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Abstract When a system specified using the Vienna Devel-
opment Method (VDM) is realised using code-generation,
no guarantees are currently made about the correctness
of the generated code. In this paper, we improve code-
generation of VDM models by taking contract-based ele-
ments such as invariants and pre- and postconditions into
account during the code-generation process. The contract-
based elements of the Vienna Development Method Spec-
ification Language (VDM-SL) are translated into corre-
sponding constructs in the Java Modelling Language (JML)
and used to validate the generated code against the prop-
erties of the VDM model. VDM-SL and JML are both
Design-by-Contract (DbC) languages, with the difference
that VDM-SL supports abstract modelling and system spec-
ification, while JML is used for detailed specification of
Java classes and interfaces. We describe the semantic dif-
ferences between the contract-based elements of VDM-
SL and JML and formulate the translation as a set of
rules. We further demonstrate how dynamic JML assertion
checks can be used to ensure the consistency of VDM’s
subtypes when a model is code-generated. The translator is
fully automated and produces JML-annotated Java programs
that can be checked for correctness using JML tools.
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1 Introduction

Design-by-Contract (DbC) is an approach for designing
software based on concepts such as preconditions, postcon-
ditions and invariants [1]. These concepts are referred to as
“contracts”, according to a conceptual metaphor for the con-
ditions and obligations of a business contract. An example of
a formalmethod that uses DbC elements is the ViennaDevel-
opment Method (VDM), which was originally developed at
IBMinVienna for the development of a compiler for PL/1 [2–
4]. Oneway to realise aVDMspecification in a programming
language is through refinement [5]. This is a stepwise process
by which one can transform a formal model into a program
that can be verified to semantically satisfy its contracts [6].

Another way to realise a VDM specification is using
code-generation. The idea is for the generated code to be
a refinement of the specification, but which is not achieved
through stepwise refinement, but rather in one step through
code-generation translation rules. Code-generation aims to
reduce the resources needed to realise the model as well
as to avoid introducing problems in the implementation due
to manual translation of model into code. However, current
VDM code-generators do not make any guarantees about
the correctness of the generated code, nor do they provide
the necessary means to help check that the code meets the
specification. Naturally, this casts doubt on the value of code-
generation as a way to realise a VDM model, since the goal
is to develop software that meets the specification.

In this paper, we improve code-generation of VDM mod-
els by allowing the generated code to be checked against
the system properties described by the VDM contracts. This
helps ensure that the generated code meets the VDM speci-
fication, and is achieved as described in this paper.

Some DbC technologies are tailored to specify detailed
designs of programming interfaces for a particular
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programming language [7]. An example of one such tech-
nology is the JavaModelling Language (JML) [8]—a formal
specification language that uses DbC elements, written as
specialised comments, to specify the behaviour of Java
classes and interfaces. JML annotations can be analysed stat-
ically or checked dynamically using JML tools. Therefore,
JML can be seen as a technology that serves to bridge the
gap between an abstract system specification and its Java
implementation.

In this paper, we attempt to bridge this gap even further
by proposing a way to automatically translate a specifica-
tionwritten in theViennaDevelopmentMethodSpecification
Language (VDM-SL) to a JML-annotated Java implementa-
tion. Current VDM code-generators either ignore or provide
limited code-generation support for the contract-based ele-
ments and type constraints of VDM. Ideally we should be
able to preserve the contracts and type constraints when the
system specification is implemented, since (1) they serve to
document the intention and properties of the system and (2)
they can be used to check the system realisation for cor-
rectness. Ensuring that the contracts and type constraints, as
originally specified in VDM, hold for the system implemen-
tation potentially requires many extra checks to be added to
the code.Adding these checks to the codemanually is tedious
and prone to errors. Instead, these checks could be generated
automatically. Representing contracts and type constraints in
JML also has the advantage that these checks may be ignored
by the Java compiler. This allows the system realisation to
be executed without the overhead of checking the contracts
and type constraints, if desired.

The two main contributions of our work are (1) a collec-
tion of semantics-preserving rules for translating a VDM-SL
specification to a JML-annotated Java program and (2) an
implementation of these rules as an extension to Overture’s
[9,10] VDM-to-Java code-generator [11].

The rules propose ways to translate the DbC elements of
VDM-SL to JML annotations; these annotations are added to
the Java code produced by Overture’s Java code-generator.
The rules cover checking of preconditions, postconditions
and invariants, but the translator also produces JML checks to
ensure that no type constraints are violated across the trans-
lation. We present the rules one by one and demonstrate,
using a case study model of an Automated Teller Machine
(ATM), how the code-generator extension translates a VDM-
SL specification to JML-annotated Java code.

Since the translation is not formally defined we have used
the OpenJML [12] runtime assertion checker to validate our
work—in particular by generating JML constructs supported
by this tool. More specifically, the JML translator has been
tested by running examples through the tool in order to vali-
date each of the translation rules (see Sect. 8 formore details).

Following this section, we describe DbC with VDM-SL
and JML in Sect. 2. We continue by presenting the imple-

mentation of the JML translator in Sect. 3. Then we describe
the rules used to translate a VDM-SL specification to a
JML-annotated Java program in Sects. 5, 6 and 7. Next, we
assess the correctness of the translation in Sect. 8. Finally,
we describe related work in Sect. 9 and present future plans
and conclude in Sect. 10.

2 DbC with VDM-SL and JML

In this section, we describeVDM-SL and JML.We cover dif-
ferent types and all the contract-based elements of VDM-SL,
focusing specifically on the VDM-10 release, which we are
targeting in our work. The JML constructs described in this
section cover those that are used to implement the translation
rules.

2.1 VDM-SL

VDM-SL is an ISO standardised sequential modelling lan-
guage that supports description of data and functionality.
The ISO standard has later been informally extended with
modules to allow type definitions, values (constants) and
functionality to be imported and exported between modules.
Amodule may define a single state component, which can be
constrained by a state invariant. State is modified by assign-
ing a new value to a state designator, which can be either a
name, a field reference or a map or sequence reference, as
described in the VDM language reference manual [13].

Module state, if specified, implicitly defines a record type,
which is tagged with the state name and also defines the
type of the state component. The state type can be used like
any other record type explicitly defined by the modeller—
the difference being that the state invariant [14] constrains
the state type and thus every instance of this record type.

Data are defined bymeans of built-in basic types covering,
for instance, numbers, booleans, quote types and characters.
Aquote type corresponds to an enumerated type in a language
such as Pascal. The basic types can be used to formnew struc-
tured data types using built-in type constructors that support
creation of union types, tuple types and record types. A type
may also be declared optional, which allows nil to be used
to represent the absence of a value. For collections of values,
VDM-SL supports sets, sequences and maps. The built-in
data types, type constructors and collections can be used to
form named user-defined types, which can be constrained by
invariants. We refer to these types as named invariant types.
As an example, Listing 1 shows the definition of the named
invariant typeAmount, which is used to represent an amount
of money deposited or withdrawn by an account holder. This
type is defined based on natural numbers (excluding zero),
i.e. the built-in basic type nat1 in VDM-SL. For this par-
ticular example, we say that nat1 is the domain type of
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Amount. We further constrain Amount using an invariant,
by requiring a value of this type to be<2000. Specifically, for
the invariant shown in Listing 1, the a on the left-hand side of
the equality is a pattern that matches values of type Amount.
This pattern is used to express the invariant predicate for this
named invariant type.

�

1 types
2 Amount = nat1
3 inv a == a < 2000;

�� �

Listing 1 Example of a VDM-SL named invariant type.

2.1.1 Functional descriptions

In VDM, functionality can be defined in terms of functions
and operations over data types with a traditional call-by-
value semantics. Functions are referentially transparent, and
therefore, they are not allowed to access or manipulate state
directly, whereas operations are. Therefore, a function can-
not call an operation.1 In addition to accessing module state,
operations may also use the dcl statement to declare local
state designators which can be assigned to. Subsequently the
term functional descriptionwill be used to refer to both func-
tions and operations. As an example, a function that uses the
MATH‘sqrt library function to calculate the square root of
a real number is shown in Listing 2.

�

1 sqrt : real -> real
2 sqrt (x) == MATH ‘sqrt(x)
3 pre x >= 0
4 post RESULT * RESULT = x;

�� �

Listing 2 VDM-SL function for calculating the square root of a number.

Functional descriptions can be implicitly defined in terms
of pre- and postconditions, which specify conditions that
must hold before and after invoking the functional descrip-
tion. Alternatively, a functional description can be explicitly
defined by means of an algorithm, as shown in Listing 2.
The JML translator supports both implicitly and explicitly
defined functional descriptions. However, only methods that
originate from explicitly defined functional descriptions can
be executed.

The precondition of a function can refer to all the argu-
ments of the function it guards. The same applies to the

1 With the recent introduction of pure operations into VDM-10 (not
to be confused with pure methods in JML), it has become possible
to invoke operations, albeit pure ones, from a function. This feature
was introduced to address issues with the object-oriented dialect of
VDM, calledVDM++, butwasmade available in everyVDM-10 dialect
(including VDM-SL).

postcondition of a function, which can also refer to the result
of the execution using the reserved word RESULT. For the
square root function in Listing 2, we require that the input is
a positive number (the precondition) and that the square of
the function result equals the input value (the postcondition).

Functiondefinitions are derived for the pre- andpostcondi-
tions of sqrt from sqrt’s pre and post clauses. These
function definitions do not appear in the model, but they
are used internally by the Overture interpreter to check for
contract violations. However, to clarify, the pre- and post-
condition functions of sqrt are shown in Listing 3. In this
listing, +> specifies that pre_sqrt and post_sqrt are
total functions, and not partial functions, which use the ->
type constructor.

�

1 pre_sqrt:real +> bool
2 pre_sqrt(x) == x >= 0;
3
4 post_sqrt:real*real +> bool
5 post_sqrt(x,RESULT) == RESULT *

RESULT = x;
�� �

Listing 3 Pre- and postcondition functions for the sqrt function
shown in Listing 2.

Similarly, the pre- and postcondition functions of an oper-
ation are also derived. To demonstrate this, consider the inc
operation in Listing 4. This operation takes a real number as
input, adds it to a counter (defined using a state designator),
and returns the new counter value. In this listing,counter˜
and counter refer to the counter values before and after the
operation has been invoked, respectively.

�

1 inc : real ==> real
2 inc (i) == (
3 counter := counter + i;
4 return counter;
5 )
6 pre i > 0
7 post counter = counter~ + i and
8 RESULT = counter;

�� �

Listing 4 VDM-SL operation for incrementing a counter.

A precondition of an operation can refer to the state, s,
before executing the operation, whereas the postcondition
of an operation can read both the before and after states.
State access is achieved by passing copies of the state to
the pre- and postcondition functions. The corresponding pre-
and postcondition functions for inc are shown in Listing 5
where the parameters s˜ and s of post_inc refer to the
state (that contains the counter value) before and after exe-
cution of inc. We further use S to denote the record type
that represents the module’s state.
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�

1 pre_inc:real*S +> bool
2 pre_inc(i,s) == i > 0;
3
4 post_inc:real*real*S*S +> bool
5 post_inc(i,RESULT ,s~,s) ==
6 s.counter = s~. counter + i and
7 RESULT = s.counter;

�� �

Listing 5 Pre- and postcondition functions for theinc operation shown
in Listing 4.

The function descriptions in Listing 5 assume that the
pre- and postconditions are defined (using the pre and
post clauses) and that the state of the module enclosing
the functional description exists. For the cases where pre-
and postconditions are not defined, they can be thought of as
functions that yieldtrue for every input. Furthermore,when
no state component is defined, the pre- and postcondition
functions simply omit the state parameters. Similarly, when
an operation does not return a result (it specifies void as the
return type), the postcondition function omits the RESULT
parameter.

For each type definition constrained by an invariant, such
as Amount shown in Listing 1, a function is implicitly cre-
ated to represent the invariant—see Listing 6. The Overture
tool uses this function internally to check whether a value is
consistent with respect to a given type (e.g. Amount) [15].
Note that since all invariants are functions, they are not
allowed to depend on state of other modules. Specifically,
invariants can only invoke functions and access global con-
stants (possibly defined in other modules).

�

1 inv_Amount : Amount +> bool
2 inv_Amount (a) == a < 2000;

�� �

Listing 6 Invariant function for type definition Amount.

2.1.2 Atomic execution

Multiple consecutive statements are sometimes needed to
update the state designators to make them consistent with
the system’s invariants. For example, assume that we have
a system that uses two state designators called evenID1
and evenID2 to store even and different numbers. For this
example, we will assume that these state designators are of
type Even—a type that constrains these state designators
to store even numbers. To help ensure that the uniqueness
constraint (a state invariant) is not violated during an update,
multiple assignments can be grouped in an atomic state-
ment block as shown in Listing 7. Given the type Even of
the state designators evenID1 and evenID2, it is as if the
atomic statement is evaluated as shown in Listing 8.

�

1 atomic (
2 evenID1 := exp1;
3 evenID2 := exp2;
4 )

�� �

Listing 7 Atomic update in VDM.

�

1 let t1 : Even = exp1,
2 t2 : Even = exp2
3 in (
4 -- Turn off invariants
5 evenID1 := t1;
6 evenID2 := t2;
7 -- Turn on invariants
8 -- Check invariants hold
9 );

�� �

Listing 8 The execution semantics of the atomic statement.

Executing the atomic statement block is semantically
equivalent to first evaluating the right-hand sides of all the
assignments before turning off invariant checks, and then
binding the results to the corresponding state designators.
After all the assignments have been executed, it must be
ensured that all invariants hold.

There are three properties that follow from the evaluation
semantics of the atomic statement block that are worth
mentioning:

1. When evaluating the right-hand sides of the assignment
statements, potential contract violations will be reported.

2. Temporary identifiers, used to store the right-hand side
results, are explicitly typed and therefore violations of
named invariant types for these variableswill be reported.
The explicit type annotations thus ensure that the right-
hand side of a state designator assignment is checked to
be consistent with the type of said state designator.

3. Assignment statements cannot see intermediate values of
state designators.

2.2 JML

Although JML [16] is designed to specify arbitrary sequen-
tial Java programs, in this subsection we only describe the
features needed for the translation from VDM-SL.

A method specified with the puremodifier in JML is not
permitted to have write effects; such methods are allowed to
be used in specifications. Pure methods are used to translate
VDM-SL functions.

A class invariant in JML should hold whenever the non-
helper methods of that class are not being executed; thus
invariants must hold in each method’s before and after states.
However, a method declared with the helper annotation in
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a type T does not have its pre- and postconditions augmented
with T’s invariants. Helper methods (and constructors) must
either be pure or private [16], so that the invariant will hold
at the beginning and end of all client-visible methods [17].
The before and after states of non-helper methods and con-
structors are said to be visible states; thus invariants must
hold in all visible states. JML distinguishes between instance
and static invariants. An instance invariant can refer to the
non-static (i.e. instance) fields of an object. A static invari-
ant cannot refer to an object’s non-static fields; thus static
invariants are used to specify properties of static fields.

An assertion can reference the invariant for an object
explicitly using a predicate of the form \invariant_
for(e), which is equivalent to the invariant for e’s static
type [11, section 12.4.22].

In JML, pre- and postconditions are written using the
keywords requires and ensures, respectively. In the
specification of a postcondition, onewrites \old(e) to refer
to the before state value of an expression e. For example, an
increment method that writes a field count could be
specified as shown in Listing 9.

1 //@ requires count < Integer.MAX_VALUE;
2 //@ modifies count;
3 //@ ensures count == \old(count)+1;
4 void increment() {
5 count++;
6 }

Listing 9 Example of a JML specification for a Java method.

Method postconditions may also use the keyword \result
to refer to the value returned by the method.

Specification expressions in JMLcan use Java expressions
that are pure (have no write effects), and also some logical
operators, such as implication ==>, and quantifiers such as
\forall and \exists.

In addition to method pre- and postconditions, one can
also write assertions anywhere a Java statement can appear,
using JML’s assert keyword. Such assertions must hold
whenever they are executed.

One way to specify the abstract state of a class is to use
JML’s ghost variables. Ghost variables are specification-
only variables and fields of objects that can only be used
in JML specifications and in JML set statements. A set
statement is an assignment statement whose target is a ghost
variable.

By default, JML variables and fields may not hold the
null value. However, should one wish to specify that all
fields of a class may hold null, then one can annotate the
class’s declaration with nullable_by_default.

3 The implementation of the JML translator

The JML translator is implemented as an extension to
Overture’sVDM-SL-to-Java code-generator,which provides
code-generation support for a large executable subset of
VDM. This section describes how the JML translator has
been implemented, and explains the details of the Java code-
generator that are needed in order to understand how the JML
translator works.

3.1 The implementation

The Java code-generator is developed using Overture’s code-
generation platform—a framework for constructing code-
generators for VDM [11]. This platform is used by the
Java code-generator to parse the VDM-SL model sources
and to construct an Intermediate Representation (IR) of the
model—an Abstract Syntax Tree (AST) that constitutes an
internal representation of the generated code. The Java code-
generator uses the code-generation platform to transform the
IR into a tree structure that eventually is translated directly
into Java code. The translation of the IR into Java is handled
by the code-generation platform’s code emission framework,
which uses the Apache Velocity template engine [18].

The Java code-generator exposes the IR during the code-
generation process, which allows the JML translator to
intercept the code-generation process and further transform
the IR. These additional transformations are used to decorate
the IR with nodes that contain the JML annotations. Using
the code emission framework, the final version of the IR is
translated into a JML-annotated Java program.

The JML translator is publicly available in Overture ver-
sion 2.3.8 (as of July 2016) onwards [10]. Furthermore, the
JML translator’s source code is available via the Overture
tool’s open-source code repository [19].

3.2 Overview of the translation

In the generated code, amodule is represented using a final
Java class with a private constructor, sinceVDM-SL does
not support inheritance and a module cannot be instantiated.
Due to the latter, both operations and functions are code-
generated as static Java methods.

Module state is represented using a static class field in
the module class to ensure that only a single state component
exists at any given time. The state component is represented
using a record value, and as a consequence, an additional
record type is generated to represent it.

Each variable inVDM-SL is passed by value, i.e. as a deep
copy, when it is passed as an argument, appears on the right-
hand side of an assignment or is returned as a result. As a
consequence, aliasing can never occur in a VDM-SL model.
Types are different in Java, where objects are modified via
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object references or pointers. Therefore different object ref-
erences can be used to modify the same object. To avoid such
aliasing in the generated code, data types are code-generated
with functionality to support value type behaviour.

Every record definition code-generates to a class defini-
tion with accessor methods for reading and manipulating
the fields. This class implements equals and copy meth-
ods to support comparison based on structural equivalence
and deep copying, respectively. In this way the call-by-value
semantics of VDM-SL can be preserved in the generated
code by invoking the copy method, which helps to prevent
aliasing. Similarly the equals method can be invoked to
compare code-generated records based on structural equiva-
lence rather than comparing addresses of object references.
A record object can then be obtained by invoking the con-
structor of the record class or by invoking the copy method
of an existing record object.

Java does not support the definition of aliases of existing
types, such as the Amount named invariant type in List-
ing 1. Therefore, the Java code-generator chooses not to
code-generate class definitions for these types. Instead, a use
of a named invariant type is replaced with its domain type
(described in Sect. 2.1). Since the named invariant type is an
alias of an existing type this is fine, as long as we make sure
to check that the type invariant holds.

To assist the translation of VDM to Java, the existing Java
code-generator uses a runtime library, which, among other
things, includes Java implementations for some of the differ-
entVDMtypes andoperators. TheTuple class, for example,
is used to represent tuple types and enables construction
of tuple values. Sets, sequences and maps are represented
using the VDMSet, VDMSeq and VDMMap classes, which
themselves are based on Java collections and so on. The run-
time library’s collection classes are used as raw types (e.g.
VDMSet) in the generated code, and therefore they are never
passed a generic type argument. Raw types provide a conve-
nient way to represent VDM collections that store elements
of some union type—a kind of type that Java does not sup-
port.

In addition to using the existing runtime library, the JML
translator also contributes a small runtime library to aid the
generation of JML checks. This runtime library, which we
subsequently refer to as V2J, is an extension of the existing
Java code-generator runtime library. As we see in Sect. 6.3,
the V2J runtime is mostly used in the generated JML checks
to ensure that instances of collections respect the VDM types
that produce them.

4 Case study example

Throughout the paper we will demonstrate the translation
rules using a case studymodel of anATM.Themodel consists

of a single module, ATM (shown in Listing 10), which uses a
state definition to record information about
– The debit cards considered valid by the system (named
validCards).

– The debit card currently inserted into the ATM, if any
(currentCard).

– If a valid PIN code has been entered (pinOk) for the
debit card currently inserted into the ATM and,

– all the bank accounts known to the system (accounts).
�

1 module ATM
2 definitions
3 state St of
4 validCards : set of Card
5 currentCard : [Card]
6 pinOk : bool
7 accounts : map AccountId to

Account
8 init St == St = mk_St({},nil ,false

,{|->})
9 inv mk_St(v,c,p,a) ==
10 (p or c <> nil => c in set v)
11 and
12 forall id1 , id2 in set dom a &
13 id1 <> id2 =>
14 a(id1).cards inter a(id2).cards

= {}
15 end
16 ...
17 operations
18 GetStatus : () ==> bool * seq of

char
19 GetStatus () == ...
20
21 OpenAccount : set of Card *

AccountId ==> ()
22 OpenAccount (cards ,id) == ...
23
24 AddCard : Card ==> ()
25 AddCard (c) == ...
26
27 RemoveCard : Card ==> ()
28 RemoveCard (c) == ...
29
30 InsertCard : Card ==>
31 <Accept >|<Busy >|<Reject >
32 InsertCard (c) == ...
33
34 EnterPin : Pin ==> ()
35 EnterPin (pin) == ...
36
37 ReturnCard : () ==> ()
38 ReturnCard () == ...
39
40 Withdraw : AccountId * Amount ==>

real
41 Withdraw (id , amount) == ...
42
43 Deposit : AccountId * Amount ==>

real
44 Deposit (id , amount) == ...
45 end

�� �

Listing 10 VDM-SL module representing an ATM.
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For simplicity, Listing 10 omits type definitions and only
shows the state definition (including the state invariant) and
the signatures for some of the operations. The state invariant,
shown in Listing 10, requires that at all times the following
two conditions must be met: a debit card must at most be
associated with a single account and secondly, for a PIN
code to be considered valid, the debit card currently inserted
into the ATM must itself be a valid debit card.

When the ATM model is translated to a JML-annotated
Java program, it can be checked for correctness using JML
tools. To demonstrate this, consider the example in List-
ing 11, which creates a debit card, inserts it into the ATM
and performs a transaction scenario.

1 Card c = new Card(5,1234);
2 // atm.ATM.AddCard(c); (missing statement)
3 atm.ATM.InsertCard(c);
4 atm.ATM.EnterPin(1234);
5 System.out.println(atm.ATM.GetStatus());
6 /* Transaction related code omitted */
7 atm.ATM.ReturnCard();

Listing 11 Java code demonstrating use of the implementation of the
ATM model.

If this program is executed using the OpenJML runtime
assertion checker, the output in Listing 12 is reported.

Exception in thread "main" java.lang.
AssertionError: Main.java :12: JML
precondition is false

atm.ATM.EnterPin (1234);
^

atm/ATM.java :276: Associated
declaration: Main.java :12:

//@ requires pre_EnterPin(pin ,St);
^

at Main.main(Main.java :17)

Listing 12 Inconsistent use of the system detected using the OpenJML
runtime assertion checker.

For this particular example, this error is reported because
the debit card c is not recognised as a valid debit card by
the system. More specifically, the scenario did not invoke
atm.ATM.AddCard(c) immediately after creating the
debit card. The return value of the Insert method did
indicate that the debit card was rejected, but this value was
mistakenly discarded in Listing 11. The error is reported by
the runtime assertion checker because entering a PIN code
when no debit card is inserted into the ATM is considered an
error. After changing the example in Listing 11 to add c as
a valid debit card, no problems are detected by the runtime
assertion checker, as expected. Therefore, the code executes
as if it was compiled using a standard Java compiler and exe-
cuted on a regular Java virtual machine. More specifically,
the system will report the status as shown in Listing 13 to
indicate that the ATM is not awaiting a debit card and that a
transaction is in progress.

mk_(false, "transaction in progress.")

Listing 13 System output after fixing the problem in Listing 11.

As we proceed, in Sects. 5 and 6 we elaborate on the
specifics of each VDM definition in the case study model
and demonstrate the translation to JML-annotated Java.

5 Translating VDM-SL contracts to JML

In this section, we present the rules used to translate the
DbCelements ofVDM-SL to JMLannotations that are added
to the generated Java code. For each of the elements, we
describe the approach used to translate the element to JML.
This is afterwards generalised as a rule, which appears in a
grey box.

5.1 Allowing null values by default

Overture’s Java code-generator may sometimes introduce
auxiliary variables that are initialised to null when it code-
generates some of the constructs of VDM. To avoid having
errors reported when checking the generated code with a
JML tool, we allow null as a legal value by default for all
references in the generated code.

1. Allowing null values by default

Annotate every class output by the Java code-generator
with the nullable_by_defaultmodifier to allow all
references to use null as a legal value.

As a consequence, we also have to guard against null
values for variables that originate from VDM variables or
patterns2 that do not allow nil.

5.2 Translating functional descriptions to JML

Recall that a VDM-SL function code-generates to a static
Java method. In addition, a VDM-SL function does not have
side effects and therefore the code-generated version of the
method can be annotated as JML pure.

2. Translation of functions

Any function – whether it is defined by the user or derived,
e.g. fromapreorpost condition clause – code-generates
to a static Java method that is annotated with the pure
modifier.

Operations, on the other hand, can read and manipulate
the state of the enclosing module, or invoke other opera-
tions that may have side effects. Therefore, the method that

2 The generated code uses variables to represent the patterns (record
pattern, tuple pattern, identifier pattern, etc.) introducedbyuse of pattern
matching in VDM.
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the operation code-generates to cannot be annotated as JML
pure.

When aVDM-SL definition (e.g. a functional description)
is code-generated to Java, the visibility of the correspond-
ing Java definition can, in principle, be set according to
whether the VDM-SL definition is exported (public) or
not (private). In the presentation of the translation rules
following this section, we omit explicit use of access speci-
fiers in the rule formulation as we do not consider it crucial
to our work.

5.3 Translating preconditions to JML

In terms of semantics, there is no difference between a
precondition in VDM-SL and JML. There are, however,
interesting issues worth mentioning regarding how the JML
translator implements the translation. We start by covering
preconditions of operations, and we end this subsection by
describing how they differ from those of functions. As an
example of how a VDM-SL precondition is translated, con-
sider the operation in Listing 14. This operation models
withdrawal from a bank account identified by the parame-
ter id.

�

1 Withdraw : AccountId * Amount ==>
real

2 Withdraw (id , amount) ==
3 let newBalance =
4 accounts(id).balance - amount
5 in (
6 accounts(id).balance := newBalance

;
7 return newBalance;
8 )
9 pre

10 currentCard in set validCards and
pinOk and

11 currentCard in set accounts(id).
cards and

12 id in set dom accounts
�� �

Listing 14 VDM-SL operation for bank account withdrawal guarded
by a precondition.

In order to withdraw money from the account, we require
that a valid card has been inserted, the PIN code is accepted
and the bank account exists. Note that since currentCard
is of the optional type [Card], it can be nil, which is not
a valid member of validCards. Therefore, the precondi-
tion is false when no debit card has been inserted into the
ATM. The pre_Withdraw function, which is not a vis-
ible part of the model, is derived from the pre clause of
the Withdraw operation. In the generated code, this func-
tion is represented using a pure method according to rule
2—see Listing 15. Note that for the method in Listing 15,
the Java code-generator uses extra variables to perform the

equivalent VDM computation. These extra variables are also
type-checked using JML (although they are only used to store
intermediate results).

The Withdraw operation is translated to the method
shown in Listing 16. This method introduces several JML
assertions that are described in Sect. 6. Note that the
pre_Withdraw method is invoked from the requires
clause of the Withdraw method to check whether the pre-
condition is met. In addition to the input parameters of the
Withdraw method, the pre_Withdraw method is also
passed the state St.

3. Translating the precondition of an operation

Let op be a method code-generated from a VDM-SL user-
defined operation and let the signature of op be:
static R op(I1 i1,...,In in)
Then op has a code-generated precondition method
pre_op that ispure andwhich in addition to the parame-
ters of op also takes the state component s as an argument,
i.e.
/*@ pure @*/ static boolean
pre_op(I1 i1,...,In in,S s)
To ensure that the precondition is evaluated, we annotate
op with the following requires annotation:
//@ requires pre_op(i1,...,in,s);

Rule 3 assumes the existence of a state component s. How-
ever,when the state of themodule enclosingop is not defined,
rule 3 changes to not include the state parameter in the defi-
nition of pre_op.

The example above considers the casewhere the precondi-
tion is guarding an operation (i.e. Withdraw). As described
in Sect. 2, a precondition is defined differently for a function
than it is for an operation. In particular, the precondition of
a function is not passed the state, so neither is the code-
generated version of it. We also note that the visibility of the
precondition function must be the same as that of the func-
tional description it guards. Otherwise, it cannot be invoked
from the corresponding requires clause.

4. Translating the precondition of a function

Let f be a method code-generated from a VDM-SL user-
defined function and let the signature of f be:
static R f(I1 i1,...,In in)
Then f has a code-generated precondition method pre_f
that is pure and which accepts the same parameters as f,
i.e.
/*@ pure @*/ static boolean
pre_f(I1 i1,...,In in)
To ensure that the precondition is evaluated, we annotate
f with the following requires annotation:
//@ requires pre_f(i1,...,in);
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1 /*@ pure @*/
2 public static Boolean pre_Withdraw(
3 final Number id, final Number amount, final atm.ATMtypes.St St) {
4 //@ assert (Utils.is_nat(id) && inv_ATM_AccountId(id));
5 //@ assert (Utils.is_nat1(amount) && inv_ATM_Amount(amount));
6 //@ assert Utils.is_(St,atm.ATMtypes.St.class);
7 Boolean andResult_3 = false;
8 //@ assert Utils.is_bool(andResult_3);
9 if (SetUtil.inSet(St.get_currentCard(), St.get_validCards())) {

10 Boolean andResult_4 = false;
11 //@ assert Utils.is_bool(andResult_4);
12 if (St.get_pinOk()) {
13 Boolean andResult_5 = false;
14 //@ assert Utils.is_bool(andResult_5);
15 if (SetUtil.inSet(St.get_currentCard(),
16 ((atm.ATMtypes.Account) Utils.get(St.accounts, id)).get_cards())) {
17 if (SetUtil.inSet(id, MapUtil.dom(St.get_accounts()))) {
18 andResult_5 = true;
19 //@ assert Utils.is_bool(andResult_5);
20 }
21 }
22 if (andResult_5) {
23 andResult_4 = true;
24 //@ assert Utils.is_bool(andResult_4);
25 }
26 }
27 if (andResult_4) {
28 andResult_3 = true;
29 //@ assert Utils.is_bool(andResult_3);
30 }
31 }
32 Boolean ret_29 = andResult_3;
33 //@ assert Utils.is_bool(ret_29);
34 return ret_29;
35 }

Listing 15 Code-generated version of the pre_Withdraw operation.

1 //@ requires pre_Withdraw(id,amount,St);
2 public static Number Withdraw(final Number id, final Number amount) {
3 //@ assert (Utils.is_nat(id) && inv_ATM_AccountId(id));
4 //@ assert (Utils.is_nat1(amount) && inv_ATM_Amount(amount));
5 final Number newBalance =
6 ((atm.ATMtypes.Account) Utils.get(St.accounts, id)).get_balance().doubleValue()
7 - amount.longValue();
8 //@ assert Utils.is_real(newBalance);
9 {

10 VDMMap stateDes_1 = St.get_accounts();
11 atm.ATMtypes.Account stateDes_2 = ((atm.ATMtypes.Account) Utils.get(stateDes_1, id));
12 //@ assert stateDes_2 != null;
13 stateDes_2.set_balance(newBalance);
14 //@ assert (V2J.isMap(stateDes_1) && (\forall int i; 0 <= i && i < V2J.size(stateDes_1);

(Utils.is_nat(V2J.getDom(stateDes_1,i)) && inv_ATM_AccountId(V2J.getDom(stateDes_1,i)
)) && Utils.is_(V2J.getRng(stateDes_1,i),atm.ATMtypes.Account.class)));

15 //@ assert Utils.is_(St,atm.ATMtypes.St.class);
16 //@ assert \invariant_for(St);
17 Number ret_7 = newBalance;
18 //@ assert Utils.is_real(ret_7);
19 return ret_7;
20 }
21 }

Listing 16 Code-generated version of the Withdraw operation.
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5.4 Translating postconditions to JML

Postconditions in VDM-SL and JML are semantically
similar, although VDM-SL represents the postcondition
function as a derived function definition (as was done
for preconditions). Furthermore, in VDM and JML post-
conditions of operations and methods, respectively, can
access both the before and after states. Returning to the
Withdraw operation, one could specify a postcondition
requiring that exactly the value specified by the amount
parameter is withdrawn from the account—see
Listing 17.

�

1 Withdraw : AccountId * Amount ==> real
2 Withdraw (id, amount) == ...
3 post
4 let accountPre = accounts~(id),
5 accountPost = accounts(id)
6 in
7 accountPre.balance =
8 accountPost.balance + amount and
9 accountPost.balance = RESULT;

�� �

Listing 17 The Withdraw operation guarded by a postcondition.

The JML translator produces a pure Java method to
represent the postcondition function. This Java method
is invoked from the ensures clause to check that the
postcondition holds. The invocation of the postcondition
method of the Withdraw operation is shown in
Listing 18.

1 //@ requires pre_Withdraw(id,amount,St);
2 //@ ensures post_Withdraw(id,amount,\result

,\old(St.copy()),St);
3 public static Number Withdraw(final Number

id, final Number amount) {...}

Listing 18 Code-generated version of the Withdraw operation.

Note in particular how the before and after states are
passed to the post_Withdraw method. Reasoning about
before state is achieved using JML’s \old expression.
For the Withdraw operation, the before state is con-
structed as \old St.copy(). Since St.copy() is a
deep copy of the state (as explained in Sect. 3), the
evaluation inside the \old expression ensures that the
result indeed is a representation of the before
state.

The JML translator deep copies the state because Java
represents every composite data type using a class. So with-
out deep copying the state, only the address of the before
state object reference is copied. In effect, only a single object
would exist to represent the pre- and poststates. This would
never work, since state changes made by the operation would
affect what was intended to be a representation of the before

state. Therefore, the state is deep copied to get a separate
object to represent the before state.

5. Translating the postcondition of an operation

Let op be a method code-generated from a VDM-SL user-
defined operation and let the signature of op be:
static R op(I1 i1,...,In in)
Then op has a code-generated p
ostcondition method
post_op that ispure andwhich in addition to the param-
eters of op, also takes the result and the before and after
states of op as arguments, i.e.
/*@ pure @*/ static boolean
post_op(I1 i1,...,In in,

R RESULT,S _s,S s)
To ensure that the postcondition is evaluated we annotate
op with the following ensures annotation:
//@ ensures post_op(i1,...,in,\result,

\old(s.copy()),s);

While the primary concern is to preserve the behaviour of
the specification across the translation, deep copying values
may significantly affect system performance in a negative
way. In particular, because it is difficult (in general) to avoid
deep copying values unnecessarily when they are passed
around in the generated code. To address this issue, the
Java code-generator (and hence the JML translator) offers
an option that, when selected by the user, omits deep copy-
ing of values (other than the old state). While the purpose of
this is to generate performance-efficient code, this option is,
however, only safe to use if Java objects that originate from
VDM-SL values are not modified via aliases.

Yi et al. [20] identify and address a number of problems
with the \old expression. In particular, the authors of that
work conduct experiments showing that passing deep copies
of the old state may drastically increase a system’s memory
usage. To address this, Yi et al. propose the \past expression
as a more memory-efficient alternative to the \old expres-
sion. Yi et al. further show that the \past expression can
be implemented as an extension of the OpenJML runtime
assertion checker by means of aspect-oriented programming
principles. However, OpenJML does not officially support
the \past expression yet, which is why the translation rules
do not currently rely on this expression.Aswe see it, the ideas
proposed by Yi et al. could potentially support the develop-
ment of amore performance-efficientway to handle old states
in the JML translator.

Similar to rule 3, rule 5 also assumes that the state of
the module enclosing op exists. If the state component does
not exist, rule 5 changes to not include the state parameters
in the definition of post_op. Furthermore, if op does not
return a result (the return type is void), then the definition of
post_op does not include the RESULT parameter.
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The example above considers the postcondition of an
operation (i.e. Withdraw). As described in Sect. 2, the
postcondition of a function is not allowed to access state.
Therefore, the code-generated version of the postcondition
function is not passed the state.

6. Translating the postcondition of a function

Let f be a method code-generated from a VDM-SL user-
defined function and let the signature of f be:
static R f(I1 i1,...,In in)
Then f has a code-generated postcondition method
post_f that is pure and which in addition to the param-
eters of f also takes the result of f as an argument, i.e.
/*@ pure @*/ static boolean
post_f(I1 i1,...,In in,R RESULT)
To ensure that the postcondition is evaluated we annotate
f with the following ensures annotation:
//@ ensures post_f(i1,...,in,\result);

5.5 Translating record invariants to JML

A record can, like any other type definition in VDM-SL, be
constrained by an invariant. As an example, Listing 19 shows
a record definition modelling a bank account.

�

1 Account ::
2 cards : set of Card
3 balance : real
4 inv a == a.balance >= -1000;

�� �

Listing 19 A VDM-SL record definition modelling a bank account.

An Account comprises the available balance as well as
the debit cards associated with the account. We further con-
strain an Account to not have a balance of< −1000, which
is expressed using an invariant.

As described in Sect. 3, a record definition is translated
to a class that emulates the behaviour of a value type using
copy and equals methods.

Since a record invariant is required to hold for every record
value, or object instance in the generated code, we repre-
sent it using an instance invariant in JML as shown
in Listing 20. Note that the instance invariant is for-
mulated as an implication such that invariant violations are

not reported when invariant checks are disabled. As we see
in Sect. 5.6, this has to do with the way VDM-SL handles
atomic execution.

1 //@ nullable_by_default
2 final public class Account

implements Record
3 {
4 public VDMSet cards;
5 public Number balance;
6 //@ public instance invariant atm.

ATM.invChecksOn ==>
inv_Account(cards ,balance);

7 ...
8 /*@ pure @*/
9 public boolean equals(final Object

obj)
10 {...}
11 /*@ pure @*/
12 public atm.ATMtypes.Account copy()

{...}
13 /*@ pure @*/
14 public VDMSet get_cards () {...}
15 public void set_cards(final VDMSet

_cards)
16 {...}
17 /*@ pure @*/
18 public Number get_balance () {...}
19 public void set_balance(final

Number _balance) {...}
20 /*@ pure @*/
21 /*@ helper @*/
22 public static Boolean inv_Account(

final VDMSet _cards , final
Number _balance){

23 return _balance.doubleValue () >=
-1000L;

24 }
25 }

Listing 20 Code-generated version of the Account record.

The code-generated record Account defines an invari-
ant method inv_Account that takes all the record fields
of Account as input and evaluates the invariant predicate.
This method is invoked directly from the JML invariant, as
shown in Listing 20. Note that inv_Account is a static
method according to rule 2. In addition, this method is anno-
tated as a helper to avoid the invariant check triggering
another invariant check, which eventually would cause a
stack-overflow.

123



222 P. W. V. Tran-Jørgensen et al.

7. Translating a record invariant

Let D be a code-generated record definition with fields
f1,...,fn of types F1,...,Fn, respectively, and let
D be constrained by an invariant. Then D has an invari-
ant method inv_D that is annotated as a helper to
allow it to be invoked from the invariant clause of D. The
invariant method can also be annotated as pure since it
originates from a function definition. The annotated signa-
ture of inv_D thus becomes:
/*@ pure @*/
/*@ helper @*/
boolean inv_D(F1 f1,...,Fn fn)
Let further invChecksOn be a variable that is true if
invariant checking is enabled and false otherwise. To rep-
resent the record invariant of D we annotate D with the
invariant annotation:
/*@ public instance invariant
invChecksOn ==> inv_D(f1,...,fn); @*/

As we see in Sect. 5.6, atomic execution sometimes requires
extra assertions to be inserted into the generated code in order
to guarantee that the record invariant semantics of VDM-SL
are preserved.

All the methods inside a record class—except for the con-
structor and the “setter” methods—do not modify the state
of the record class, and therefore they are marked as pure.
Updates to a record object in the generated code are made
using the “setter”methods of the generated record class, or by
using the recordmodification expression [13].Use of “setter”
methods instead of direct field access to manipulate the state
of a record (which is how field access is achieved in VDM-
SL) forces the record object into a visible state (as described
in Sect. 2.2) after it has been updated, thus triggering the
invariant check according to the VDM-SL semantics. For
example, in VDM-SL we could set the balance of an account
as shown in Listing 21.

�

acc.balance := newBalance;
�� �

Listing 21 Updating the Account balance in VDM-SL.

This assignment produces the Java code shown in Listing 22.
Note that for this particular case there is no need to gen-
erate any additional JML assertions since the state of acc
becomes visible after the call toset_balance. This causes
the invariant check of Account to trigger.

acc.set_balance(newBalance);

Listing 22 Updating the Account balance in the generated code.

5.6 Atomic execution

There are situations wheremultiple assignment statements in
VDM-SL need to be evaluated atomically in order to avoid
unintentional violation of a state invariant. In our example,
this is the case when the ATM returns the card to the owner,
which is done as the last step of a transaction. Returning
the debit card also requires us to invalidate the PIN code
currently entered. These two things have to be done atomi-
cally to avoid violating the state invariant of the ATMmodule,
which is checked using the inv_St function, derived from
the state invariant shown in Listing 10 in Sect. 4. Therefore
the body of the ReturnCard operation is executed inside
an atomic statement block as shown in Listing 23. Note
that the invariant is evaluated internally by the interpreter,
and therefore the example in Listing 23 makes no explicit
mention of the invariant.

�

1 ReturnCard : () ==> ()
2 ReturnCard () ==
3 atomic (
4 currentCard := nil;
5 pinOk := false;
6 )
7 pre currentCard <> nil
8 post currentCard = nil and not pinOk;

�� �

Listing 23 Removal of the debit card from the ATM in VDM-SL.

JML does not include a syntactic construct similar to that
of the atomic statement. Instead atomic execution must be
achieved using different means—for example by manipulat-
ing state directly using field access or helper methods.

To be consistent with the way record state is updated, and
to reflect the way that VDM-SL handles atomic execution,
we believe a better approach is to use a flag that indicates if
invariant checks are enabled or not. Since this flag should not
affect the generated code, wemake it a ghost field such that
it is only visible at the specification level. Since this ghost
field must be accessible everywhere in the translation, we
make it a static field of the class, as shown in Listing 24.
The ghost field must be added to one of the generated Java
classes since Java does not really have global variables. Note
that this flag does not affect pre- and postconditions since
these checks must always be evaluated.

1 /*@ public ghost static boolean
invChecksOn = true; @*/

Listing 24 Ghost field used to control invariant checking.

The declaration of invChecksOn allows us to formulate
invariants such that violations are reported only if invariant
checking is enabled. An example of this is shown in List-
ing 25 for the record state class of the ATM module.
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1 //@ public instance invariant atm.
ATM.invChecksOn ==> inv_St(
validCards ,currentCard ,pinOk ,
accounts);

Listing 25 The invariant of the record state class.

The invChecksOn flag provides the means to emulate
the behaviour of atomic execution in a Java environment as
shown in Listing 26. Specifically, the JML set statement
is used to disable/enable invariant checking before/after exe-
cuting the body of the ReturnCard method.

1 //@ requires pre_ReturnCard(St);
2 //@ ensures post_ReturnCard (\old(St

.copy()),St);
3 public static void ReturnCard () {
4 atm.ATMtypes.Card atomicTmp_1 =

null;
5 //@ assert (( atomicTmp_1 == null)

|| Utils.is_(atomicTmp_1 ,atm.
ATMtypes.Card.class));

6 Boolean atomicTmp_2 = false;
7 //@ assert Utils.is_bool(

atomicTmp_2);
8 { /* Start of atomic statement */
9 //@ set invChecksOn = false;

10 //@ assert St != null;
11 St.set_currentCard(Utils.copy(

atomicTmp_1));
12 //@ assert St != null;
13 St.set_pinOk(atomicTmp_2);
14 //@ set invChecksOn = true;
15 //@ assert \invariant_for(St);
16 } /* End of atomic statement */
17 }

Listing 26 Code-generated version of the ReturnCard operation.

8. Enabling and disabling invariant checking

Declare in a code-generated module M a globally accessi-
ble JML ghost field invChecksOn to control invariant
checking:
/*@ public ghost static
boolean invChecksOn = true; @*/
Before executing a code-generated atomic statement (in
any of the code-generated modules) invariant checking is
disabled using the following JML set statement:
//@ set M.invChecksOn = false;
After the code-generated atomic block has finished exe-
cuting invariant checking is re-enabled using:
//@ set M.invChecksOn = true;

When all the statements have been executed, it must be
ensured that no invariants have been violated. For the exam-
ple in Listing 26, the only thing that needs to be checked
is that the state component of the ATM class, i.e. St does
not violate its invariant. This is checked by asserting that
\invariant_for(St) holds.

9. Resuming invariant checking

Let d1,...,dn be state designators of records that have
been updated, or affected by an update, during execution of
a code-generated atomic statement block. Further assume
that d1,...,dn have been updated in the given order,
i.e. di was updated (for the first time) before di+1 and
that di may be of one of mi record types
Di1,...,Dimi . Immediately after executing the code-
generated atomic statement block, it is checked that the
state designators d1,...,dn do not violate any invari-
ants using the following sequence of assert statements:
//@ assert d1 instance of D11 ==>

\invariant_for((D11) d1);
...
//@ assert d1 instance of D1m1 ==>

\invariant_for((D1m1) d1);
...
//@ assert dn instance of Dn1 ==>

\invariant_for((Dn1) dn);
...
//@ assert dn instance of Dnmn ==>

\invariant_for((Dnmn) dn);

The \invariant_for construct is not currently imple-
mented in OpenJML. Instead the invariant check, for an
object, can be inlined as a method call (rather than explicitly
using \invariant_for). However, throughout this paper
we use \invariant_for to check record invariants as we
believe it makes the examples easier to understand.

The JML translator keeps track of state designators of
records that potentially have been updated as part of execut-
ing the code-generated atomic statement block. This is done
by analysing the left-hand sides of the assignment statements.
Immediately after invariant checking is re-enabled, i.e. the
code-generated atomic statement block has finished execu-
tion, it is checked that no record violates its invariant.

There are a few things related to rule 9 that are worth
clarifying. First, for assignments to composite state desig-
nators such as a.b.c:=42, the invariants of the individual
state designators a, b and c have to be checked, if these
are defined. For this particular example, we say that c was
updated and that a and b were affected by the update. Sec-
ond, the order in which the invariants are checked follows
that used by the Overture VDM interpreter. Third, regardless
of how many times a state designator is updated, the cor-
responding invariant is only checked once (for each state
designator) since this is how atomic execution works in
VDM, i.e. the update(s) are performed atomically, and after-
wards the constraints that the state designators are subjected
to are checked. Fourth, rule 9 includes all the state desig-
nators that have been updated or affected by an update. No
particularly complex situations can arise that makes it diffi-
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cult to identify these state designators since all VDM-SL’s
data types use call-by-value semantics, and therefore no alias-
ing can occur. Essentially this means that for the assignment
statement a.b.c:=42, the only invariants (if defined) that
have to be checked are those of the state designators a, b and
c since aliases do not exist. Therefore, the JML translator can
determine (using static analysis) that assertions only have to
be generated for these state designators. Naturally this sim-
plifies the translation process, since the JML translator does
not have to identify additional state designators (other than
those that appear on the left-hand side of the assignment) that
are affected by the assignment.

A state designator can be “masked” as a union type, and
in such situations, it cannot always be statically determined
what the runtime type of a state designatorwill be. To demon-
strate this, consider the record types R1 and R2 and a state
designator declared as dcl r : R1 | R2 := .... Fur-
ther assume that R1 and R2 code-generate to classesR1c and
R2c. After updating r atomically in the generated code, it
is ensured that \invariant_for((R1)c) r holds if r
is of type R1c, and similarly that the equivalent condition is
true if r is of type R2c. Since rule 9 has to take all possi-
ble types into account, the invariant checks are formulated as
implications.

Although the VDM type system allows state designators
to be “masked” as union types, most of the time it is possible
to statically determine the runtime type of a state designator.
For example, in Listing 26 noinstanceof check is needed
since the static type of the state component is St. This is
an example where the JML translator simplifies the checks
proposed by rule 9.

There are more aspects to rule 9 worth discussing—
especially when state designators are based on arbitrarily
complex data structures such as nested records. These are
addressed in Sect. 7.1.

5.7 Translating module state to JML

As described in Sect. 2.1, a module state invariant con-
strains the record type used to represent the state component
of the enclosing module. Therefore, a module state invari-
ant can essentially be seen as a record invariant that can
be translated into JML-annotated Java without introducing
additional translation rules. This subsection instead explains
how a VDM-SL state definition is translated into a form that
allows the rules related to record invariants to be applied (see
Sect. 5.5).

In our example, each account can be accessed from an
ATM using one of the debit cards associated with it. In addi-
tion to the bank accounts, the state of the ATM also keeps
track of the debit cards that the system considers valid, the
debit card that is currently inserted into theATM, andwhether
the PIN code entered by the user is valid. The state (including

the state invariant) as specified in VDM-SL is shown in List-
ing 10 and described in Sect. 4. Based on the state definition,
a record class is generated that represents the state type as
shown in Listing 27. Recall that the fields in this class are
nullable according to rule 1.

1 final public class St implements
Record {

2 public VDMSet validCards;
3 public atm.ATMtypes.Card

currentCard;
4 public Boolean pinOk;
5 public VDMMap accounts;
6
7 //@ public instance invariant atm.

ATM.invChecksOn ==> inv_St(
validCards ,currentCard ,pinOk ,
accounts);

8 /* Record methods omitted */
9 }

Listing 27 The record class used to represent the state type.

In addition, an instance of the record class is created to
represent the state component as shown in Listing 28. The
state component is annotated with the spec_publicmod-
ifier so that it can be referred to from the requires and
ensures clauses of public methods. Also note that the
module is not constrained by an invariant. This is handled
entirely by the record invariant shown in Listing 27.

1 final public class ATM {
2 /* Fields omitted */
3
4 /*@ spec_public @*/
5 private static atm.ATMtypes.St St

= new atm.ATMtypes.St(SetUtil.
set(),

6 null , false , MapUtil.
map());

7 /* Module methods omitted */
8 }

Listing 28 The state component in the ATM module.

10. Translating the state component

Annotate state components of module classes with the
spec_public modifier to ensure that the state compo-
nents can be referred to from the requires and
ensures clauses of public methods.

6 Checking VDM types using JML

In this section, we describe how the translator uses JML to
check the consistency of VDM types when they are code-
generated.

Throughout this section, we construct a function called
Is(v,T) that takes as input a Java value v and a VDM type
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T and produces a JML expression that can be used to check
whether v represents a value of type T. We use Is(v,T) to
checkwhether a Java value remains consistent with theVDM
type that produces it. The check produced by Is(v,T) can
be added to the generated Java code to ensure that no type
violations occur.

This section covers some of the different classes of VDM
types that the JML translator supports, and explains using our
case study example, how JML is used to check a Java value
against theVDMtype that produces it. Finally,we summarise
and provide the complete definition of Is(v,T) in Fig. 1.

6.1 Where to generate dynamic type checks

Most of the types available in VDM are also present in Java
in some form or other. The VDM and Java type systems do,
however, have some differences that require us to generate
extra checks to ensure that a Java value remains consistent
with the VDM type that produces it.

In addition to producing the JML expression needed to
check the consistency of a type, i.e. Is(v,T), we also need
to consider where to add the check to the generated code.
The description below summarises the VDM-SL constructs
that must be considered when adding these checks to the
generated Java code. We use the term parameter to refer to
an identifierwhosevaluedoes not change.Aparameter canbe
defined using a let construct, which is different from a state
designator or variable that can be locally defined using a dcl
statement or globally using a state definition (seeSect. 2). The
constructs to be considered are:

– return statement: If a functional description has a spec-
ified result type in its signature, then the returned value
must be checked against the specified type.

– Parameters of functions and operations: The arguments
passed to a functional description must be checked
against the specified types of the corresponding formal
parameters upon entry to the functional description.

– State designators: After updating a local or global state
designator, the new value assigned must respect the type
of the state designator.

– Variable or parameter declaration: After initialising a
variable or parameter it must be checked against its
declared type.

– Value definition: An explicitly typed value definition
must specify a value consistent with its type.

All of the constructs in the list above—with the excep-
tion of the value definition—can be checked using a JML
assert statement. The reason for this is that the code-
generated versions of these constructs appear inside methods
in the generated code. Since a VDM value definition code-

generates to a public static final field (a constant),
it is checked using a static invariant.

6.2 Translating basic types

In our example, we may wish to check that the amount being
withdrawn from an account is valid—for example by requir-
ing that it is a natural number larger than zero, as shown in
Listing 29.

�

1 let amount : nat1 = expense - profit
2 in
3 Withdraw(accId, amount);

�� �

Listing 29 Use of explicit type annotation to ensure that a valid amount
is being withdrawn.

In the generated Java code, shown in Listing 30, this is
checked by analysing the value of theamount variable using
theUtils.is_nat1method available from the Java code-
generator’s runtime library. This method is invoked from a
JML annotation in order to check that amount is different
from null and that it represents an integer larger than zero.

1 Number amount =
2 expense.longValue () - profit.

longValue ();
3 //@ assert Utils.is_nat1(amount);
4 return Withdraw(accId , amount);

Listing 30 Use of JML to check that a valid amount is beingwithdrawn.

11. Checking of the nat1 type

Let v be a value or object reference in the generated code
that originates from a variable or pattern of type nat1 and
further defineIs(v,nat1) = Utils.is_nat1(v).
To ensure that v represents a value of type nat1, generate
a JML check to ensure that Is(v, nat1) holds.

The approach used to check other basic types follows the
principles demonstrated usingListing 29 andListing 30—the
main difference being that each basic type uses a dedi-
catedmethod from the Java code-generator’s runtime library.
Therefore, we omit the details of how other basic types of
VDM are checked using JML, and instead provide the com-
plete set of rules in Fig. 1.

We note that a record type or a quote type can be checked
in a way similar to that of a basic type. The reason for this is
that the Java code-generator produces a Java class for each
of the record definitions and quote types in the VDMmodel.
Therefore, all there is to checkingwhether an object reference
represents a given record or quote class is to check whether
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Fig. 1 Complete definition of Is(v,T)

the object reference is an instance of said class. The rules for
checking record and quote types are included in Fig. 1.

6.3 Translating collections

In the generated code, the VDMSet, VDMSeq and VDMMap
collection classes are used as raw types. Therefore the code-
generator does not take advantage of Java generics to make
compile-time guarantees about the types of the objects a col-
lection stores. This approach has the advantage of making it
easier to store Java objects and values of different types in
the same collection without having to introduce additional
types. Although this allows the type system of VDM to be
represented in Java, it has the disadvantage that no compile-
time guarantees can be made about the types of the objects
that a collection stores.

In the ATM example, we use the TotalBalance func-
tion, shownListing 31, to calculate the total balance available
from a set of accounts.

�

1 TotalBalance : set of Account ->
real

2 TotalBalance (acs) ==
3 if acs = {} then
4 0
5 else
6 let a in set acs
7 in
8 a.balance + TotalBalance(acs \

{a});
�� �

Listing 31 Function that calculates the total balance available from a
set of accounts.
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When the TotalBalance function is code-generated
to JML-annotated Java, the code-generator adds JML asser-
tions to ensure that the set of accounts is consistent with
the collection type used in VDM. Since an Account
record is represented using a Java class with the same
name, we have to check that every element in the set is
an instance of said Java class. As shown in Listing 32, this
is checked using a quantified expression. This expression
uses a bound variable i to iterate over all the accounts and
check that each element is an instance of the Account
record class. Although sets are unordered collections, the
quantified expression takes advantage of VDMset being
implemented as an ordered collection. The formulation of the
range expression in the quantified expression further ensures
that the assertion can be checked using a tool such as the
OpenJML runtime assertion checker, i.e. the assertion is exe-
cutable.

1 /*@ pure @*/
2 public static Number TotalBalance(

final VDMSet acs) {
3 //@ assert (V2J.isSet(acs) && (\

forall int i; 0 <= i && i <
V2J.size(acs); Utils.is_(V2J.
get(acs ,i),atm.ATMtypes.
Account.class)));

4 if (Utils.empty(acs)) {
5 Number ret_1 = 0L;
6 //@ assert Utils.is_real(ret_1);
7 return ret_1;
8 } else { ... /* Compute sum

recursively */}
9 }

Listing 32 Code-generated version of the TotalBalance operation.

The JML translator only uses Java 7 features since Open-
JML did not support Java 8 at the time the JML translator
was developed. Iterating over collections (as shown in List-
ing 32) may also be achieved using Java 8 features such
as lambda expressions. For example, one could imagine
a method used to check collection types that would take
as input two arguments (1) the collection itself and (2) a
predicate method (e.g. lambda expression) that would be
evaluated for each of the elements in the collection. In that
way the generated JML annotations would not have to rely
on sets implemented as ordered collections. Since lambda
expressions in Java are mostly syntactic sugar for anony-
mous inner classes, lambda expressions could in principle
be represented solely using Java 7 features. However, using
this approach, the generated JML annotations would not be
concise, although this is only a concern if a human will read
them.

12. Checking of sets

Let v be a value or object reference in the generated code
that originates from a variable or pattern of the VDM set
type set of T and further define
Is(v,set of T) = V2J.isSet(v) &&
(\forall int i; 0 <= i &&
i < V2J.size(v); Is(V2J.get(v,i),T))
To ensure that v represents a value of type set of T,
generate a JML check to ensure that Is(v,set of T)
holds.

TheVDMsequence typesseq and seq1 are checked in a
way similar to sets. The difference between checking theseq
and seq1 collection types is that the seq1 type requires at
least one element to be present in the sequence. Checking a
map, which like a set is an unordered collection, takes advan-
tage of VDMMap imposing an order on the domain and range
values. The main difference between checking a map and a
set is that both the domain and range values of a map have
to be checked. Checking the injective map type inmap is
similar to checking a standard map, except that the injectiv-
ity property must hold. We refrain from providing examples
of how to check each of the collection types in VDM since
they are similar to what has already been shown. Instead we
summarise the rules for checking all of the collection types
in Fig. 1.

6.4 Translating named invariant types to JML

Since the Java code-generator does not generate additional
class definitions for named invariant types, the invariant
imposed on such a type cannot be expressed as a JML invari-
ant. This is only possible for a record since it translates to a
class definition.

Instead, we identify places in the generated code where
a named invariant type may be violated, as described in
Sect. 6.1, and check that the invariant holds. Also, it is worth
noting that a named invariant type, unlike a record type, does
not have an explicit type constructor. Therefore, an expres-
sion can only violate a named invariant type if the expression
is explicitly declared to be of that type.

The ATM in our example is not capable of dispensing
cents and also imposes a limit on the amount of money that
can be withdrawn. Therefore, the amount of money can be
represented as a named invariant type. An attempt to with-
draw an amount of money that exceeds 2000 will yield a
runtime error. The named invariant type used to represent
the amount withdrawn from an account is shown together
with the Withdraw operation in Listing 33.
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�

1 types
2 Amount = nat1
3 inv a == a < 2000;
4
5 operations
6 Withdraw : AccountId * Amount ==> real
7 Withdraw (id, amount) == ...

�� �

Listing 33 The amount to withdraw modelled using a named invariant
type.

On entering the code-generated version of Withdraw,
shown in Listing 34, we assert that amountmeets the named
invariant typeAmount. The assertion does two things: firstly
it performs a dynamic type check to ensure that amount is a
valid domain type of Amount and secondly it checks that the
invariant predicate holds. For the example in Listing 34, this
means checking that amount is of type nat1 and smaller
than 2000. Note that meeting the invariant condition does
not imply compatibility with the domain type of the named
invariant type and vice versa. For example, −1 is smaller
than 2000 but it is not of type nat1. Likewise, 2001 is of
type nat1, but it exceeds 2000, so neither −1 nor 2001 is
of type Amount.

1 public static Number Withdraw(final
Number id , final Number amount

){
2 ...
3 //@ assert (Utils.is_nat1(amount)

&& inv_ATM_Amount(amount));
4 ...
5 }

Listing 34 Checking a named invariant type of an operation parameter
in JML.

The code-generated invariant method for type Amount is
shown in Listing 35. Since the named invariant type check,
shown in Listing 34, is evaluated from left to right using
short-circuit evaluation semantics [21], the invariant method
is only invoked if the value subject to checking is compatible
with the domain type of the named invariant type. Therefore,
it is safe to narrow (or cast) the type of the argument passed to
the invariant method before performing the invariant check.

1 /*@ pure @*/
2 /*@ helper @*/
3 public static Boolean

inv_ATM_Amount(final Object
check_a) {

4 Number a = (( Number) check_a);
5 return a.longValue () < 2000L;
6 }

Listing 35 The named invariant type method for Amount.

13. Checking of named invariant types

Let v be a value or object reference in the generated code
that originates from a variable or pattern of the VDM
named invariant type T based on the domain type D and
constrained by invariant predicate e(p), i.e. T is defined
as
types
T = D
inv p == e(p)
Then T has an invariant method, responsible for running
the code-generated version of the e(p) check, with a sig-
nature defined as:
public static boolean inv_T(Object o)
Further defineIs(v,T) = Is(v,D) && inv_T(v)
To ensure that v represents a value of type T, generate a
JML check to ensure that Is(v,T) holds.

Note that the invariant method inv_T in rule 13 defines
the input parameter o to be of type Object, thus allowing
inv_T to accept inputs of any type. Therefore, inv_Tmust
narrow the type of the input parameter o before performing
the invariant check (see the example in Listing 35). This
approach has the advantage that it allows simpler JMLchecks
since the argument type does not need to be narrowed before
the invariant method is invoked. Had the input parameter of
the invariant method been defined using the smallest possible
type, then the argument type would need to be narrowed for
situations where the argument is masked as a union type.
Although this would complicate the JML checks, it would
have the advantage of allowing type narrowing to be removed
from the invariant methods.

7 Other aspects of VDM-SL affecting the
JML-generation

There are other aspects of VDM-SL that further complicate
the generation of VDM-SL models to JML-annotated Java.
In this section, we use examples to demonstrate these issues
and explain how they may be overcome.

7.1 Complex state designators

State designators may be composite data structures such as
records with fields that themselves are records. Such a data
type forms complex state designators that when modified
require careful handling during the translation process. To
demonstrate this, consider the three VDM-SL record defini-
tions R1, R2 and R3 in Listing 36. Note in particular how the
invariants of R1 and R2 depend on the field of R3. This tran-
sitive dependency complicates checking of invariants in the
generated code. To demonstrate this, the operation in List-
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ing 36 instantiates R1 as r1 and modifies it to violate the R1
invariant, which causes a runtime error to be reported.

�

1 types
2 R1 :: r2 : R2
3 inv r1 == r1.r2.r3.x <> -1;
4 R2 :: r3 : R3
5 inv r2 == r2.r3.x <> -2;
6 R3 :: x : int
7 inv r3 == r3.x <> -3;
8
9 operations

10 op: () ==> nat
11 op () ==
12 (
13 dcl r1 : R1 := mk_R1(mk_R2(mk_R3

(5)));
14 r1.r2.r3.x := -1;
15 return 0;
16 )

�� �

Listing 36 Record nesting in VDM-SL.

The operation op in Listing 36 produces the method in
Listing 37. For this example, r1 is the same in both listings,
r2 is the same as stateDes_1 in Listing 37, and r3 is
the same as stateDes_2. Note that in Listing 37 we have
removed fully qualified names of record classes and other
JML checks that are not relevant.

1 public static Number op() {
2 R1 r1 = new R1(new R2(new R3(5L)));
3 R2 stateDes_1 = r1.get_r2();
4 R3 stateDes_2 = stateDes_1.get_r3();
5 stateDes_2.set_x(-1L);
6 //@ assert \invariant_for(stateDes_1);
7 //@ assert \invariant_for(r1);
8 Number ret_1 = 0L;
9 return ret_1;

10 }

Listing 37 Code-generated version of the operation from Listing 36.

Immediately after completing the state update, i.e. invok-
ing stateDes_2.set_x(-1L), the following things
happen:

1. The state of stateDes_2 becomes visible thus trigger-
ing the invariant check of stateDes_2.

2. The invariant check of stateDes_1 is run by asserting
\invariant_for(stateDes_1) and finally,

3. the invariant check of r1 is run by asserting
\invariant_for(r1), which causes a runtime error
to be reported.

Strictly speaking the objects pointed to by stateDes_1
and r are also in visible states after executing the update to

stateDes_2 and therefore the invariants of those objects
should also hold. In particular, a state is visible for an object
o “when no constructor, destructor, non-static method invo-
cation with o as receiver, or static method invocation for a
method in o’s class or some superclass of o’s class is in
progress [16]”. So in theory the invariant checks should not
have to be run explicitly (step 2 and step 3). The reason that
the JML translator generates these checks anyway has to do
with the strategies JML tools use to check invariants.

Tools such as JML runtime checkers may assume no prob-
lems with ownership aliasing to avoid having to keep track
of what objects and types are in visible states. Although this
reduces the overhead of checking invariants, it also means
that some invariant violations might go unnoticed. Alterna-
tively, tools can check every applicable invariant for classes
and objects in visible states, but this adds a significant over-
head to the program execution.

Since aliasing can never occur in VDM-SL, it becomes
simpler to keep track of what objects are in a visible state in
the generated code and thus generate JML checks that explic-
itly trigger the invariants checks. This has the advantage that
invariant violations do not go unnoticed even though a JML
tool adopts a more practical approach to checking invariants.

For the example in Listing 37, the important thing is to
ensure that the violation of the invariant of R1 is reported
after executing the state update. This is done by asserting the
entire chain of state designators. The JML translator is able to
generate these checks since it keeps track of state designators
of records that may have been affected by updates to other
state designators.

14. Checking transitive dependencies

Let dn be a state designator of a record in the gener-
ated code that has been updated non-atomically, and let
dk,...,d1, for k = n-1, be state designators that
were affected by the update to dn. Further assume that
di may be of one of mi record types Di1,...,Dimi .
Immediately after executing the update to dn the state of
dn becomes visible. To ensure that the invariant is evalu-
ated for all affected state designators, execute the following
sequence of assertions:
//@ assert dk instance of Dk1 ==>

\invariant_for((Dk1) dk);
...
//@ assert dk instance of Dkmk ==>

\invariant_for((Dkmk) dk);
....
//@ assert d1 instance of D11 ==>

\invariant_for((D11) d1);
...
//@ assert d1 instance of D1m1 ==>

\invariant_for((D1m1) d1);
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Note that the code in Listing 37 omits the instance of
checks, proposed by rule 14, since the types of the affected
state designators can be determined statically.

Regarding rule 9, similar issues with transitive dependen-
cies may occur in the generated code when dealing with
atomic execution. Recall that invariant checking is disabled
before a code-generated atomic statement block is executed.
Once the atomic execution has completed, invariant check-
ing is re-enabled, and therefore rule 9 must also take into
account all the state designators that were affected by the
atomic execution.

7.2 Recursive types

It is possible to formulate recursive types for which the gen-
erated JML checks can only perform limited type checking.
To demonstrate this, consider the recursive VDM type defi-
nition in Listing 38. For this example, S represents an infinite
number of types including nat1 as well as all possible
dimensions of sequences that store elements of type nat1,
i.e. seq of nat1, seq of seq of nat1 and so on.

�

1 types
2 S = nat1 | seq of S;

�� �

Listing 38 Example of recursive type definition in VDM.

The issue with this kind of type definition is that Is(v,S)
in theory becomes an expression of infinite length. The JML
translator stops generating type checks whenever it encoun-
ters type cycles. For the particular example in Listing 38, this
means that a Java value or object reference v is only consid-
ered to respect S if Utils.is_nat1(v) holds. For the
rest of this section, we discuss the current limitations of type
checking recursive types and describe how these limitations
may be addressed.

The approach used to check types could be changed to
also take the depth of the recursion n into account, i.e.
use Is(v,T,n) to generate the type checks. The current
approach used by the JML translator thus corresponds to
generating checks using Is(v,T,1). Is(v,S,2) then
generates checks for types nat1 and seq of nat, whereas
Is(v,S,3) additionally generates a check for the typeseq
of seq of nat1.

Alternatively, checking a recursive type T (such as S
shown in Listing 38) can be done using a code-generated
recursive method that is constructed in a way that allows a
value v to be validated against T. Although static provers
may not be able to perform checking of such types, it should
be possible using runtime assertion checking. However, in
order to enable this style of type checking, the JML transla-
tor would have to be extended with functionality that enables

these methods to be generated such that they can be invoked
from the generated JML assertions.

The limitation of the JML translator for the example
shown in Listing 38 is a consequence of S being defined
using the union type constructor “|”. However, it is possi-
ble to check more practical examples of recursively defined
types such as the linked list LL shown in Listing 39.

To demonstrate this, consider the construction of a linked
list value in VDM that contains the numbers 1, 2 and 3 as
shown in Listing 40. In the generated code, this value is rep-
resented using the code shown in Listing 41.

�

1 types
2 LL ::
3 element : nat
4 tail : [LL]

�� �

Listing 39 Example of a linked list defined using a record type.

�

mk_LL(1, mk_LL(2, mk_LL(3, nil)))
�� �

Listing 40 Example of a linked list value in VDM.

new LL(1L,new LL(2L,new LL(3L, null)));

Listing 41 Example of a linked list value in Java.

Each time an object of type LL is instantiated in Java the
constructor checks the types of the current element and
the tail—see Listing 42. For this linked list example, it is
therefore possible to type check LL since the VDM type is
represented using a recursively defined class in the generated
code.

1 public LL(final Number _element ,
final LL _tail) {

2 //@ assert Utils.is_nat(_element);
3 //@ assert (_tail == null || Utils

.is_(_tail ,LL.class));
4 ...
5 }

Listing 42 Type checking a linked list using JML.

7.3 Detecting problems with the generated code

As explained in Sect. 5.4, deep copying objects may sig-
nificantly affect the performance of the generated code.
Therefore, the user may not always want to have these copy
calls generated. However, from a general perspective this
may result in code that does not preserve the semantics across
the translation. JML specifications can help detect such prob-
lems. To demonstrate this, consider the VDM-SL operation
in Listing 43. This operation assumes the existence of a two-
dimensional vector Vector2D, defined as a record (a value
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type). In Listing 43, v2 is created as a deep copy of v1, and
therefore the assignment to v1 has no affect on v2, and op
therefore returns 1 (see the postcondition).

If this example is translated to Java with deep copying
disabled, the code shown in Listing 44 is produced. Note
that this listing omits the generated JML assertions to focus
on the postcondition.

�

1 op : () ==> nat
2 op () == (
3 dcl v1 : Vector2D := mk_ Vector2D

(1,2);
4 dcl v2 : Vector2D := v1; -- Copy

value
5 v1.x := 2;
6 return v2.x;)
7 post RESULT = 1

�� �

Listing 43 Use of value types in VDM.

1 //@ ensures post_op (\ result);
2 public static Number op() {
3 Vector2D v1 = new Vector2D (1L,2L)

;
4 Vector2D v2 = v1;
5 v1.set_x(2L);
6 Number ret_1 = v2.get_x();
7 return ret_1;
8 }

Listing 44 Generated Java code without copy calls.

If this code is executed using the OpenJML runtime asser-
tion checker, an error is reported because the method returns
2, which is different from the result obtained by executing
the corresponding VDM-SL operation. Since deep copying
is disabled only the v1 reference is copied, and therefore the
update to v1, i.e. v1.set_x(2L), also affects v2.

The detection of the postcondition violation as reported
by the OpenJML runtime assertion checker is shown in List-
ing 45. However, if the code is generated with deep copying
enabled (at the cost of performance), then v2 will be con-
structed as Utils.copy(v1) and the method will change
to return 1, as expected.

Ex/DEFAULT.java :17: JML
postcondition is false
public static Number op() {

Ex/DEFAULT.java :16: Associated
declaration: Ex/DEFAULT.java :17:
//@ ensures post_op (\ result);

Listing 45 Detection of a postcondition violation.

8 Translation assessment

In this section, we provide an assessment of the translation.
We first describe how the correctness of the translation was

assessed, and afterwards we discuss the scope and treated
feature set in relation to existing JML tools.

8.1 Translation correctness

The translation rules have been validated by running exam-
ples through the JML translator and analysing the generated
Java/JML using the OpenJML runtime assertion checker.
Some of the examples used to test the tool constitute inte-
gration tests that have been developed by the authors. In
addition, we have used the tool to analyse an external spec-
ification (originally used as part of an industrial case study)
that the authors have not been involved in the development of.
A summary of the different examples used to test the trans-
lation is given below. Additional details about the examples
can be found via the references provided.

The integration tests currently consist of 85 examples
that cover testing of all the translation rules. Each test (typ-
ically) forms a minimal example that exercises a small part
of the entire translation (such as a single rule). The work-
flow for running these tests is as follows: first, the test model
is translated to JML-annotated Java using the JML transla-
tor. Next, the generated Java/JML is compiled and executed
using the OpenJML runtime assertion checker. Finally, the
(actual) output reported by the OpenJML runtime assertion
checker is compared to the expected output in order to con-
firm that the behaviour of the test model is preserved across
the translation. For example, if the execution of a test model
produces a precondition violation, then the equivalent error
is expected to be produced when the generated Java/JML is
executed using the OpenJML runtime assertion checker. All
the examples used to test the JML translator are available
via Overture’s GitHub page [19] or can be found in a tech-
nical report that presents a more complete definition of the
translation [22].

Compared to the integration tests, the external specifica-
tion is a large example that is rich in terms of DbC elements.
Themodelwas originally developed to study the properties of
an algorithm used to obfuscate Financial Accounting District
(FAD) codes, which are six digit numbers used to identify
branches of a retailer. The customer required that obfuscated
FAD codeswere still six digit numbers, remained unique (per
branch), and that the entire range of FAD codes (0-999999)
was still available. In addition, the obfuscation had to be a
light-weight calculation (rather than a look-up in a table).
The properties of the algorithm were described using VDM
contracts to allow the algorithm to be validated using VDM’s
test automation features [23].

Investigating whether the algorithm met the requirements
necessitated the generation and execution of onemillion tests
that initially could not be handled by any of the VDM tools
(either due to intractable execution times, or because the
VDM interpreter ran out of memory). Motivated by this,
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the specification was translated into a JML-annotated Java
program [24], and all one million tests were executed using
a code-generated version of the VDM specification. In that
way, the properties of the obfuscation algorithm could be
validated by executing a code-generated version of the VDM
specification using the OpenJML runtime assertion checker.

8.2 Translation scope and treated feature set

As explained in Sect. 7.2, it is possible to formulate recursive
types that currently are not supported by the JML translator.
Aside from that, all VDM-SL’s types and contract-based ele-
ments are supported. However, the JML translator does not
currently support the object-oriented and real-time dialects
of VDM, called VDM++ [25] and VDM-RT [15].

The Java code-generator that we extend currently only
uses Java 7 features in the generated code. OpenJML is the
only JML tool that we are aware of that supports this version
of Java. Specifically, as ofDecember 2016,OpenJMLversion
0.8.5 was released with support for Java 8, i.e. the latest
official Java version (at the current time of writing). Other
JML tools, on the other hand, lack support for recent Java
versions (in particular Java 7 and 8). Therefore, these tools
cannot currently be used to analyse the generated Java/JML.

The JML translation is only valuable if the JML features
that it relies on are supported by JML tools. Specifically, we
have aimed to develop a translation that generates Java/JML
that can be analysed using OpenJML. However, the transla-
tion would benefit from the \invariant_for construct,
which OpenJML does not currently support. Instead we
offer an alternative way to represent this construct in order
to achieve compatibility with OpenJML (see Sect. 5.6 for
details).

9 Related work

In [26], Vilhena considers the possibilities for automatically
converting between VDM++ and JML and the approach is
demonstrated using a proof-of-concept implementation. That
work considers a bidirectional mapping, whereas we only
consider a one-way translation from VDM-SL to Java/JML.
The bidirectional mapping proposed by Vilhena only pro-
duces the JML specification files (where non-model methods
do not define bodies). Therefore, Vilhena’s mapping does
not generate annotations at the statement level, which is an
essential part of our work. The implementation of the bidi-
rectional mapping was originally targeting the Overture tool,
but it never reached maturity to be included in the release of
the tool.

Rules for translating from a subset of VDM-SL to JML are
proposed by Jin andYang [27]. Their approach also considers
implicit functional descriptions, but it provides limited sup-

port for translation of record definitions and named invariant
types. In the early phases of the software development pro-
cess, the authors propose to formulate requirements in natural
language or using the Unified Modelling Language (UML)
[28] and then formalise them in VDM-SL to eliminate ambi-
guity. Subsequently the authors manually apply their rules
to the VDM-SL specification to produce an initial version of
the software implementation. Their work does, however, not
take generation of the bodies of functions and operations into
account. Therefore, the authors only produce the method sig-
natures for the Java methods when translating the functional
descriptions of the VDM-SL model.

The translation rules proposed by Jin et al. have been
implemented as an Eclipse plugin by Zhou et al. in [29].
The plugin takes a VDM-SL specification as input, which
is type-checked using VDMTools [30], and outputs JML-
annotated Java classes that must be completed manually by
the developer.

Translations fromother formal notations ormodelling lan-
guages to JML-annotated Java have also been developed. As
an example, Rivera et al. present the EventB2Java tool [31]—
acode-generator,which is capable of translatingboth abstract
and refinement Event-B [32] models into JML-annotated
Java. EventB2Java has the advantage over other Event-B
code-generators that it does not require user intervention as
part of the code-generation process, which is similar to our
approach.

In [33], Lensink et al. present a prototype code-generator
that translates a subset of the Prototype Verification System
(PVS) [34] to an intermediate representation in Why [35]
suitable for program verification. Subsequently theWhy rep-
resentation is translated to JML-annotated Java. In their work
the authors focus on translating executable PVS constructs,
which is similar to what we do for VDM-SL. A key feature
of their code-generator is that it, in addition to specification
code, also translates proven properties, which is outside the
scope of our work.

Hubbers and Oostdijk propose AutoJML [36]—a tool for
translating UML state diagrams into JML-annotated Java
Card code [37]. A state diagram describes a Java Card applet
from which AutoJML produces Java skeleton code anno-
tated with JML. In the generated code, the different states
are represented as constant values, and an additional Java
field is used to represent the current state of the applet. A
JML invariant is used to specify the valid state values
for this field, and a JML constraint is used to describe
the valid state transitions. This is comparable to the way
we enable and disable invariant checking, which we do by
toggling the invChecksOn ghost field using set state-
ments.

In [38], Klebanov proposes an approach similar to that
of Hubbers et al. Instead of using UML state diagrams,
Klebanov uses automata-based programming to describe
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the behaviour of a smart card application, which is gener-
ated to JML-annotated Java Card code. Klebanov argues
that use of automata-based programming over UML state
diagrams is a better way to describe application-specific
behaviour. A similar argument can be made for VDM-SL,
which is suitable for capturing the dynamic aspects of a sys-
tem.

10 Conclusion and future plans

In this paper, we have demonstrated how VDM-SL models
can be translated to JML-annotated Java programs that can be
checked for correctness using JML tools. The JML translator
uses JML to represent the DbC elements of VDM-SL and
generates checks that help ensure the consistency of VDM-
SL types across the translation.

The principles for pre- and postconditions in VDM-SL
and JML are similar although there are subtle semantic dif-
ferences between the two notations. These differences are
mostly caused by the fact that JML is built on top of Java,
where object types use reference semantics. VDM-SL, on the
other hand, solely uses value types. Therefore, it is necessary
to employ deep cloning principles when representing value
types in JML-annotated Java code.

Checking state and record invariants in the generated code
is complicated due to two reasons: firstly, atomic execution
in VDM requires a way to control when invariant check-
ing must be done. We achieve this by using a ghost field
to indicate when invariant checking is enabled, and update
it before entering and leaving the atomic statement. Sec-
ondly, we have demonstrated that transitive dependencies
between records sometimes require extra JML checks to be
generated to ensure that the invariant checks are evaluated
when they should.

The differences between the type systems ofVDM-SL and
Java further necessitate extra checks to be produced. These
checks are needed to ensure that the generated code does
not violate any of the constraints imposed by the types in
the VDM-SL model. Overture performs these dynamic type
checks internally,whereas theymust bemade explicit in Java.

Although DbC languages often support many of the same
DbC concepts, it is the semantic differences between the
languages that make developing a translation challenging.
In this paper, we have shown several examples of such
differences and how they can be addressed. Naturally, trans-
lating between other specification language pairs may reveal
other differences and design details that are of interest to
researchers and practitioners working on comparable tasks.
However, based on the experiences gained by developing
the VDM-SL-to-JML translation, we list some of the design
details thatwebelieve are likely to challenge the development
of translations between other specification language pairs:

Invariants: The times when invariants are evaluated vary
across specification languages. For example, in VDM
they have to hold at all times (except inside atomic
statements), whereas in JML they must hold in visi-
ble states. When invariants have different semantics the
translation must find a way to either produce or reduce
the number of invariant checks at the appropriate places
in the code.

Type systems: The differences between type systems require
careful attention when developing a translation. Espe-
cially, when the destination language (e.g. JML) uses a
more “coarse-grained” type system than the source lan-
guage (e.g. VDM-SL). For such situations, extra checks
must be produced to ensure that types are used consis-
tently across the translation. In our work, we use the
function Is(v,T) to produce these extra checks.

Atomic execution: Languages may use dedicated constructs
to represent atomic execution (e.g. VDM) or by allow-
ing invariants not to hold at certain times (e.g. JML).
In this paper, an example was given of how a dedicated
construct can be emulated in a language that does not
support one natively.

Old state: Despite pre- and postconditions being similar con-
cepts in different specification languages, it is likely that
the notion of old state may require careful handling
when developing a translation between two specifica-
tion languages. In our work, a deep cloning principle
was employed to ensure the correct construction of the
old state.

In the future, we plan to use this work in the context of
test automation. In VDM, it is possible to specify a trace
definition in a way similar to that of a regular expression.
This trace can then be expanded into a large collection of
tests that can be executed against the model. This is a use-
ful way to detect deficiencies in the model, such as missing
preconditions, postconditions and invariants [23].

We plan to code-generate the trace expansion such that
the tests can be executed against the code-generated version
of the model. The work presented in this paper can then be
used to detect contract or type violations and give verdicts
to the code-generated trace tests. We believe that this will be
particularly advantageous for execution of large collections
of tests. We expect this approach to significantly increase
execution speed for test cases and also allow more tests to be
executed. In addition, we plan to look into JML-generation
for other VDM dialects such as VDM++. However, since
VDM++ is object-oriented and supports concurrency, we
envisage that this will give rise to a completely new set of
challenges not addressed by the work in this paper.

So far the analysis of the generated Java/JML has primar-
ily been limited to runtime assertion checking. Another item
of futurework is to formally verify the generated code against
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the JML specification. In particular, by investigating to what
extent this is possible, and whether the JML translation can
be optimised in a way that better supports formal verification
through static analysis. For example, currently the transla-
tion produces auxiliary methods for invariants and pre- and
postconditions that are used as part of the JML specification.
However, use of method calls in specifications complicates
static analysis due to, for example, the possibility of excep-
tions or non-terminating behaviour [39].

We hope that our work will serve as inspiration for
other researchers who seek to bridge the gap between other
specification notations and implementation technologies that
support theDbCapproach.Webelieve that the rules proposed
in this paper can be useful for others who want to translate
between specification languages such as ASM, B and Z and
implementation technologies such as Spec#, Sparc-Ada and
Eiffel.
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