removeRoutes) ∪ addRoutes

Under the inactive network environment, the system will
eventually reach a stable state. It means that the link state
information stored in each node is consistent with the physi-
cal environment. The notion of system stability is an instance
of the notion of a stable system property P [18], which sat-
isfies if P is true of any reachable state s of a system, then
P is true of all system states reachable from s. In terms of
the so-called observer event [15], we introduce the stabilize
event, with the aim of defining the notion of a stable system
state. It has no effect on the system state as it does nothing.
The parameter nodes can indicate whether a node is in the
propagation scope of a broadcasting node. The second guard
shows that each node has the correct view about its link state.
The third guard declares that if there is a route from m to n
and n is in the propagation scope ofm, then n has the correct
view of m’s link state. This event is abstract as it does not
give a precise definition for the parameter nodes. We can
state that the system is in a stable state if the stabilize event
is enabled. This step formalizes ENV-4.

stabilize
any nodes where
nodes ∈ Nodes → P(Nodes)
∀m, n · m �→ n ∈ Neighbor Link

⇔ m �→ n ∈ LinkStateT able(m)

∀m, n · m �→ n ∈ closure(Neighbor Link) ∧ n ∈ nodes(m)

⇒ (∀x · m �→ x ∈ LinkStateT able(n)

⇔ m �→ x ∈ LinkStateT able(m))

Second Refinement. With the IARP, every node exchanges
its neighbor information with other nodes and keeps a fresh
view of its routing zone. In this refinement, we shall model
the exchange procedure without the limitation in scope.

We define some constants to describe the static part
of the model. li f etime represents the lifetime for links
in the link state table. period is the broadcast period,
satisfying li f etime > period. For eliminating outdated
links, we introduce a variable I nsertionT ime to keep track
of the insertion time for each link in LinkStateT able.
The T ime, a positive natural number, denotes the cur-
rent time in the model. For n ∈ Nodes, if link l ∈
LinkStateT able(n), then its corresponding insertion time is
stored in I nsertionT ime(n) and vice versa (inv4). dom(r)
is the set of all elements in the domain of a relation r .
Moreover, the broadcast time of each node, recorded by
BroadcastT ime, is strictly not greater than T ime (inv5).
We state the relationship between the network environment
and the link state information with the following invariants.
A neighbor link of a node is currently up or up at some point
(inv6). In the dynamic environment, namely some nodes do
not immediately update its link state information when there
exists changes in the environment, the node’s view of its
neighbors does not coincide with the network environment
(inv7, inv8).

inv1 : I nsertionT ime ∈ Nodes → ((Nodes × Nodes)→N)

inv2 : T ime ∈ N1
inv3 : BroadcastT ime ∈ Nodes → N1
inv4 : ∀n · n ∈ Nodes ⇒ (∀l · l ∈ LinkStateT able(n)

⇔ l ∈ dom(I nsertionT ime(n)))

inv5 : ∀n · n ∈ Nodes ⇒ BroadcastT ime(n) ≤ T ime
inv6 : ∀m, n · m �→ n ∈ LinkStateT able(m) ⇒ (m �→ n

∈ Neighbor Link ∨ m �→ n ∈ DNeighbor Link)
inv7 : ∃m, n · m �→ n ∈ LinkStateT able(m) ∧ m �→ n /∈

Neighbor Link ∧ m �→ n ∈ DNeighbor Link
⇒ ¬(∀q, p · q �→ p ∈ Neighbor Link ⇔ q �→ p
∈ LinkStateT able(q))

inv8 : ∃m, n · m �→ n /∈ LinkStateT able(m) ∧ m �→ n ∈
Neighbor Link ⇒ ¬(∀q, p · q �→ p ∈ Neighbor Link
⇔ q �→ p ∈ LinkStateT able(q))

The abstract updateLinks is split into: obtainLinks,
transferLinks and refreshLinks. Parameters addlinks and
removelinks should be precisely expressed in each con-
crete event. Event obtainLinks states that a node consults
its neighbor link information.1 Each node can be aware of
the link status with its neighbors. In this event, the addlinks
is the set of links between node and its new neighbors. Set
removelinks collects links between node and its invalid
neighbors. Since it is unnecessary to manage the insertion

1 ⊕ indicates the added guard or action,� indicates the removed guard
or action.
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time of removelinks, we utilize rest to keep the insertion
time for residual links in node’s link state table. Stimulated
by the broadcast period, node also updates the insertion time
for neighbor links and the broadcasting time. The � denotes
relational overwrite.

obtainLinks refines updateLinks
any node addlinks removelinks rest
where
⊕addlinks = {p �→ m|p = node ∧ p �→ m ∈ Neighbor Link
∧p �→ m /∈ LinkStateT able(p)}
⊕removelinks = {p �→ m|p = node ∧ p �→ m /∈ Neighbor Link
∧p �→ m ∈ LinkStateT able(p)}
⊕T ime − BroadcastT ime(node) ≥ period
⊕rest = removelinks� I nsertionT ime(node)

then
⊕I nsertionT ime(node) := rest� ((({node} � dom(rest))∪

addlinks) × {T ime})
⊕BroadcastT ime(node) := T ime

Note that the routing zone notion is not considered here.
transferLinks models the situation that a node (sender )
transfers a node’s link state to one of its neighbors (receiver ).
By this event, each node exchanges its link state with others.
Before it records the insertion time for the received links,
recording by addlinks, it removes the old link information
of trans f er Node, recording by removelinks.

transferLinks refines updateLinks
any sender receiver trans f er Node receivedlinks
addlinks removelinks

where
�node ∈ Nodes
⊕sender ∈ Nodes ∧ receiver ∈ Nodes∧
trans f er Node ∈ Nodes
⊕sender �= receiver ∧ receiver �= trans f er Node
⊕sender �→ receiver ∈ LinkStateT able(sender)
⊕receivedlinks ∈ Nodes ↔ Nodes∧
dom(receivedlinks) = {trans f er Node}

⊕addlinks = receivedlinks
⊕removelinks = {trans f er Node}�

LinkStateT able(receiver)
with
node = receiver

then
�LinkStateT able(node) := (LinkStateT able(node)\

removelinks) ∪ addlinks
⊕LinkStateT able(receiver) := (LinkStateT able(receiver)\

removelinks) ∪ addlinks
⊕I nsertionT ime(receiver) := (removelinks�

I nsertionT ime(receiver)) ∪ (addlinks × {T ime})

refreshLinks refines updateLinks
any node oldlinks
where
⊕oldlinks = {x �→ y|x �→ y ∈ LinkStateT able(node)∧
x �= node∧
(T ime − I nsertionT ime(node)(x �→ y) ≥ li f etime)}

with
addlinks = ∅
removelinks = oldlinks

then
�LinkStateT able(node) := (LinkStateT able(node)

\removelinks) ∪ addlinks
⊕LinkStateT able(node) := LinkStateT able(node) \ oldlinks
⊕I nsertionT ime(node) := oldlinks� I nsertionT ime(node)

The refreshLinks event updates the link state table by
excluding expired links whose link sources have moved out
of the node’s routing zone, removelinks noting down this

knowledge. addlinks is an empty set in this case. The time
growth process is modeled by a new event timeClock with
an increment t ick ∈ N1. The REQ-3 and ENV-3 are imple-
mented in this step.

ThirdRefinement. In ZRP, every nodemaintains the routing
information within its routing zone rather than the whole
network. In this refinement, we focus on the construction of
routing zones.

The constant zoneRadius denotes the zone radius and
zoneRadius > 1. The scope of a link state update is limited
by the TTL (time to live) [13] carried in the link state packets.
We define a variable T T L to record the TTL value alongwith
packets transmission. When a node advertises its neighbor
information, it initializes the TTL value as zoneRadius−1.
If the packet is received by a node, the value is decremented.
The broadcasting shall terminate until the value is equal to
0. This protocol utilizes the sequence number to track the
history of each link state packet. So, we define the variable
SeqNum. inv3 states that the recorded sequence number for
each received link state packet is greater than zero. A node
n, within the routing zone of an arbitrary node m, having a
distinct neighbor view of m implies that n does not receive
the current neighbor information of m (inv4).

inv1 : T T L ∈ Nodes → (Nodes → N)

inv2 : SeqNum ∈ Nodes → (Nodes → N)

inv3 : ∀m, p · p ∈ dom(LinkStateT able(m))

⇒ SeqNum(m)(p) > 0
inv4 : ∀m, n · n ∈ dom(LinkStateT able(m)) ∧ m �→ n ∈

closure(LinkStateT able(m)) ∧ (∃x · m �→ x ∈
LinkStateT able(m) ∧ ¬m �→ x ∈ LinkStateT able(n))

⇒ ¬(∀x · m �→ x ∈ LinkStateT able(m) ⇔ m �→ x ∈
LinkStateT able(n))

We refine the obtainLinks to initialize the TTL value and
increase the sequence number. If a node receives a node’s
link state packet with a smaller sequence number, then it dis-
cards this information. The discardLinks event specifies this
behavior. Otherwise, the node processes this packet by trans-
ferLinks which decreases the TTL value and notes down the
sequence number. In addition, the receiver just deals with the
received information with the TTL greater than 0.

transferLinks refines transferLinks
any sender receiver trans f er Node receivedlinks
addlinks removelinks receivedT T L receivedSeqNum

where
⊕receivedT T L > 0 ∧ receivedSeqNum > 0
⊕SeqNum(receiver)(trans f er Node) ≤ receivedSeqNum

then
⊕T T L(receiver) := T T L(receiver)�

{trans f er Node �→ receivedT T L − 1}
⊕SeqNum(receiver) := SeqNum(receiver)�

{trans f er Node �→ receivedSeqNum}

For the stabilize, we add two conditions:

(1) nodes = λx · x ∈ Nodes|dom(LinkStateTable(x)),
(2) ∀x, y · x ∈ Nodes ∧ y ∈ nodes(x)

⇒ x �→ y ∈ closure(LinkStateT able(x)),
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to describe the scope of the link state propagation. We derive
the stabilization property of the system as a theorem.

Theorem 1 If the system is stable, and there exists a path in
the network topology between node m and node n, and n is
in the routing zone of m, then there exists a route from m to
n in m’s link state table. Let Guards be the conjunction of
all guards of stabilize event. Then, the formalization of the
statement is

Guards ⇒ (∀m, n · m �→ n ∈ closure(Neighbor Link)
∧n ∈ ran(LinkStateTable(m))

⇒ m �→ n ∈ closure(LinkStateT able(m))).

By this refinement, every node has the up-to-date knowl-
edge of its routing zone. It establishes the requirements
REQ-4 and REQ-5.

Fourth Refinement. To prevent a node from accessing other
nodes’ private information, we introduce TransmittedLink
to indicate the being transmitted link state information on
links.WedefineTransmittedSeqNum andTransmittedT T L
to specify the being transmitted sequence number and TTL
value, respectively. A recipient may process the new received
information of a node, while it does not send out the previous
information of that node. So, we define a variable Flag to
denote whether a node can receive another node’s link state
information. Moreover, a receiver should ensure the connec-
tion with the sender without accessing the sender’s private
information (inv5). inv6 guarantees that the being transmit-
ted link information for p are neighbor links of p.

inv1 : TransmittedLink ∈ (Nodes × Nodes) → (Nodes →
(Nodes ↔ Nodes))

inv2 : TransmittedSeqNum ∈ (Nodes × Nodes)
→ (Nodes → N)

inv3 : TransmittedT T L ∈ (Nodes × Nodes) → (Nodes → N)

inv4 : Flag ∈ Nodes → (Nodes → BOOL)

inv5 : ∀m, n, p · TransmittedLink(m �→ n)(p) �= ∅ ∧ n �= p
⇒ m �→ n ∈ LinkStateT able(m)

inv6 : ∀m, n, p · TransmittedLink(m �→ n)(p) �= ∅ ∧ n �= p
⇒ dom(TransmittedLink(m �→ n)(p)) = {p}

If the connected links are down, then the being trans-
mitted information on them is lost. So, we refine event
obtainLinks to reset the being transmitted information
on disconnected links. In addition, we adopt sendLinks,
receiveLinks, discardLinks and cancelSendingLinks to
model the distributed behavior along with the packet trans-
mission. The sendLinks is enabled if the link information
of trans f er Node on links is empty and the T T L value for
trans f er Node is greater than 0. Then, it puts the link state
information, sequence number and the TTL on connected
links, and sets the flag for trans f er Node as TRUE to permit
the reception about the link information of trans f er Node.
Otherwise, the node just needs to reset the flag by can-
celSendingLinks.

sendLinks
any sender trans f er Node links
where
sender ∈ Nodes
trans f er Node ∈ Nodes
trans f er Node ∈ dom(LinkStateT able(sender))
links = {x �→ y|x = sender ∧ x �→ y ∈ LinkStateT able(x)}
∀l · l ∈ links ⇒ TransmittedLink(l)(trans f er Node) = ∅
T T L(sender)(trans f er Node) > 0

then
TransmittedLink := TransmittedLink� (λl · l ∈ links|

TransmittedLink(l)� {trans f er Node �→
{trans f er Node} � LinkStateT able(sender)})

TransmittedSeqNum := TransmittedSeqNum�
(λl · l ∈ links|TransmittedSeqNum(l)� {trans f er Node
�→ SeqNum(sender)(trans f er Node)})

TransmittedT T L := TransmittedT T L� (λl · l ∈ links|
TransmittedT T L(l)� {trans f er Node �→
T T L(sender)(trans f er Node)})

Flag(sender) := Flag(sender)� {trans f er Node �→ TRUE}

By receiveLinks, refining transferLinks, the receiver
deals with the link state information without consulting
the private information of the sender. It obtains this infor-
mation from the connected link sender �→ receiver .
Clauses in the with part present the assignments for those
received information. Both receiveLinks and discardLinks
shall reset the being transmitted information on the link
sender �→ receiver . Besides, receiveLinks changes the
Flag value for trans f er Node from TRUE to FALSE,
which forbids receiver to receive the trans f er Node’s link
information.

receiveLinks refines transferLinks
any sender receiver trans f er Node addlinks removelinks
where
�sender �→ receiver ∈ LinkStateT able(sender)
�receivedlinks ∈ Nodes ↔ Nodes ∧ dom(receivedlinks) =
{trans f er Node}
�addlinks = receivedlinks
�SeqNum(receiver)(trans f er Node) ≤ receivedSeqNum
�receivedT T L > 0 ∧ receivedSeqNum > 0
⊕addlinks =
TransmittedLink(sender �→ receiver)(trans f er Node)
⊕TransmittedLink(sender �→ receiver)(trans f er Node) �= ∅
⊕TransmittedT T L(sender �→ receiver)(trans f er Node) > 0
∧TransmittedSeqNum(sender �→ receiver)(trans f er Node)
> 0
⊕Flag(receiver)(trans f er Node) = TRUE
⊕SeqNum(receiver)(trans f er Node) ≤
TransmittedSeqNum(sender �→ receiver)(trans f er Node)

with
receivedlinks =
TransmittedLink(sender �→ receiver)(trans f er Node)
receivedT T L =
TransmittedT T L(sender �→ receiver)(trans f er Node)
receivedSeqNum =
TransmittedSeqNum(sender �→ receiver)(trans f er Node)

then
⊕TransmittedLink(sender �→ receiver) :=

TransmittedLink(sender �→ receiver)
� {trans f er Node �→ ∅}

⊕TransmittedSeqNum(sender �→ receiver) :=
TransmittedSeqNum(sender �→ receiver)
� {trans f er Node �→ 0}

⊕TransmittedT T L(sender �→ receiver) :=
TransmittedT T L(sender �→ receiver)
� {trans f er Node �→ 0}

⊕Flag(receiver) := Flag(receiver)�
{trans f er Node �→ FALSE}
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During the transmission of link state information, the
being transmitted links, TTL values and sequence numbers
maintain the consistency, described with inv7-inv10.

inv7 : ∀m, n, p · TransmittedLink(m �→ n)(p) �= ∅ ∧ n �= p
⇒ TransmittedT T L(m �→ n)(p) > 0

inv8 : ∀l, p · l ∈ Nodes × Nodes ∧ TransmittedLink(l)(p) = ∅
⇒ TransmittedT T L(l)(p) = 0

inv9 : ∀m, n, p · TransmittedLink(m �→ n)(p) �= ∅ ∧ n �= p
⇒ TransmittedSeqNum(m �→ n)(p) > 0

inv10 : ∀l, p · l ∈ Nodes × Nodes ∧ TransmittedLink(l)(p) = ∅
⇒ TransmittedSeqNum(m �→ n)(p) = 0

4.3 Bordercasting-based route discovery

We have formalized the construction of routing zones in pre-
vious refinements. In the following steps, we focus on the
development of the route request phase and the route reply
phase in the changeable environment.

When we refer to the route request phase using border-
casting service, we pay more attention to these points:

1. the construction of bordercast trees with the aim of deter-
mining the intended forwarding nodes,

2. the records about the accumulated paths,
3. the routes selection with the destination in a node’s rout-

ing zone,
4. the zone-based query control which steers a route request

away from the covered regions.

The first and second points are developed in the next refine-
ment.Other points are gradually formalized in the succeeding
refinements.

FifthRefinement.There are five new variables in this refine-
ment. We define a variable RouteRequest , representing the
set of route requests. A pair in RouteRequest describes
the source and the destination for a route request. For a
route request, the source node and the destination node are
distinct. The bordercast trees constructed by a node may
vary from one route request to another. So, a bordercast-
ing node needs to know the set of forwarding neighbors for
a generated or received route request. I ntendedNeighbor
specifies this information. The variable Accumulated Path
keeps track of the accumulated paths along with requests
delivery. Since we have considered the distributed behavior
of the system, we define two variables to describe the corre-
sponding being transmitted data. TransmittedTag is used
to determine that whether a neighbor is an intended receiver
and the being transmitted accumulated routes are described
by Transmitted Path.

inv1 : RouteRequest ∈ Nodes ↔ Nodes
inv2 : I ntendedNeighbor ∈ (Nodes × (Nodes × Nodes))

→ P(Nodes)
inv3 : Accumulated Path ∈ Nodes → ((Nodes × Nodes)

→ (Nodes ↔ Nodes))
inv4 : TransmittedT ag ∈ (Nodes × Nodes) →

((Nodes × Nodes) → N)

inv5 : Transmitted Path ∈ (Nodes × Nodes) →
((Nodes × Nodes) → (Nodes ↔ Nodes))

inv6 : ∀s, d · s ∈ Nodes ∧ d ∈ Nodes ∧ s �→ d ∈ RouteRequest
⇒ s �= d

inv7 : ∀s, n · s ∈ Nodes ∧ n ∈ Nodes ∧ s �= n ⇒ (∀r · s = pr j1(r)∧
r ∈ dom(Accumulated Path(n))

⇒ r ∈ dom(Accumulated Path(s)))

Even though we do not analyze the query control in this
step, we keep in mind that a node shall not deal with a route
request which has been processed.

The route request phase is issued when there is no route
to the destination in the source node’s routing table. Event
sourceForwardRequest models this behavior. A param-
eter nodes denotes the set of forwarding neighbors in the
source’s bordercast tree. Every node in nodes, an nonempty
set, has at least one route to one of peripheral nodes within
the source’s routing zone. Then, the source places the request
with an empty path on those determined links and indicates
those intended recipients with the update TransmittedTag.
Note that the source node and the destination node of a route
request are distinct (inv6). An arbitrary route request which
has been processed by some nodes is generated by the source
(inv7).

sourceForwardRequest
any source destination request nodes links
where
source ∈ Nodes
destination ∈ Nodes
request = source �→ destination
request /∈ RouteRequest
source �= destination
source �→ destination /∈ closure(RoutingTable(source))
nodes = {q|source �→ q ∈ LinkStateT able(source)∧

(∃p, c · c ⊆ LinkStateT able(source) ∧ q �→ p ∈ closure(c)∧
card(c) = zoneRadius − 1∧
(∀s · s ⊆ LinkStateT able(source) ∧ q �→ p ∈ closure(s)
∧card(s) ≥ card(c)))}

nodes �= ∅
links = {p �→ q|p = source ∧ q ∈ nodes}
∀l · l ∈ links ⇒ TransmittedT ag(l)(request) = 0
request /∈ dom(Accumulated Path(source))

then
RouteRequest := RouteRequest ∪ {request}
Accumulated Path := Accumulated Path� {source �→

(Accumulated Path(source)� {request �→ ∅})}
I ntendedNeighbor := I ntendedNeighbor�

{(source �→ request) �→ nodes}
TransmittedT ag := TransmittedT ag�

(λl · l ∈ links|TransmittedT ag(l)� {request �→ 1})
Transmitted Path := Transmitted Path�

(λl · l ∈ links|Transmitted Path(l)� {request �→ ∅})

receiveRequest states a receiver, an intended recip-
ient, processes a received request. It records the accu-
mulated route and resets the transmitted information on
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sender �→ receiver . If the intended forwarding neighbors
are nonempty, the node shall bordercast the request by bor-
dercastRequest event. Both of them are abstract.

inv8 : ∀n,m, r · n �= m ∧ Transmitted Path(n �→ m)(r) �= ∅
⇒ r ∈ dom(Accumulated Path(n))

inv9 : ∀n,m, r, path · n �= m ∧ m ∈ I ntendedNeighbor(n �→ r)
⇒ (r �→ path ∈ Accumulated Path(n)

∧TransmittedT ag(n �→ m)(r) �= 0
⇒ Transmitted Path(n �→ m)(r) = path)

inv10 : ∀n,m, r · n �= m ∧ TransmittedT ag(n �→ m)(r) �= 0
⇒ m ∈ I ntendedNeighbor(n �→ r)

inv11 : ∀l, r · l ∈ Nodes × Nodes ∧ TransmittedT ag(l)(r) = 0
⇒ Transmitted Path(l)(r) = ∅

inv12 : ∀n, r.n ∈ Node ∧ r ∈ RouteRequest ∧ r ∈
dom(Accumulated Path(n)) ⇒ Accumulated Path(n)(r)
∈ Nodes ↔ Nodes

inv13 : ∀n, s, t · n ∈ Nodes ∧ s �→ t ∈ Nodes × Nodes∧
s �→ t ∈ dom(Accumulated Path(n))

⇒ (∀m, path · path = Accumulated Path(n)(s �→ t)
∧m ∈ dom(path) ⇒ ¬(m �→ m ∈ closure(path)))

Here, we just show the receiveRequest since it shall be
refined to more concrete events. The nodes receive a request
from the transmitted information on links. So, if the being
transmitted path on an arbitrary link is nonempty, then it indi-
cates that the link source has received the request (inv8); in
addition, the being transmitted path is equal to the accumu-
lated route recorded in the link source for the request (inv9).
A node is an intended neighbor for receiving a request from a
link source if the being transmitted tag on that link is nonzero
(inv10). For a request, the being transmitted path on the link
is empty if the transmitted tag is 0 (inv11). It guarantees
that the being transmitted information on links is consistent
for requests. An accumulated path for a route request is a
set of links (inv12). The discovered route is loop-free if the
accumulated path is loop-free along with the requests prop-
agation (inv13). inv12 and inv13 maintain the properties 2
and 3 in Definition 4. This refinement constitutes the system
requirements REQ-6 and REQ-7.

receiveRequest
any sender receiver request nodes path
where
sender ∈ Nodes ∧ receiver ∈ Nodes ∧ sender �= receiver
request ∈ RouteRequest
T ransmittedT ag(sender �→ receiver)(request) = 1
request /∈ dom(Accumulated Path(receiver))
nodes ∈ P(Nodes)
path ∈ Nodes ↔ Nodes ∧ sender �→ receiver ∈ path
∀n · n ∈ dom(path) ⇒ ¬n �→ n ∈ closure(path)

then
Accumulated Path(receiver) :=

Accumulated Path(receiver)� {request �→ path}
I ntendedNeighbor := I ntendedNeighbor

� {(receiver �→ request) �→ nodes}
TransmittedT ag(sender �→ receiver) :=
TransmittedT ag(sender �→ receiver)� {request �→ 0}

Transmitted Path(sender �→ receiver) :=
Transmitted Path(sender �→ receiver)� {request �→ ∅}

Sixth Refinement. In this refinement, we split receive
Request into two events based on whether the receiver has
valid routes to the destination in its routing zone.

One is receiveRequest_NoRoute that specifies the des-
tination is not located in the receiver’s routing zone. Here,

the node requires to construct the bordercast tree with the
calculated recipients denoting by nodes, and then forwards
this request carrying the update path.

receiveRequest_NoRoute refines receiveRequest
any sender receiver request nodes path destination
where
�nodes ∈ P(Nodes)
�path ∈ Nodes ↔ Nodes ∧ sender �→ receiver ∈ path
⊕destination = pr j2(request)
⊕receiver �→ destination /∈
closure(LinkStateT able(receiver))
⊕nodes ⊆ {q|receiver �→ q ∈ LinkStateT able(receiver)∧
(∃p, c · c ⊆ LinkStateT able(receiver) ∧ q �→ p ∈ closure(c)∧
card(c) = zoneRadius − 1∧
(∀s · s ⊆ LinkStateT able(receiver) ∧ q �→ p ∈ closure(s)∧
card(s) ≥ card(c)))}
⊕nodes �= ∅
⊕path = Transmitted Path(sender �→ receiver)(request)
∪{sender �→ receiver}

receiveRequest_HasRoute refines receiveRequest
any sender receiver request nodes path destination
collection routes
where
�path ∈ Nodes ↔ Nodes ∧ sender �→ receiver ∈ path
⊕nodes = ∅
⊕destination = pr j2(request)
⊕receiver �→ destination ∈
closure(LinkStateT able(receiver))
⊕collection = {S|S ⊆ LinkStateT able(receiver)∧
card(S) ≤ zoneRadius∧
receiver �→ destination ∈ closure(S)}
⊕routes = union({R|∀S · S ∈ collection∧
R ∈ collection ∧ card(R) ≤ card(S)})

⊕path = Transmitted Path(sender �→ receiver)(request)
∪{sender �→ receiver} ∪ routes

The other one receiveRequest_HasRoute event creates
a route reply with a discovered route. There exists at least one
route to the destination in the receiver’s routing zone. But the
routes are not specified explicitly. So, the valid routeswithout
useless links should be selected in terms of some metrics,
e.g., the distance (hops). Therefore, we add two guards, for
collection and routes, to calculate the union of all shortest
routes. card denotes the cardinality of an input finite set. Since
it is unnecessary to bordercast this request, we set nodes as
the empty set.

We demonstrate that it indeed exists a route from the
source to a node in the accumulated route for a request (inv1).
So, the accumulated path, constructed by a recipient with the
destination in its routing zone, contains the whole route from
the source to the destination (thm1). This refinement estab-
lishes the requirement REQ-8.

inv1 : ∀s, n · s ∈ Nodes ∧ n ∈ Nodes ∧ s �= n
⇒ (∀r, path · r ∈ RouteRequest∧
r �→ path ∈ Accumulated Path(n) ∧ s = pr j1(r)
⇒ s �→ n ∈ closure(path))

thm1 : ∀s, t, n · s �→ t ∈ RouteRequest ∧ n ∈ Nodes ∧ s �= n
⇒ (∀r, path · r = s �→ t∧
r �→ path ∈ Accumulated Path(n)

∧n �→ t ∈ closure(path) ⇒ s �→ t ∈ closure(path))

Seventh Refinement. The purpose of the zone-based query
control is to direct the route request away from the query
source and the covered regions. In this step, we take into
account the query controlmechanism.Anodehas to know the
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coverage information within its routing zone when it builds a
bordercast tree. Thus,we define a variable ZoneCoverage ∈
Nodes → ((Nodes × Nodes) → P(Nodes)) to describe
this information.

A source node launches the route request and forwards
it to the neighbors in its bordercast tree, so its routing zone
is covered. Hence, we mark the routing zone as covered by
refining sourceForwardRequest. zone represents the set
of nodes within the routing zone of source.

sourceForwardRequest refines sourceForwardRequest
any source destination request nodes links zone
where
⊕zone = {m|source �→ m ∈
closure(LinkStateT able(source)) ∨ m = source}
⊕source /∈ ZoneCoverage(source)(request)

then
⊕ZoneCoverage(source) := ZoneCoverage(source)�
{request �→ zone}

Moreover, a bordercaster’s routing zone is marked as cov-
ered if it has delivered the received route request (refine bor-
dercastRequest). We introduce a new event sendReply
to mark the routing zone of a route discover, namely node
has an accumulated path from source to destination, as
covered.

sendReply
any node request source destination path zone
where
node ∈ Nodes
request ∈ RouteRequest
source = pr j1(request) ∧ destination = pr j2(request)
request ∈ dom(Accumulated Path(node))
path = Accumulated Path(node)(request)
source �→ destination ∈ closure(path)

zone = {q|node �→ q ∈ closure(LinkStateT able(node))
∨q = node}

then
ZoneCoverage(node) := ZoneCoverage(node)�
{request �→ zone}

In order to prune the branches directed to covered periph-
eral nodes, we refine receiveRequest_NoRoute by adding
two conditions for the calculation of nodes, the set of
intended receiving nodes (the adding guard), : a) remove the
previous bordercasting neighbor (q �= sender ); b) remove
the neighbors directed to covered peripheral node(s). This
refinement establishes the system requirement REQ-9.

receiveRequest_NoRoute refines receiveRequest_NoRoute
any sender receiver request nodes path destination
where
�nodes ⊆ {q|receiver �→ q ∈ LinkStateT able(receiver)∧
(∃p, c · c ⊆ LinkStateT able(receiver) ∧ q �→ p ∈ closure(c)
∧card(c) = zoneRadius − 1∧
(∀s · s ⊆ LinkStateT able(receiver) ∧ q �→ p ∈ closure(s)
∧card(s) ≥ card(c)))}

⊕nodes = {q|receiver �→ q ∈ LinkStateT able(receiver)∧
(∃p, c · c ⊆ LinkStateT able(receiver) ∧ q �→ p ∈ closure(c)
∧card(c) = zoneRadius − 1∧
(∀s · s ⊆ LinkStateT able(receiver) ∧ q �→ p ∈ closure(s)
∧card(s) ≥ card(c))∧
p /∈ ZoneCoverage(receiver)(request)) ∧ q �= sender}

4.4 Routing update

To formalize the routing update in detail, we define four
variables. ReplySender describes the previous senders of
received replies. ReplyPath specifies the received routes
carried by route replies. In addition, we define Transmitted
Sender and TransmittedReplyPath to represent the being
transmitted information. Their relationship is described by
inv5, i.e., for a route request, if the being transmitted discov-
ered path on link n �→ m is nonempty, then node n indeed
has forwarded this reply tom. inv6 ensures that the received
reply path contains the complete route from the source to the
destination, i.e., the property 4 in the Definition 4.

inv1 : ReplySender ∈ Nodes → (Nodes ↔ (Nodes × Nodes))
inv2 : ReplyPath ∈ Nodes → (Nodes × (Nodes × Nodes) →

(Nodes ↔ Nodes))
inv3 : TransmittedSender ∈ (Nodes × Nodes) → (Nodes ↔

(Nodes × Nodes))
inv4 : TransmittedReplyPath ∈ (Nodes × Nodes) →

((Nodes × Nodes) → (Nodes ↔ Nodes))
inv5 : ∀n,m, r · n �= m ∧ TransmittedReplyPath(n �→ m)(r) �=

∅ ⇒ n �→ r ∈ TransmittedSender(n �→ m)

inv6 : ∀n, s, d, rq, path · n ∈ Nodes ∧ s ∈ Nodes ∧ d ∈ Nodes∧
rq = s �→ d ∧ path = ReplyPath(n)(s �→ rq) ∧ path �= ∅
⇒ s �→ d ∈ closure(path)

We refine the updateRoutingTable into two concrete
events to show how nodes update the routing information on
the basis of REQ-10. One is updateRoutingTable_IARP.
It aims at updating the routing information according to the
current connectivity within the local neighborhood. A node
may have routes to the destinations beyond the routing zone
in its routing table. So, we should identify the nodes that
move out of the routing zone and then exclude their related
routes. Parameters addRoutes and removeRoutes collect
the links in the current routing zone and the links in the pre-
vious routing zone, respectively. The last guard states that
there exists changes in the node’s routing zone, which is an
important condition for the updating.

updateRoutingTable_IARP refines updateRoutingTable
any node addRoutes removeRoutes zone nodes
where
⊕zone = {m|node �→ m ∈ closure(LinkStateT able(node))
∨m = node}

⊕addRoutes = {p, q · p �→ q ∈ Nodes × Nodes∧
p �→ q ∈ LinkStateT able(node)|p �→ q}

⊕nodes = {m|node �→ m /∈ closure(LinkStateT able(node))
∧node �→ m ∈ closure(RoutingTable(node))∧
(∃c · c ⊆ RoutingTable(node) ∧ node �→ m ∈ closure(c)∧
card(c) ≤ zoneRadius)}

⊕removeRoutes = (nodes ∪ zone) � RoutingTable(node)�
(nodes ∪ zone)

⊕nodes �= ∅ ∨ ¬(addRoutes = zone � RoutingTable(node)�
zone)

By updateRoutingTable_Reply, we model the routing
update for the node which receives a route reply packet. The
nodes in one route are not necessary to record meaningless
links in other routes. It satisfies the fact that a route reply
shall be sent back to the query source by the reversed accu-
mulated route. path denotes the received entire route. Each
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Fig. 2 Synchronization of the events in refinement 8

relaying node just needs to note down the route to the desti-
nation. So, we eliminate those unnecessary links from path,
i.e., the route from the source to the current relaying node.
addRoutes denotes the result links, which are not contained
in the routing table.

updateRoutingTable_Reply refines updateRoutingTable
any sender receiver addRoutes removeRoutes request path
where
�node ∈ Nodes
�¬(addRoutes = ∅ ∧ removeRoutes = ∅)

⊕sender ∈ Nodes
⊕receiver ∈ Nodes
⊕¬(addRoutes = ∅) ∧ removeRoutes = ∅
⊕sender �→ request ∈
TransmittedSender(sender �→ receiver)
⊕path �= ∅ ∧ path =
TransmittedReplyPath(sender �→ receiver)(request)
⊕request ∈ closure(path)

⊕receiver ∈ (dom(path) \ {p|sender �→ p ∈ closure(path)

∨p = sender})
⊕addRoutes = {p|p ∈ dom(path)∧
p �→ receiver ∈ closure(path)}� path

⊕¬addRoutes ⊆ RoutingTable(receiver)
with
node = receiver

then
⊕ReplySender(receiver) := ReplySender(receiver)∪

{sender �→ request}
⊕ReplyPath(receiver) := ReplyPath(receiver)�

{(sender �→ request) �→ path}
⊕TransmittedSender(sender �→ receiver) :=

TransmittedSender(sender �→ receiver)\
{sender �→ request}

⊕TransmittedReplyPath(sender �→ receiver) :=
TransmittedReplyPath(sender �→ receiver)�
{request �→ ∅}

We refine sendReply to start the route reply phase and
introduce a new event forwardReply to forward the route
reply to the next node determined by the accumulated path.
A node shall check the connectivity to the next node before
delivering a reply. In sendReply, node sends the discovered
path (path) to next node, which is decided by path. Then
it places node and path information on link node �→ next .

Source node shall terminate the transmission of the corre-
sponding reply with cancelReply event.

sendReply refines sendReply
any node request source destination path zone next
where
⊕next �→ node ∈ Accumulated Path(node)(request)
⊕node �→ next ∈ LinkStateT able(node)
⊕TransmittedReplyPath(node �→ next)(request) = ∅

then
⊕TransmittedSender(node �→ next) :=

TransmittedSender(node �→ next)
∪{node �→ request}

⊕TransmittedReplyPath(node �→ next) :=
TransmittedReplyPath(node �→ next)
� {request �→ path}

Those events model the system requirement REQ-10.
The entire formalization establishes requirements REQ-1
and REQ-2. The synchronization of the developed events
is shown in Fig. 2.

4.5 Model validation

We adopt the ProB, an animation and model checking tool,
which is available for the Rodin, to validate our model. It
allows us to perform the animation of Event-B models with-
out translating those models into particular ones utilized in
the ProB. Moreover, this animator supports stepwise anima-
tion of machines and non-deterministic operations. In Rodin,
the ProB perspective presents a description of the current
state of a machine, and a list of all enabled events, along
with proper argument instantiations. Hence, the users can
choose an available event with possible arguments to change
the system state.

Since the nodes in the network, the broadcast period
and zone radius are not explicitly defined in our formal-
ization, there may be infinitely many system states. To
avoid state space explosion problem and validate our model
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Fig. 3 The network topology for the model validation

properly, we introduce an auxiliary context to assign the
defined set, Nodes, and some constants presented at fol-
lows. parti tion(S, s1, . . . , sn), a predicate, states that the
sets s1, . . . , sn constitute partitions of the set S. Additionally,
we set the argument tick in the timeClock as 1, denoting that
the time increment is 1.

axm1 : parti tion(Nodes, {n1}, {n2}, {n3}, {n4}, {n5},
{n6}, {n7})

axm2 : li f etime = 4
axm3 : period = 2
axm4 : zoneRadius = 2

In our models, we define closure function to compute the
transitive closure of an input relation defined over Nodes.
But this computation increases the difficulty of animation.
To make the animation smooth, it requires to simplify this
computation. So, we assume that the network topology, as
presented in Fig. 3, is static. The variable Neighbor Link
is considered as a constant for describing the connectivity of
this network (axm5). Then, we utilize a constant closureN L
(axm6) to specify the transitive closure of Neighbor Link
(axm7). Note that the system is not in the stable state if the
stabilize event is not stimulated.

axm5 : parti tion(Neighbor Link,
{n1 �→ n2, n1 �→ n5, n1 �→ n6},
{n2 �→ n1, n2 �→ n3}, {n3 �→ n2, n3 �→ n4, n3 �→ n7},
{n4 �→ n3}, {n5 �→ n1}, {n6 �→ n1, n6 �→ n7},
{n7 �→ n6, n7 �→ n3})

axm6 : closureN L ∈ Nodes ↔ Nodes
axm7 : parti tion(closureN L , Neighbor Link,

{n1 �→ n3, n1 �→ n4, n1 �→ n7},
{n2 �→ n4, n2 �→ n5, n2 �→ n6, n2 �→ n7},
{n3 �→ n1, n3 �→ n5, n3 �→ n6},
{n4 �→ n1, n4 �→ n2, n4 �→ n5, n4 �→ n6, n4 �→ n7},
{n5 �→ n2, n5 �→ n3, n5 �→ n4, n5 �→ n6, n5 �→ n7},
{n6 �→ n2, n6 �→ n3, n6 �→ n4, n6 �→ n5},
{n7 �→ n1, n7 �→ n2, n7 �→ n4, n7 �→ n5})

axm8 : Request ∈ Nodes ↔ Nodes
axm9 : Request = {n1 �→ n4}

In terms of above network topology, we intend to discover
a route from n1 to n4. We define Request to store this route
request with the source n1 and destination n4.We change the
initial model by adding this auxiliary context and removing
the existing machine, which describes the changes of the net-
work topology. The subsequent refinements are formalized
based on this context.

For the following refinements, we replace the predicates
containing closure as some other predicates in terms of the
zone radius 2. For instance,

– inv4, in the third refinement, contains m �→ n ∈
closure(LinkStateT able(m)), indicating that n is in
the current routing zone of m. So, we revise this
part as m �→ n ∈ LinkStateT able(m) ∨ (∃p ·
m �→ p ∈ LinkStateT able(m) ∧ p �→ n ∈
LinkStateT able(m)). We can replace some similar
parts, such as sentence source �→ m ∈ closure
(LinkStateT able(source)) for the setting of zone in
sourceForwardRequest, by the same way.

– One guard, ∀x, y · x ∈ Nodes ∧ y ∈ nodes(x) ⇒ x �→
y ∈ closure(LinkStateT able(x)), for the stabilize in
the third refinement, is revised as∀x, y ·x ∈ Nodes∧y ∈
nodes(x) ⇒ x �→ y ∈ LinkStateT able(x). Since the
zone radius is 2, nodes(x) represents the set of neighbors
of x . To ensure there exists routes to those neighbors, it
demands that x �→ y is in LinkStateT able(x).

– The guard of receiveRequest_HasRoute for
collection, presented in the sixth refinement, is declared
as collection = {S|S ⊆ LinkStateT able(receiver) ∧
card(S) ≤ zoneRadius∧(receiver �→ destination ∈
S∨(∃p·receiver �→ p ∈ S∧p �→ destination ∈ S))}.
Based on the properties of closure, we can say that
receiver �→ destination ∈ closure(S).

– nodes in receiveRequest_NoRoute shall be modified
as {q|receiver �→ q ∈ LinkStateT able(receiver) ∧
(∃p · ¬(∃x · p �→ x ∈ LinkStateT able(receiver)) ∧
q �→ p ∈ LinkStateT able(receiver) ∧ p /∈
ZoneCoverage(receiver)(request)) ∧ q �= sender},
for the purpose of stating that q has a route to the periph-
eral node p.

Notice that those modifications just apply to the models
with a particular zone radius 2. Some statements, contain-
ing the closure function with an undetermined path, cannot
be modified, such as inv1 and thm1 presented in the sixth
refinement. Thus, we omit them and pay more attention to
check their correctness manually when we perform the ani-
mation of our models.

The aim of our models is to find routes from n1 to n4. We
carry out the animation by manually choosing some enabled
operations. There exists routes {n1 �→ n2, n2 �→ n3, n3 �→
n4} and {n1 �→ n6, n6 �→ n7, n7 �→ n3, n3 �→ n4} in the
network topology. They can be discovered by a sequence of
operations.Wepresent an example for the animation inFig. 4.
It lists the step-by-step operations, along with some param-
eters which improve the readability of the example, of the
whole route discovery for the request n1 �→ n4. Moreover,
it specifies the values of some variables after the correspond-
ing operation(s). For instance, nodes n1, n2, n3, n6 and n7
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1. timeClock(1)
Time = 32. timeClock(1)

3. obtainLinks(n1, {n1 �→ n2, n1 �→ n5, n1 �→ n6}, . . .) LinkStateTable = {n1 {→� n1 �→ n2, n1 �→ n5, n1 �→ n6},
4. obtainLinks(n2, {n2 �→ n1, n2 �→ n3}, . . .) n2 {→� n2 �→ n1, n2 �→ n3},
5. obtainLinks(n3, {n3 �→ n2, n3 �→ n4, n3 �→ n7}, . . .) n3 {→� n3 �→ n2, n3 �→ n4, n3 �→ n7}, n4 ∅→� , n5 ∅→� ,
6. obtainLinks(n6, {n6 �→ n1, n6 �→ n7}, . . .) n6 {→� n6 �→ n1, n6 �→ n7}, n7 {→� n7 �→ n3, n7 �→ n6}}
7. obtainLinks(n7, {n7 �→ n3, n7 �→ n6}, . . .)
8. sendLinks(n1, {n1 �→ n2, n1 �→ n5, n1 �→ n6}, . . .) LinkStateTable = {n2 {→� n2 �→ n1, n2 �→ n3, n1 �→ n2, n1 �→ n5, n1 �→ n6},
9. receiveLinks(n2, {n1 �→ n2, n1 �→ n5, n1 �→ n6}, . . .) . . . , n6 {→� n6 �→ n1, n6 �→ n7, n1 �→ n2, n1 �→ n5, n1 �→ n6}, . . .}
10. receiveLinks(n6, {n1 �→ n2, n1 �→ n5, n1 �→ n6},

. . .)
11. sendLinks(n2, {n2 �→ n1, n2 �→ n3}, . . .) LinkStateTable = {n1 {→� n1 �→ n2, n1 �→ n5, n1 �→ n6, n2 �→ n1, n2 �→ n3},
12. receiveLinks(n1, {n2 �→ n1, n2 �→ n3}, . . .) . . . , n3 {→� n3 �→ n2, n3 �→ n4, n3 �→ n7, n2 �→ n1, n2 �→ n3}, . . .}
13. receiveLinks(n3, {n2 �→ n1, n2 �→ n3}, . . .)
14. sendLinks(n3, {n3 �→ n2, n3 �→ n4, n3 �→ n7}, . . .) LinkStateTable = {. . . , n2 {→� n2 �→ n1, n2 �→ n3, n1 �→ n2, n1 �→ n5, n1 �→ n6,
15. receiveLinks(n2, {n3 �→ n2, n3 �→ n4, n3 �→ n7}, n3 �→ n2, n3 �→ n4, n3 �→ n7}, . . . ,

. . .) n7 {→� n7 �→ n3, n7 �→ n6, n3 �→ n2, n3 �→ n4, n3 �→ n7}, . . .}
16. receiveLinks(n7, {n3 �→ n2, n3 �→ n4, n3 �→ n7},

. . .)
17. sendLinks(n6, {n6 �→ n1, n6 �→ n7}, . . .) LinkStateTable = {n1 {→� n1 �→ n2, n1 �→ n5, n1 �→ n6, n2 �→ n1, n2 �→ n3,
18. receiveLinks(n1, {n6 �→ n1, n6 �→ n7}, . . .) n6 �→ n1, n6 �→ n7}, . . . , n7 {→� n7 �→ n3, n7 �→ n6, n3 �→ n2,
19. receiveLinks(n7, {n6 �→ n1, n6 �→ n7}, . . .) n3 �→ n4, n3 �→ n7, n6 �→ n1, n6 �→ n7}, . . .}
20. sendLinks(n7, {n7 �→ n3, n7 �→ n6}, . . .) LinkStateTable = {. . . , n3 {→� n3 �→ n2, n3 �→ n4, n3 �→ n7, n2 �→ n1, n2 �→ n3,
21. receiveLinks(n3, {n7 �→ n3, n7 �→ n6}, . . .) n7 �→ n3, n7 �→ n6}, . . . , n6 {→� n6 �→ n1, n6 �→ n7, n1 �→ n2,
22. receiveLinks(n6, {n7 �→ n3, n7 �→ n6}, . . .) n1 �→ n5, n1 �→ n6, n7 �→ n3, n7 �→ n6}, . . .}
23. updateRoutingTable IARP(n1, . . .) RoutingTable = {n1 {→� n1 �→ n2, n1 �→ n5, n1 �→ n6, n2 �→ n1, n2 �→ n3,
24. updateRoutingTable IARP(n2, . . .) n6 �→ n1, n6 �→ n7}, n2 {→� n2 �→ n1, n2 �→ n3, n1 �→ n2, n1 �→ n5,
25. updateRoutingTable IARP(n3, . . .) n1 �→ n6, n3 �→ n2, n3 �→ n4, n3 �→ n7}, n3 {→� n3 �→ n2, n3 �→ n4,
26. updateRoutingTable IARP(n6, . . .) n3 �→ n7, n2 �→ n1, n2 �→ n3, n7 �→ n3, n7 �→ n6},
27. updateRoutingTable IARP(n7, . . .) n4 ∅→� , n5 ∅→� , n6 {→� n6 �→ n1, n6 �→ n7, n1 �→ n2, n1 �→ n5,

n1 �→ n6, n7 �→ n3, n7 �→ n6},
n7 {→� n7 �→ n3, n7 �→ n6, n3 �→ n2, n3 �→ n4, n3 �→ n7,
n6 �→ n1, n6 �→ n7}}

28. sourceForwardRequest(n1, n1 �→ n4, . . .) AccumulatedPath = {n1 {→� (n1 �→ n4) ∅→� , . . .}, . . .}
IntendedNeighbor = {(n1 �→ (n1 �→ n4)) {→� n2, n6}, . . .}

29. receiveRequest HasRoute(n2, n1 �→ n4, . . .) AccumulatedPath = {n2 {→� (n1 �→ n4) {→� n1 �→ n2, n2 �→ n3, n3 �→ n4}, . . .},
30. receiveRequest NoRoute(n6, n1 �→ n4, . . .) . . . , n6 {→� (n1 �→ n4) {→� n1 �→ n6}, . . .}, . . .}

IntendedNeighbor = {. . . , (n6 �→ (n1 �→ n4)) {→� n7}, . . .}
31. bordercastRequest(n6, n1 �→ n4, {n6 �→ n7}, . . .) AccumulatedPath = {. . . , n7 {→� (n1 �→ n4) {→� n1 �→ n6, n6 �→ n7, n7 �→ n3,
32. receiveRequest HasRoute(n7, n1 �→ n4, . . .) n3 �→ n4}, . . .}, . . .}
33. sendReply(n2, n1 �→ n4, . . .) TransmittedReplyPath = {(n2 �→ n1) {→� (n1 �→ n4) {→� n1 �→ n2, n2 �→ n3,
34. sendReply(n7, n1 �→ n4, . . .) n3 �→ n4}, . . .}, . . . ,

(n7 �→ n6) {→� (n1 �→ n4) {→� n1 �→ n6, n6 �→ n7, n7 �→ n3,
n3 �→ n4}, . . .}, . . .}

35. updateRoutingTable Reply(n1, n1 �→ n4, . . .) RoutingTable = {n1 {→� n1 �→ n2, n1 �→ n5, n1 �→ n6, n2 �→ n1, n2 �→ n3,
36. updateRoutingTable Reply(n6, n1 �→ n4, . . .) n6 �→ n1, n6 �→ n7, n3 �→ n4}, . . . , n6 {→� n6 �→ n1, n6 �→ n7,

n1 �→ n2, n1 �→ n5, n1 �→ n6, n7 �→ n6, n7 �→ n3, n3 �→ n4}, . . .}
37. forwardReply(n6, n1 �→ n4, n1, . . .) RoutingTable = {n1 {→� n1 �→ n2, n1 �→ n5, n1 �→ n6, n2 �→ n1, n2 �→ n3,
38. updateRoutingTable Reply(n1, n1 �→ n4, . . .) n6 �→ n1, n6 �→ n7, n3 �→ n4, n7 �→ n3}, . . .}

Fig. 4 An example for the animation of our model

obtain their neighbor information by step 3-7, and then the
current value of LinkStateT able is shown in the right side.
We utilize “. . .” to denote the unchanged parts of variables.
The invariants and axioms keep true during this animation.

5 Related work and conclusion

The purpose of ad hoc routing protocols is to find routes to
deliver data packets. By far, there are many contributions
about the formal verification of routing protocols. Wibling
adopted model checkers, SPIN and UPPAAL, to verify a
simplified version of the Lightweight Underlay Network Ad-
hoc Routing Protocol(LUNAR) [24]. To avoid state space
explosion problem, he analyzed some interesting topologies
with a small number of nodes. Bhargavan utilized the HOL,
an interactive prover, and SPIN to verify the properties of
distance vector routing protocols [6]. With Isabelle/HOL,

[7,25] presented the verification for the properties of AODV
and DSR, respectively. Moreover, Hoang presented a formal
development of the distributed topology discovery algorithm
in Event-B [15]. He has proved that the system eventually
reaches a stable state if the physical environment is inac-
tive. We also formalize the system stabilization property. But
we limit the view of a node to its routing zone rather than
the whole network. Méry presented an incremental formal
development of the DSR protocol with stepwise refinements
in Event-B [19]. Note that they verified either a proactive
protocol or a reactive protocol.

Our work is closely related to Méry’s, but his analysis
for the route discovery process is abstract (1) each node in a
discovered route updates its routing table by adding the entire
route. In addition, he did not formalize the route reply phase,
(2) the forwarding nodes can check the private information
of its neighbors, that is the distributed behavior of the system
is not considered, (3) the situation that the being transmitted
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route requests may be lost owing to the link breakage is not
modeled, (4) the validity and loop freedom of discovered
routes are not stated. Therefore, his analysis is so abstract that
it cannot well reflect the reality behaviors of the protocol. To
make our model more reasonable and closer to specify the
system, we take into account the system distributed behavior
among messages propagation, and the route reply delivery
process. Furthermore, our formalization guarantees the loop
freedom and validity of those discovered routes.

In our work, we construct a formal specification of the
ZRP, a hybrid routing framework, by a refinement-based
method. To the best of our knowledge, we are the first to
formally analyze a hybrid protocol. Our goal is to analyze
the route discovery process on the basis of bordercasting ser-
vice.

Under thedynamicnetwork environment, eachnodedeliv-
ers its neighbor information throughout its routing zone. The
addressed issues are how to model the store forward process
and how to control the link state propagation within a limited
scope. Our model not only formally specifies these issues but
also considers the stabilization property of the system. That
is if the system is stable (the network environment is inactive
for a long time), then each node has a route to the node within
its routing zone when there exists a path between them in the
network topology.

We also develop some invariants to verify the properties
of the route discovery. Note that the goal of the ZRP is to
discover the required routes by bordercasting service rather
than broadcasting. According to Definition 4, we prove that
each discovered route is validity and loop-free. Moreover,
we validate our model with a particular instantiation of the
system in Sect. 4.5.

Table 1 summarizes the statistics of discharged proof obli-
gations. It has generated 401 proof obligations, and half of
them are proved automatically. The rest of them, involving
arithmetic or set operations, are manually proved. By dis-

Table 1 Proof obligations statistics

Model Total number
of POs

Automatically
discharged

Manually
discharged

Initial Model 14 12 2

Refinement 1 15 13 2

Refinement 2 59 38 21

Refinement 3 30 16 14

Refinement 4 98 55 43

Refinement 5 79 38 41

Refinement 6 20 13 7

Refinement 7 20 14 6

Refinement 8 66 41 25

Total 401 240(60%) 161(40%)

charging the generated proof obligations, we ensure that the
refinements are correct and the properties (invariants) are
preserved.

Our formal analysis is helpful to verify extensions of
the ZRP framework, such as the Independent Zone Routing
(IZR) [23] framework which supports the configuration for
the scope of each node’s routing zone. The development also
provides reference to analyze other hybrid routing protocols.
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