
Int J Softw Tools Technol Transfer (2017) 19:743–761
DOI 10.1007/s10009-016-0432-3

REGULAR PAPER

RAMBUTANS: automatic AOP-specific test generation tool

Reza Meimandi Parizi1 · Abdul Azim Abdul Ghani2 · Sai Peck Lee3 ·
Saif Ur Rehman Khan3

Published online: 20 July 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Aspect-oriented programming (AOP) is a pro-
grammatic methodology to handle better modularized code
by separating crosscutting concerns from the traditional
abstraction boundaries.Automated testing, as one of themost
demanding needs of the software development to reduce
both human effort and costs, is a delicate issue in testing
aspect-oriented programs. Prior studies in the automated test
generation for aspect-oriented programs have been very lim-
ited with respect to the need for both adequate tool support
and capability concerning effectiveness and efficiency. This
paper describes a new AOP-specific tool for testing aspect-
oriented programs, called RAMBUTANS. The RAMBUTANS
tool uses a directed random testing technique that is espe-
cially well suited for generating tests for aspectual features
in AspectJ. The directed random aspect of the tool is parame-
terized by associating weights to aspects, advice, methods,
and classes by controlling object and joint point creations
during the test generation process. We present a comprehen-
sive empirical evaluation of our tool against the current AOP
test generation approaches on three industrial aspect-oriented
projects. The results of the experimental and statistical tests

B Reza Meimandi Parizi
rparizi@nyit.edu; r.m.parizi@ieee.org

Abdul Azim Abdul Ghani
azim@upm.edu.my

Sai Peck Lee
saipeck@um.edu.my

Saif Ur Rehman Khan
saif_rehman@siswa.um.edu.my

1 School of Engineering and Computing Sciences, New York
Institue of Technolgoy (NYIT), Nanjing Campus, Nanjing,
China

2 University Putra Malaysia, Serdang, Malaysia

3 University of Malaya, Kuala Lumpur, Malaysia

showed that RAMBUTANS tool produces test suites that
have higher fault-detection capability and efficiency for
AspectJ-like programs.

Keywords Software testing · Automated test generation ·
Testing tool · Aspect-oriented programming ·
Object-oriented programming · AspectJ

1 Introduction

Aspect-oriented programming (AOP) [1,2] has been pro-
posed as a methodology for handling the modularization of
source code by re-defining the abstraction level and reducing
the scattering and tangling of crosscutting concerns [3]. To
achieve this, AOP introduces amodular construct, the aspect,
which is basically used to encompass crosscutting concerns
(i.e., requirements that are spread across or tangledwith other
requirements, such as quality attributes) in applications.

An analysis of the literature uncovers that aspects have
been used crosswise over different fields of exploration and
spaces, going for the improvement of customary methods,
for example, in reference architecture [4] and architectural
invariants and decisions [5,6], embedded software testing
and hardware verification [7–9], non-functional require-
ments’ classification [10], traceability improvement [11],
software product line implementation [12], and component-
based development [13]. The outcomes accomplished from
these studies have propelled the utilization of aspects and
have demonstrated the handiness of AOP in software and
applications engineering.

While the utilization of aspects is by all accounts helpful
and offers advantages over traditional strategies in diverse
contexts, unique characteristics [14] of AOP and its effect
on testability and viability have made its testing more chal-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-016-0432-3&domain=pdf

744 R. Meimandi Parizi et al.

lenging. To understand the advantages of AOP and to build
its reception, programs (i.e., aspects) created by this pro-
gramming paradigm ought to be effectively tested, with
consideration paid to all of its characteristics, i.e., augmenta-
tion of new programming constructs and properties [14] for
the separation of concerns.

Automated testing has been a huge zone of enthusiasm
in software testing research and has developed incredibly
in recent years. Nonetheless, it must be called attention to
the literature uncovers that there is relatively little work [15]
on testing of AOP and not very many studies on automated
testing of AOP, none of which has been to our knowledge
generally accepted [16]. From a specialized perspective, the
current approaches [17–20] on automated testing of AOP
do not have an AOP-specific spotlight on the test generation
process and it ismore founded on the knowledge of base code
(i.e., classes). This, as a result, can affect the effectiveness of
tests, inwhich the crosscutting concerns actualized in aspects
might not be effectively tested and expand the quantity of
tests required. In addition, providing no automated test code
generation, and above all, the absence of proper practical
tools (as they are restricted in their functionality and for the
most part not circulated beyond the researchers involved in
the work) is significant issues connected with the current
studies.

Random testing (RT) [21] is a dynamic research area, and
has been a widely used technique in hands-on settings [22]
due to its benefits, e.g., fault-detection at low cost, execution
speed, absence of human bias, and above all the opportunity
for automation that is sort of difficult in other techniques. The
utilization of random-related testing techniques for test gen-
eration purposes has been a prospering enthusiasm for many
researchers and programmers. Numerous studies and helpful
approaches [23–25] have proposed the usage and execution
of random testing as their center parts, which seem to beat
efficient systematic test generation [25]. Notwithstanding the
previously stated benefits of RT, the value of random testing
is said to be expanded, as it is more likely to test the pro-
grams in novel routes (because of the randomized nature)
and reveal faults that were missed during development [26].
In this admiration, the idea behind random testing can be
beneficial, appealing, and offer much promise with respect
to AOP test automation problems, since current research on
testing of AOP, with respect to automated testing, has not
been sufficiently performed and is still in its outset.

This paper describes a new AOP-specific tool for test-
ing aspect-oriented programs, calledRAMBUTANS tool. The
level of testing that RAMBUTANS aims at is aspect level,
which can be seen as a sort of unit testing that has a crosscut-
ting impact. The RAMBUTANS tool uses a directed random
testing technique [27] that is especially well suited for gener-
ating tests for aspectual features in AspectJ, which represents
the most investigated AOP language. The directed random

aspect of the tool is parameterized by associating weights
(as listed in Table 1) to aspects, advice, methods, and classes
by controlling object and joint point creations during the test
generation process, rather than leaving everything to chance,
i.e., pure random testing. This directed feature would be use-
ful for stress testing, in case if one wants to more intensively
test a given advice or aspect. The number of tests executed
on a given advice can play an important role to reveal its
faults as various join points (and their associated data from
the execution context of the join points) can be picked out,
resulting in behaviorally diverse tests.

Nevertheless, we present a comprehensive empirical eval-
uation of our tool against the current AOP test generation
approaches on three industrial aspect-oriented projects. The
results of the experimental and statistical tests showed that
RAMBUTANS tool produces test suites that have higher fault-
detection capabilities and are more efficient. Hence, the
proposed tool could be worth utilizing as a compelling and
effective AOP-specific test generation tool.

The rest of this paper is structured as follows: Sect. 2
presents related work and background. Section 3 gives the
details of the tool, including its underlying technique, func-
tional and architectural features, as well as inner workings
details and the technologies that have been used. Section 4
discusses the empirical assessment and results, which is fol-
lowed by implications and limitations in Sect. 5. Section 6
gives the conclusion and future work.

2 Background and related work

2.1 AOP and AspectJ

Aspect-oriented programming (AOP) [1] emerged as a solu-
tion to enhance software modularization. It was highly
motivated by the fact that traditional paradigms, such as
procedural and object-oriented programming, could not
effectively handle crosscutting concerns. Non-crosscutting
concerns, on the other hand, compose the base code of an
application and comprise the set of functionalities that can be
modularized within conventional implementation units (e.g.,
classes and data structures). AOP is primarily based on the
idea of separation of concerns (SoC), which claims that com-
puter systems are better developed if their several concerns
are specified and implemented separately. Such separation in
AOP is achieved by means of new conceptual modular units
called aspects, which encapsulate code that usually appears
either scattered over several modules in a system or tangled
with code that realize other concerns [28].

In an AO program, the behavior (which technically repre-
sents a crosscutting concern) implemented within an aspect
runs when specific events, the joint points (JPs), occur dur-
ing the program execution. Typical examples of JPs are a

123

RAMBUTANS: automatic AOP-specific test generation tool 745

method call, a method execution, or a field access. In AspectJ
[29], which is the most popular Java-based and commonly
used AOP language, a pointcut expression (or pointcut des-
ignator PCD) selects a set of JPs by means of declarative
expressions. A PCD is generally formed by patterns (e.g.,
method signatures) and predicates. The JP models together
with the PCD implement a quantification mechanism that
enables crosscutting behavior to run at several JPs during
the software execution (i.e., to inject the intended behavior).
The PCDs are bound to advices, which consist of method-
like portions of code that implement crosscutting behavior
[28]. For a complete list of AspectJ features, the reader may
refer to the AspectJ project website.

2.2 Related work

In the literature, very few numbers of different automated test
generation approaches for AOprograms have been proposed.
To the best of our insight, there are as of now four noteworthy
approaches for AOP testing. The approaches are: (1) Wrasp
[17], (2) Aspectra [18], (3) Raspect [19], and (4) EAT [20].
The following sections briefly discuss the underlying work-
ing of these approaches.

2.3 Wrasp

Wrasp approach [17] supports unit and integration-level
test generation for AspectJ programs by emphasizing on
aspectual behavior testing. The Wrasp approach specifi-
cally focuses on adoption of unit-testing frameworks (i.e.,
JamlUnit [30] and AJTE [31]) and reusing existing Java sup-
ported random test generation tools (e.g., JCrasher [32] or
Parasoft Jtest [33]). Both tools randomly generate method
sequences based on the given class bytecode. The Wrasp
approach applies two steps for random test generation: (1) to
take the aspect class or woven class bytecode for supporting
unit or integration-level testing respectively and (2) then for-
wards the Java bytecode (i.e., aspect class or woven class) to
JCrasher [32] or Parasoft Jtest [33] tools for automatic gen-
eration of test cases. Furthermore, this approach employs a
wrapper mechanism, which enables it to handle the leverag-
ing issues across the Java supported random test generation
tools.

In this approach, however, it is not clearly expressedwhich
existing OO tool was utilized as a part of request to create the
test inputs and especially which could give the best results
in AO context, in terms of effectiveness (no empirical study
was presented). In addition, the required effort and cost of
the application of random testing of OO programs to AO
programs were not talked about.

2.4 Aspectra

Aspectra approach [18] works similar toWrasp and automat-
ically generates tests that are able to exercise the aspectual
behavior of a given AspectJ program. This approach also
employs a wrapper mechanism to handle the aspect-weaving
issues for test generation. Consequently, it enables a devel-
oper to provide base classes of an aspect by developing a
wrapper for every single woven class. For the given woven
class, this approach automatically generates a wrapper class.
Next, Aspectra forwards thewrapper class to current test gen-
eration tool (i.e., Parasoft Jtest [33]), which automatically
generates test cases for the given woven class and considers
the wrapper class as the class under test. Finally, Parasoft
Jtest tool automatically produces different data values of all
parameters of a targeted method in a particular class.

Aspectra mainly employs two coverage measurements
(i.e., aspectual-branch coverage and interaction coverage)
for test selection purpose. The interested readers may con-
sult reference [18] for more information about the employed
measurements.

Parasoft Jtest utilized as a part of Aspectra is equipped
for creating default values for primitive-type arguments and
produces randommethod sequences (the sequence ofmethod
calls is referred to as test sequence) which incite uncaught
runtime exceptions. At the same time, it also tries to max-
imize statement coverage or branch coverage, contingent
upon the design by the tester.

Nonetheless, Parasoft Jtest regularly produces the same
test arrangements and acquires no test groupings that accom-
plish full coverage.Moreover, Parasoft Jtestmakes numerous
repetitive test sequences, which may likewise exercise non-
public methods. In our perspective, these disadvantages
coming from Parasoft Jtest influence the produced test suite
quality of Aspectra. This is for the most part because of some
limitations forced on the test input generation as the tool
only supports default or random data generation for targeted
based code. Besides, the wrapper-synthesis mechanism (as
contended by the authors) is useful more in test generation
when advice has call pointcut type and there are no call sites
of its advised methods in the code base. This might not be
a typical case in AspectJ programs, as it is quite often than
other kinds of pointcuts that are used in the program.

2.5 Raspect

Raspect [19] is a broadly similar approach to Wrasp and
Aspectra to generate tests and additionally detect the redun-
dancy from the generated test cases of AspectJ programs.
In other words, Raspect is not a tool to only generate tests,
but it also detects redundant tests in the process of testing.
The motivation behind is that Wrasp or Aspectra generation
tools normally generate an extensive amount for test inputs

123

746 R. Meimandi Parizi et al.

that might hold an incredible number for unimportant tests,
which are not able to expose faults and hence unable to exer-
cise the new behavior of the class under test.

The Rostra framework [34] reveals redundant unit test
cases on object-oriented contexts. The Raspect approach
extends the Rostra framework by determining and removing
the generated redundant test cases, which ultimately helps in
three types of unit testing for AspectJ programs.

The Raspect approach is capable of generating, exposing,
and removing three types of unit tests for woven classes by
employing current random test input generation tools. How-
ever, it does not focus on how to generate integration tests
effectively for testing the integration of these three types of
AspectJ program units.

2.6 EAT

EAT [20] approach depends on evolutionary testing for auto-
mated generation of test cases for AspectJ program. The
EAT approach automatically generates test data for given
aspects from the base classes, which is similar to Aspectra
[18]. However, the generated tests might lack in exercising
the aspectual composition behavior. This approach consists
of four major components, to test aspectual behavior, includ-
ing (1) aspectual-branch identifier to identify branches inside
aspects of AspectJ programs, which are the coverage targets
of the approach; (2) relevant-parameter identifier to iden-
tify only those relevant parameters of the methods of the
base classes for covering a target aspectual branch; (3) evo-
lutionary tester, which is the key component that forms the
test generation technique; and (4) finally aspectual-branch-
coverage measurer component to measure the coverage of
aspectual branches by means of aspectual-branch coverage
metric.

Despite the fact that this approach appeared to have a
superior technique in test generation and to some degree
outperformed the techniques used in Aspectra or Wrasp, it
only spotlights on creating test information that accomplishes
aspectual-branch coverage (i.e., control flow-based). In our
perspective, considering alternate sorts of coveragemeasure-
ments as selection criteria would be useful in exposing faults
related to interactions of aspect and base code. Moreover,
the fault-detection ability (with respect toAOP-specific faults
presented byAO fault models, such as [35]) of EAT approach
is not discussed and compared with existing ones.

In prior work, we have reported the results of a hypothet-
ical assessment for these current AOP testing approaches
described in [36]. In this past work, we have studied the
automated AOP testing along three levels of automation,
including test generation and selection, oracle, and test exe-
cution by identifying the current tools or methods in each
level. As a supplement to this work, we directed an expan-
sive scale experiment to look at these four existing automated

AOP test generation approaches (as mentioned above). The
results of comparing the approaches have been accounted for
in [16].

These assessments (both theoretical [36] and empirical
[16]) showed that there is an absence of AOP-specific spot-
light on the test generationprocess of the existing approaches,
as it is more founded on the knowledge of base code
(i.e., classes which form object-oriented parts) rather than
aspects themselves. In particular, it was found that the cur-
rent approaches do not provide proper practical parts/tools
(as they are restricted in their functionality and generally
not dispersed beyond the researchers involved in the ini-
tial work). Inspired by these issues, we were motivated and
gained methodological ideas towards proposing the new tool
in this research.

3 RAMBUTANS tool

The main contribution of this paper is to show that it is possi-
ble to provide tool support for aspects using idea of directed
random testing, thus making steps of test generation auto-
matic. The result of this work is a tool, called RAMBUTANS,
which gives support to all of test generation steps proposed
in our own technique [27].

This section provides an overviewof the tool by describing
its underlying technique, functional and architectural fea-
tures, as well as the technology and inner workings that have
been used. The preliminary version of the tool and its detailed
documentations are available at: http://fsktm.upm.edu.my/
serg/RAMBUTANS.

3.1 Underlying technique

The technique consists of four major components (shown in
green boxes in Fig. 1), considered as its essential ingredients,
where their interactions and/or combinations form the basis
of RAMBUTANS. Note, refer to Table 1 to get insight into
terms, notations, and acronyms used in the technique.

As indicated by Fig. 1, RAMBUTANS begins producing
test data by selecting a random aspect called AUT (which has
the highest Pselection (AP)) from the aspect pool created by
aspectual-class extractor component.Given this aspect, a ran-
dom advice is gotten(with the highest Pselection (AC)) from
advice collection associated with the AUT (i.e. AUTAC).
At that point, this random advice, a, is fed to the cross-
cutting dependency identifier component to recognize every
one of the classes influenced by this advice, and correspond-
ingly constructs its advised class collection (ACC). After
this, a random class,C, and a random advised method,m, are
acquired from ACC and AMC with thought of the probabil-
ities of Pselection (ACC) and Pselection (AMC) respectively.

123

http://fsktm.upm.edu.my/serg/RAMBUTANS
http://fsktm.upm.edu.my/serg/RAMBUTANS

RAMBUTANS: automatic AOP-specific test generation tool 747

Fig. 1 RAMBUTANS technique

123

748 R. Meimandi Parizi et al.

Table 1 List of notations and acronyms used in RAMBUTANS

Acronym/notation Description

AUT An aspect under test

OP Object pool (as repository): Keeps a pool of instances available for testing a given AO program. It
contains classes instances related to an AO program during the testing session. All objects
created as part of the test generation are gradually stored in this pool

AP Aspect pool (as repository): Keeps all aspects existing in an AO program

AC Advice collection

ACC Advised class collection

AMC Advised method collection

AUTAC Refer to advice collection of AUT aspect

CAMC Refer to advised method collection of class C

Pselection (repository) − >element Probability that a given element possesses to be selected for testing. Thus, the element will be
selected for testing, if it possesses the highest weight among the other elements in the same
repository

PObjReuse (class) Probability of creating a new object and/or reusing in the presence of existing objects of a given
type. It is defined with respect to the number of existing instances of a given class in the pool to
the total number of instances of all types

PstateDiv Probability which is defined to indicate how frequent (determined by a user-settable timing value)
the process of calling the methods of a object should be to modify its states during test generation
process

In the event that m is a static method, then a call to m on
its individual class C is produced, as the static methods can
be called without making any object of their classes. Or else,
if the method is not static (i.e., public non-static), the object
pool (OP) is initially checked for any accessible object of
the desired type to receive the method call m (i.e., known
as receiver object). On the off chance that the object of the
desired type is not available in the object pool or available,
but rather the technique with thought of PObjReuse chooses to
not reuse (in light of the fact that PObjReuse is resolved as low),
a target object of the given type will be randomly developed
to receive the call. This is performed with the assistance of
the object-creator component. Besides, the recently created
object that was rare in the pool would be additionally added
to the OP. Despite what might be expected, if the object of the
sought type is available in the object pool and the technique
with thought of PObjReuse consents to reuse (in light of the
fact that PObjReuse is resolved as high), a random object of
the wanted type is browsed from the object pool so as to get
the method call m.

At last, the created call to m is affixed (in both the cases
of static or non-static) to the test data file with its input para-
meters/arguments (if m takes any) randomly produced by
random parameter generator component. This implies that
the input parameters of each method call prior to its addi-
tion are created randomly according to the parameter data
types. In particular, the random parameter generator com-
ponent may need to generate a reference data type for any
input parameter (not a receiver object) of a given method
call. In such manner, such as the receiver object genera-

tion, the same procedure is applied to reuse a current object
(via searching the pool) making another one by calling the
object-creator component. Be that as it may, for recognizing
purposes, whenever an object is either created or browsed
from the pool, RAMBUTANS checks its essential use to fig-
ure out if it is a receiver object for a method call or an input
parameter to a method or constructor (i.e., the ‘As receiver?’
decision in the design introduced in Fig. 1).

At whatever point necessary, the object pool is diversi-
fied by the technique according to the frequency controlled
by PstateDiv. At that point, the same procedure is repeatedly
carried out to consider producing tests for the remaining ele-
ments of theAspectJ program under test. In a keymanner, the
test data created by RAMBUTANS are that of random gener-
ation of join points to stimulate/trigger advice and pointcuts
in a random way.

Note, the presentation of details and separate algorithms
for the major components utilized in the technique are given
in Appendix A.

3.2 Architecture

The architecture of the prototype tool developed for this
research project is logically structured in three layers, includ-
ing presentation, persistence, and most importantly the
application layer that contains the core module comprised
of four major components.

Figure 2 outlines the layered architecture of the tool. The
architecture is somewhat adopted from a reference architec-
ture for software testing tools called RefTEST [37], which

123

RAMBUTANS: automatic AOP-specific test generation tool 749

Fig. 2 RAMBUTANS tool
architectur

helped us to structure the tool in terms of functionalities and
component interactions.

According to the architecture, the system takes AspectJ
source code as input and generates a set of test data as
output. Concerning the presentation layer, the input compo-
nent reads in and verifies the AspectJ sources. The output
component allows the user to view, save, or export the
generated tests to JUnit files. These two components are
generic in the sense that they are independent of any spe-
cific AOP environment. The RAMBUTANS core module in
application layer performs test generation, i.e., it hosts the
main tool. The core module is comprised of aspectual-class
extractor, crosscutting dependency identifier, random para-
meter generator, and object creator as its major components.
Aspectual-class extractor component is a source file finder
that differentiates all Java (i.e., classes) and AspectJ source
files (i.e., aspects) in an AspectJ program. This component
runs a preprocessing step, whose output is a list of separated
aspects. The component of crosscutting dependency identi-
fier recognizes the elements that have been advised by a given
aspect, generally, all the advised join points, e.g., methods,
captured by the associated pointcut(s). The random parame-
ter generator component is responsible for generating input
parameters’ values for advised join points, such as methods
and constructors. Object-creator component is responsible
for constructing the new objects, generally reference types
in the course of test generation.

Finally, persistence layer contains the file system and the
database-related procedures and functionalities that can be
invoked by the components in both application and presen-
tation layers, whenever is needed.

The given tool has been designed in an object-oriented
manner and has been implemented using Java program-
ming language, based on the NetBeans platform. It tests
every advice of the aspect under test independently. For each
advice, it produces a collection of test data and exports the
tests as JUnit test cases, thereby completely automating test
generation of AspectJ aspects.

After identifying all the procedures and components that
are needed by the systems and how they interact (as presented
in the tool’s architecture), the next step is to specify the inter-
nal algorithm of each component separately. Algorithms are
presented in Appendix A.

3.3 Details of implementation (inner workings)

In this section, we briefly explain the implementation details
of each component and how other tools/plug-ins were mod-
ified or put together to make the software performs test
generation in the prototype tool.

Given the understanding of components’ functionalities,
to implement Aspectual-class extractor, we have used
pattern-matching mechanism with regular expressions to
identify/extract aspects and the advice blocks in AspectJ files

123

750 R. Meimandi Parizi et al.

through parsing the source code. This in turn can be seen as
a kind of aspect mining.

The underlying technique used to implement the Cross-
cutting dependency identifier is based on the idea of
providing metadata applied to advice of aspects in the form
of annotations suppliedwith the input source. In this case, the
annotations would represent the correct behaviors of point-
cuts associated with advice in terms of advised elements.

Finding crosscutting dependency can be viewed as a kind
of accessing and detecting the advised join point information
at weaving time. For instance, finding the advised classes
affected by a given aspect or when a Java method is affected
by an advice. Obtaining such information is challenging and
would not be trivial, as this information is not preserved in an
easily accessibleway inwoven classes. In addition, the aspect
itself does not originally store a list of places,where it applies.

On the other hand, there are Eclipse plug-in tools, such
as AspectMaps, which is similar to the Visualiser, and Cross
References (a.k.a as “XRef”) provided by AspectJ Develop-
ment Tools (AJDT) to provide ameans to get the crosscutting
dependency information at compile time. However, none
of these tools produces the information in a more easily
digestible way for use with other providers. Moreover, these
tools’ focus is more on visualization of the woven parts
than giving absolute crosscutting dependency information
and accessible through well-defined APIs. Thus, it can be
said that there is currently no standalone tool to give this
information in a convenient way. This motivated us to fig-
ure out an efficient technique based on the idea of providing
annotation files in this version of implementation.

In this technique, to recognize the affected join points
dynamically (i.e., advised methods/constructors) by advice
of a given aspect, the following two steps are performed:

1. For each aspect, we create a .txt file that will attach
crosscutting dependency annotations to the input AspectJ
program to represent the name of affected classes and meth-
ods. This annotation is applied to any advice block that is to be
made available for testing using RAMBUTANS. In this light,
these annotations are seen as runtime processing types that
are used by the underlying technique to help finding cross-
cutting information efficiently. The syntax for the annotation
file takes the form as shown in the following:

File name:
AspectName_Annotation.txt
Body:
If the join point were a method:
@advice[advice_Number]:Class_Name(Method_Name);

If the join point were a constructor:
@advice[advice_Number]:Class_Name(Class_Name);

advice_Number is a numerical number equal or greater
than 0, but less than n, where n is the number of advices of the
aspect. From a technical point of view, the advice_Number

represents a top–down position assignment, in which the
ascending order of advice presented in the aspect file deter-
mines its value. It is important to note that the body of the
file can consist of many lines if there is an advice that is
associated with more than one advised class or method.

2. At this step, the aim is to turn this annotation into
some kind of crosscutting dependency information that trav-
els alongside the code and could then be loaded by the system
later (to discover what was woven and where). To this end,
the tool interprets the file by means of a getAnnotation()
method of DependencyIdentifier.java class. In this method,
similar to the previous component, regular expressions are
used to construct the patterns to read the annotation file con-
tent, according to its syntax. Once the file is read, the tool
stores the advised class collection and advised method col-
lection of each aspect in a separate Java ArrayList.

It is the responsibility of the testers/users to create the
annotation files for aspects. This in turn, however, might be
the sort of a questioning matter that needs further explana-
tion. As such, we discuss the pros and cons of providing such
files. From a positive perspective, although this matter might
impose relatively littlemanual effort to the users, it is worth it
as it is very efficient to provide human-checked crosscutting
dependency, given test engineer correctly written the cross-
cutting dependency information in the file.

As opposed to this perspective, there is a threat of “what
will be the consequence in the rest of the process if the file
is incorrectly written by the test engineer”. Of course, this
situation might rarely happen in testing high risk software
systems, but obviously an inaccurate file will lead to undesir-
able tests. Now, the question is how to mitigate this situation
and the risk of getting inaccurate information in the test
generation process? As a measure to address this unwanted
situation, we had devised a custom attribute in the tool that
acts as an implicit traceability link to check the discrepan-
cies in the annotation file and the crosscutting dependency
information obtaining from an Eclipse (AspectMaps) plug-
in running upon the pointcut’s patterns associated with the
advice. After an attribute is associated with an AO pro-
gram entity, the attribute is implicitly run in the background
as a plug-and-play tool. This means, it works out-of-the-
box without need to understand any complexities behind
it or to make any changes or adjustments to your system.
The obtained information in the attribute is inspected in the
embedded information in the body of the file using the static
call graph analysis and Java reflection technique in relation
with extracted production classes and aspects. The status of
the attribute will be then used, prior to test generation, to
notify users if the file’s information is incorrect or mislead-
ing, in other words, if tool found discrepancies. Having said
that utilizing the aforementioned custom attributes the risk
of getting into undesirable tests derived from wrong infor-
mation in the file could be nearly minimized.

123

RAMBUTANS: automatic AOP-specific test generation tool 751

Fig. 3 Sample screenshots

Random parameter generator component benefits from
a rich toolkit provided by Java language, to be exact, by a
class named as Random. This class is able to generate many
kinds of random values of different types with flexibility of
adjusting different seeds, scaling and translating the random
number generator’s sequences. Furthermore, to obtain the
information regarding the methods of an advised class, the
modifiers of a given advised method, and getting the advised
method or constructor’s parameters or list of the advised class
constructors, we used Java reflection API to examine and
manipulate internal properties of a given piece of program
from within itself.

Similar to the previous component, for the purpose of
random object generating, we used the same toolkit and
Java reflective API to provide random-related information
for object creation in Object-creator component.

3.4 Execution of the RAMBUTANS tool

The RAMBUTANS tool tests each advice of the aspect under
test independently. For each advice, it produces a collection
of test data and exports the tests as JUnit test cases. The tool
additionally handles the generation of a test case for an advice

woven in a method that calls a method in another class. For
instance, if the advice is woven before method m of class A
and that this method calls method x of class B, tool generates
an instance of B to have a complete test case that tests the
advice woven on m. In this manner, the tool analyses the
methods in which advice are woven to consider these cases,
thereby fully automating test generation of AspectJ aspects.

As mentioned earlier, to make the tool more available in
broader term and potentially of use by developers and/or
testers, generated test data are made to be applicable with the
family ofXUnit frameworks (most successful and related one
to our work is Junit). However, such frameworks do not help
with test generation, and thus, they require the configura-
tion of the JUnit test classes to embed test data, which might
be produced either by an automated strategy or manually
by testers. RAMBUTANS tool provides an automated feature
in which the generated tests can be selectively exported as
JUnit test cases/classes. As an advantage, this feature would
provide support for regression testing, as well as for incorpo-
ratingmanually created test data or test oraclewith automated
generated ones.

Figure 3 shows a sample screenshot of the tool. The
aspect under test (i.e., AUT) is called Telecom. A typical

123

752 R. Meimandi Parizi et al.

Table 2 Key properties of the case studies

Projects # Classes # Aspects # LOC Description

Health Watcher (HW) 100 13 4890 A typical Web-based information system, which
allows people to collect and manage health issues
and complaints [39]

AJHotDraw 279 31 18,450 It is a two-dimensional graphics framework for
structured drawing editors

iBATIS (iB) 180 38 9974 A Java-based open source framework for
object-relational data mapping [40]

Avg. 186.33 27.33 11,104.66

test generation session begins with the user opening a Zip
input file contains an AspectJ program. The tool first com-
piles the source code with the built-in compiler and then
loads classes and aspects within the input file. The con-
tent of the file can be viewed from the view button on the
toolbar of the user interface or optionally from the view
menu if desired. To start generating tests, the user should
simply click the select toolbar button. As a result, a ran-
dom selected aspect and its respective advice collection are
shown inAUT andAUT < AC > tabbed panes, respectively.
The AUT < AC > pane contains all advice of the selected
aspect. Then, the user should click the start toolbar button.
This brings up another window titled test options to prompt
the user to key in or confirm the user-settable options, specif-
ically the number of test cases to generate (in this example,
the user has set the number of test cases to 25). As soon
as the options are set, the tool starts generating the number
of required test cases. RAMBUTANS tool generates tests for
each aspect one at a time. After generating, the generated
tests are shown in the Test cases tabbed pane. For each gen-
erated test case, the user can then choose to view display the
selected test and test case description/history or to perform
save selected or export selected by selecting an item from a
pop-up menu triggered by right click mouse. To keep a per-
manent record of the entire generated test cases/data, user
can click save toolbar button or the equivalent menu option.
Tests are saved as a text file. Whenever needed, the user can
utilize other functions of the tool, such as view aspect pool,
view object pool, print tests, tutorial, and help.

4 Empirical assessment

The purpose of this section is to empirically assess the
proposed tool in terms of fault-detection capability and its
efficiency to get a full picture of how the performance of
RAMBUTANS is correlated with other peer approaches. We,
therefore, designed our study around the following research
questions (RQs):

RQ1 How does the use of RAMBUTANS tool impact the
ability to detect faults, compared to the other approaches, in
the program under test? (regarding to effectiveness)

RQ2 How does the use of RAMBUTANS tool impact the
size of tests, contrasted with alternate approaches, required
during testing? (regarding to efficiency)

The following null hypotheses can be determined in accor-
dance with the aforementioned research questions:

H0RQ1 There is no significant difference in terms of effec-
tiveness of RAMBUTANS and the alternate four AOP testing
approaches.

H0RQ2 There is no significant difference in terms of effi-
ciency of RAMBUTANS and the alternate four AOP testing
approaches.

4.1 Case studies (object programs)

We used three industrial aspect-oriented software develop-
ment (AOSD) projects [38] written in AspectJ to increase the
likelihood of observing statistically significant defects. The
projects were taken from considerably diverse application
domains and large sizes. Table 2 demonstrates some broad
properties of these selected target systems.

Theprogramsweregathered fromvarious sources, iBATIS
and AJHotDraw are accessible at both SourceForge.net and
Apache.org repositories, while HW has been created at the
University of Lancaster in the context of AOSD European
Network of Excellence, and hence, it was taken from the
respective website.

4.2 Implementation of the peer approaches

Unfortunately, the current approaches (as introduced in the
Background section) did not initially provide tool support
overall (or possibly not accessible to open), and along these
lines, we needed to re-implement their core test generation
and selection strategies’ algorithms to handle automating
the execution of the experiment. The implementations used
in the experiment to apply the peer approaches were pro-
pelled in view of the data given in the original work of the
approaches themselves and, when conceivable, the original
material was reused and expanded. Keeping in mind the end
goal to stay away from inadvertent experimental bias, the re-
implementations of the peer approaches were ideally set up

123

RAMBUTANS: automatic AOP-specific test generation tool 753

not to influence the accuracy of the original work’s test gen-
eration and selection strategies by taking after the directions
given in the implementation section of every work.

As a decent point, each of the approaches incorporated a
section of implementation in its respective published work
that guided us to imitate the implementations done by the
creators and at the same time helped minimize inclination.
The basic point between all the four existing approaches
(with respect to implementation section) was that they had
utilized different existing tools and/or bundles to automate
the functionalities of their respective components and luck-
ily, the necessary information in such manner was all given
in implementation section. For example, to apply Aspectra,
we utilized the same library that the authors had used to
automate the wrapper-synthesis mechanism [a bundle in the
Apache Avalon Framework and based on Byte Code Engi-
neering Library (BCEL)] or for EAT approach, we also used
EvoUnit [41] from Daimler Chrysler to actualize the evolu-
tionary testing technique as with the original work.

Having realized approaches’ best configuration based on
original studies’ estimation and accomplishment of results,
the required parameters by every technique were tuned to
original/default values. For example, the stopping criterion
shared by all the approaches was the number of test cases or
mutation and crossover ratios for EAT were set to 0.01 and
1 individually.

4.3 Experimental process

The technical setting for all trials was identical, and the
approaches were run on a machine with infrastructure con-
sisted of: Sun JDK 1.7.0-21 with a Core i5-2520M CPU @
2.50GHZ and 2.00 GB of RAM, under Windows 7 Profes-
sional.

Our primary methodology to conduct evaluation was
based on mutation analysis [42,43] in a comparative exper-
imental manner. Mutation analysis offers an explicit fault
injection process that generates artificial faults (i.e., mutants)
by precisely defining a set of mutation operators. In recent
years, mutation analysis [44] has been widely used by fel-
low researchers evaluating various testing techniques, thus
making it as an acceptable and reliable methodology.

To generate aspect-level mutants, we adopted the set
of aspect-oriented mutation operators reported in [45], as
depicted in Table 3. The fault injection process of the
programs was automatically conducted using amodified ver-
sion of a mutation system called Adaptive AjMutator [46].
Thus, mutants were created and executed automatically (i.e.,
AjMutator was used to seed faults (mutants) into the pro-
grams and evaluate how many mutants each test suit kills).

The number of mutants for each project is shown in Table
4.With a specific end goal to guarantee a reasonable and fair-
minded comparison, the mutants for the considered object

Table 3 Mutation operators used in the experimental studies

Operators Description

Pointcut level

PWIW Inserts wildcards into pointcut expressions

PWAR Removes annotation tags from type, field, method
and constructor patterns

PSWR Removes wildcards from pointcut expressions

POPL Changes the parameter lists of primitive Pointcut
Designators/ Descriptors (PCDs)

POEC Adds, omits or alters exception throwing clauses

PCTT Replaces a this PCD with a target one and
vice versa

PCCE Replaces a call PCD with an execution/
initialization/preinitialization

PCD and vice versa

PCGS Replaces a get PCD with a set one and vice versa

PCLO Changes the logical operators in PCDs
compositions

PCCC Replaces a cflow PCD with a cflowbelow
one and vice versa

Advice level

ABAR Replaces a before clause with an
after(returning|throwing) one and
vice versa

APSR Removes invocations to proceed statement

APER Removes guard conditions which surround
proceed statements

AJSC Replaces a thisJoinPointStaticPart
reference with a
thisEnclosingJoinPointStaticPart
one and vice versa

ABHA Removes implemented advice

ABPR Changes pointcut-advice binding by replacing
pointcuts which are bound to advice

Table 4 Mutants

Projects # Mutants

Health Watcher (HW) 457

AJHotDraw 443

iBATIS (iB) 572

Total 1472

programs were created and stored in a mutant’s repository to
be shared by all the tools. Finally, the created mutants were
reused by all the testing approaches for evaluation purpose.

In this experiment, we initially generated 1600mutants for
all three projects. About 8 % of the resulting mutants could
not be used due to mainly compilation errors or mutant’s
redundancy (“false positives”) and, consequently, were not
selected for analysis in the experiment. Hence, this reduction
left us with 1472 mutants in all to use in the experiment. As
shown above, the number ofmutants of each project thatwere

123

754 R. Meimandi Parizi et al.

Fig. 4 Experimental process

compiled and used appears in Table 4, and the detailed distri-
bution of the number of mutants per operator is additionally
provided in Appendix B.

Test cases and data were repeatedly produced by applying
the test generation approaches. That is, Wrasp, Aspec-
tra, Raspect, EAT, and RAMBUTANS internally produced
their own test cases. In total, 15 test suites (with every
approach generating three suites) were independently gener-
ated for every considered study using the automated testing
aspect-oriented approaches, which ultimately stored in a test
repository.

During all iteration, the test suite exercised all the mutants
of a given object program prior to resetting the test tool in
which test data were discarded. The test pool is reset due to:
(a) heterogeneous test data requirements of object programs,
(b) inability to assess the fault detection by the already gen-
erated data, or (c) divergence in test efforts efficiency among
numerous approaches.

Finally, the mutation system and adaptive AjMutator
accepted the generated data to verify the results of the mutant
programs on them. Subsequently, the object programs which
hold the test data that are already applied to a given mutant

are identified to apply the constructed test suite. Moreover,
the test data and mutants were randomly selected from test
pool and mutant pool accordingly. To effectively classify the
mutants, mutation system was used to exercise the result
checking and measurement collections. A fault is said to
be detected if a fault-seeded version (i.e., mutant) behaves
differently from the selected program, and the mutant is
accordingly said to be killed.

Figure 4 illustrates the experimental process as a whole.
The threeAOprograms are represented by the leftmost circle,
P. Each of the five test generators were used to create suits
of tests.

Then, AjMutator was used to generate mutants for each
object program, and run all five test sets against the mutants
(as presented in Table 4). This resulted in five mutation
scores, i.e., the percentage of mutants detected/killed by the
test suites, for each program.

4.4 Results and discussion

The summary of results is shown inTable 5. Table 5 shows the
number of tests in each test suit (“T”) and themutation scores

Table 5 Experimental data

Projects Aspectra Wrasp EAT Raspect RAMBUTANS

T %K K /T T %K K /T T %K K /T T %K K /T T %K K /T

Health Watcher(HW) 101 32.30 1.46 121 21.70 0.81 126 41.70 1.51 131 42.10 1.46 97 65.60 3.10

AJHotDraw 143 28.40 0.87 117 31.40 1.18 201 58.40 1.28 119 31.40 1.16 106 77.20 3.23

iBATIS (iB) 198 29.80 0.86 234 35.00 0.85 241 55.30 1.32 186 47.80 1.45 172 76.40 2.03

Total 442 30.16 1.06 472 29.36 0.94 568 51.80 1.37 436 40.43 1.35 375 73.06 2.79

123

RAMBUTANS: automatic AOP-specific test generation tool 755

Fig. 5 Total percent mutants killed by each test suit

on the mutants, in terms of the percentage of mutants killed
(“%K”) in relation to total mutants, as well as efficiency in
terms of the number of killed mutants per test (“K/T”). The
total row gives the sum of the tests for the object programs,
the average mutation score, and the average efficiency across
all programs.

Given the results, the following sub-sections provide
analysis (including both descriptive and statistical tests) in
answering our original research questions.

4.4.1 RQ1: faults detected

Figure 5 illustrates the total percent of mutants killed by each
test suit in a bar chart. The difference between the RAMBU-
TANS and the others is remarkable.

As can be seen from the figure, Aspectra achieved an aver-
age mutation score of 30.16 %. The Raspect tests (40.43 %)
did better than the Aspectra and Wrasp (29.36 %) tests, but
not aswell as the EAT (51.8%) tests. TheEAT tests, however,
kill 21 % less mutants than the strongest tool, RAMBUTANS,
with more tests. The Wrasp tests are the weakest, Aspectra
and Wrasp tests are fairly close, and, however, Aspectra was
slightly better. The RAMBUTANS tests are still far stronger,
killing 42 % more mutants than the weakest performing tool
(Wrasp).

There could be possible reasons for RAMBUTANS out-
performance, such as variation in features of considered
object programs, fault injection process, and capability of
AOP testing approaches (i.e., basic test selection and gen-
eration techniques for fault detection). Note that considered

case studies and related mutants after applying fault injec-
tion process were taken as constant during the empirical
evaluation process. Furthermore, the variability divided into
treatments and blocks by the selected design. It shows
that treatment effects were examined without any inter-
ference of blocks covering the output of the conducted
experiment. We expect that the related diversity-based test
selection mechanism conceived in the underlying technique
(performed by three probabilities displayed in Table 1) to
parameterize the randomization process in RAMBUTANS
can have a significant effect on the tests’ efficiency and
eventually permits to enhance the state of the art. Because
the thoroughness of random testing has been said to be
exceptionally subject to when and how randomization is
connected in the process [47]. Notwithstanding the random-
ized nature, RAMBUTANS have one of a kind attributes and
contemplations amid during random generation, including
having AOP-specific focus which was shown to improve
the effectiveness of tests, considering interesting or special
values, and reusing the return types that can affect the out-
comes.

Hypothesis testing IBM SPSS version 22.0 was used to
conduct statistical tests to examine the acceptance or rejec-
tion of null hypothesis, H0RQ1. In the observation, already
defined hypothesis, variable nature, residual analysis, and
experimental data distribution could be verified using proba-
bility plots, such as q–q and p–p. In addition, the parametric
ANOVA test which is reliable and robust was used. The sig-
nificance level of 1 % was exploited in hypothesis testing
at 99 % confidence level. The null hypothesis is rejected by
1 % probability of type-I-error. Moreover, statistical tests
assumed equal variances of the independent treatments. This
assumption was bolstered by experimental data before con-
ducting the statistical tests. As indicated by the experimental
data (i.e., particularly mutation scores) exhibited in Table 5,
the randomized block ANOVA was figured as appeared in
Table 6.

As it can be seen fromTable 6,wegot higherF value (Fobs)
of 20.4910 than the critical value (Fcrit = 3.828) for 4 and 40
F- distribution degrees of freedom and 99%confidence level.
According to the choice principle, reject H0RQ1 if F value >

Fcrit (20.4910 > 3.828) or, comparably, if the p value = Sig.
< α (0.0001 < 0.01). As for the above data, since p value ∼

Table 6 Results of ANOVA test on effectiveness

Source of variation Sum of squares Degree of freedom Mean squares F value Sig. (p value)

Between treatments 3957.767 4 989.442 20.491 0.0001

Within treatments 482.867 40 48.287

Total 4440.634 44

123

756 R. Meimandi Parizi et al.

Fig. 6 Total number of mutants killed per test

0.0 < 0.01, thuswe should reject the null hypothesis, H0RQ1.
At this stage, it can be found out that there are statistically
significant differences between the approaches.

4.4.2 RQ2: number of tests required

Because the number of tests diverged widely, we asked the
question “how efficient is each test generation approach?” To
approximate efficiency, we computed the number of mutants
killed per test. Figure 6 shows the data for all programs for
each approach.

Not surprisingly, the RAMBUTANS tests were at the high
end with a number of 2.79. The EAT generated the highest
number of tests, but came out as being the second most effi-
cient approach, 1.37. The Raspect (1.35) was almost found as
efficient as EAT but required fewer tests. The Wrasp (0.94)
and the Aspectra (1.06) tests were the least efficient; they
generated a lot of tests without much obvious benefit, which
adds a burden on the developerswhomust evaluate the results
of each test.

An interesting observation is the high numbers of tests
required by EAT compared to others. In this regard, EAT
can be the least effective in terms of required test effort
contrasted with other approaches. For example, the runtime
overhead of applying EAT was entirely high and that can
matter if the approach is utilized for real-time systems, where
every second counts. This might be due to the search-based
testing, especially genetic algorithm has been observed an
expensive technique which offers high coverage value that
has higher efficiency. This higher efficiency with the greater

amount of essential efforts is mainly because of the nature of
search-based techniques that involve significant tests due to
automated test generation. The EAT had also the same case
in which experimental results disclosed the issue. In actu-
ality, RAMBUTANS was appeared to be very quick in test
generation. The reason is that RAMBUTANS benefits from
randomized testing to which the capacity to create numerous
tests in a brief timeframe has been stamped as its favorable
advantage [47].

Hypothesis testing The parametric ANOVA test was
applied to test formulated hypothesis (H0RQ2) on results
to express the differences in efficiency between considered
test generation approaches. The significance level in relation
with the preceding test was set to α = 0.01. According to
the experimental data, presented in Table 5, the randomized
block ANOVA was calculated, as shown in Table 7.

From Table 7, it can be examined that suggested results
reject H0RQ2 at 0.01 level of significance (p value = Sig.< α,
i.e. 0.0006 < 0.01). Consequently, it was decided to reject
the null hypothesis.

At last, the results of the experiment present proof of
the effectiveness and efficiency of the proposed tool, which
had an AOP-specific focus in its test generation. The out-
comes additionally concern the degree of improvement over
the current state of the art, i.e., prior automated AOP test-
ing tools. From a different point of view, such empirical
results in the AOP testing area can frame an assortment of
knowledge over time, giving testers/developers the flexibil-
ity to choose the best tool or mix of tools concerning their
own thinking and suitable conformity between efficiency and
effectiveness.

4.4.3 Execution time

The execution time of the different tools taken to produce
the test suites is a feature involving test effort that matters
in industrial cases. In this view, we have reported the exe-
cution time of all AOP testing tools in the production of
test suites. We determined the execution time, measured in
minutes as elapsed time, of each tool required for the genera-
tion of corresponding number of test cases presented in Table
5. The amount of execution time taken to produce the test
suits recorded from the experiment is presented in Table 8.

Table 7 Results of ANOVA on efficiency

Source of variation Sum of squares Degree of freedom Mean squares F value Sig. (p value)

Between treatments 6.569 4 1.642 12.8900 0.0006

Within treatments 1.274 40 0.127

Total 7.843 44

123

RAMBUTANS: automatic AOP-specific test generation tool 757

Table 8 Execution time

Tools Execution time (min)

Aspectra 26.05

EAT 37.85

RAMBUTANS 14.72

Raspect 29.11

Wrasp 27.39

According to the table, RAMBUTANS required about
14.72 min to generate the total number of 375 test cases,
whereas EAT, Raspect, Aspectra, and Wrasp required 37.85,
29.11, 26.05, and 27.39 min, respectively, to produce 568,
436, 442, and 472 test cases. It can be observed that there
is a functional relationship between the number of test cases
and execution time in which the number of test cases run
determines the time. Seen in this way, it can be said that
the more the test cases, the longer the time to produce the
test cases. There is, however, an exception to this observa-
tion, and Raspect was shown to require less number of test
cases than Aspectra and Wrasp, but it took a higher exe-
cution time for its test productions. Overall, RAMBUTANS
could be seen as much faster tool than others could as it
produced a set of more-effective test cases in the shortest
time.

4.5 RAMBUTANS vs. classical Java random testing tool

The objective of this section is to provide a comparison
between the proposed tool, RAMBUTANS, and a classical
Java random testing tool that does not take the aspects into
account. Since AspectJ programs are eventually compiled
into Java bytecode, it would be very interesting to realize
whether focusing on the aspect featureswould be a good tech-
nique (as devised in our tool) over other tools that are meant
for testing object-oriented (OO) programs. In other words,
we will investigate what it will be the essential differences
(in terms of effectiveness and efficiency) between a general-
purpose Java tool to generate tests for aspect-oriented (AO)
programs in comparisonwith our tool that has aAOP-specific
focus.

There are few numbers of existing well-designed Java test
generation tools (e.g., RANDOOP [48] and Jartege [49]) in
the literature. In this particular experiment, we used RAN-
DOOP, which uses a guided random testing technique to
compare its performancewithRAMBUTANS. To perform this
experiment and arrive to results, we have followed the exper-
imental process as listed below:

1. Preparing programs As first step, we needed to com-
pile all the three AspectJ programs to obtain their woven
bytecode. To this end, we used AspectJ ajc compiler. It is
important to note that, we had another choice to make use
of RANDOOP with AspectJ programs, as it is not primar-
ily designed for aspects. This could include rewriting all the
aspects in the programs using the annotation style, which is
a feature of AspectJ 5, also known as @AspectJ annotation.
Using this feature, we can write aspects and aspect members
with regular Java syntax, so that they can be interpreted by the
AspectJ weaver. In the annotation style, aspects are declared
as classes and advice is a method. This feature allows RAN-
DOOP to recognize these constructs and generate calls for
them. However, due to huge manual effort to rewrite all the
programs and considering the fact that it is very likely to be
an error-prone process, we decided to use the bytecode of
programs as feed to the tool.

2. Test generation Once the programs are ready to feed,
we used RANDOOP tool to generate tests. The woven byte-
code of each AspectJ programwas given to the tool. For each
program, we set RANDOOP to generate the same number of
test cases as with RAMBUTANS, resulting in three test suites
for all the programs (97, 106, and 172 tests for HW, AJHot-
Draw, and iB programs, respectively; 375 in all).

3. Applying tests andmeasurement As last step, tests gen-
erated by RANDOOP were run on mutants of each program.
Hence, we measured the mutation scores on the mutants, in
terms of the percentage of mutants killed (“%K”) in rela-
tion with total mutants, as well as efficiency in terms of the
number of killed mutants per test (“K/T”). Note that we have
used the exact same mutants that were generated and used
on RAMBUTANS tests.

The results of this experiment on the same basis (in terms
ofmutants and number of tests) with regard to the abovemen-
tioned metrics are shown in Table 9. The “Total” row gives

Table 9 Comparison of
RANDOOP and RAMBUTANS

Programs %K K/T

RANDOOP RAMBUTANS* RANDOOP RAMBUTANS*

HW 31.05 65.6 1.46 3.1

AJHotDraw 27.79 77.2 1.16 3.23

iBATIS (iB) 33.85 76.4 1.12 2.03

Total 30.89 73.06 1.24 2.79

* The results of RAMBUTANS were reused from the first experiment (see Table 5)

123

758 R. Meimandi Parizi et al.

the average mutation score and the average efficiency across
all programs.

The results show that there is a considerable difference in
the mutation score (%K) obtained by both the tools. It can be
seen that utilizing anAOP-specific technique,RAMBUTANS,
over OO-specific technique, RANDOOP, the effectiveness
of tests can be increased by over 42 %. An interesting point
which can also be noticed is that the total %K obtained by
RANDOOP was slightly better than Aspectra and Wrasp
tools in the first study (see Table 5). Efficiencywise (K /T),
there was a larger relative change of 44 % between RAN-
DOOP and RAMBUTANS, which is approximately twice
as high as that of its competitor. Once again and interest-
ingly, the total figure of K /T obtained by RANDOOP was
seen to be better than Aspectra and Wrasp tools in the first
experiment.

Overall, the results from this particular experiment indi-
cate that classical Java testing tools may not be perfectly
suitable for testing AO programs, though applicable. The
underlying reason could be the ignorance of the aspectual
features by such tools, which switch the generation entrance
from aspects to objects. These results could provide evidence
that the essential difference imposed by AOP-specific focus
can make our tool win against general-purpose Java random
testing competitors. On a specific note, results from such
comparison would further help convince the need of design-
ing the proposed automated test generation tool for aspectual
features in this research.

4.6 Threats to validity

This section explains the validity threats considered for this
study and focuses concentration on common threats that
affect results.

The external validity threats for the most part concentrate
on legitimizing how illustrative the considered case studies
(i.e., object programs), AOP testing approaches, and support-
ing tools are. To handle the external validity threats, we used
three popularAspectJ benchmarks, real-world programswith
different characteristics along with frequently used aspects.
Having three large objects is such a reasonable number that
can have a representative of the developers in the industry.
From the investigation of the other related work, it has been
watched that only two or three small programs are regularly
used as objects in the experiments.

Regarding the object program size used in the exper-
iment, it merits underscoring that we have utilized three
industrial-sized AOP systems to incorporate into the experi-
ment. Despite the fact that including and breaking downmore
large-scale systems would be essential for a superior com-
prehension of the relative performance, we trust the present

results exhibited in the paper and started from the three pro-
grams can even now give bits of knowledge into the way
we evaluate the existing AOP testing approaches. Thus, the
object representativeness might not be a worrying threat, as
the programs aremoderately sensible tomake the experiment
comes about more summed up.

The selected approaches are only available reported
approaches in the context of AOP testing, which were used in
the experiment to evaluate RAMBUTANS. In fact, this threat
could be minimized by conducting extensive experiments
on AOP testing approaches that can be presented in future
research. The occurrence of faults in Adaptive AjMutator as
the auxiliary tool is another potential external validity threat
to experiment, since it was originally modified from AjMu-
tator tool to tackle its limitations. Therefore, we tested and
examined before applying the tool to experiment to handle
this tool related threat. To this end, we shaped a review group
of three Ph.D. students (majoring in Software Engineering)
of the University of Malaya. Students individually analyzed
the code (typically spend 4–6 h) to review all the produc-
tion classes in the tool, testing them with sample inputs and
programs. Once students tested the tool, they performed an
open discussion with researchers to solve conflicts and reach
a consensus on a couple of defects found.

The implementation effects and measurements are the
possible threats to internal validity that can bias the results.
Implementation of the peer approaches could be of a concern
to which, howwe are sure that the implementation if faithful.
To mitigate this thread, we replicated experiments/examples
from the original authors to check that the same results were
obtained. It turned that the results were pretty much identi-
cal with no major differences. As such, this could not be a
bias in the experiments. In addition, artificial fault’s injec-
tion instead of real faults might change the outcome in the
above mentioned effects. The seeded faults using mutation
operators have no significant effect on software develop-
ment in the aspect-oriented context. The unavailability of
fault’s documentation and benchmark mutants that occur
during development is the main problems in mitigating this
threat. Conversely, the occurrence of this threat can be min-
imized as concluded in a previous study [45]. In that study,
promising results were achieved using mutation operators.
The selection of mutation operators was grounded in a rela-
tively recent research, which suggests a number of important
aspect-oriented mutation operators. Consequently, the muta-
tion operators represent real faults.

The conclusion validity threats are mainly concerned with
the statistical analysis. Appropriate statistical tests, such as
ANOVA, were performed to assess the null hypotheses. In
addition, statistical tests’ assumptions were met, and thus
no obvious error rate was observed. Finally, this conclusion
validity related threat was marginal.

123

RAMBUTANS: automatic AOP-specific test generation tool 759

5 Implications and limitations

This tool paper offers some implications for practitioners
and researchers. The analysis of the specific results extracted
from the conducted experiments would facilitate decision
makers with descriptive and statistical information, which
could be useful to assist them to choose the most suitable
test generation tool for a given project. Program testers might
consider RAMBUTANS as an appropriate test generation
approach in AO projects in which the prioritization of aspec-
tual features is needed, the number of aspect is large, and
the generation process needs to be fast and simple while pre-
serving effectiveness.Manually generating a large number of
test cases is nearly impractical, but automated test generation
tools render such a task possible. The results reported in this
paper suggest that the proposed tool could be of significant
benefit to software testers.

The findings of this study could also be used as a guide-
line by interested researchers for identifying trends before
initiating a new approach in the future or evaluating existing
ones. It is challenging to claim that the results of this study
could be generalized to business settings due to the usage of
students and researchers as subjects. To have rigorous evi-
dence of confirming or contradicting this claim, it would be
of interest for researchers to investigate the replication of the
empirical part by participating professionals as subjects. It
would also be worthwhile for researchers to conduct further
empirical studies on a larger number of AO projects to figure
out how similar would be the results with the findings of this
study.

The limitations of the RAMBUTANS tool include the fol-
lowing:

Support of AspectJ features AspectJ is a very feature-
rich language. The presented tool aims at effective aspect-
level testing of crosscutting concerns (which can be seen as
a sort of unit/ module testing), specifically those features
related to aspectual implementation of concerns. However,
it only considers the most generally used join points related
to constructors and methods (call, execution), as they are the
building blocks of the object-oriented software systems and
speak to the most valuable points at which the crosscutting
behaviors can be woven.

An aspect mainly interacts with base code/program via
weaving rules which specifies what actions to carry out when
particular points in the execution of the program are reached
(it is important to note that theweaving takes place only in the
bytecode produced by the AspectJ compiler). These weaving
rules for sure are those crosscutting requirements/behaviors
executed by means of advice in AspectJ (what is known as
dynamic crosscutting). All together for this interaction to
happen appropriately, the pointcut associated with advice,
inter-type declarations (what is known as static crosscut-
ting), and built-in methods of aspects should work, as they

are composed. In the presented tool, it is assumed that these
constructs work, as they designed. The reason lies in fact that
the fundamentally usage of these constructs and especially
static crosscutting is to give support for the enforcement of
dynamic crosscutting but not changing the runtime conduct
of the base program. For example, the infusion of new fields
or methods through inter-type declaration does not change
the state of the base code. In our perspective, this limitation
could not restrict generality of the proposed tool, as the focus
is still to provide effective dynamic tests for aspects.

Test coverage Constrained execution paths may be diffi-
cult to exercise without resorting to constraint satisfaction
techniques. In other words, how much testing would be
enough? This is a concern that has been raised and dis-
cussed in many testing settings. It is still an area of active
debate in the software testing community. Apparently, the
answer to this question is completely intuitive and depends
on the decision made by the tester about how much testing
is enough. This means, in this context, the burden would be
on tester to determine which aspects should be tested and to
what extent. However, RAMBUTANS uses flexible stopping
criteria (either a single criterion, such as time limit, aspect
coverage, and number of test cases or a combined one) that
can give the tester the flexibility of adjusting testing period
according to their own reasoning or intuitions about the mat-
ter.

Parsing capabilities Parsing source code based on regular
expressions might be adequate only for the so-called regular
languages, which could be the case of Java or AspectJ. How-
ever, it could be better to resort to existent ‘official’ parsers
for Java and AspectJ to make the tool more robust.

6 Conclusion and future work

This paper presented a new AOP-specific tool that auto-
mates the generation of tests, which is the most technically
challenging part of testing, for aspects in AspectJ. No tool
currently exists that provides automatic test generation for
aspects. Our tool is specifically targeted towards automati-
cally testing aspects by generating test data to exercise the
advice and pointcuts, and thereby serves as a means of ver-
ifying the correctness and quality of aspects. The tool is
capable of producing a large number of tests that in turn
would be handy for regression testing of AspectJ programs
and, consequently, integrating testing with manual testing,
i.e., supplying hand-written test data to the automatically
generated test classes.

Since random testing techniques can lead to statistical
analysis, hence they can be used in reliability assessment
and estimation of a program from test results (in this context
reliability can be a measure of the proportion drawn from
a given input distribution that the program treats correctly

123

760 R. Meimandi Parizi et al.

[50]). Thus, the AOP testing tool proposed in this study can
also be seen as an AOP risk and/or reliability assessment
means to address the risk associated with the adoption of
these programs.

In the future,wewould like toworkon the scalability of the
tool and also extend it into a multi-language tool (other than
AspectJ) that can recognize other programming languages
(such as C [51] or C++), whose syntax is comparable to that
of AspectJ.

Acknowledgements R. Meimandi Parizi would like to thank the New
York Institute of Technology (NYIT) for providing financial sup-
port. A.A. A. Ghani’s work was supported in part by Fundamental
Research Grant Scheme with reference FRGS/2/2010 /SG/UPM/01/2.
S. P. Lee’sworkwas carried outwithin the research project supported by
High Impact Research Grant with reference UM.C/625/1/HIR/MOHE/
FCSIT/13, funded by the Ministry of Education, Malaysia. S.U.R.
Khan would like to acknowledge the financial support of the Bright
Sparks Program at University of Malaya, Malaysia under reference
BSP-151(3)-11.

7 Appendix A

Internal algorithms of components used inRAMBUTANS can
be found at: http://goo.gl/DG0OGv.

8 Appendix B

The number of the final mutants was made to the programs
during the experiment. The following table shows the distri-
bution of mutants per mutation operator in relation with the
three programs (Table 10).

Table 10 Details of mutants

Operators Health Watcher AJHotDraw iBATIS Total

PWIW 22 19 28 69

PWAR 21 23 33 77

PSWR 19 16 37 72

POPL 38 32 27 97

POEC 29 25 26 80

PCTT 28 28 42 98

PCCE 32 24 38 94

PCGS 23 19 29 71

PCLO 33 29 37 99

PCCC 20 23 33 76

ABAR 31 29 42 102

APSR 26 33 35 94

APER 32 38 40 110

AJSC 26 30 36 92

ABHA 40 36 46 122

ABPR 37 39 43 119

Total 457 443 572 1472

References

1. Kiczales, G.: Aspect-oriented programming. ACM Comput. Surv.
28 (1996)

2. Kiczales, G., Lamping, J., Lopes, C.V., Hugunin, J.J., Hilsdale,
E.A., Boyapati, C.: Aspect-oriented programming, United States
Patent 6467086, Xerox Corporation Patent (2002)

3. Hoffman, K., Eugster, P.: Cooperative aspect-oriented program-
ming. Sci. Comput. Program. 74, 333–354 (2009)

4. Nakagawa, E.Y., Ferrari, F.C., Sasaki, M.M.F., Maldonado, J.C.:
An aspect-oriented reference architecture for SoftwareEngineering
Environments. J. Syst. Softw. 84, 1670–1684 (2011)

5. Kallel, S., Charfi, A., Mezini, M., Jmaiel, M.: Combining formal
methods and aspects for specifying and enforcing architectural
invariants. In: Proceedings of the 9th International Conference on
Coordination Models and Languages, pp. 211–230 (2007)

6. Garcia, A., Batista, T., Rashid, A., Sant’Anna, C.: Driving and
managing architectural decisions with aspects. ACM SIGSOFT
Softw. Eng. Notes 31, 1–8 (2006)

7. Mets, J., Maoz, S., Katara, M., Mikkonen, T.: Using aspects for
testing of embedded software: experiences from two industrial case
studies. Softw. Qual. J. 22, 185–213 (2013)

8. Linehan, E., Clarke, S.:An aspect-oriented,model-driven approach
to functional hardware verification. J. Syst. Archit. 58, 195–208
(2012)

9. Driver, C., Reilly, S., Linehan, E., Cahill, V., Clarke, S.: Managing
embedded systems complexity with aspect-oriented model-driven
engineering. ACM Trans. Embed. Comput. Syst. 10, 1–26 (2010)

10. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: The detection
and classification of non-functional requirements with application
to early aspects. In: Proceedings of the 14th IEEE International
Conference Requirements Engineering, pp. 39–48 (2006)

11. Amar, B., Leblanc, H., Coulette, B., Nebut, C.: Using aspect-
oriented programming to trace imperative transformations. In:
Proceedings of the 14th IEEE International Enterprise Distributed
Object Computing Conference, pp. 143–152 (2010)

12. Voelter, M., Groher, I.: Product line implementation using aspect-
oriented and model-driven software development. In: Proceedings
of the 11th International Software Product Line Conference, pp.
233–242 (2007)

13. Lee, J.-S., Bae, D.-H.: An aspect-oriented framework for devel-
oping component-based software with the collaboration-based
architectural style. Inf. Softw. Technol. 46, 81–97 (2004)

14. Filman, R.E., Friedman, D.P.: Aspect-oriented programming is
quantification and obliviousness. In: Proceedings of Aspect-
Oriented Software Development, pp. 21–35 (2005)

15. Lemos, O.A.L., Franchin, I.G., Masiero, P.C.: Integration testing
of Object-Oriented and Aspect-Oriented programs: A structural
pairwise approach for Java. Sci. Comput. Program. 74, 861–878
(2009)

16. Meimandi Parizi, R., Ghani, A.A.A., Abdullah, R., Atan, R.:
Empirical evaluation of the fault detection effectiveness and test
effort efficiency of the automated AOP testing approaches. Inf.
Softw. Technol. 53, 1062–1083 (2011)

17. Xie, T., Zhao, J., Marinov, D., Notkin, D.: Automated test gener-
ation for AspectJ programs. In: Proceedings of the 1st Workshop
on Testing Aspect-oriented Programs, pp. 1–6 (2005)

18. Xie, T., Zhao, J.: A framework and tool support for generating test
inputs ofAspectJ programs. In: Proceedings of the 5th International
Conference on Aspect-Oriented Software Development, pp. 190–
201 (2006)

19. Xie, T., Zhao, J., Marinov, D., Notkin, D.: Detecting redundant
unit tests for AspectJ programs. In: Proceedings of the 17th Inter-
national Symposium on Software Reliability Engineering, pp.
179–190 (2006)

123

http://goo.gl/DG0OGv

RAMBUTANS: automatic AOP-specific test generation tool 761

20. Harman, M., Islam, F., Xie, T., Wrappler, S.: Automated test data
generation for aspect-oriented programs. In: Proceedings of the
8th International Conference on Aspect-Oriented Software Devel-
opment, pp. 185–196. Charlottesville (2009)

21. Duran, J.W., Ntafos, S.C.: An evaluation of random testing. IEEE
Trans. Softw. Eng. 10, 438–444 (1984)

22. Arcuri, A., Iqbal, M.Z., Briand, L.: Random testing: theoretical
results and practical implications. IEEE Trans. Softw. Eng. 38,
258–277 (2012)

23. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated
random testing. In: Proceedings of the 2005 ACM SIGPLANCon-
ference on Programming Language Design and Implementation,
pp. 213–223. Chicago (2005)

24. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: ARTOO: Adaptive
random testing for object-oriented software. In: Proceedings of the
30th InternationalConference onSoftwareEngineering, pp. 71–80.
Leipzig (2008)

25. Bertolino, A.: Software testing research: achievements, challenges,
dreams. In: Proceedings of the 2007 Future of Software Engineer-
ing Conference, pp. 85–103 (2007)

26. Tsoukalas, M.Z., Duran, J.W., Ntafos, S.C.: On some reliability
estimation problems in random and partition testing. IEEE Trans.
Softw. Eng. 19, 687–697 (1993)

27. Meimandi Parizi, R., Ghani, A.A.A., Lee, S.P.: Automated test
generation technique for aspectual features in AspectJ. Inf. Softw.
Technol. 57, 463–493 (2015)

28. Ferrari, F.C., Burrows, R., Lemos, O.A.L., Garcia, A., Maldonado,
J.C.: Characterising faults in aspect-oriented programs: towards
filling the gap between theory and practice. In: Proceeding of the
2010 Brazilian Symposium on Software Engineering, pp. 50–59
(2010)

29. Kiczales, G., Hilsdale, E.A., Hugunin, J.J., Kersten, M., Palm, J.,
Griswold, W.G.: An overview of AspectJ. In: Proceedings of the
15th European Conference on Object-Oriented Programming, pp.
327–353 (2001)

30. Lopes, C.V., Ngo, T.C.: Unit testing aspectual behavior. In: Pro-
ceedings of the 1st WorkshoponTestingAspectOrientedPrograms,
pp. 1–6 (2005)

31. Yamazaki, Y., Sakurai, K., Matsuura, S., Masuhara, H., Hashiura,
H., Komiya, S.: A unit testing framework for aspects without
weaving. In: Proceedings of the 1st Workshop on Testing Aspect-
oriented Programs, pp. 1–5 (2005)

32. Csallner, C., Smaragdakis, Y.: JCrasher: an automatic robustness
tester for Java. Softw Pract. Exp 34, 1025–1050 (2004)

33. Parasoft Jtest. http://www.parasoft.com/jsp/products/jtest.jsp.
Accessed 7 June 2015

34. Xie, T., Marinov, D., Notkin, D.: Rostra: A framework for detect-
ing redundant object-oriented unit tests. In: Proceedings of the 19th
IEEE International Conference on Automated Software Engineer-
ing, pp. 196–205 (2004)

35. Alexander, R.T., Bieman, J.M., Andrews, A.A.: Towards the
systematic testing of aspect-oriented programs. Colorado State
University, Technical Report CS-4-1052003

36. Meimandi Parizi, R., Ghani, A.A.A.: A theoretical evaluation of
automated aspect-oriented program testing approaches. In: Pro-
ceedings of the Annual International Conference on Software
Engineering, pp. 11–19. Phuket (2010)

37. Nakagawa, E.Y., Simo, A.d.S., Ferrari, F.C., Maldonado, J.C.:
Towards a reference architecture for software testing tools. In:
Proceedings of the 19th InternationalConference onSoftwareEngi-
neering and Knowledge Engineering (2007)

38. Rashid, A., Cottenier, T., Greenwood, P., Chitchyan, R., Meunier,
R., Coelho, R., et al.: Aspect-oriented software development in
practice: Tales from AOSD-Europe. Computer 43, 19–26 (2010)

39. Soares, S., Borba, P., Laureano, E.: Distribution and persistence as
aspects. Softw. Pract. Exp. 36, 711–759 (2006)

40. Ferrari, F.C., Burrows, R., Lemos, O., Garcia, A., Figueiredo,
E., Cacho, N., et al.: An exploratory study of fault-proneness in
evolving aspect-oriented programs. In: Proceedings of the 32nd
ACM/IEEE InternationalConference onSoftwareEngineering, pp.
65–74 (2010)

41. Wappler, S.: Automatic generation of object-oriented unit tests
using genetic programming, Ph.D. thesis, Technical University of
Berlin (2008)

42. Jia, Y., Harman, M.: An analysis and survey of the development of
mutation testing. IEEE Trans. Softw. Eng. 37, 649–678 (2011)

43. Offutt, J.: A mutation carol: Past, present and future. Inf. Softw.
Technol. 53, 1098–1107 (2011)

44. Ferrari, F.C., Rashid, A., Maldonado, J.C.: Towards the practical
mutation testing of AspectJ programs. Sci. Comput. Program. 78,
1639–1662 (2013)

45. Ferrari, F.C., Maldonado, J.C., Rashid, A.: Mutation testing for
aspect-oriented programs. In: Proceedings of the 1st International
Conference on Software Testing, Verification, and Validation, pp.
52–61 (2008)

46. Delamare, R., Baudry, B., Le Traon, Y.: AjMutator: A tool for the
mutation analysis of AspectJ pointcut descriptors. In: Proceedings
of the 2nd International Conference on Software Testing, Verifica-
tion, and Validation Workshops, pp. 200–204 (2009)

47. Andrews, J.H., Menzies, T., Li, F.C.H.: Genetic algorithms for ran-
domized unit testing. IEEE Trans. Softw. Eng. 37, 80–94 (2011)

48. Pacheco,C., Ernst,M.D.:Randoop: feedback-directed random test-
ing for Java. In: Proceedings of the Companion to the 22nd ACM
SIGPLAN Conference on Object-oriented Programming Systems
and Applications, pp. 815–816. Montreal (2007)

49. Oriat, C.: Jartege: A tool for random generation of unit tests for
Java classes. In: Proceedings of the 1st International Conference
on the Quality of Software Architectures, pp. 242–256 (2005)

50. Tsoukalas, M.Z., Duran, J.W., Ntafos, S.C.: On some reliability
estimation problems in random and partition testing. IEEE Trans.
Softw. Eng. 19, 687–697 (1993)

51. Novikov, E.M.: An approach to implementation of aspect-oriented
programming for C. Program. Comput. Softw. 39, 194–206 (2013)

123

http://www.parasoft.com/jsp/products/jtest.jsp

	RAMBUTANS: automatic AOP-specific test generation tool
	Abstract
	1 Introduction
	2 Background and related work
	2.1 AOP and AspectJ
	2.2 Related work
	2.3 Wrasp
	2.4 Aspectra
	2.5 Raspect
	2.6 EAT

	3 RAMBUTANS tool
	3.1 Underlying technique
	3.2 Architecture
	3.3 Details of implementation (inner workings)
	3.4 Execution of the RAMBUTANS tool

	4 Empirical assessment
	4.1 Case studies (object programs)
	4.2 Implementation of the peer approaches
	4.3 Experimental process
	4.4 Results and discussion
	4.4.1 RQ1: faults detected
	4.4.2 RQ2: number of tests required
	4.4.3 Execution time

	4.5 RAMBUTANS vs. classical Java random testing tool
	4.6 Threats to validity

	5 Implications and limitations
	6 Conclusion and future work
	Acknowledgements
	7 Appendix A
	8 Appendix B
	References

