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Abstract We show here how the use of genetic program-
ming in combination of model checking provides a powerful
way to synthesize programs. Whereas classical algorithmic
synthesis provides alarming high complexity and undecid-
ability results, the genetic approach provides a surprisingly
successful heuristics. We describe several versions of a
method for synthesizing sequential and concurrent systems.
We show several examples where we used our approach to
synthesize, improve and correct code.
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1 Introduction

Formal methods, e.g., testing, verification and model check-
ing, can provide the means for manually or automatically
enhancing the reliability of programs and algorithms. In par-
ticular, model checking can be practically used for automatic
verification of finite state concurrent systems, such as hard-
ware circuits and communication protocols, against their
specification. Model checking tools can be used to prove
the correctness of models of such systems, or provide coun-
terexamples, in case the specification is violated.

A more ambitious goal is the synthesis of systems directly
from their specification [44]. Such an ability would allow
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skipping the stages of development and verification, since
the synthesized code is guaranteed to be correct by design.
While there are various theoretical results related to system
synthesis, practical implementations of synthesis are quite
rare. First, for concurrent systems there are undecidabil-
ity results [45], while positive decidability results are quite
restrictive [32]. Furthermore, even for the decidable cases,
synthesis algorithms are usually complicated, having high
computational complexity [16,44], and the generated code
is not guaranteed to be efficient.

While there are various methodologies aiding with the
development of large software projects, the essence of solv-
ing new algorithmic problems still requires programmers to
exhibit creativity and ingenuity. Even when initial solutions
are found, it may a very long time until further improve-
ments are achieved. This difficulty, along with the impressive
success of evolution, has encouraged computer scientists to
develop techniques that mimic some aspects of the evolution-
ary process, in order to automatically generate and improve
computer programs. Genetic programming (GP) [2,30,46] is
a search based software engineering approach [18], i.e., an
evolutionary based heuristic search methodology for finding
computer programs that perform user defined tasks. In GP,
programs are generated and evolved by applying biologically
inspired ideas, such as reproduction, mutations and natural
selection. GP uses a fitness function that measures the qual-
ity of the candidate solutions generated during the search.
GP can also be used to improve programs, e.g., Test-based
genetic programming is used in [34] to speed up the perfor-
mance of systems.

Our goal is to combine ideas from both the genetic
programming and formal verification methods to develop
a synthesis method that would benefit from the synergy
between these domains and hopefully provide better results
than those achieved when using the techniques separately. We
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present a framework that allows starting with a formal spec-
ification for a given problem and automatically synthesizing
code that satisfies the specification. While genetic program-
ming fitness function is based oftentimes on test cases, in our
approach it is based on the more comprehensive (yet more
complex) model checking.

Our motivation for using genetic programming for pro-
gram synthesis stems from the mentioned undecidability of
synthesis of concurrent programs. Genetic programming is
a heuristic search, which means it can succeed (but may also
sometimes fail) in the task of finding code for a given concur-
rent programming task even though this task was shown to be
in general undecidable. Our method allows the user to fine-
tune the search, e.g., by giving additional specifications, and
by changing the way that model checking results are affecting
the fitness. The particular kind of programming challenges
that we aim at are small but intricate. These are not big pro-
grams for user applications, but rather the kind of problems
where new solutions are published in research papers. Model
checking itself has rather high complexity (PSPACE com-
plete in both the size of the system and the specification),
but already possesses many efficient heuristics. Hence our
method, which applies model checking repeatedly on candi-
date programs, is best suited for the cases where the aimed
generated code is not large: tens to a couple of hundreds lines
of code.

Through the use of genetic programming, instead of apply-
ing a direct algorithmic translation as in classical synthesis,
we perform a generate-and-check kind of synthesis. This
brings back to the playground the use of verification meth-
ods such as model checking on given instances. An extreme
approach would be to generate all possibilities (if they can
be effectively enumerated) and check them, e.g., by using
model checking, one by one. In the work of Bar-David and
Taubenfeld [3], mutual exclusion algorithms are synthesized
by enumerating the possible solutions and checking them.

The use of model checking to provide fitness instead of the
traditional use of test cases has several aspects. On the one
side, passing a large number of test cases does not guarantee
correctness. On the other hand, using a large test suite allows
providing a large number of fitness levels, while the number
of properties against which the system is verified is relatively
small, providing quite a discrete fitness function. Practice
shows that it is essential for the success of the GP process
to make the fitness function more smooth (or, as in terms
of Harman and Jones [18], avoiding the fitness landscape
from being flat). In order to make model checking-based
genetic programming practical, we introduced “enhanced
model checking” [23]; accordingly, our model checking
does not only produce a check of correctness of proper-
ties, but in order to provide a smoother fitness function,
distinguishes also finer levels of correctness, e.g., whether
some or most executions satisfy a given specification. Indeed,
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we demonstrate success in synthesizing some challenging
algorithms.

As far as we are aware, the first paper suggesting that
genetic programming fitness is based on model checking is
by Johnson [22], predating our first own work by a year.
There, fitness is obtained by counting the number of tempo-
ral properties that hold in generated candidates. One of the
main differences between our work and that of Johnson is in
providing more fitness values through deep model checking,
which distinguishes multiple levels of satisfaction for a given
property. Other differences include the use of the logic LTL
(Linear Temporal Logic) for specification instead of the logic
CTL (Computational Tree Logic), the synthesis of paramet-
ric programs and the scale in which we managed to apply our
method.

We start with synthesizing solutions for classical concur-
rent algorithms, such as those used for mutual exclusion. This
work is composed of both theoretical and practical ideas.
Already in the early stages of the research, a prototype tool!
was developed, implementing the framework described in
this paper and the ideas suggested during our work.

We next extend our framework to deal with parametric
problems. In this case, the sought programs have to be correct
for any instantiation of the parameters. The parameters can
include the number of processes, initial values of variables
and the communication channels connecting between the dif-
ferent processes. Since parametric verification is in general
undecidable [1], we can only verify the correctness of pro-
grams for some instances. In order to deal with this limitation,
we used our genetic programming method in the co-evolution
of both incorrect instances and candidate solutions; new can-
didates are checked against instances of the parameters, e.g.,
initial values or communication architectures that already
failed some of the previous attempts. Because of the unde-
cidability of model checking for these cases, we stop the
synthesis process when some substantial evidence of correct-
ness is accumulated (say, when verification was successful up
to some certain number of processes). This use of mutations
of parameters and model checking of instances of parametric
algorithms makes model checking, in some sense, a compre-
hensive method of testing, when strict model checking is
insufficient.

Based on these co-evolution principles, we used our
genetic synthesis method to find a solution to the known
leader election problem [6, 14,43]. Furthermore, we used our
technique to find an error in a complicated synchronization
algorithm, called a-core [41], thus overcoming the theoret-
ical limitation of plain model checking. Subsequently, our
prototype tool discovered automatically a correction to this
algorithm.

' After some years, the tool MCGP is not currently available for free
download. We hope to be able to reinstall it in the future.
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The rest of the paper is organized as follows: In Sect. 2
we present background on model checking, genetic program-
ming and automatic program synthesis. Section 3 describes
our approach of model checking-based genetic program-
ming. Section 4 provides insight into the method through
the synthesis of solutions for the mutual exclusion prob-
lem. This includes both rediscovering the classical solutions
and finding new solutions under more realistic and practical
requirements. Section 5 presents the synthesis of a solution
for the parametric problem of leader election in a unidi-
rectional ring. In Sect. 6 we present our experience while
automatically correcting a complicated communication pro-
tocol, called a-core. Here, not only the number of processes
is parametric, but also the protocol works with varying
communication architectures. GP was used both to find the
architecture that manifests the error, as well as to automati-
cally correct the protocol. Section 7 concludes the paper.

2 Preliminaries
2.1 Model checking of temporal properties

Model checking [10] is an automatic method for verifying
the correctness of a finite state software or hardware system
against its formal specification. It is often used to verify mod-
els of concurrent algorithms, protocols and reactive systems.
Such models usually have many possible execution paths,
due to concurrency and nondeterministic choices made by
scheduling or interacting with the environment.

A finite system can be modeled by an automaton. Each
state of the automaton corresponds to an evaluation of the
variables, program counters, communication buffers of the
system. An execution is then a maximal sequence of states,
starting from some initial state; transitions between sub-
sequent states represent the effect of atomic actions of the
system. Propositions are used to identify information essen-
tial for the checked property. For example, proposition p
may be defined to hold in a state where x > 0, while ¢ may
be defined to hold when the message buffer between two
processes is empty. The same propositions are used by the
specification. The formal specification can be written as a set
of properties in a logic such as Linear Temporal Logic (LTL),
which combines propositional variables and logic operators
with temporal operators. LTL has the following syntax:

@ n=true|false | p| =@ | (V)| (@A@)]
(0= o) | e | O | O | (pUyp),

where p € AP is a set of atomic propositions. LTL formu-
las are interpreted over an infinite sequence of states & =
$05152 . . ., where we denote by &; the suffix s;s; 11542 ... of

& (hence & = &p). For a suffix &; of &, the LTL semantics is
defined as follows:

- & Epiffs; e p.

- & E —eiffnot§; = ¢.

-siE@@VvYiffs Eeoré E¢.

- & EOeiff &y Fo.

- & = (pUy) iff for some j > i, §; = ¥, and for all
ifk<j"§k ':(p

The rest of connectives can be defined using the following
identities: true = (p VvV —p), false = —true, (¢ AN ¥) =
=(mp VoY), (9 > ¥) = (mo V), Op = (truellp),
O¢ = —O—¢. For an automaton M representing a system,
M = ¢ if for every execution & of M we have & = ¢.

A standard model checking procedure checks whether
a system M satisfies a specification ¢ [52]. The specifi-
cation ¢ is often converted into automata A, over infinite
words [17]. The simplest kind of such automata is called
Biichi automata [49]; an infinite word (representing in our
context an execution) is accepted if in a run of the automa-
ton over that word, at least one of a set of states that are
distinguished as accepting occurs infinitely many times. For
some LTL specifications such as ¢Up, the translation will
necessarily result in a nondeterministic Biichi automaton.

The specification automaton represents all of the exe-
cutions (abstracted as sequences of propositional values)
allowed by the specification properties. The model checking
algorithm then checks whether the language of the model
automaton is contained in the language of the specification
automaton. If this holds, then the checked property is sat-
isfied by the model. Otherwise, there are executions of the
model that violate the specification. These executions can
be provided to the user as counterexamples that may help in
finding the cause of the violation.

Formally, let M be the model automaton and A, the
automaton that accepts the executions of the specification
¢. We need to check whether L(M) C L(g). Since

L(M) C L(p) < LIM)NL(p) = @ <> L(M) N L(=¢)
=0 < L(M)N L(Ay)
=0

Thus, we can negate ¢, building A-, rather than building
A, and then complementing. Then we check whether the
language L(M) N L(A-y) is empty.

While for some LTL properties the translation results in
rather small Biichi automata [17], there are families of LTL
properties for which their corresponding Biichi automata
grow exponentially in the size of the properties. The size of
the model automaton may grow exponentially with the num-
ber of variables and processes. This phenomenon, known as
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the “state-space explosion”, implies that direct verification of
certain types of models may be impractical in terms of time
and space. There are various techniques, e.g., partial order
reduction [9] and abstraction [8] that combat this problem.
Many practical problems are parametric, where their speci-
fication need to hold for every number of processes. Though
parametrized model checking is in general undecidable [1],
there are several techniques that can deal with limited cases
of parametric problems [53].

While model checking usually returns a yes/no answer,
there are some algorithms that can give quantitative and
qualitative results. One example is probabilistic model check-
ing [12], which can be used where it is possible to assign
probabilities to the transitions in the model.

2.2 Genetic programming

During the 1970s, Holland established the field known as
Genetic Algorithms (GA) [21]. According to this methodol-
ogy, individual candidate solutions are represented as fixed
length strings of bits and are manipulated mainly by the
crossover and mutation genetic operations. The crossover
operation takes parts of strings from two parent solutions and
combines them into a new solution, which potentially inher-
its useful attributes from its parents. The mutation operation
randomly alters the content of small number of bits in the
string, thus allowing the insertion of new building blocks (or
genes) into the population.

Genetic algorithms were successfully applied in a large
variety of domains, and many variants were suggested for
their solutions representation and genetic operations. These
algorithms share the following general steps:

Randomly generate initial solutions.

Evaluate the fitness of each of the solutions.

If a satisfactory solution is found, terminate.

Otherwise, apply genetic operations on the solutions, and
generate new ones.

5. Go to step 2.

Sl

Genetic programming [30] is a direct successor of genetic
algorithms. In GP, each individual “organism” represents a
computer program. Thus, instead of fixed length strings, pro-
grams are represented by variable length structures, such as
trees, linear lists or graphs. Each individual solution is built
from a set of functions and terminals and corresponds to a
program or an expression in a programming language that
can be executed. The genetic operations were customized to
match the flexible structure of individuals. For instance, in
tree-based genetic programming, crossover is performed by
selecting subtrees on each of the parents and then swapping
between them; This forms two new programs, each having
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parts from both of its parents. Mutation can be carried out
by choosing a subtree and replacing it by another randomly
generated subtree. The fitness is calculated by directly run-
ning the generated programs on a large set of test cases and
evaluating the results.

Genetic programming may be viewed as a beam search
in the space of computer programs. Mutations allow the
advance from one point in the space to another, and crossover
provides the ability of “jumping” to new points by merg-
ing several previously explored points. In Koza’s work [30],
crossover is the main genetic operation, and mutations are
negligible. On the other hand, there is an ongoing debate
about the actual role and importance of crossover. The main
question is whether it indeed combines building blocks into
larger blocks of code, or just acts as a macro mutation. Hence,
there were various suggestions of improving crossover, while
other researches focused on the mutation operation [7]. GP
has successfully generated complex solutions to problems in
a broad range of domains, and it constantly yields human-
competitive results [31]. Herman and Jones [18] subscribed
genetic programming to a class of heuristic search methods
that they termed search-based software engineering. These
fitness guided search methods, which include also simulated
annealing, are aimed at constructing, improving and correct-
ing software artifacts.

2.3 Synthesis

Software synthesis is a relatively new research direction.
The classical Hoare proof system for [20] can be seen as
an axiomatic semantics for sequential programs. It provides
a set of rules that can be used to gradually transform the for-
mal specification into sequential system, while preserving
its correctness. The process is manual, requiring the human
intuition of where to split the problem into several sub-
parts, deciding on where a sequential, conditional or iterating
construct needs to be used and providing the intermediate
assertions. Synthesis of infinite state programs is undecid-
able. As in verification, substantial progress was made once
research started to focus on finite state systems.

Manna and Wolper [38] suggested a transformation of
temporal logic specification into automata. This translation
to an automaton (on infinite sequences) provides an opera-
tional description of these sequences. Then, the operations
that belong to different processes are projected out on these
processes, while a centralized scheduler enforces globally the
communication to occur in an order that is consistent with
the specification. The main disadvantage of this approach is
that due to the centralized scheduler, concurrency is lost.

Reactive systems are required to alternate their inter-
nal behavior with inputs provided by an environment. The
system does not have control on the inputs from the environ-
ment; still, one needs to guarantee that the overall behavior
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will satisfy the required specification. Research on synthesis
of reactive systems is focused on modeling the interac-
tion between the system and the environment as a kind of
a two-player game between the system and the environ-
ment. The realization of the synthesis problem is in fact
the obtained winning strategy for the system. Thus, a clas-
sical solution for the synthesis problem [44] consists of
translating the specification into an automaton and finding
a two-player strategy that would guarantee a correct behav-
ior. The standard translation of an LTL property into a Biichi
automaton on infinite words may result in a nondeterministic
automaton [49]. While model checking works well with non-
deterministic automata [52], finding a winning strategy for
the system requires using a deterministic automaton (other-
wise, the environment may exploit nondeterminism to win).
Thus, a determinization is required [47]. (In fact, this requires
using a more structured type of automata on infinite words
so that each LTL property has a corresponding deterministic
representation.) The translation and the subsequent deter-
minization entrails a doubly exponential explosion. Indeed,
one can show a family of LTL specification whose realization
requires a state space that is doubly exponential in the size
of the specification [32].

Concurrent systems are even more complicated to synthe-
size: the specified task needs to be decomposed into different
components, where each having limited visibility and con-
trol on the behavior of the other components. Pnueli and
Rosner [45] showed that synthesis of concurrent systems is,
in general, undecidable. Decidable cases are quite restrictive,
see, e.g., [33].

3 Software synthesis using genetic programming
based on model checking

We present a framework combining genetic programming
and model checking that allows to automatically synthesize
software code for given problems. The framework is depicted
in Fig. 1 and is composed of the following parts:

— A user provides a formal specification of the problem,
as well as additional constraints on the structure of the
desired solutions,

— an enhanced GP engine that can generate random pro-
grams and evolves them and

— averifier that analyzes the generated programs and pro-
vides useful information about their correctness.

The synthesis process generally goes through the follow-
ing steps:

1. The user feeds the GP engine with a configuration, which
is a set of constraints regarding the programs that are

User
Interface

1. Configuration 6. Results . Specification

3. Initial population

Enhanced 4. Verificat i Enhanced
GP < ._verilication results Model
Engine Checker

5. New programs

Fig. 1 The suggested framework

allowed to be generated (thus, defining the space of can-
didate programs). This includes

(a) A set of functions, literals and instructions, used as
building blocks for the generated programs,

(b) The number of concurrent processes and the meth-
ods for process communication (in case of concurrent
programs),

(c) Limitations on the size and structure of the generated
programs, and the maximal number of permitted iter-
ations.

2. The user provides a formal specification for the problem.
This can include, for instance, a set of LTL properties, as
well as additional requirements on the program behavior.

3. The GP engine randomly generates an initial population
of programs based on the building blocks and constraints.

4. The model checking-based verifier analyzes the behavior
of the generated programs against the specification prop-
erties and provides fitness measures based on the amount
of satisfaction.

5. Based on the verification results, the GP engine then cre-
ates new programs by applying genetic operations such
as mutation, which perform small changes to the code,
and crossover, which cuts two candidate solutions and
glues them together.

Steps 4 and 5 are then repeated until either a perfect pro-
gram is found (fully satisfying the specification), or until
the maximal number of iterations is reached.

6. The results are sent back to the user. This includes a
program that satisfies all the specification properties, if
one exists, or the best partially correct programs that was
found, along with its verification results.

For steps 4 and 5 above we use the following selection
method, which is similar to the Evolutionary Strategies [48]:

@ Springer
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— Randomly choose a set of i candidate solutions.

— Create A new candidates by applying mutation (and
optionally crossover) operations (as explained below) to
the above u candidates.

— Calculate the fitness function for each of the new candi-
dates based on model checking.

— Based on the calculated fitness, choose w individuals
from the obtained set of size i + A candidates, and use
them to replace the old p individuals selected at step 2.

3.1 Programs representation

Programs are represented as trees, where an instruction or an
expression is represented as a single node having its parame-
ters as its offspring. Terminal (leaf) nodes represent constants
or variables. Examples of the instructions we use are assign-
ment, while (with or without a body), if and block. The latter
is a special node that takes two instructions as its parameters
and runs them sequentially.

A strongly typed GP [39] is used, which means that every
node has a type, and also enforces the type of its offspring.

3.2 Initial population creation

At the first step, an initial population of candidate programs
is generated. Each program is generated recursively, starting
from the root, and adding nodes until the tree is completed.
The root node is chosen randomly from the set of instruc-
tion nodes, and each child node is chosen randomly from
the set of nodes allowed by its parent type, and its place in
the parameter list. A “grow” method [30] is used, meaning
that either terminal or non-terminal nodes can be chosen,
unless the maximum tree depths is reached, which enforces
the choice of terminals. Figure 2(i) shows an example of a
randomly created program tree. The tree represents the fol-
lowing program:

while (A[2] != 0)
Alme] =1

Fig. 2 iRandomly created
program tree, ii the result of a
replacement mutation

Nodes in boldface fonts belong to instructions, while the
other nodes are the parameters of those instructions.

3.3 Mutation

Mutation is the main operation we use. It allows making small
changes on existing program trees. The mutation includes the
following steps:

1. Randomly choose a node (internal or leaf) from the pro-
gram tree.

2. Apply one of the following operations to the tree with
respect to the chosen node:

(a) Replace the subtree rooted by the node with a new
randomly generated subtree.

(b) Add an immediate parent to the node. Randomly cre-
ate other offspring to the new parent, if needed.

(c) Replace the node by one of its offspring. Delete the
remaining offspring of that node.

(d) Delete the subtree rooted by the node. The node
ancestors should be updated recursively (possible
only for instruction nodes).

Mutation of type (a) can replace either a single terminal or
an entire subtree. For example, the terminal “1” in the tree
of Fig. 2(i) is replaced by the subtree consisting of internal
node A[] and descendant leaf 0. In Fig. 2(ii), changing the
assignment instruction into A [me] = A[0].Mutations of
type (b) can extend programs in several ways, depending on
the new parent node type. In case a “block” type is chosen, a
new instruction(s) will be inserted before or after the muta-
tion node. For instance, the tree in Fig. 3 is obtained from the
one in Fig. 2(1) by inserting a block between the while
node and its subtree; then a second assignment instruction is
inserted as an additional (left) subtree of the block node.
Similarly, choosing a parent node of type “while” will have
the effect of wrapping the mutation node with a while loop.
Another situation occurs when the mutation node is a sim-

(@
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Fig. 3 Tree after insertion mutation

ple condition that can be extended into a complex one, For
example, the simple condition A[2] != 0 in Figure 2 can
be converted into the complex conditionA[2] != 0 and
Alother] == me by first inserting an and node, above
the condition and then complementing its right-hand subtree
to correspond to A [other]

Mutation type (c) has the opposite effect to mutation
type (b) and can convert the tree in Fig. 3 back into the orig-
inal tree of Fig. 2(i). Mutation of type (d) allows the deletion
of one or more instruction nodes.

The type of mutation applied to candidate programs is ran-
domly selected, but all mutations must obey strongly typing
rules of nodes. This affects the possible mutation type for the
chosen node and the type of newly generated nodes.

== me.

3.3.1 Crossover

The crossover operation creates new individuals by merg-
ing building blocks of two existing programs. The crossover
steps are as follows:

1. Randomly choose a node from the tree representing the
first program.

2. Randomly choose a node from the tree representing the
second program that has the same type as the first node.

3. Exchange between the subtrees rooted by the two nodes
and use the two new programs created by this method.

While traditional GP is heavily based on crossover, it is quite
a controversial operation (see [2], for example), and may
cause more damage than benefit in the evolutionary process,
especially in the case of small and sensitive programs that
we investigate. Thus, crossover was not implemented in our
work.

3.4 The fitness function

Fitness is an objective function, used by GP to approximate,
by means of a single number (say, between 0 and 100), how
close is a given candidate programs to satisfy its goal (which
is, in our case, satisfying the set of LTL specifications). As
with many heuristic measures, the fitness is only an estima-
tion of the quality of the candidate solutions: the total order
between fitness values of different candidates does not reflect
in absolute terms the distance (say in number of mutations
needed) between the candidate and an acceptable solution.

Programs with higher probability have a better chance to
survive and participate in the genetic operations. In addition,
the success termination criterion of the GP algorithm is based
on the fitness value of the most fitted individual. Tradition-
ally, the fitness function is calculated by running the program
on some set of inputs or test cases (a training set) which is
supposed to represent the possible inputs. This can lead to
programs that work only for the selected inputs (over fitting)
or to programs that may fail for some inputs. In contrast,
our fitness function is not based on running the programs on
sample data, but on an enhanced model checking procedure.
While the classical model checking provides a yes/no answer
to the satisfiability of the specification (thus yielding a two-
valued fitness function), our deep model checking algorithm
generated a smoother function by providing several levels of
correctness.

We use a fitness-proportional selection [21] that gives each
program a probability of being chosen that is proportional
to its fitness value. Thus, the preference of candidates with
higher fitness value is only probabilistic and not absolute. As
in traditional GP, after the p programs are randomly chosen,
the selection method is applied to decide which of them will
participate in the genetic operations. The selected programs
are then used to create a new set of yu programs that will
replace the original ones.

3.5 Deep model checking

In this work, we use model checking for constructing the
genetic programming fitness function. A fitness function that
just sums up the number of specification properties that hold
for a candidate solution is quite flat and has a very little chance
of leading the genetic process towards convergence. Deep
model checking allows us to provide intermediate correctness
levels. One possible way to assign further meaningful fitness
levels based on model checking is according to the following
possibilities, listed according to an increasing order of fitness:

1. ¢ is not satisfied by any of the executions of M.
2. ¢ is satisfied with probability 0. This means that ¢ may
still hold for some executions, but the fragment of exe-
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cutions that satisfies it is smaller than any fixed rational
number.

3. @ is satisfied in M with some positive probability that is
neither O nor 1.

4. ¢ is satisfied with probability 1 (i.e., —¢ is satisfied with
probability 0).

5. @ is satisfied by all the executions of M.

In traditional model checking, one does not separate
between the levels 1-4; they all represent the fact that the
property does not hold for at least some executions, which
is unacceptable as a correctness criterion. However, for our
purpose of providing fitness of candidate solutions, the mul-
tiple levels provide a finer way of distinguishing between the
imperfect solutions that are generated along the way. Thus,
we are not only interested in finding whether a property is
satisfied or not, but also in some meaningful intermediate
levels. We call this deep model checking. The use of deep
model checking to provide multiple fitness values is one of
the main differences between this work and a prior work that
used the binary possibilities of model checking for providing
fitness [22]. This allows the genetic programming to scale up
and converge into solutions for complicated specifications.

Performing model checking according to level 1 (level
5, respectively) can be done by translating both the system
and the property ¢(—¢), respectively) into a automata on
infinite words (usually, a Biichi automaton) and checking
emptiness of the intersection between these two automata.
The complexity to do this is PSPACE, (based on binary
search). However, most practical model checkers do it with
exponential time and space (which is much faster than the
merely theoretical PSPACE algorithm) [52]. To calculate
the probabilistic levels, we need to apply other algorithms.
A simple algorithm translates the property ¢ (or —¢) to a
deterministic automaton on infinite words. For this, a Biichi
automata would not be sufficient (not every LTL property
can be expressed using a deterministic Biichi automaton),
and a more structured acceptance condition, such as Rabin
or Street [49], can be used. The translation from ¢ to such an
automaton is doubly exponential [47]. There are also alterna-
tive decision procedures that check these levels at the same
complexity as checking LTL correctness, e.g., [11,12]. Note
that the probabilistic levels (2 to 4) are independent of the
actual distribution of the choice of transitions. Further prob-
abilistic levels can be obtained by assigning a probability
distribution on choices made from each state. As a default,
probabilistic model checking tools [19] often assume uni-
form distribution for all possible choices.

Alternatively, we can define other levels:

A. No execution satisfies the property.

B. Some executions satisfy the property (excluding levels
C and D below).
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C. Every finite prefix of an execution can be extended
into an execution that satisfies ¢.
D. All the executions satisfy the property.

Levels A and D are the same as levels 1 and 5 above,
respectively. Levels A, B and D can be checked using stan-
dard model checking algorithms. Level C can be checked
according to an algorithm in [40], whose complexity is
doubly exponential. Level C cannot be ordered with the prob-
abilistic levels above; hence we cannot add it to the previous
list of levels.

Overall, given several properties, the fitness is not nec-
essarily the sum of fitness values of the different properties.
We sometimes decide to give some properties higher weights
over others. Tuning these weights is part of the tools available
for the person applying the genetic programming. It helps in
obtaining convergence into a correct implementation when
the genetic process intermediately fails.

In case of concurrent programs, one may need to require
that the program would work under certain “fairness” con-
ditions [35] disallowing an execution where a transition or
a process is neglected forever when it can be executed con-
tinuously or infinitely many times from some point. Some
properties cannot be guaranteed without fairness assump-
tions, which represent realistic physical restrictions on the
execution model. The probabilistic based levels 2, 3 and 4,
in fact, include some implied assumption about the execu-
tions:

Strong Transition Fairness: Every transition that has
infinitely many points in the execution where it can be
executed, will execute infinitely many times.

This is because with probability 1, any infinite execution
will include any possible choice from each state that occur
infinitely often on it [51]. A property ¢ holds with probability
1 (level 4) exactly when all the executions that are fair under
this definition satisfy ¢. It holds with probability O (level 0) if
only unfair executions satisfy ¢. This fairness assumption is
stronger than some common fairness assumptions [37] that
are used for verification, e.g.,

Weak Process Fairness. Every process that can exe-
cute some transition from some point in the execution
and onwards will eventually execute some transition.
Weak Transition Fairness. Every transition that can be
executed from some point onwards will eventually be
executed.

Strong Process Fairness. Every process that has infi-
nitely many points in the execution where it can execute
a transition will execute infinitely many transitions.

Note that when one fairness assumption is stronger than
another, it is satisfied by the same or less executions. Conse-
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quently, the same or more properties are satisfied under the
stronger fairness assumption. For details of model checking
under fairness algorithms, see [36].

A typical phenomenon of genetic algorithms, called par-
simony, is that the code can easily bloat by gain unnecessary
components, e.g2., x: =y; Yy :=x. Weapply parsimony pres-
sure [4], meaning that we provide some negative fitness value,
depending on the length of the generated code. As a conse-
quence, even a perfect solution would not have a clean 100
fitness value. Thus, the condition for successfully finishing
the genetic search is not based on this value, but rather that all
the checked properties are verified (model checked) to hold.

4 Synthesizing solutions for the mutual exclusion
problem

As an example, we have used our method to automatically
generate solutions to several variants of the Mutual Exclusion
Problem.

4.1 The classical mutual exclusion problem

In this problem, described by Dijkstra [13], two or more
processes are repeatedly running critical and non-critical sec-
tions of a program. The goal is to avoid the simultaneous
execution of the critical section by more than one process.
We limit our search for solutions to the case of two processes.
The configuration of problem requires the following program
parts, executed in an infinite loop:

Non Critical Section
Pre Protocol
Critical Section
Post Protocol

These four program parts are denoted by NonCS, Pre,
CS and Post, respectively.

The Non Critical Section represents the process
part on which it does not require an access to the shared
resource. A process can make a nondeterministic choice
whether to stay in that part, or to move into the Pre
Protocol. From the Critical Section, a process

Table 1 Mutual exclusion specification

always has to move into the Post Protocol. The
Non Critical Section and Critical Section
are fixed, while our goal is to automatically generate code
for the Pre Protocol and Post Protocol, such that
the entire program will fully satisfy the specification.

We use a restricted high-level language based on the C
language. Each process has access to its id (0 or 1) using the
me literal and to the other process’ id using the ot her literal.
The processes can use an array of shared bits. The number of
allowed shared bits is specified as part of the configuration.
The two processes run the same code. The available node
types are assignment, if, while, empty-while, block, and ,or
and array. Terminals include the constants: 0, I, 2, me and
other.

Table 1 describes the properties that define the problem
specification. Property 1 is the basic safety property requir-
ing the mutual exclusion. Properties displayed in pairs are
symmetrically defined for the two processes. Properties 2
and 3 guarantee that the processes are not hung in the
Post Protocol. Similar properties for the Critical
Section are not needed since it is a fixed part without an
evolved code. Properties 4 and 5 require that a process can
enter the critical section if it is the only process trying to
enter it. Property 4 requires that if both processes are try-
ing to enter the critical section, at least one of them will
eventually succeed. This property can be replaced by the
stronger requirements 7 and 8 that guarantee that no process
will starve.

There are several known solutions to the Mutual Exclusion
problem, depending on the number of shared bits in use, the
type of conditions allowed (simple/complex) and whether
starvation-freedom is required. The variants of the problem
we wish to solve are shown in Table 2.

4.2 Experimental results

We used a specially designed model checker and GP engine,
which implement the methods described earlier. This proto-
type tool was called MCGP and is described in [28]. It allows
selecting the set of allowed commands and the number of
variables and modes of communication (synchronous, asyn-
chronous). Synthesis starts with a given program structure or

No. Type Definition Description Level
1 Safety O=(poinCS A p; inCS) Mutual exclusion 1
23 Liveness O (pme in Post — O (pie in NonCs)) Progress 2
4.5 O (pme in Pre A O (pother in NonCs)) — O (ppme in CS)) No contest 3
6 O((poin Pre A pyin Pre) — O (poin CS V p; in CS)) Deadlock freedom 4
7,8 O (pme in Pre — O (ppe in CS)) Starvation freedom 4
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Table 2 Mutual exclusion variants

Variant no. Number of bits Conditions Requirement Relevant properties Known algorithm
1 2 Simple Deadlock freedom 1,2,3,4,5,6 One bit protocol [5]
2 3 Simple Starvation freedom 1,2,3,4,5,7,8 Dekker [13]
3 3 Complex Starvation freedom 1,2,3,4,5,7,8 Peterson [42]
Table 3 Test results Variant no. Successful runs (%) Avg. run duration (s) Avg. no. of tested programs per run
1 40 128 156,600
2 397 282,300
3 363 271,950

architecture, where some parts are fixed. The architecture can
also include the number of processes and the communication
links between them. For mutual exclusion, the configuration
must dictate a loop that contains the critical section. Provid-
ing initial code forces the genetic search to start from a given
solution that we may need to improve or correct. These modes
were not used for the synthesis of simple mutual exclusion
solutions. Thus, we return to the modes of execution in the
tool at the end of the last synthesis example, in Sect. 6.

Three different configurations were used to search for
solutions to the variants described in Table 2. Each run
included the creation of 150 initial programs by the GP
engine, and the iterative creation of new programs until
a perfect solution was found, or until a maximum of
2000 iterations. In each iteration, five programs were ran-
domly selected, mutated and replaced using mutation (and
crossover) operations, as described in Sect. 3. The values
n =5, A = 150 where chosen. The tests were performed on
a 2.6-GHz Pentium Xeon Processor. For each configuration,
multiple runs were performed. Some of the runs converged
into perfect solutions, while others found only partial solu-
tions. The results are summarized in Table 3.

Test 1

At the first test, we tried to find a deadlock-free algorithm
solving the mutual exclusion problem. The configuration in
this case allows the use of two shared bits and only simple
conditions. Following is the analysis of a successful run. The
numbers in the square brackets under each program below
represent the program fitness scores.

The initial population contained 150 randomly generated
programs with various fitness scores. Many programs did not
satisfy even the basic mutual exclusion safety property 1 and
thus achieved a fitness score of zero.

The programs were gradually improved by the genetic
operations, until program (a) was created. This program fully
satisfies all of the properties, which makes it a correct solu-
tion. At this stage, we could end the run; however, we kept
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it for some more iterations. Due to parsimony pressure, the
program is finally evolved by a series of deletion and replace-
ment mutations into program (b). This program is a perfect
solution to the requirements, which is actually the known
one-bit protocol [5].

Non Critical Section Non Critical Section

Alme] =1 Alme] =1
While (A[other] != 0) While (A[other] != 0)
A[me] = me A[me] = me
While (A[other] != A[0]) While (A[other] == 1)
While (A[1] != 0) Alme] =1
A[lme] =1 Critical Section
Critical Section A[me] = 0
Alme] = 0
(a) [96.50] (b) [97.10]
Test 2

At the second test we changed the configuration to support
three shared bits. This allowed the creation of algorithms like
Dekker’s [13] which uses the third bit to set turns between
the two processes. Since the requirements were similar to
those of the previous test (accept the change of property 6
by 7 and 8), many runs initially converged into deadlock-
free algorithms using only two bits. queryPlease consider
rephrasing the following sentence: Those algorithms have
execution paths at which one of the processes starve, hence
only partially satisfying properties 7 or 8. Program (c) shows
one of those algorithms, which later evolved into program
(d).Those algorithms have execution paths at which one of the
processes starve, hence only partially satisfying properties 7
or 8. Program (c) shows one of those algorithms, which later
evolved into program (d). The evolution first included the
addition of the second line to the post protocol section (which
only slightly decreased its fitness level due to the parsimony
pressure). A replacement mutation then changed the inner
while loop condition, leading to a perfect solution similar to
Dekker’s algorithm.

Another interesting algorithm generated by one of the runs
is program (e). This algorithm (also reported at [3]) is a per-
fect solution too, but it is shorter than Dekker’s algorithm.
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Non Critical Section

Non Critical Section

Non Critical Section

Alme] =1 Alme] =1 Alother] = other
While (A[other] == 1) While (A[other] == 1) if (A[2] == other)
While (A[O] != other) While (A[2] == me) A[2] = me
A[me] = 0 A[lme] = 0 While (A[me] == A[2])
A[lme] =1 Alme] = 1 Critical Section
Critical Section Critical Section Alother] = me
A[me] = 0 A[2] = me
A[me] =0
(c) [94.34] (d) [96.70] (e) [97.50]
Test 3 Pre CS
Alme] =1
At this test, we added the and and or operators to the function turn = me
set, allowing the creation of complex conditions. Some of the While (A[other] != notl (turn)):
runs evolved into program (f) which is the known Peterson’s Critical Section
algorithm [42]. Alme] = 0

Non Critical Section

The second algorithm discovered the idea of setting the

A[me] =1
A[2] = me turn bit one more time after leaving the critical section. This
While (A[other] == 1 and A[2] != other) allows the while condition to be even simpler. Tsay [50]
;Tlticalosecuon used a similar refinement, but his algorithm needs an addi-
me = . . . N . .
tional if statement, which is not used in our algorithm.
(f) [97.60]
Pre CS
S . . Alme] =1
4.3 Finding new mutual exclusion algorithms
turn = notO(A[other])
. L ]
Inspired by algorithms developed by Tsay [50] and by Wh%l(,e (af21 . me) ;
L. Critical Section
Kessels [29], our next goal was to start from an existing algo- A[me] 0
me] =

rithm and, by adding more constraints and building blocks,
try to evolve into advanced mutual exclusion algorithms.

First, we allowed a minor asymmetry between the two
processes. This is done by the operators not0 and notl,
which act only on one of the processes. Thus, for process
0, notO(x) = —x while for process 1, notO(x) = x. This is
reversed for notl (x), which negates its bit operand x only in
process 1 and does nothing on process 0.

As a result, the tool found two algorithms that may be

turn = other

Next, we aimed at finding more advanced algorithms satis-
fying additional properties. The configuration was extended
into four shared bits and two private bits (one for each
process). The first requirement was that each process can
change only its two local bits, but can read all of the 4 shared
bits. This yielded the following algorithm:

considered simpler than Peterson’s. The first one has only ?Ee (]js N
.. . . . . me =
one condition in the wait statement, written here using the 507 - not1 (Blother])
syntax of a while loop, although using a more complicated  while (A[other] == 1 and B[0] == notl(B[1]));
atomic comparison, between two bits. Note that the variable Critical Section
A[lme] = 0

turn is in fact A[2] and is renamed here turn to accord with
classical presentation of the extra global bit that does not
belong to a specific process.

As can be seen, the GP algorithm discovered the idea of
using two bits as the “turn”, where each process changes
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only its bit to set its turn, but compares both of them on the
while loop. Finally, we added the requirement for busy wait-
ing only on local bits (i.e., using local spins). The following
algorithm (similar to Kessels’ [29]) was generated, satisfying
all properties from the table above.

Non Critical Section
Alother] =1

Blother] = notl(B[0])

T[me] = notl(B[other])
While (A[me] == 1 and B[me]
Critical Section

Alother] = 0

== T[mel);

5 Synthesizing parametric programs

Our experience with genetic program synthesis has quickly
hit a difficulty: there are few interesting fixed finite state pro-
grams that can be completely specified using pure temporal
logic. Most programming problems are, in fact, paramet-
ric. Model checking is undecidable for parametric families
of programs (say, with n processes, each with the same
code, initialized with different parameters) even for a fixed
property [1]. One example of a parametrized problem is
mutual exclusion for an arbitrary (i.e., parametric) number
of processes. Another one is sorting, where the number of
processes and the values to be sorted are the parameters.

We chose to look at a programming problem, called leader
election [6,14,43]. In the version of the problem we consid-
ered [25], there is a unidirectional ring of processes, each
having a unique value. We want to select a process, the one
that has the largest value, to be a leader. The processes are
symmetric in the sense that the perform exactly the same
code and are not aware of the size of the ring. The selection
of the leader will allow breaking the symmetry for the benefit
of other network algorithms.

First, we assume that a solution that is checked for a large
number of instances/parameters is acceptable. This is not a
guarantee of correctness, but under the prohibitive undecid-
ability of model checking for parametric programs, at least
we have a strong evidence that the solution may generalize
to an arbitrary configuration. In fact, there are several cases
where one can calculate the parameter size that guarantees
that if all the smaller instances are correct, then any instance
is correct [15]. Unfortunately, this is not a rule that can be
applied to any arbitrary parametric problem.

We apply a co-evolution based synthesis algorithm. We
collect the cases that fail and keep them as counterexamples.
When suggesting a new solution, it is checked against the
collected counterexamples. We can view this process as a
genetic search for both correct programs and counterexam-
ples. The fitness is different, of course, for the two tasks: a
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proposed program gets higher fitness by being close to sat-
isfying the full set of properties, while a counterexample is
obtaining a high fitness value if it fails the program.

During the co-evolution process, we use model checking
for verifying instance of the parameters. In the leader election
problem, the parameters include the size of the ring and the
initial assignment of values to processes. For simplicity, we
can assume that the values assigned to processes in a ring of
size n are just a permutation of the values {1, 2, ..., n}. In
light of the undecidability of the parametric model checking
problem, one possibility to gain confidence in our solution is
to check solutions up to a certain size and in addition check
all possible initial permutations. However, model checking
is intractable because of the number of concurrent processes
and the number of permutations of initial values. Instead,
during the co-evolution we store each set of instances of the
parameters that failed some solution and when checking a
new candidate solution, check it against the collected failed
instances. In this sense, the model checking of a particular
set of instances can be considered as a generalized festing for
these values. Rather than an execution, in our case, each test
case is a finite state system that is comprehensively explored
using model checking.

We evaluated our experiments with respect to existing
solutions. The Chang and Roberts algorithms [6] required
O (n?) messages for n processes. The algorithms of Peter-
son [43] and that of Dolev, Klawe and Rodeh [14] require
the asymptotically more modest O (n x log n) messages. We
managed to generate via GP several solutions, including the
Chang and Roberts algorithm. However, we did not manage
to generate any algorithm of complexity O (n x logn).

6 Correcting erroneous programs

Our method is not limited to finding new programs that sat-
isfy the given specification. In fact, we can start with the
code of an existing program and try to improve or correct
it. When our initial population consists of a given program,
which is either non optimal, or faulty, we can start our genetic
programming process with it, instead of with a completely
random population. If our fitness measure includes some
qualitative evaluation, the initial program may be found infe-
rior to some new candidates that are generated. If the program
is erroneous, then it would not get a very high fitness value
by failing to satisfy some of the properties.

In [27] we approached the ambitious problem of correct-
ing a known protocol for obtaining interprocess interaction,
called «-core [41]. The algorithm allows multiparty syn-
chronization of several processes. Besides the processes that
perform local and synchronized transitions there are several
supervisory processes, each responsible for a fixed type of
interaction between multiple processes. It needs to function



Synthesizing, correcting and improving code, using model. . .

461

Fig. 4 An architecture with
two processes and two P1 P2

supervisory managers

in a system that allows nondeterministic choices: processes
that may consider one possible interaction may also decide
to be engaged in another interaction. The algorithm uses
asynchronous message passing between the processors and
the synchronization supervisors to enforce a selection of
the interactions by the involved processes without dead-
lock. In Fig. 4 we demonstrate two processes P; and P,
that are involved in two types of interactions with each other,
through the supervision of managers C and C5. This nontriv-
ial algorithm, which is used in practice in distributed systems,
contains an error in its published version. The challenges in
correcting this algorithm are the following:

Size. The protocol is quite big, involving sending differ-
ent messages between the controlled processes and new
processes, one per each possible multiparty interaction.
These messages include announcing the willingness to
be engaged in an interaction, committing an interaction,
canceling an interaction, requesting for commit from the
interaction manager processes, as well as announcing that
the interaction is now going on, or is canceled due to the
departure of at least one participant. The state space of
such a concurrent protocol is obviously high.

Varying architecture. The protocol can run on any num-
ber of processes, each process with arbitrary number of
choices to be involved in interactions and with each inter-
action involving any number of processes.

The parametric nature of the problem makes the model
checking itself undecidable [1] in general, and even model
checking of a particular instance, with fixed architecture, is
hard. In fact, we used our genetic programming approach
first to find the error, including architecture instance that
manifests the problem, and then to correct it. We used two
important ideas:

1. We employ the genetic engine not only to generate pro-
grams, but also to evolve different architectures on which
programs can run.

2. We apply a co-evolution process, where evolution of
candidate programs and of architectures that fail these
candidates is intermixed.

Specifically, the architecture for the candidate programs
is also represented as code (or, equivalently, a syntactic
tree) for spanning processes and their interactions, which

can be subjected to genetic mutations. The fitness func-
tion directs the search for a program that may falsify
the specification for the current program. After finding a
“bad” architecture for a program, one that causes the pro-
gram to fail its specification, our next goal is to reverse
the genetic programming direction. Then we try to auto-
matically correct the program. Correcting the program for
the first found wrong architecture only does not guaran-
tee its correctness under different architectures. Therefore,
we introduce a new algorithm (see Algorithm 1) which
co-evolves both the candidate solution programs and the
architectures that might serve as counterexamples for those
programs.

Algorithm 1: Model checking based co-evolution
MC-CoEvOLUTION(initialProg, spec, maxArchs)

(1) prog := initialProg

(2) InstantList := ()

(3) while |archList| <maxArchs

(4) arch := EvolveArch(prog, spec)

(5) if arch = null

(6) return true // prog stores a “good” program
(7) else

(8) add arch to archlist

(9) prog := EvolveProg(archlist, spec)

(10) if prog is null

(11) return false // no “good” program was found
(12) return false // can’t add more architectures

The algorithm starts with an initial program initProg.
This can be the existing program that needs to be cor-
rected, or, in case that we want to synthesize some code,
a randomly generated program. It is also given a specifica-
tion spec which the program to be corrected or generated
should satisfy. The algorithm then proceeds in two steps.
First [lines (4)—(8)], the EvolveArch function is called. The
goal of this function is to generate an architecture for which
the specification spec will not hold. If no such architec-
ture is found, the EvolveArch procedure returns null, and
we assume (though we cannot guarantee) that the program is
correct and the algorithm terminates. Otherwise, the found
architecture arch is added to the architecture list archList,
and the algorithm proceeds to the second step [lines (9)-
(1D].

In these steps, the architecture list and the specification
are sent to the EvolveProg function, which tries to gener-
ate programs that satisfy the specification under all of the
architectures on the list. If the function fails, then the algo-
rithm terminates without success. Since the above function
runs a genetic programming process, which is probabilistic,
instead of terminating the algorithm, it is possible to increase
the number of iterations, or to rerun the function so a new
search is initiated. If a correct program is found, the algo-
rithm returns to the first step at line (4), on which the newly
generated program is tested against different architectures.
At each iteration of the while loop, a new architecture is
added to the list. This method serves two purposes. First,
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once a program was suggested, and refuted by a new archi-
tecture, it will not be suggested again. Second, architectures
that failed programs at previous iterations are good candi-
dates to do so on future iterations as well. The allowed size
of the list is limited to bound the running time of the algo-
rithm.

Both EvolveProg and EvolveArch functions use genetic
programming and model checking for the evolution of can-
didate solutions (each of them is equipped with relevant
building blocks and syntactic rules), while the fitness func-
tion varies. For the evolution of programs, a combination
of the methods proposed in [24,26] is used: for each LTL
property, an initial fitness level is obtained by performing
a deep model checking analysis. This is repeated for all
the architectures in archList, which determines the final fit-
ness value. For the evolution of the architectures, we reverse
the goal of the fitness function and give higher score for
architectures that are having a better chances to falsify the
program.

For the a-core algorithm, the smallest architecture that
manifested the failure included two processes, with two
alternative communications between both of them. The archi-
tecture that was found to produce the error in the original
a-core algorithm is the one appearing in Figure 4. A mes-
sage sequence chart in Fig. 5 demonstrate the bad scenario
that was found. While we did not describe in this paper the
a-core algorithm, the scenario demonstrates the intricacy of
the algorithm. The correction consisted of changing the fol-
lowing line of code

ifn>0thenn:=n-1
into
if sender € sharedthenn :=n — 1

We are not aware of any correction of the a-core algorithm
that results in this particular change.

In order to support the different capabilities of synthesiz-
ing and correcting code for fixed and varying architectures,
the prototype tool MCGP [28] we constructed for carrying
out the experiments can be used in different modes:

— Setting all parts as static will cause the tool to just run
the deep model checking algorithm on the user-defined
program and provide its detailed results.

— Setting an init process that defines the architecture of
processes and the interaction between them as static and
all or some of the other processes as dynamic will order
the tool to synthesize code according to the specified
architecture. This can be used for synthesizing programs
from scratch, synthesizing only some missing parts of a
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msc Assertion violation
P1||P2||C1||C2
OFFHR (1)
OFFER (2)
OFFER (3)
OFFHR (4) =l
LocK (5) n=2
OK] (6)
LOCK (7)
OK (8)
LOCK (9)
STARIT (10)
REFUSE (11)
START (12)
REFUS$E (13)
ACKREF (14)
UNLOSK (15) —
OFFER (1) =0
OFFER (1
n=1
ACKREF (18) =0
I S S

Fig. 5 A message sequence chart showing the counterexample for the
a-core protocol

given partial program, or trying to correct or improve a
complete given program.

— Setting the init process as dynamic, and all other
processes as static, is used when trying to falsify a given
parametric program by searching for a configuration that
violates its specification (see [27]).

— Setting both the init and the program processes as
dynamic is used for synthesizing parametric programs,
where the tool alternatively evolves various programs and
configurations under which the programs have to be sat-
isfied.

7 Conclusions

We studied the use of a methodology that performs a genetic
programming search guided by model checking results. Our
method was used for the following:

— synthesizing correct-by-design programs,

— finding an error in protocol with complicated architecture
(where the architecture can also undergo genetic muta-
tion),

— automatically correcting erroneous code with respect to
a given specification and

— improving code, e.g., to perform more efficiently.
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We demonstrated our method on the classical mutual
exclusion problem and were able to find existing solutions,
as well as new solutions. An important factor for conver-
gence of the genetic programming algorithm is providing a
fitness function with many levels. While the use of model
checking instead of the traditional use of test cases provides
a more reliable correctness criterion for the resulted code,
the number of specification properties is typically small. We
tackle this problem using deep model checking, which pro-
vides further meaningful levels for the benefit of the fitness
function.

In general, the verification of parametric systems is unde-
cidable, and in the few methods that promise termination
of the verification, quite severe restrictions are required.
The same applies to code synthesis. We provided a co-
evolution method for synthesizing parametric systems, based
on accumulating cases to be checked: architectures on which
the synthesis failed before, or test cases based on previ-
ous counterexamples are accumulated to be checked later
with new candidate solutions. As the model checking itself
is undecidable, we finish if we obtain a strong enough
evidence that the solution is correct on the accumulated
cases.

Although our method does not guarantee termination,
either for finding the error or a correct version of the
algorithm, it can be fine-tuned through a convenient human-
assisted process. An important strength of the work that is
presented here is that it was implemented and applied to a
complicated published protocol to find and correct an actual
error.

Further research directions include adding more proba-
bilistic levels for refining the fitness levels. One can also use
statistical model checking instead or in addition to the deep
model checking. In the current framework, the mutations
are decoupled from the model checking results: the fitness
affects the chance of a candidate to be mutated. Instead,
causality analysis can be used to try and locate the source
of the error. This can provide a probabilistic distribution not
only on candidates for mutation but also on where within
the tree representing the code we would like to apply the
mutation.
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