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Abstract In recent years, a plethora of foundational results
and corresponding techniques and tools has been developed
to support the modeling, analysis, execution and improve-
ment of business processes along their entire lifecycle. A
major shortcoming of the analysis techniques is that they
solely focus on the control-flow dimension of the process,
omitting how business objects (i.e., cases) and their data
affect and are manipulated by process instances and their
tasks. In this work, we aim at filling this gap. We recast the
classical notion of case-centric business process in a data-
aware context. An emitter action is used to generate new
cases, and while a case flows through the process control-
flow, corresponding data are created, updated, and deleted
by operating over a full-fledged relational database with con-
straints. To make our investigation concrete, we ground it on
the recently introduced framework of data-centric dynamic
systems (DCDSs). We reformulate the standard correctness
criterion of soundness into this rich setting, and show that it
is in general undecidable to check. We then provide a fine-
grained analysis on the role of data in business processes.
We substantiate this analysis by introducing a class of case-
centric DCDSs that enjoys good modeling principles, and at
the same time guarantees decidability of soundness. Decid-
ability is obtained by finding a cutoff on the number of
process instances that must be subject to the soundness test.
We finally show that the introduced modeling guidelines are
strict, in the sense that weakening even one single require-
ment they pose leads to undecidability.
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1 Introduction

This work is about the role of data in conventional busi-
ness processes [14,32], and is concerned with verifying the
correctness of processes when data and their manipulation
over time are fully taken into account. With “conventional”
processes, we mean processes whose control-flow is cap-
tured by typical processmodelling languages such as BPMN,
UML activity diagrams, YAWL or EPCs. These are centred
around the key notion of case, intended as a (concrete or
abstract) business object that is manipulated and evolved
by (an instance of) the process so as to achieve the com-
pany’s strategic goals, and in turn produce value to one or
more customers/consumers [14,32]. Example of cases are an
order within an order-to-cash process, an item within a pro-
duction chain, or a complaint within an issue-to-resolution
process. We refer to this class of processes as case-centric
processes.

In recent years, a plethora of foundational results and
corresponding techniques and tools has been developed to
support the modeling, analysis, execution and improvement
of case-centric processes along their entire lifecycle. A
major shortcoming of such analysis techniques is that they
solely focus on the control-flow dimension of the process,
omitting how business objects and their data affect and
are manipulated by process instances and their tasks. In
particular, the static, formal correctness analysis for the
control-flow of case-centric processes, has a long tradi-
tion, grounded on workflow nets and on the property of
soundness [16,29,30]. In this context, case centricity is
a fundamental requirement, since soundness is typically
checked by relying on the conceptual assumption that mul-
tiple process executions are separately driven by cases, and
that the corresponding business objects are evolved in isola-
tion.
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The importance of considering data alongside the process
control-flow has been extensively argued in a growing num-
ber of works (see, e.g., [13,19,20,31]). In this enriched
setting, many interesting decidability results on the static
analysis of data-aware processes have been produced over
the last 15 years, see [9] for a survey. Within this extensive
literature, robust decidability results on the verification of
data-aware dynamic systems against rich first-order tempo-
ral properties have been shown lately, under the assumption
that the system is state-bounded.1 Such results have been
studied by considering different modeling variants of data-
aware business processes, in particular (i) artifact systems
[6], (ii) data-centric dynamic systems (DCDSs) [2], and (iii)
description logic-based dynamic systems [10].

Our aim is tomerge these two lines of research, and in par-
ticular to study the correctness of case-centric processes by
jointly taking into account the process control-flow and the
manipulation of (case-)data stored in a full-fledged relational
database equipped with first-order constraints/dependencies.
A major drawback of the approaches based on state-
boundedness is that it is a semantic property undecidable to
check, but for which only sufficient, syntactic conditions can
be defined [2,3]. To mitigate this issue, modelling guidelines
can be introduced in such a way that the system is guaran-
teed to be state-bounded by design [28]. When applied to
case-centric processes, state-boundedness implicitly limits
the maximum degree of case parallelism, that is, the number
of cases that can simultaneously coexist. To the best of our
knowledge, [11] is the only work so far to propose model-
ing and methodological guidelines to achieve decidability of
verification in a setting where no limitation is put on such
number.

We adopt this methodological approach here. Using
DCDSs as a concrete framework for our investigation, we
show that, unsurprisingly, checking data-aware soundness
is in general undecidable. In parallel, we provide a fine-
grained analysis on the role of data in case-centric business
processes. We then substantiate this analysis by applying the
methodological guidelines of [11], and introduce a class of
case-centric DCDSs that are based on good modeling prin-
ciples, and for which model checking of a first-order variant
ofμ-calculus (that can express soundness) is decidable. This
class is characterized by simultaneously operating on:

– the database constraints and their mutual relationships,
and on

– the shape of queries that can be formulated in the process
component of the DCDS so as to retrieve and modify the
data maintained in the DCDS data component.

1 Intuitively, state-boundedness requires that the number of data values
stored in each single state of the system is bounded. Unboundedly many
values can still be encountered within and across the runs of the system.

Notably, we pose minimal assumptions on the process
control-flow, arguing that any control-flow pattern can be
encoded into a DCDS by introducing a fixed set of dedicated
databasevalues to support the runtime instantiationof thepat-
tern. This class of DCDSs does not enjoy state-boundedness,
but is such that the unboundedly many data present in a
state of the system are organized into isolated chunks, each
referring to a single case identifier. In this sense, our key
decidability result is incomparable to those in [2,6,10]. In
addition, we show that the different features of this class
are all necessary, in the sense that weakening one of them
again leads to undecidability. In particular, our results imply
that unboundedly many cases may coexist simultaneously
only if they evolve in complete isolation, i.e., the evolution
of one case is not affected by the data attached to another
case.

Our investigation does not only lift soundness to the data-
aware setting, but also indirectly recasts key notions in the
theory of business processes, such as that of freedom of
choice and case isolation, taking into account the interaction
between processes and data.

The modeling restrictions we impose towards decidabil-
ity, as well as the abstraction techniques we borrow from [2],
present some similarities with the different notions of bound-
edness studied for the formal verification of (infinite-state)
distributed systems [1,18,22]. In particular, some of themod-
eling restrictionswe impose in thiswork resemble the notions
of simple path- and depth-boundedness respectively studied
in [1] and [22]. Instead, [2] and [18] independently obtained
decidability results in their respective settings, by exploit-
ing similar ideas related to recycling of data values/process
names. On the other hand, there are key differences both
in the modeling frameworks and in the verification results
shown in these works. As for modeling, [1,18,22] focus
on process algebras/communicating register automata where
the exchanged data are atomic data values representing the
pure names of the involved processes. Contrariwise, in [2]
and the present work, the focus is on the dynamic manip-
ulation of rich relational structures, without taking into
account inter-process communication. As for the verifica-
tion results, [1,18,22] study specific, standard properties
such as reachability, coverability and termination. Instead,
[2] and the present work show decidability for sophisti-
cated temporal properties expressed in a first-order variant
of the μ-calculus. It remains to be investigated how such
two lines of research can be interconnected: on the one hand
by studying whether the communication graphs of [1,18,22]
can be suitably encoded using the relational structures with
constraints of [2], and on the other hand by investigating
whether arbitrary n-ary relations can be encoded leveraging
pure names and the graph structure of inter-process commu-
nication.
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2 Data-centric dynamic systems

In this section, we provide an overview of Data-Centric
Dynamic Systems (DCDSs).More specifically, we introduce
a variant of the original DCDS framework (first introduced in
[2]). In this variant, actions are described following the action
formalism of [24], which provides STRIPS-like abstractions
on top of the original DCDS action formalism. This variant
is expressively equivalent to the original one [24].

2.1 The DCDS framework

A DCDS S is a pair 〈D,P〉, where D is the data component
of S, and P is its process component.

Data component The data component is a full-fledged
relational database with constraints. Technically, D =
〈Δ,R, C, I0〉, where:
– Δ is a countably infinite set of constants.
– R is a database schema, i.e., a set of relation schemas.
We will equivalently adopt the positional notation or the
attribute-based named notation for relations; When the
latter notation is used, an n-ary relation R is represented
as R(U ), whereU is a set of n named attributes. Further-
more, given a set A ⊆ U of attributes, R[A] represents
the projection of R over A.

– C is a set of domain-independent FO-constraints over
R, capturing the real-world constraints of the targeted
application domain; technically, constraints are closed
FO formulae over C and the constants in I0.

– I0 is the initial database instance of S, i.e., a database
instance conforming to R, satisfying the constraints C,
and made of values in Δ.

Among all possible FO-constraints, we consider the fol-
lowing specific constraints,which arewidespread in database
modelling and standard conceptual modelling languages
such as UML class diagrams, E–R diagrams, and the ORM
notation:

– Standard key and primary key constraints.We use notation
KEY(R[A]) (resp., PK(R[A])) to model that the set A of
attributes is a key (resp., primary key) for relation R.

– Standard foreignkey constraints.WeusenotationR[A]−→
S[B] to model that the set A of attributes in R is a for-
eign key pointing to the set B of attributes in S, such that
PK(S[B]) holds.

– Cardinality constraints, which resemble cardinality/
frequency constraints of conceptual modelling languages.
Cardinality constraints generalize key constraints by
bounding the minimum and maximum number of tuples
allowed in a relation when the value of some attributes
is maintained unaltered. Given a relation R(U ) and a set

A ⊆ U of attributes, notation CARD(R[A],m..n), where
m and n are positive integers, denotes the cardinality con-
straint requiring that the number of R-tupleswith the same
values for attributes A ranges between m and n.

– A combination of cardinality and foreign key constraints,
where a foreign key has an associated cardinality con-
straint guaranteeing that the number of tuples pointing to
the same target primary key is bounded. We denote by
A[R]m..n−−−→B[S] the database constraint corresponding to
the conjunction of A[R]−→B[S] andCARD(A[R],m..n),
and call such a conjunction a cardinality-bounded foreign

key constraint. Notice that A[R] 1..1−−−→B[S] is equivalent
to the combination of KEY(R[A]) and A[R]−→B[S].

All these constraint types can be easily encoded as FO for-
mulae. Some examples will be shown in Sect. 2.3.

(Open) FO formulae can be used to query an instance of
the data component. In particular, let Q(x) be query, i.e., a
FO formula with free variables x, and let I be a a database
instance over R and Δ. The answer ans(Q, I) to Q over I
is the set of assignments θ from x to the active domain of I,
such that I |� Qθ , where Qθ is the boolean query obtained
from Q by substituting each free variable xi ∈ x with θ(x).
Recall that the active domain of a database instance is the
set of values explicitly appearing in its tuples. Given a query
Q with no free variables (also called a boolean query), we
say that Q is true in I, or equivalently that I satisfies Q, if
〈〉 ∈ ans(Q, I). In this light, a database instance I satisfies
C if it satisfies every boolean query in C.
Process component The process component P defines the
progression mechanism for the DCDS. It is constituted by
a process, which queries the current data maintained by
D and determines which actions are executable, and with
which parameters; parameterised actions, in turn, query and
update D, possibly introducing new values from the exter-
nal environment, by issuing service calls. Technically, P =
〈F ,A, �〉, where

– F is a finite set of functions, each representing the inter-
face to a (nondeterministic) external service;

– A is a finite set of actions, whose execution updates the
data component, and may involve external service calls;

– � is a finite set of condition-action rules that form the
specification of the overall process, which tells at any
moment which actions can be executed.

Actions. An action of A is an expression act(p1, . . . ,pn) :
{e1, . . . , em}, where:

– act(p1, . . . ,pn) is the action signature, constituted by a
name act and a sequence p1, . . . ,pn of parameters, to
be substituted with values when the action is invoked;
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– {e1, . . . , em}, also denoted as effect(act), is a set of
effects, which are assumed to take place simultaneously.

Each effect ei has the form

Q(p, x) � add A del D

where:

– Q is a domain-independent FOquery overRwhose terms
are variables, action parameters, and constants from I0.
Intuitively, Q selects the tuples to instantiate the effect
with. During the execution, the effect is applied with a
ground substitution d for the action parameters, and for
every answer θ to the query Q(d, x).

– A is a set of facts over R, which include as terms: free
variables x of Q, action parameters p and/or Skolem
terms f (x′,p′) (with x′ ⊆ x, and p′ ⊆ p). We use
skolem(A) to denote all Skolem terms mentioned in A.
At runtime, whenever a ground Skolem term is produced
by applying substitution θ to A, the corresponding ser-
vice call is issued, replacing it with the result (from Δ)
returned by the invoked service. The ground set of facts
so obtained is added by the DCDS to its current database
instance.

– D is also a set of facts overR, which include as terms free
variables x of Q and action parameters p. At runtime, the
ground facts obtained by applying substitution θ to D are
removed from the current database instance.

As in STRIPS, we assume that additions have higher priority
than deletions (i.e., if the same fact is asserted to be added
and deleted during the same execution step, then the fact is
added). The “add A” part (resp., the “del D” part) can be
omitted if A = ∅ (resp., D = ∅).
Process.Theprocess� is a finite set of condition-action rules,
each of the form Q(x) 
→ act(x), where act is an action in
A and Q is again a FO query overRwhose free variables are
exactly the parameters of act, and whose other terms can be
quantified variables or constants mentioned in I0.

Finally, notice that effects and condition-action rules can
be rearranged in a modular way, by observing that:

– A single effect of the form

Q(p, x) � add A del D

can be equivalently re-expressed as a set of effects

Q(p, x) � add A1 del D1

· · ·
Q(p, x) � add An del Dn

where some Ai or Di could possibly be ∅, and we have
that A =⋃i∈{1,...,n} Ai and D =⋃i∈{1,...,n} Di .

– Unions in condition-action rules can be implicitly
obtained by composing multiple rules, since a single rule
of the form

∨
i∈{1,...,n} Qi (x) 
→ act(x)

can be equivalently re-expressed as a set of rules

Q1(x) 
→ act(x) · · · Qn(x) 
→ act(x)

This equivalent rearrangement will be useful for the class of
DCDSs introduced in Sect. 4, for which add and delete facts
are required to obey to some restrictions.

2.2 Execution semantics

The execution semantics of a DCDS S is a possibly infinite
transition system ΥS whose states are labeled by data-
base instances. This transition system represents all possible
computations that the process component can do on the
data component. Specifically, ΥS = 〈Δ,R,Σ, s0, db,⇒〉,
where: (i) Σ is a set of states; (ii) s0 ∈ Σ is the initial state;
(iii) db is a function that, given a state s ∈ Σ , returns the
database instance of s, which is made of values in Δ and
conforms to R and C; (iv) ⇒ ⊆ Σ × Σ is a transition rela-
tion over states.

Given a DCDS S = 〈D,P〉 with D = 〈Δ,R, C, I0〉 and
P = 〈F ,A, �〉, the transition system ΥS is intuitively con-
structed as follows. Starting from I0, all condition-action
rules in � are evaluated, determining which actions are
executable, and with which ground parameter assignments.
Non-deterministically, one such action act with parameter
assignment ρ is selected and executed over I0. To do so,
every effect e of act (partially grounded with the parameter
assignment ρ) is evaluated, by calculating all the answers of
its left-hand side, and grounding the right-hand side accord-
ingly. If the right-hand side of e contains service calls, they
are issued, receiving back for each of them a value nonde-
terministically chosen from Δ. This value is then used to
substitute the service call with the actual result; notice that,
within an execution step, multiple occurrences of the same
service call are substituted with the same value. The overall
set of ground facts obtained by evaluating all effects of actρ
in this way finally constitutes the next database instance, pro-
vided that no constraint in C is violated. In case of violation,
the database instance is not changed, and actρ is consid-
ered to be inapplicable for the given configuration of service
call results. Notice that upon the execution of an action, the
content of a relation is lost unless it is explicitly maintained
through dedicated effects of the action. The transition sys-
tem construction then proceeds by constructing all possible
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successors, each of which is obtained by selecting one of the
executable actionswith parameters, and one result for each of
the involved service calls. The construction then recursively
proceeds over such newly generated states.

The formal definition of the execution semantics for
DCDSs can be found in [2].We recall it here, considering the
case where services behave nondeterministically (i.e., call-
ing the same service with the same inputs in two different
states could result in different values).

Formally, let I be a database instance over R and Δ,
such that I satisfies all constraints in C. Consider an action
act(p) : {e1, . . . , em} in A, where ei is of the form
Qi (p, x) � add Ai del Di , for i ∈ {1, . . . ,m}. A para-
meter substitution ρ for act is an assignment that maps the
parameters p of act to corresponding values in Δ. We say
that ρ is legal for act in I if there exists a condition-action
rule Q(x) 
→ act(x) in � such that ρ ∈ ans(Q, I).

When actρ is applied on I, it produces a set of facts
do(I,actρ), in accordance to the execution semantics of its
effects. Technically, we have

do(I,actρ) = (I \ F−) ∪ F+, where

F− =
⋃

j∈{1,...,m}
⋃

θ j∈ans(Q jρ,I)

⋃

Fk∈Di
Fkθ j

F+ =
⋃

j∈{1,...,m}
⋃

θ j∈ans(Q jρ,I)

⋃

Fk∈Ai
Fkθ j

This set of facts provides the footprint of the new data-
base instance, which is completely determined only once the
ground service calls contained in do(I,actρ) are substi-
tuted by corresponding results.

We are now ready to formally define the construction of
ΥS = 〈Δ,R,Σ, s0, db,⇒〉:

– s0 = I0;
– db is the identity function;
– Σ and ⇒ are defined by simultaneous induction as the

smallest sets satisfying the following properties:

– I0 ∈ Σ

– for I ∈ Σ , then for every action act(p) in A, every
legal parameter substitution θ for act in I, and every
substitution sigmamapping each ground service call

contained in do(I,actρ) to a corresponding value
in Δ, if I ′ = do(I,actρ)σ satisfies all constraints
in C, then I ′ ∈ Σ and I ⇒ I ′.

2.3 Robin Hood and the Archery training process

We now introduce a simple DCDS that summarizes all the
key ingredients that will be discussed in the remainder of the
paper.

Robin Hood is a renown archer, and needs an information
system to keep track of the archery courses he delivers to his
apprentices among the merry men. To this end, he creates a
DCDS Srh that supports him in maintaining the information
of interest, and manipulate it over time.

The schema and constraints of Srh are listed in Fig. 1. As
for the schema:

– Group (id) states that there is an archery group identified
by id.

– Meets (weekSlot,group,where) indicates that the weekly
time slot weekSlot is dedicated to the training of group
in the location specified by the code where.

– MerryM (id,name,birthdate,combatLevel,group) states
that the person identified by id is a merry man named
name and born on bir thdate, who has currently an
archery ability corresponding to combat Level, and is
enrolled in group. We reserve a special constant null
to model the case where a person is not enrolled in any
group.

– Trusts (subj,obj) models that merry man subj trusts merry
man obj .

– State is a relation that glues the data component with
the process component, in particular to keep track of
the current state of each group—an information that is
used to “locate” the group inside the process. Specifically,
State(group, s) indicates that group is currently in state
s, which may be either in (the group is being assembled),
running (the group is under training), orout (the group
has completed the training).

The schema of Fig. 1 is equipped with the following con-
straints:

Group
PK id

MerryM
PK id

name
birthdate
combatLevel {basic, ok, pro}

FK group

State
PK, FK group

state {in, running, out}

Trusts
PK, FK1 subj
PK, FK2 obj

Meets
PK weekSlot
FK group

where

1..2

Fig. 1 The archery training data component
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– In each state, the combatLevel of a merry man is one of
three pre-defined levels:

∀id, n, b, c, g.MerryM(id, n, b, c, g)

→ (c = basic ∨ c = ok ∨ c = pro)

Similarly, for group states we have:

∀id, s.State(id, s)

→ (s = in ∨ s = running ∨ s = out)

– The first columns of MerryM, State, and Meets are the
(primary) keys of the corresponding relations2.:

∀id, n1, b1, c1, g1, n2, b2, c2, g2.
MerryM(id, n1, b1, c1, g1) ∧ MerryM(id, n2, b2, c2, g2)

→ n1 = n2 ∧ b1 = b2 ∧ c1 = c2 ∧ g1 = g2
∀id, s1, s2.State(id, s1) ∧ State(id, s2) → s1 = s2
∀s, g1, w1, g2, w2.Meets(s, g1, w1) ∧ Meets(s, g2, w2)

→ g1 = g2 ∧ w1 = w2

– The two attributes of Trusts reference both a merry man.
There are therefore two foreign key constraints, formal-
ized as:

∀s, o.Trusts(s, o) → ∃n, b, c, g.MerryM(s, n, b, c, g)
∀s, o.Trusts(s, o) → ∃n, b, c, g.MerryM(o, n, b, c, g)

Similarly for the foreign key starting from the State rela-
tion.

– The foreign key starting from the MerryM relation does
not start from an attribute that is part of the primary key
for the source relation. Hence, differently from the pre-
vious case, the FO formalization needs to consider also
the fact that the attribute is nullable:

∀id, n, b, c, g.MerryM(id, n, b, c, g)

→ g = null ∨ Group(g)

– Meets has a cardinality-bounded foreign key pointing to

Group, of the form Meets[group]1..2−−−→Group[id]. This
can be formalized in FOL as:

∀s, g, w.Meets(s, g, w) → g = null ∨ Group(g)
∀g, s1, w1, s2, w2, s3, w3.

Meets(s1, g, w1) ∧ Meets(s2, g, w2) ∧ Meets(s3, g, w3)

→ s1 = s2 ∨ s1 = s3 ∨ s2 = s3

where null is again used to model that the foreign key
may be null.

2 Thanks to set semantics, there is no need to explicitly encode that the
only column of Group is its primary key, and similarly for the combi-
nation of the only two columns of Trusts.

cr-group

in

start-train

running

end-train

out

add-appr add-slot

Fig. 2 The archery training process control-flow. Tokens denote
process cases, which in this example correspond to groups of people

Finally, the data component of Srh populates the MerryM
relation with all the merry men that live together with Robin
Hood in the Sherwood forest, together with their personal
information and trust relations. We also assume that, at the
beginning, no group exists, and consequently all merry men
have null in the corresponding attribute.

Figure 2 shows aPetri net that sketches the archery training
process. Intuitively, places represent group states (and in fact
they correspond to the possible values that the second column
of relation State can take). Transitions correspond to DCDS
actions manipulating groups and their related informations,
whose executability depends on the group state.

Specifically, the special cr-group action is always exe-
cutable, and has the effect of creating a new group in the
information system, putting it into the in state. The group
identifier is injected into the system by calling the newId
service.

true 
→ cr-group()

cr-group() :
{

true � add
{
Group(newId()),

State(newId(),in)

}}

Robin Hood can add an apprentice to a newly created group,
provided that the apprentice is not already enrolled in a group.
The effect of the action is to update the group attribute of the
selected merry man; this is modeled by removing the current
tuple of that merry man, and reinserting it with the updated
group attribute.

Group(g) ∧ State(g,in) ∧
∃n, b, c.MerryM(id, n, b, c,null) 
→ add-appr(id, g)

add-appr(m,g) :{
MerryM(m, n, b, l, go) � del {MerryM(m, n, b, l, go)}

add {MerryM(m, n, b, l,g)}
}

At the same time, a newly created group can be updated by
providing a weekly slot in which Robin inputs when and
where a certain group meets.

Group(g) ∧ State(g,in) 
→ add-slot(g)

add-slot(g) :{
true � add {Meets(inWhen(g),g, inWhere(g))}

}
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To model the two user inputs, service calls inWhen and
inWhere are used, both taking as parameter the identifier of
the group for which the slot is being created. We can imag-
ine that such service calls are actually realised as a user form
that asks Robin Hood to provide the time and location of the
group given as input.

Interestingly, althoughno explicit indication is given in the
process control-flow of Fig. 2, the combination between such
control-flow and the data constraints tells us that at it will be
possible to add at most two weekly slots for the same group.
This example attests how much involved process analysis
becomes once the combination between the data and process
component is fully tackled.

A group in the in state can be turned into a running
group by executing the start-training action. This has the
effect of making the group not eligible anymore for adding
new apprentices.
Group(g) ∧ State(g,in) 
→ start-train(g)

start-train(g) :{
State(g, s)�del{State(g, s)} add{State(g,running)} }

The end of the training for a running group is marked by
executing the end-training action. Besides the state update
for the group, this has a twofold effect:

– the combat level of each group member is updated
according to the quality of his performance;

– the group members are dissociated from the group,
becoming again free to be enrolled in another group.

Group(g) ∧ State(g,running) 
→ end-train(g)

end-train(g) :⎧
⎨

⎩

State(g, s) � del{State(g, s)} add{State(g,out)}
MerryM(m, n, b, l,g) � del{MerryM(m, n, b, l,g)}

add{MerryM(m, n, b, assess(m),null)}

⎫
⎬

⎭

Notice that the combat level assessment is input by Robin
Hood for each of the involved merry men. To model such a
user input, service call assess is used, which takes as para-
meter the identifier of the merry man to be assessed. We can
again imagine this service call to be realised as a user form for
Robin. Differently from theweekly slot case, though, the ser-
vice call result is implicitly subject to the database constraint
that enumerates the acceptable values for the combat Level
attribute of MerryM. This implies that the provided input
needs to correspond to one of the three pre-defined levels.

2.4 Fresh value injection

A technical, but important, aspect related to DCDSs is that
issuing a service call does not guarantee that the obtained
result is a fresh value, that is, a value that is not present

in the current active domain. In the archery training DCDS
of Sect. 2.3, this is perfectly fine with the assess service
call, which in fact is forced to return one of the three pre-
defined combat levels, but is not satisfactory with the newId
service call. In fact, when creating a new group, the implicit
requirement is that the identifier assigned to that group is
not already assigned to another group. In this respect, the
formalization of the cr-group action is not correct, as it
could result in a no-op if newId returns an identifier that is
already assigned to another idle group in the in state.

In this section, we show that DCDSs can easily model the
injection of a new value that is guaranteed to be fresh w.r.t.
the values present in a given column of the current database
instance (this can be easily generalized to multiple columns,
or even the entire active domain). This is particularly useful
in all those caseswhere a newprimary key has to be generated
for a certain relation, such as that of create-group.

Let f be a 0-ary service call, and let R be an n-ary relation.
We want to ensure that whenever f is called, the obtained
result is freshw.r.t. the i-th columnof R, i.e., different fromall
values appearing in the i-th position of R-tuples in the current
database instance. This can be guaranteed by modifying the
original DCDS specification as follows:

– The database schema of the original DCDS is augmented
with two additional relations: a unary relationTempf used
to store a copy of the value returned by f, and an n-
ary relation Rprev , whose extension corresponds to the
extension of R in the previous state.

– Each action of the original DCDS is augmented with two
additional effects, used to populate the next instance of
Rprev with the current extension of R. This is done by
emptying the content of Rprev , and by filling it with all
tuples currently stored in R:

Rprev(x) � del {Rprev(x)}
R(x) � add {Rprev(x)}

– Every action that employs f in (the head of) its effects is
augmented with an additional effect, which enforces that
a copy of the result returned by f is stored into relation
Tempf :

true � add {T emp f (f())}

– The data component of the original DCDS is augmented
with a constraint that enforces the freshness of the results
returned by f w.r.t. the i-th component of (the previous
extension of) R:

∀x1, . . . , xn .Rprev(x1, . . . , xi−1, xi , . . . , xn)

→ ¬Tempf (xi )
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The constraint indeed checks that the i-th component
of each Rprev tuple does not correspond to the result
returned by f, which is stored into the Tempf relation.

Thanks to this (linear) transformation, we can introduce
the surface syntax fR[id] to indicate that f is fresh w.r.t. the
i-th column of R, remembering that a DCDS employing such
a syntactic sugar can always be transformed into a standard
DCDS.

In this respect, the cr-group action of the archery training
DCDS in Sect. 2.3 can be correctly rephrased as follows:

cr-group() :{

true � add
{
Group(newIdGroup[id]()),
State(newIdGroup[id](),in)

}}

3 Data-aware, case-centric processes

In this section, we introduce some minimal modeling guide-
lines on the shape that a DCDS must have to be considered
“case-centric”. We then provide a fine-grained classification
of the different types of data stored in a relational database
taking the (business) process perspective, and considering
that our main focus is in the static analysis of the system, i.e.,
before cases are actually executed.We conclude by introduc-
ing a formal notion of process correctness, reformulating the
well-known notion of soundness [29] in our data-aware set-
ting. This constitutes the basis for Sect. 4, in which we study
the boundaries of (un)decidability when checking soundness
over (subclasses of) DCDSs.

3.1 Basic control structures

To identify the class of case-centric DCDSs, we make the
following basic assumptions on their shape.

Let S = 〈D,P〉 be a DCDS. For S to be case-centric, we
first assume that D contains two relations (and related con-
straints) to keep track of case-related information, as shown
in Fig. 3:

– A unary case relation, storing case identifiers. The name
of such a relation depends on the specific domain under
study. For example, in Sect. 2.3, the case relation is
Group. We use case- relD to denote the case relation
of data component D.

case-relD
PK id

State
PK, FK case
PK state {in, . . ., out}

Fig. 3 Core relations and constraints in a case-centric data component
D

– Abinary State relation, storing the current state(s) of each
case.

Similarly to the special input and output places used in work-
flow nets [29], we assume that each case has two special
states: an in state in which the case is located when it is
created, and an out state reached by the case when the exe-
cution of the process on it terminates. This data structure
generalizes that of Group and State in Sect. 2.3. The main
difference is that in this general form, the primary key of
relation State is constituted by the entire relation, so as to
support the possibility of associating multiple states to the
same case. This is particularly useful to model concurrency
and sub-processes, that is, multiple threads for the same case,
each located in a different state.

Let us now consider two general requirements on the
process componentP , in relation to themanipulation of cases
independently from the specific domain. First, we assume
thatP contains a special action (without parameters) to create
a new case. This is the only action that can actually add values
to the case- relD relation, which we consider to be always
initially empty. For compactness of notation, from now on
we assume that case- relD is relation C with attribute id.
The action generating a new case is then formalized as:

new-case() :
{

true � add
{
C(newIdC[id]()),
State(newIdC[id](),in)

}}

The new-case action can be considered as a data-aware
variant of emitter transitions in Petri nets. Its executability
depends on the targeted domain, i.e., on the domain-specific
conditions that allow for the generation of a new case. In the
most general situation, e.g., the one in which the creation of
a new case depends on external stakeholders (i.e., cannot be
controlled by the company that manages the process execu-
tion), the condition-action rule determining the executability
of new-case() is simply: true 
→ new-case().

The second general requirement concerns the core nature
of case-centric processes: each action act of P (except
new-case) is required to have one parameter matching with
a case identifier. For this reason, each condition-action rule
is required to have the following form, where Φ is a domain-
specific condition for act:

C(c) ∧ Φ(c, x) 
→ act(c, x)

In summary, a DCDS 〈D,P〉 is case-centric if:

– D contains the relations and constraints shown in Fig. 3,
and is such that case- relD is empty in the initial data-
base of D;

– P = 〈F ,A, �〉 is such that:
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– A = Anorm � {new-case()}, where new-case() is
defined as above;

– � = �norm � {true 
→ new-case()}, where each
condition-action rule in �norm has the form C(c) ∧
Φ(c, x) 
→ act(c, x), in which C corresponds to
case- relD, and act ∈ Anorm .

3.2 The different roles of data

We now overview how the data maintained in the data com-
ponent of a data-aware, case-centric process can be classified
w.r.t. the process itself. Our focus is on static analysis, i.e.,
on the study of how the process will manipulate the under-
lying data before process cases are actually executed in the
real world. We use the archery training process of Sect. 2.3
to illustrate the different concepts.

Control, distinguished, and pure values Among all the
data valuesΔmaintained in a database, some values have the
peculiar characteristic of being explicitly used by business
processes to select which actions can be executed and which
not, in turn determining the allowed courses of execution.
For this reason, we call such values control values. In the
archery training example, the control values are:

– All the values maintained in the second column of the
State relation, to keep track of the state of each group
and, in turn, determine which actions can be executed.

– The null value, because it determines whether a certain
merry man can be selected as apprentice for a group or
not.

It is important to notice that these values are typically
pre-defined, and finitely many. They can be identified by
analyzing the process control-flow, and extracting all those
values that are explicitly mentioned in its specification. In
DCDSs, this is done by scanning all queries used in the con-
ditions of condition-action rules, as well as those specifying
the body of action effects. Figure 4 shows a simple example
of control values in BPMN.

Obviously, the database does not just contain control
values. A second important class of data values is that of
distinguished values, that is, values that have a special seman-
tics for the domain experts and end users. In particular, those

. . . pay good

bank
status . . .

. . .

. . .

bank status = OK

bank status = ERR

else

Fig. 4 Control values in a simple BPMN diagram: OK and ERR are
control values that route the process to different alternative flows

values can be explicitly mentioned by users when posing
queries over the database. In this light, control values can
be considered as a subset of distinguished values, since they
can be mentioned by users to query the state of cases. In the
archery training process, distinguished values are all group
states, the special value null and all combat levels. It is
in fact expected that Robin Hood will be interested, e.g., in
knowingwhich are themerrymen that have abasic combat
level.

All other values of Δ are not explicitly used to route the
process nor to formulate user queries, but are simply data
values describing a relevant information about the domain.
Examples of such kind of values are tuple identifiers (i.e.,
internal ids used to fill the primary key of a relation), char-
acteristics of products in a catalogue (such as products
names and their bar codes), and features of people (such
as social security numbers, credit card numbers, names, and
addresses). In the archery training example, these are the val-
ues appearing in all columns of theMerryM relation but the
combat level (and the special null value). The crucial char-
acteristic of a data value of such kind is that the value does
not have an importance per sè, but only in relation with other
data. As a consequence, they are only compared for identity
with each other. For example, it is important to know that a
given person address is associated to the same social security
number to which a cloned credit card is registered, but the
consistent renaming of the social security number to a differ-
ent number would not lead to any information loss, provided
that the relationshipwith the address and credit card aremain-
tained: comparing such values for identity would still lead to
the same result. This is especially true when focusing on sta-
tic analysis, because at design time many values are not yet
present in the database, but will be actually injected during
the execution of process cases.

This notion of “invariance under renaming” is very well
known in computer science. On the one hand, it relates to
the classical notion of genericity in databases [12], and to
invariance under isomorphism in first-order logic. On the
other hand, it is reminiscent of name binding in programming
languages [17], of name usage in distributed systems [26],
process algebras [25], and Petri nets [27], and of nominal
sets3 [7].

Leveraging on the terminology used in many of these
papers, we refer to this kind of data values as pure val-
ues. Notably, both genericity and nominal sets have been
exploited to provide key decidability results for the sta-
tic verification of dynamic systems manipulating data, see
respectively [2,4,6,10] and [8].

Figure 5 overviews how the overall set of data values Δ

is decomposed into the three sets of control, distinguished,
and pure values.

3 Considering in particular those with equality symmetry.
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Δpure values distinguished values

control values

Fig. 5 Control, distinguished and pure values

Read/write data access When analyzing how a process
impacts on data, it is important to understand in a fine-grained
way how such data are accessed by the process. This has a
twofold impact on verification: on the one hand, it may help
towards decidability, and on the other hand it may help in
reducing the state space to be considered. Consider again the
archery training example.Clearly, theState andMerryM rela-
tions play a radically different role in the process: the first
one is a core relation in controlling the process execution,
whereas the second one keeps domain data that only par-
tially interact with the process, which never uses the columns
maintaining names and birthdates.

More in general, a first useful characterization concerns
the kind of access that processes can have on certain relations
and relation attributes: (i) no-access, (ii) read-only, (iii)write-
only, and (iv) read-write.

Interestingly, read-write attributes are typically used to
store control data values used to drive the evolution of the
different process cases. Also notice that the dividing line
between “no access” and “read-only” is not crisp, since some
attributes are read just to present useful information to the end
users, but they do not really participate to the process. This is,
e.g., the case of the merry man name and birthday attributes,
which, in the context of the archery training process, do
not impact the process execution at all, but could still be
employed to make Robin Hood able to make sense out of the
corresponding identifiers.

Among all relations, of particular interest in this paper
are the two classes of cardinality-immutable and read-only
relations.

Cardinality-immutable relations are relations that can be
accessed in write-mode by the process only in a controlled
way. In particular, the attributes forming the primary key of a
cardinality-immutable relation are read-only. In this special
case, the process can manipulate the content of the relation,
but cannot shrink nor extend its set of tuples. To comply with
cardinality-immutable relations, the action specification of a
DCDSmust satisfy the following condition: for each relation
R with PK(R[K ]), every effect Q � add A del D is such
that:

– either the effect does not mention R in A or in D; or
– Q mentions R in a way that variables id are used in the

positions corresponding to attributes in K , andboth A and
Dmentions R as well, in a way that the same variables id
are again used in the positions corresponding to attributes
in K .

Intuitively, the first kind of effect does not touch the exten-
sion of R, therefore maintaining it implicitly unaltered. The
second kind of effect models instead the case of an update
for all R-tuples, where the update of each tuple is modelled
as a deletion and addition in such a way that the primary key
is left untouched.

Read-only relations are cardinality-immutable relations
whose attributes are all read-only. To comply with read-only
relations, the action specification of aDCDSmust nevermen-
tion them in the right-hand side of effects.

Throughout the paper, we assume that once a relation is
declared to be cardinality-immutable or read-only, then every
DCDS complies with this requirement.

Example 1 The archery training DCDS is such that relation
MerryM is cardinality-immutable. It is easy to see that when-
ever such a relation is mentioned in the left-hand side of an
effect, then it is also mentioned both in the corresponding
add and del sets, in such a way that the primary key is main-
tained. ��

Relevant vs irrelevant data, and vertical partitioning The
classification of attribute access helps in sharpening the focus
on those portions of the database that are really relevant
for the static analysis of business processes. Specifically:
no-access attributes, write-only attributes, and read-only
attributes that are just accessed for presentation purposes,
can be abstracted awaywithout impacting on the static analy-
sis, given the fact that they do not influence the execution of
process cases. Since this operation corresponds to remov-
ing columns (or tables) from the database schema, we call
it vertical partitioning. Figure 6 shows the result of vertical
partitioning on the archery database schema.

Related vs unrelated data, and horizontal partitioningThe
last dimension concerning the way data can be manipulated
by business processes is about query patterns, which deter-
mine how data are related to each other. If no restriction is
made on the way queries are posed over the database, then
every datum can in principle be related with any other datum
(think about the extreme case of a query that executes the
cartesian product of every relation present in the database
schema).

This chaotic way of accessing the database is not only
unreasonable, but also dashes any hope of getting decid-
ability of static analysis (see, e.g., [2,11,21]). Contrariwise,
relations are usually queried in a well-disciplined way, e.g.,
by applying joins in a compatible way with foreign keys.
When business processes follow this principle, their execu-
tion tends to produce data organized into data slices, each
containing data that are related to each other, and such that
data of different slices are only partially related, or even com-
pletely unrelated. We call this emergent property horizontal
partitioning. Figure 7 provides an intuition for horizontal par-
titioning in our running example.
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Fig. 6 Vertical partitioning of
the archery database schema on
read-write attributes and primary
keys; notice that MerryM is a
cardinality-immutable relation

Fig. 7 Horizontal partitioning with three slices considering a possi-
ble database instance for the archery training process. The merry man
with id 76 is part of the slice of group 4 because, even though it is not

one of the members of group 4, he can be queried and become one
of its apprentices; this is in fact the only tuple that is shared by slices
belonging to different groups in the in state

The notion of horizontal partitioning into data slices per-
fectly fits case-centric business processes, which typically
assume that each case evolves independently from the others.
This is apparentwhen considering the control-flowconstructs
of standard process modelling languages, which do not pro-
vide any form of support for inter-case relationships, and
translates into the formal notion of freedom of choice [29]
by considering their underlying Petri net-based semantics.
In fact, free-choice nets guarantee that the route a token can
take among multiple choices does not depend on the position
of other tokens, enforcing this idea of isolation.

Understanding whether a case-centric business process
enforces this separation becomes much more problematic in
a data-aware setting: even though two cases may seem inde-
pendent from the control-flow perspective, they could still
indirectly interact through the underlying common database.
Studying this aspect is exactly the purpose of Sect. 4 below.
Finally, notice that this notion of separation becomes much
less definite and evenmore difficult to be properly understood
when adopting an artifact-centric approach to process mod-
elling. In fact, one of the trickiest aspects of business artifacts
is the fact that they could establish many-to-many relations
with each other [15], mutually affecting their evolution.

3.3 Data-aware soundness

Soundness is a fundamental notion in the control-flow analy-
sis of standard, case-centric process models. Since the
original definition in [29],many variants and relaxations have
been proposed to characterize the correctness of processes
[30].We lift now the classical notion of soundness to account
for case-centric, data-aware processes—relaxations can be
then easily defined by reconstructing the literature in such a
data-aware setting.

Soundness is defined over processes that have two spe-
cial states: an input state denoting the starting point of each
case, and an output state denoting the ending point. With this
minimal assumption, soundness intuitively imposes that, for
each case that starts in the input state, we have:

1. eventual termination: the output state is always reachable,
i.e., in every state there is a sequence of executable tasks
that leads to the output state;

2. proper termination: the output state is always reached in
a clean way, i.e., when the case is in the output state, then
there is no executable task;

3. task executability: there is no dead task, i.e., for each task
there is at least one execution leading to a state in which
that task is executable.

We now rephrase soundness in the context of case-centric
DCDSs. Let S = 〈D,P〉 be a case-centric DCDS with
P = 〈F ,A, �〉. Intuitively, data-aware soundness imposes
that, for each case identifier c belonging to the case- relD
relation and such that State(c,in) holds4, we have:

1. eventual termination: along every possible future execu-
tion, it is always the case that a state can be reachedwhere
State(c,out) holds;

2. proper termination: when State(c,out) holds, then there
is no condition-action rule in �norm that can fire on c;

3. task executability: for each action act(p) inAnorm , there
exists an execution leading to a state in which act(d) can
be executedwith some concrete valuesd instantiating the
parameters p, according to the condition-action rules in
�norm .

4 Recall that each case initially starts from the in state, in accordance
with the specification of new-case.
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We now show how data-aware soundness can be actually
formalized in the μLP verification logic introduced in [2].
μLP is a variant of first-order μ-calculus that allows only
for a controlled, “persistent” formoffirst-order quantification
across different states of aDCDS. In particular, quantification
only applies as long as data values persist in the active domain
of the evolving DCDS database. Given a case-centric DCDS
S = 〈D,P〉 with P = 〈F ,A, �〉, we have that S is sound if
ΥS |� Φsound , where Φsound corresponds to formula

νZ .
(∀c.C(c) ∧ State(c,in) → (ξ(c) ∧ π(c) ∧ τ(c))

) ∧ Z

in which, under the assumption that C = case- relD:

1. ξ(c) models the eventual termination of c as follows:

νW.
(
μY.
(
C(c) ∧ State(c,out) ∨ (C(c) ∧ Y )

))

∧(C(c) ∧ W )

2. π(c) models the proper termination of c as follows:

νW.
(
State(c,out) →

∧

C(c′)∧Φ(c′,p) 
→act(c′,p) inAnorm

¬∃x.Φ(c, x)
)
∧(C(c)∧W )

3. τ(c) models task executability on c as follows:

∧

act(p) inAnorm

μY.
( ∨

C(c′)∧Φ(c′,p) 
→act(c′,p) inAnorm

∃x.Φ(c, x)
)
∨(C(c)∧Y )

It is important to observe that, while being expressible
in the μLP logic, checking soundness cannot be directly
tackled by the technique presented in [2]. In fact, the key
property required by [2] on the shape of DCDSs towards
decidability of verification against μLP properties, is that
of state-boundedness. State-boundedness requires the exis-
tence of a number that provides an overall bound over the
size of each database produced along any run of the DCDS
under study. This does not hold for case-centric DCDSs, for
which there is no bound on the number of cases that may
simultaneously coexist in the system.

4 Soundness of case-centric DCDSs

We now study verification of (data-aware) soundness over
case-centric DCDSs, showing that its decidability holds for
an interesting class of case-centric DCDSs. More specif-
ically, our main goal is to introduce a set of modeling
guidelines that on the one hand guarantee decidability of
soundness, andon the other hand allow themodeler to capture
real-life processes. We achieve the formulation of this class
incrementally, by showing that each limitation we introduce

is necessary towards decidability (i.e., by relaxing it, sound-
ness becomes undecidable). To do so, we take inspiration
from the artifact-centric methodology studied in [11]. How-
ever, our results are quite different: those in [11] are focused
on verification of termination properties in the context of an
UML-based artifact-centric framework, whereas here we are
interested in the study of soundness over case-centric process
models.

The aspects that we incrementally tackle towards decid-
ability are:

– Navigationality The process cannot arbitrarily work over
all relations of the schema, butmust access them in a con-
trolled way. By leveraging the notion of case, we require
queries to be case-navigational, i.e., they start from the
case relation and navigate foreign keys backward so as
to reach other relations.

– Case-width-boundednessWhen navigating a foreign key
from a target to a source relation, the process must not
have the possibility of creating unboundedly many tuples
of the source relation.

– Case-depth-boundedness It must be prevented that the
process can create and manipulate unbounded chains of
relations.

– Isolation Each case manipulates its own data, and does
not interfere with the data of the other cases. When dif-
ferent cases are not properly isolated, that is, they share
read-write relations, then they could interact in such a
way that, in spite of case-depth-boundedness, they could
form unbounded chains altogether.

All undecidability proofs that we provide in the follow-
ing rely on reductions of soundness checking for case-centric
DCDSs to the halting problem of two-counter machines [23],
which aremachines simultaneously operating over a proposi-
tional control state and the valuesmaintained by two counters
through increment and decrement, in a way that depends
on the values of the counters. We just focus on the core
of the reductions, showing how each considered class of
case-centric DCDSs can encode a counter and correspond-
ing operations of increment, decrement, and test for zero.
More specifically, we show how the DCDS under study can
simulate the following three operations:

– 〈k,c+,k′〉, which indicates that when the machine is in
control state k, then it moves to state k′ by incrementing
the value of counter c by one unit.

– 〈k,c-,k′〉, which indicates that when the machine is in
control state k and counter c holds a positive value, then
the machine moves to state k′ by decrementing the value
of counter c by one unit.

– 〈k,c==0,k′〉, which indicates that when the machine is
in control state k and counter c is zero, then the machine
moves to state k′.
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Once these operations are available, a program operating
over two counters can be encoded by a DCDS where each
case represents an execution of the program, and control
states correspond to case states, such that the first instruc-
tion corresponds to state in, and the last one to state out.
Furthermore, once a single counter is encoded into a DCDS,
a second counter can be immediately obtained by duplicat-
ing the involved relations, or by adding a new column that
plays the role of counter identifier. This technique has been
recently independently adopted in [11] and [21].

4.1 Undecidability of soundness

Unsurprisingly, given the expressiveness of case-centric
DCDSs, the following negative result holds:

Theorem 1 Checking soundness of case-centric DCDSs is
undecidable.

Proof Consider a case-centric DCDS equipped with two
unary relations C1(v) and C2(v). In the general case, no
restriction is imposed on how the DCDS can manipulate the
extension of these two relations, hence each case can arbi-
trarily query andmanipulate those relations. In particular, the
DCDS can simulate a 2-counter machine where the values
of the counters correspond to the number of tuples in C1 and
C2, and, consequently:

– increment is encoded by adding a fresh value into the
corresponding counter relation;

– decrement is encoded by (nondeterministically) remov-
ing one of the tuples in the corresponding counter
relation;

– test for zero is simulated by asking whether the extension
of the corresponding counter relation is empty.

This technique resembles the one used in [11] and [21].More
specifically, the DCDS maintains a unary relation Contr,
which contains a single case identifier responsible for the
manipulation of the two counters.An initial action selContr
is devoted to select the controller as follows:

– if Contr is empty, then the case on which the action
is applied becomes the controller of the counter, and is
moved to the first control state k0;

– otherwise, the case immediately terminates (i.e., it is put
in the out state).

By assuming that Case is the case relation, this is formalized
as:

Case(c) ∧ State(c,in) 
→ selContr(c)

selContr(c) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

¬∃x .Contr(x) � del {State(c,in)}
add

{
State(c,k0),
Contr(c)

}

∃x .Contr(x) � del {State(c,in)}
add {State(c,out)}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

An increment operation of the form 〈k,c1+,k′〉 is encoded
as follows (notice the fact that only the controller case can
apply the action):

Case(c) ∧ Contr(c) ∧ State(c,k) 
→ inc1(c,k
′)

inc1(c,n) :
⎧
⎨

⎩

State(c, s) � del {State(c, s)}
add

{
State(c,n),

C1(newValC1[v]())

}

⎫
⎬

⎭

In the formalization above, the new control state is passed
as an action parameter, and increment is simulated by intro-
ducing a fresh value into relation C1, relying on the nullary
service call newVal.

A decrement operation of the form 〈k,c1-,k′〉 is encoded
as follows:

Case(c)∧Contr(c)∧State(c,k)∧C1(x) 
→ dec1(c,k
′, x)

dec1(c,n,e) :
{
State(c, s) � del { State(c, s),C1(e) }

add {State(c,n)}
}

The structure is similar to increment, the key difference being
that decrement is simulated by nondeterministically picking
an element from C1, and removing it from the extension
of such relation. The element is picked in the condition of
the condition-action rule, and passed as a parameter. This
implicitly means that the decrement action can be executed
only if C1 contains at least one element.

Finally, an instruction of the form 〈k,c1==0,k′〉 is mod-
elled as follows:

Case(c) ∧ Contr(c)

∧ State(c,k) ∧ ¬∃x .C1(x) 
→ moveTo(c,k′)

moveTo(c,n) :
{
State(c, s) � del { State(c, s) }

add {State(c,n)}
}

We close the proof by remarking that a DCDS structured
in this way is indeed case-centric. In fact, case centricity does
by no means limit how the DCDS can query the relations of
its schema, including C1. ��

4.2 Navigational case-centric DCDSs

In Theorem 1, undecidability arises from the fact that the
DCDS can manipulate two unary relations without any
restriction. We consequently need to discipline how the

123



548 M. Montali, D. Calvanese

extension of relations can be manipulated. As a first fun-
damental requirement, we impose that the DCDS can access
facts of a given relation only by navigating from a case iden-
tifier. To do so, we impose some modelling guidelines on
both the data and process components.

As for the data component, we require that its constraints
are either keys or foreign keys. In this case, the data com-
ponent is said to be navigation-supporting. Following the
discussion of Sect. 3.2, we also explicitly distinguish rela-
tions whose extension can be freely manipulated by the
process from those that are cardinality-immutable.

As for the process component, we define a class of
case-centric DCDSs called case-navigational. Intuitively, a
case-centricDCDS is case-navigational if the following three
conditions hold:

– Every query is a navigational query rooted in a case iden-
tifier, that is, it “starts” from a case identifier, and then
moves through schema relations by applying joins that
navigate foreign key constraints backwards.

– Facts mentioned in the add and del sets of effects are also
subject to navigational patterns, in such a way that tuples
can be added, deleted, and modified only if they can be
reached from a case identifier by means of a navigational
query.

To formally define navigational queries, some preliminary
notions are needed. A weakly guarded FO query Q(x) is
inductively defined as follows:

(base case) Q(x) is a conjunction of the form∃y.R(x, y)∧
Φneg(x, y), whereΦneg is a query whose atoms are either
relational atoms, or (in)equalities, composed through
boolean operators. Intuitively, Φneg is used as a filter.
(inductive case) Q(x) is a conjunction of the form
∃y.R(x0, y) ∧∧i∈{1,...,n} Φi (xi , vi ) where, for each i ∈
{1, . . . , n}, the following three conditions hold: (i) x0 ∪
xi = x, (ii) vi ⊆ x0 ∪ y, and (iii) Φi is a weakly guarded
FO query.

We also say that a weakly guarded query ∃y.R(x, y) ∧ Ψ

is rooted in R. The appellative “weak” is used since, in the
inductive case, not all free variables x of the original query
Q are forced to appear in the (weak) guard R.

Given a data component D and a FO query Φ, we say
that Φ is a case-navigational query over D if it obeys to the
following conditions:

– Φ is a weakly guarded query rooted in relation
case- relD.

– For each (weakly guarded) subformula ∃y.S(x0, y) ∧
∧

i∈{1,...,n} Ψi (xi , vi ), such that for each i ∈ {1, . . . , n},

Fig. 8 A navigation-supporting data component where each case cor-
responds to a pebble, moving and modifying a grid (shared with other
pebbles)

Ψi is rooted in relation Ri , x0 ∪ xi = x, and vi ⊆ x0 ∪ y,
we have that:

– either Ri is a cardinality-immutable relation, or
– the following three conditions apply:

1. Variables vi appear exactly in those positions B
of S that form primary key of S, i.e., PK(S[B])
belongs to the constraints of D.

2. Variables vi all appear in relation Ri .
3. By denoting with Ai the set of attributes corre-

sponding to the positions of variables vi , we have
that Ri[Ai ]−→S[B] belongs to the constraints
of D.

– The same check is applied to the innermost formula
∃y.R(x, y) ∧ Φneg(x, y), by considering each relational
atom appearing in Φneg .

It is easy to see that checking whether a query is case-
navigational for a given data component requires time that
is linear in the size of the query. The definition is quite
involved, but the underlying philosophy is rather intuitive:
a case-navigational query compatible with D starts from a
case identifier, and moves from one relation to another by
navigating foreign keys backward, i.e., from the “one” side
(the pointed primary key) to the “many” side (all tuples refer-
ring to such a key). The answers to the query are extracted for
some of the attributes visited along the navigational graph.
Finally, some of the so-obtained results can be filtered away
by appending, at the end of the navigation, a query of the form
Φneg(x, y) above. An exception is constituted by cardinality-
immutable relations, which can be queried arbitrarily (that is,
without requiring a navigation driven by foreign-keys).

Example 2 Consider the navigation-supporting data compo-
nent of Fig. 8, where Pebble is the case relation. Each case
represents a pebble, located over a cell in a (dynamic) planar
grid. Each cell, in turn, may contain at most one pebble. We
assume that the data component contains also constraints
ensuring that its shape is in fact a grid. We do not model
a specific case-centric DCDS running on top of such data
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component, but we instead focus on sample queries that are
case-navigational. The first query we consider is:

TRP(p) = Pebble(p) ∧ ∃c, d, l.Cell(c, p,null, d, l,null)

This query returns the pebble that is located in the top-right
corner of the grid (provided that there exists one). The query
is case-navigational: it first selects a case p from the Pebble
relation, then uses p to navigate to its cell c, checking that
such a cell has no other cell on its right and on its top.

Another interesting example of case-navigational query is
the following:

Surrounded(p, c) = Pebble(p)
∧ ∃u, d, l, r.Cell(c, p, u, d, l, r)

∧ (∃pr , ur , dr , rr .Cell(r, pr , ur , dr , c, rr ) ∧ pr �= null)

∧ (∃pl , ul , dl , ll .Cell(l, pl , ul , dl , ll , c) ∧ pl �= null)

∧ (∃pu, uu, lu, ru .Cell(u, pu, uu, c, lu, ru) ∧ pu �= null)

∧ (∃pd , dd , ld , rd .Cell(d, pd , c, dd , ld , rd) ∧ pd �= null)

The query returns those pebbles (together with their corre-
sponding locations) that are completely surrounded, i.e., have
pebbles in each adjacent cell. The query is case-navigational
because it navigates from the Pebble relation to the Cell one,
and then from the cell in which the pebble is located to all
adjacent cells. Each subquery is paired with a negative filter
guaranteeing that the considered adjacent cell indeed con-
tains a pebble.

As last navigational query, consider

MoveR2(p, r2) = Pebble(p)

∧

⎛

⎜
⎜
⎝

∃c0, u0, d0, l0, r0.Cell(c0, p, u0, d0, l0, r0)

∧
⎛

⎝
∃u1, d1, l1, r1.Cell(r0,null, u1, d1, l1, r1)

∧
( ∃u2, d2, l2, r2.Cell(r1,null, u2, d2, l2, r2)

∧ ( ∃u3, d3, l3, r3.Cell(r2,null, u3, d3, l3, r3)
)
)
⎞

⎠

⎞

⎟
⎟
⎠

The query returns those pebbles that canmove of two cells on
the right, without incurring in any other pebble. The fact that
the query is case-navigational follows the intuition of navi-
gating inside the grid starting from the position of the pebble,
and moving twice on the right. Each right step is captured
by navigating backward the foreign key that connects a cell
with its right cell. ��

Example 3 Consider again the archery training data compo-
nent. Query

Groups&Members(g, n)

= Group(g) ∧ State(g,running) ∧
∃m, b.(MerryM(m, n, b,basic, g)

is case-navigational over the archery training data compo-
nent, and returns each known group, together with the names

of those merry men that are apprentices in that group and
have a basic combat level. Query

GSharingS(g) = Group(g) ∧ ∃s.(State(g, s) ∧
∃g′.(Group(g′) ∧ State(g′, s) ∧ g′ �= g))

returns all those groups that are in the same state of at least
another group. This query is not case-navigational over the
archery training data component, because it starts navigating
from case identifier g and then suddenly “jumps” to querying
another case identifier g′. ��

Given a data component D, a case-navigational query
Φ(x) overD, and aweakly guarded queryΨ (x′)with x’ ⊆ x,
we say that Ψ (x′) is navigationally embeddable into Φ(x)
if it is possible to replace a subquery Φ ′(x′) of Φ(x) with
Ψ (x′), such that the resulting query is still case-navigational
w.r.t. D. This notion is useful to construct add and delete
effects starting from a case-navigational query.

With all these notions at hand, we now transport the
notion of case-navigation to condition-action rules and action
effects accordingly. A case-centric DCDS 〈D,P〉 with P =
〈F ,A, �〉 is case-navigational if, given C = case- relD:

– D is navigation-supporting;
– �norm is constituted by condition-action rules of the form

Φ(c, x) 
→ act(c, x), where query C(c) ∧ Φ(c, x) is
case-navigational w.r.t. D.

– For every action act(p) in Anorm and each effect e ∈
effect(act), e has the form

∨

i∈{1,...,n}
Φi (c,p, x) � add A del D

where, by considering parametersp as constants,we have
that:

1. for each i ∈ {1, . . . , n}, query C(c) ∧ Φi (c,p, x) is
case-navigational w.r.t. D.5

2. For each i ∈ {1, . . . , n}, and for each fact F in A, F is
navigationally embeddable into C(c) ∧ Φi (c,p, x),
by considering the service calls in F as existentially
quantified variables.

3. For each i ∈ {1, . . . , n}, and for each fact F in D,
we have that F is navigationally embeddable into
C(c) ∧ Φi (c,p, x).

The requirements on action effects ensure that the manip-
ulation of data through add and delete facts does not work
over parts of the database that are unrelated (in the sense of
Sect. 3.2) to the case-navigational query in the body of the
effect.

5 C(c) is added just for compatibility with the definition, but it is
ensured by construction, since parameter c points to C.
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Cart
PK id

State
PK,FK case
PK state

{in, . . ., out}

InCart
PK barcode
FK cart

Fig. 9 A case-centric data model for user carts

Example 4 The archery training DCDS can easily be turned
into an equivalent form that makes it case-navigational. Con-
sider for example the condition-action rule for the add-appr
action:

Group(g) ∧ State(g,in)

∧∃n, b, c.MerryM(m, n, b, c,null) 
→ add-appr(m, g)

This query is already case-navigational: it navigates from
the Group to the State relation, while MerryM can be
freely queried, being cardinality-immutable. The fact that
MerryM is cardinality-immutable also implies that the effect
used to specify action add-appr is also already in a case-
navigational form. As for the other actions, they are already
in case-navigational form, or can be directly made case-
navigational by adding Group(g) in front of the employed
queries, which already use group g as entry point. ��

In general, case-navigationality guarantees that queries
access the data in a well-disciplined way, always starting
from a case identifier and retrieving tuples that directly or
indirectly refer to it. In this light, the case identifier can be
seen as a sort of “provenance identifier”. This also tells us
that when a process is not case-navigational because it con-
tains relations that are disconnected from the case relation, a
possible strategy to turn it into a case-navigational process is
to augment such relations with a (non-null) “provenance col-
umn”, in turn pointing via a foreing key to the case relation.
Given one such relations, say, R, this modification ensures
that every tuple of R now refers to one and only one case
identifier, and that the provenance column can be used as the
join column to access R in case-navigational way.

Unfortunately, being navigational does not suffice for
decidability of soundness. In fact, we argue that the possibil-
ity of having unboundedly many tuples (indirectly) referring
to a single case identifier, is a source of undecidability.

Theorem 2 Checking data-aware soundness of case-
navigational DCDSs is undecidable.

Proof Consider a case-centric DCDS S = 〈D,P〉 modeling
a process that manipulates items in a cart. The schema and
constraints of D are shown in Fig. 9. Each case represents a
user cart (case- relD = Cart), and each cart is filled with
products equipped with a barcode. The key aspect of D is
that, for a given cart, unboundedly many products can be
added to the cart. This features makes it possible to use D

to realize a case-centric DCDS that models the behaviour of
shoppers who do not have a limit on the number of products
they intend to buy. In this light, P offers to shoppers the
possibility of adding and removing items to/from the cart.

Specifically, a shopper who owns cart c can add a new
product of type t to c using the following process fragment:

Cart(c) 
→ ins-prod(c)
ins-prod(c) :
{true � add {InCart(newCodeInCart[barcode](),c)}}

Notice the usage of the newCodeInCart[barcode] service call,
which guarantees that the added product has a fresh barcode.

On the other hand, a shopper can also change her mind
about a product that is currently in the cart. The following
process fragment supports the shopper in the removal of a
product from the cart:

Cart(c) ∧ InCart(p, c) 
→ rem-prod(p, c)
rem-prod(p,c) : {InCart(p,c) � del {InCart(p,c)}}

Given these two process fragments, it is quite easy to see that
a shopper can straightforwardly simulate a counter machine,
where:

– the value of the counter is represented by the number of
items in the cart;

– the two actions ins-prod and rem-prod add and remove
a tuple to/from the InCart relation, and thus they respec-
tively encode the increment anddecrement of the counter;

– testing whether the counter simulated by cart c is zero
amounts to querying whether the extension of InCart is
empty for c: IsEmpty(c) = ¬∃p.InCart(p,c). ��

4.3 Case-width-bounded DCDSs

The source of undecidability inTheorem2 relies on the possi-
bility of having unboundedly many tuples referring (directly
or indirectly) to a single case identifier. We therefore need to
limit this source of unboundedness. To do so, we introduce a
class of case-centric DCDSs that are case-width-bounded,
by leveraging cardinality constraints in combination with
key constraints (i.e., cardinality-bounded foreign key con-
straints in the sense of Sect. 2.1). Interestingly, when paired
with the case-navigational requirement introduced before,
this approach guarantees that, starting from a case identifier,
each (backward) foreign key navigation has only boundedly
many branches to follow.

Technically, a data component D is case-width-bounded
if:

– D is case-navigational;
– each foreign key constraint A[R]−→B[S], where A is

not cardinality-immutable, is paired with a correspond-
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ing cardinality constraint CARD(A[R], n..m), so that
together they form a cardinality-bounded foreign key
constraint A[R]n..m−−−→B[S].

Observe that for foreign keys pointing to a cardinality-
immutable relation, no cardinality constraint need to be
enforced, since the number of tuples in the source relation of
the foreign key is anyway bounded by the number of tuples
in the target relation, which does not change during the exe-
cution.

Correspondingly,we say that a case-centricDCDS is case-
width-bounded if it is case-navigational andworks over a data
component that is case-width-bounded.

Example 5 The archery training schema of Fig. 1 is case-
width-bounded, since foreign keys are either paired with a
corresponding cardinality constraint, or they point to a car-
dinality immutable relation. Specifically, foreign keys with-
out corresponding cardinality constraints point to relations
MerryM and Trust, which are both cardinality-immutable.
Instead, foreign keys pointing to cardinality-mutable rela-
tions all have a numeric upper bound: every group has exactly
one state, and at most two weekly slots. ��

It is important to observe that, to ensure case-width-
boundedness, also the standard foreign key from State to the
case relation (cf. Fig. 3) needs to be properly associated to a
cardinality constraint. This is possible onlywhen the control-
flow component of the process gives raise to boundedlymany
control states for the same case, which is typical in reality. In
workflow net terms, this implies that the injection of a single
“case token” into the net gives raise to a boundedmarked net,
which controls the maximum degree of concurrency induced
by the case token.

We continue our (un)decidability tour by showing that
being case-width-bounded is still not sufficient to ensure
decidability, evenwhen thewidth-bound is 1. The new source
of undecidability is related to the possibility of recurring over
cyclic foreign keys, in such a way that each navigation step
has a bounded (actually, a single) branch, but, as a whole, it
can reach unboundedly many values along a chain.

Theorem 3 Checking data-aware soundness over case-
width-bounded DCDSs is undecidable.

Proof To show undecidability, we take inspiration from the
well-known Snake© videogame. In our variant, we consider
a snake that, at the beginning, consists of just a snake head.
Every time the snake finds a piece of food, it grows of one
body part. Every time the snake hits a wall, it looses its tail
body part (unless it only has its head—in this case nothing
happens). We do not explicitly account for the position of
the snake on the screen, nor for the actions used to move the
snake, as they are not needed in the proof.

SnakeH
PK id

CState
PK,FK case
PK state

{in, . . ., out}

BodyPart
PK id
FK1 snake
FK2 next

1..11..1

1..1

Fig. 10 A case-width-bounded data component modeling snakes

To formalize this behavior, we rely on the data component
shown in Fig. 10. In this data component, each case denotes
(the head of) a snake: case- relD = SnakeH . The BodyPart
relation keeps track of the body parts of a snake. Each body
part keeps a reference to the corresponding snake’s head,
and (optionally) a reference to its next part, that is, the part
that comes next towards the head. The special control value
null is used in the next column of the first body part, i.e.,
the body part that has the head as next.

It is easy to see that such a data component is case-width-
bounded: each cardinality-bounded foreign key models a
one-to-one relation.

The growth of snake c due to eating some food is captured
by the following case-navigational action:

eat-food(c) :⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

¬∃ f, n.BodyPart( f, c, n) �
add{BodyPart(newBPBodyPart[id](), c,null)}

BodyPart( fo, c,null) � del{BodyPart( fo, c,null)}
add

{
BodyPart(newBPBodyPart[id](), c,null),

BodyPart( fo, c,newBPBodyPart[id]())

}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Thefirst effect dealswith the casewhere the snake is currently
without any body part (i.e., it just has a head). In this case, the
first body part is created by calling the newBPBodyPart[id]()
service call so as to generate a fresh identifier for it.

The second effect deals instead with the case where snake
c has already at least one body part. The query selects the
first body part of c, namely the one that has null as next.
The identifier of such a body part matches with variable fo.
The head of the effect acts then as follows:

– A new first body part is added, using the
newBPBodyPart[id]() service call to generate a fresh iden-
tifier for it.

– The old first body part is updated, making it the second
one; this has the indirect effect of shifting all the other
body parts one position forward.

Symmetrically, the shrinking of snake c due to a wall hit is
modeled by the following case-navigational action:

hit-wall(c) :⎧
⎪⎪⎨

⎪⎪⎩

BodyPart( fo, c,null) � del {BodyPart( fo, c,null)}
BodyPart( fo, c,null)

∧ BodyPart( fn, c, fo) � del {BodyPart( fn, c, fo)}
add {BodyPart( fn, c,null))}

⎫
⎪⎪⎬

⎪⎪⎭
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The action deletes the current first body part, and at the same
time updates the current second body part turning it into the
first one. This has the indirect effect of shifting all the other
body parts one position backward.

Given these two process fragments, it is easy to see that
this DCDS can simulate a counter machine, where:

– The value of the counter is represented by the length (i.e.,
the number of body parts) of the snake.

– The two actions eat-food andhit-wall are respectively
guaranteed to add and remove a body part to/from the
snake (which means incrementing and decrementing the
counter).

– Testing whether the counter encoded by snake c is zero
amounts to querying whether there is no body part for c:

¬∃b, n.BodyPart(b,c, n)

This concludes the proof. ��

4.4 Case-depth-bounded DCDSs

The source of undecidability in Theorem 3 relies on the pos-
sibility of building unbounded chains of tuples, connected
to each other via foreign keys. Therefore, the next necessary
restriction is to “bound” the length of such chains. There are
several ways of doing this. Following our methodological
flavor, we choose a general approach that consists in check-
ingwhether theDCDSdata component employs foreign keys
safely.

Specifically, unbounded chains can be created by comply-
ingwith the case-navigational property (that is, by navigating
foreign keys) only if the foreign keys collectively form cyclic
dependencies. This is the case of Fig. 10, where theBodyPart
relation cyclically depends on itself. In general, cycles may
be formed by composing several foreign keys together.

We therefore characterize a class of data components guar-
anteeing the absence of such cycles. Technically, we say that
a data component D is case-depth-bounded if:

– D is case-navigational.
– Whenever D contains a set of foreign key constraints of

the form

– case- relD[c]←− R1[A1] ←−· · ·←− Rn[An]←−
S1[B1]

– S1[B1]←−· · ·←−Sm[Bm]←−S1[B1]
then at least one relation Si (with i ∈ {1, . . . ,m}) is
cardinality-immutable.

Intuitively, the mentioned set of foreign key constraints
expresses that it is possible to navigate backward from the

case relation, in such a way that the same relation is vis-
ited twice. If it is the case, then it is required that one of
the relations involved in the cycle is cardinality-immutable.
This indirectly rules out the possibility of having cycles that
involve cardinality-mutable relations only.

In the following, we say that a tuple (indirectly or directly)
refers to a case identifier if the tuple can be retrieved using
a case-navigational query starting from that case identifier.
This means that there is a chain of tuples going from the case
identifier to the target tuple, such that every tuple in the chain
refers to the previous one via a foreign key.

The key property guaranteed by a case-depth-bounded
data component is that it is never possible to write a case-
navigational query that visits the same relation twice along a
path, unless the query visits a cardinality-immutable relation
in between. This, in turn, implies the following interesting
intermediate result.

Lemma 1 No case-navigational DCDS working over a
case-depth-bounded data component can create a chain of
tuples of unbounded length, where the source of the chain is
a Case tuple, and each other tuple refers to the previous one
via a foreign key.

Proof Suppose, by absurdum, that there is a DCDS that can
create such a chain. Since the chain is unbounded but a data
component has a fixed schema consisting of finitely many
relations, the chain must contain unboundedly many tuples
for some relations. Due to the case-navigational assump-
tion, the DCDS can create such unboundedly many tuples
only via navigational effects. This, in turn, can be done
only if there is a cyclic composition of foreign key con-
straints in the DCDS data component. Let S1, . . . , Sm be
the relations involved in such a cycle. Then the chain must
cyclically contain a sequence of m fresh tuples for each Si
(with i ∈ {1, . . . ,m}), repeated unboundedly many times.
This, in turn, implies that each such relation has unboundedly
many tuples along the chain. However, from the definition
of case-depth-bounded data component, at least one out of
these relations must be cardinality-immutable. The exten-
sion of cardinality-immutable relations is fixed and cannot
be increased, therefore it is impossible to have unboundedly
many tuples for a cardinality-immutable relation along the
chain. This contradicts the hypothesis. ��

An effective way to detect cyclic chains of foreign keys
and rule themout is to see the schema and constraints of a data
componentD as a FK-graph GD, that is, a tuple 〈N , n0, E〉,
where:

– N is a set of nodes,which contains a node for each relation
in the database schema of D.

– n0 ∈ N is the node corresponding to the case relation
case- relD.
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Fig. 11 Examples of FK-graphs; double-line nodes correspond to the case relation, blue nodes with thin line to cardinality-bounded relations, and
green nodes with thin, dashed line to read-only relations. a FK-graph of Fig. 1. b FK-graph of Fig. 10. c FK-graph of Fig. 12

– E is a set of edges, each of which has the form
〈R1, R2, id〉, where R1, R2 ∈ N and id is a unique
identifier. Formally, E is the minimal set satisfying
the following condition: for each foreign key constraint
Ri[Ai ] −→ Rj[Bj ] of D, E contains a dedicated tuple
〈Ri , R j , id〉, where id is a fresh identifier.

We use the standard notation Ri −→ R j if there exists an

edge identifier id such that 〈Ri , R j , id〉 ∈ E , and
+−→ to

denote that a node can reach another node via a path in the
graph.

With this notion at hand, we have that a data component
D is case-depth-bounded if in GD = 〈N , n0, E〉 there is no
node n ∈ N such that: (i) n0

+−→ n, and (ii) n
+−→ n without

ever passing through a cardinality-immutable relation. This
property can be checked in NLogSpace in the size of the
graph (i.e., in the size of the data component D), since it
consists of a sequence of two reachability checks.

Figure 11 provides examples of foreign-key graphs. It is
easy to see that the data component used in the proof of
Theorem 3 is not case-depth-bounded (cf. Fig. 11b).

4.5 Case-bounded DCDSs

We now consider the interaction between width- and depth-
boundedness. Recall that both are necessary towards decid-
ability, as soundness turned out to be undecidable for width-
bounded but depth-unbounded systems (cf. Theorem 3), as
well as for width-unbounded and depth-bounded systems
(cf. Theorem 2).

In particular, we introduce the class of case-bounded
DCDSs, i.e., DCDSs that are simultaneously width-bounded
and depth-bounded. For this class of DCDSs, the following
interesting intermediate result holds.

Lemma 2 Let S = 〈D,P〉 be a case-bounded DCDS with
ΥS = 〈Δ,R,Σ, s0, db,⇒〉. Then there exists an overall
bound b ∈ N such that, for every state s ∈ Σ and every
case-tuple case- relD(c) ∈ db(s), the number of tuples
referring to c is bounded by b.

Proof Let D = 〈Δ,R, C, I0〉. Being case-bounded, S
is case-width-bounded and case-depth-bounded. Thanks to
case-width-boundedness, a DCDS can create at most k · W

tuples directly referring to a given tuple, where: (i) k is the
number of foreign keys in the schema (which bounds the
number of foreign keys that point to the same relation), and
(ii) W is the maximum upper bound of all the cardinality
constraints in D.

Thanks to case-depth-boundedness, there is also a bound
on the length of the chains of tuples that can be created by S
starting from a case identifier and using navigational effects
(cf. Lemma 1. Now let T the maximum number of tuples
of a cardinality-immutable relation in I0. Since this number
remains constant along any evolution of S, the number of
tuples that can be chained is bounded by T ·D, where D is the
length of the longest simple path in GD. This upper bound is
obtainedby iteratingT times through a loop that consists of D
relations - this cannot be exceeded, since the number of tuples
present in any cardinality-immutable relation corresponds,
by definition, to T .

Putting everything together, we obtain that the number of
tuples that can refer to a single case identifier is bounded by
b = (k · W )(D·T )+1. ��

Unfortunately, despite the boundedness result ofLemma2,
unbounded chains can still be obtained by creating subtle
interactions among different cases.

Theorem 4 Checking soundness over case-boundedDCDSs
is undecidable.

Proof The proof takes inspiration from the proof of Theorem
4.6 in [11], and ismore involved than the other undecidability
proofs in this work, since it is not true anymore that each
single case can simulate a 2-counter machine, but cases must
collectively cooperate to do so.

To illustrate the proof, we use the metaphor of a pacific
protest and its demonstrators, and construct a DCDS that
manages a protest by simulating a 2-counter machine. As
shown in Fig. 12, the data layer for this settingmaintains data
about protesters (where each protester is a case) and about
protest signs that protesters held together. Each protester can
hold from zero to two signs (one per hand), and each protest
sign can be held by one or two protesters (one with her
right hand, the other with her left hand). Each sign tracks
the (unique) message contained in the sign, together with the
identifiers of the protesters who respectively stand on the left
and on the right of the sign (using null if one is missing).
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Fig. 12 A case-bounded data model for protesters and protest signs

Two cardinality-immutable relations are used to keep track
of common data for all protesters: the id of the leader, and the
current “command” to be collectively executed. The leader
table contains a single tuple, initialized to some randomvalue
and then overridden as soon as the first protester is created
(i.e., the first protester becomes the leader of the protest). It
is easy to see that this data component is both width- and
depth-bounded.

The manipulation of the two counters corresponds, in our
protest metaphor, to the organization of the protest with two
chains of protesters on the left and on the right of the leader,
each constituted by an alternation of protesters and signs.

The joint command relation contains a code representing
the current command to be executed—in the context of the 2-
counter machine reduction, this corresponds to the program
counter.

When the first protester is created, a dedicated action of
the DCDS is used to introduce two signs into the system,
making sure that the first sign has the leader on the right and
nobody, i.e., null, on the left, whereas the second has the
leader on the left, and nobody on the right. The action also
marks that the first protester is actually a leader, and that it is
currently alone, i.e., the last of the queue on the left and on
the right. The two initial signs hold by the leader represent
the zero elements of the two counters. In the following, we
focus on the manipulation of the second counter (related to
the right-chain starting from the leader). The manipulation
of the first counter is managed symmetrically.

To test whether the second counter is zero, we can in fact
use the following case-navigational query6:

Leader(l) ∧ Protester(l) ∧ ∃m.Sign(m, l,null)

The increment of the second counter corresponds to the
addition of a protester to the chain. The fact that the chain is
meant to be extended is signalled by a specific value ext in
the Cmd relation.

6 Recall that Leader can be freely queried, being cardinality-
immutable.

To be added, a protester must be un-supplied with signs.
The addition consists of three steps. To indirectly synch, the
different protesters involved in the addition mark the phase
column of the TBA (to-be-added) relationwith three different
constants 0, 1, and 2. The last constant 2 represents that the
addition protocol was executed in the past, and that the id
column contains old data.

In the first step, a protester with no signs nondeterminis-
tically offers to be added to the chain, provided that nobody
else already did (i.e., the phase column of TBA has value
2). This is done by suitably querying and updating the
cardinality-immutable TBA (to-be-added) relation. In partic-
ular, if the second component of TBA is true, then it means
that nobody offered for the current addition.

Protester(p) ∧ ¬(∃m, p2.Sign(m, p2, p) ∨ Sign(m, p, p2))

∧Cmd(ext) ∧ (∃p2.TBA(p2,2)) 
→ offer(p)

offer(p) :
{∃p2.TBA(p2,2) � del{TBA(p2,2)}

add{TBA(p,0)}
}

The second step is executed by the rightmost protester
of the chain, and consists in making the protester in the id
column of the TBA relation the new rightmost protester.

By noting that the rightmost protester can be univocally
identified by checking that she holds a sign with her right
hand, but there is nobody standing on the right of the same
sign, the formalization of this process fragment is then as
follows:

Protester(p) ∧ (∃m.Sign(m, p,null))

∧ Cmd(ext) ∧ TBA(n,0) 
→ ins(p, n)

ins(p,n) :⎧
⎪⎪⎨

⎪⎪⎩

Sign(m,p,null) � del{Sign(m,p,null)}
add{Sign(m,p,n)}

TBA(p,0) � del{TBA(p,0)}
add{TBA(p,1)}

⎫
⎪⎪⎬

⎪⎪⎭

The last step of the addition is then again under the respon-
sibility of the just inserted protester, who now needs to
prepare a new sign to be placed on her own right. This has the
effect of incrementing by 1 the number of signs on the right
of the leader. At the same time, the protester also updates
the TBA relation and the Cmd relation (the latter depending
on the specific strategy adopted by the protest, i.e., by the
specific DCDS at hand).

Protester(p) ∧ Cmd(ext) ∧ TBA(p,1) 
→ prep(p)

prep(p) :⎧
⎨

⎩

true � add{Sign(newMsgSign[msg](),p,null)}
TBA(p,1) � del{TBA(p,1)} add{TBA(p,2)}
Cmd(ext) � del{Cmd(ext)} add{Cmd(. . .)}

⎫
⎬

⎭
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The decrement of the second counter is much easier. It
corresponds to the contraction of the chain on the right of
the leader, i.e., to the removal of the rightmost protester from
the chain. This is signalled by the presence of the contr
constant inside the cardinality-immutable Cmd relation. The
removal just consists in affirming that the sign currently
standing at the left of the rightmost protester will not have
anybody on its right, and that the rightmost protester will
loose the sign standing on her own right (this will make her
eligible for a future insertion in the chain).

Protester(p) ∧ ∃m, l.(Sign(m, l, p) ∧ l �= null)

∧ ∃m.(Sign(m, p,null)

∧ Cmd(contr) 
→ rem(p)

rem(p) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sign(m, l,p) � del{Sign(m, l,p)}
add{Sign(m, l,null)}

Sign(m,p,null) � del{Sign(m,p,null)}
Cmd(ext) � del{Cmd(contr)}

add{Cmd(. . .)}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

It is worth noting that, thanks to the condition-action rule for
rem, it is never possible to apply it on the leader.

We can now see the evolution of the protest as a 2-counter
machine,where the value of the first (resp., second) counter is
represented by the number of signs present on the left (resp.,
right) of the leader, minus 1. The zero element of the first
(resp., second) counter is actually represented by the sign
on the left (resp., right) by the leader. The evolution relies
on the fact that unboundedly many protesters (representing
cases) are nondeterministically created, and that the addition
and removal into/from the chain are made possible by indi-
rect synchronizations working over cardinality-immutable
relations. The input 2-counter machine can be modeled by
properly deciding how to update the content of theCmd rela-
tion, so as to mimic the program of the 2-counter machine.
The halting of such machine is reduced to soundness of the
corresponding DCDS by just ensuring that when the halting
state is reached, all protesters move into the out state. ��

4.6 Case-isolated DCDSs

The undecidability result of Theorem 4 is due to the lack of
isolation across cases: when a single relation can be achieved
navigationally from two distinct cases, such relation can be
used to implicitly transfer information among cases, and in
turn coordinate their evolution.

Weconsequently need to limit this interaction.Wedo soby
introducing a suitable notion of isolation, which guarantees
that the data associated to some case are not touched by other
cases. Technically, we say that a data component D is case-
isolated if:

– D is case-navigational.

– Whenever D contains a set of foreign key constraints of
the form

– case- relD[c]←−R1
1[A1

1]←− . . .←−R1
n[A1

n]←−
R[A]

– case- relD[c]←−R2
1[A2

1]←− . . . ←−R2
k[A2

k]←−
R[A]

such that R1
i [A1

i ] �= R2
j [A2

j ] for some i ∈ {1, . . . , n} and
j ∈ {1, . . . , k}, then R is a read-only relation.

Intuitively, the mentioned set of foreign key constraints
expresses that it is possible to find two distinct backward
foreign-keys navigation paths that start from the case relation
and reach the same relation. If it is the case, then it is required
that this latter relation is read-only (and consequently cannot
be used to transfer information from one case to the other).
This indirectly rules out the possibility of having multiple
paths pointing to the same read-write relation.

And for case-depth-boundedness, we can reformulate
case-isolation of a data component D as a property over its
corresponding FK-graph GD. In particular, we have that D
is case-isolated if, whenever in GD a node n can be reached
from n0 along two different paths (that is, paths that differ for
at least one node), then n corresponds to a read-only relation.
It is easy to see that the data component used in the proof of
Theorem 4 is not case-isolated (cf. Fig. 11c).

Case-isolation implies the following interesting interme-
diate result.

Lemma 3 Let S = 〈D,P〉 be a case-isolated DCDS with
ΥS = 〈Δ,R,Σ, s0, db,⇒〉. Then, for every state s ∈ Σ

and every relation R inD that is not read-only, each R-tuple
in db(s) refers to at most one case identifier.

Proof Suppose, by absurdum, that there is a state s ∈ Σ , case
identifiers c1 and c2, and a non-read-only, n-ary relation R
such that:

– {case- relD(c1), case- relD(c2)} ⊆ db(s);
– there exists a tuple v of n values in Δ, for which R(v) ∈
db(s);

– R(v) refers to both c1 and c2.

Since, by definition, a case-centric DCDS has no case in its
initial database, then s must have been produced after the
application of a sequence of actions, during which: (i) c1
and c2 have been created, and (ii) R(v) has been inserted or
updatedmaking it referring toc1 andc2. Since by hypothesis
S is case-isolated, hence also case-navigational, the latter
condition implies the existence of two different chains of
tuples, created by S using navigational effects, of the form:

R(v), Ri
1

(
vi1
)

, . . . , Ri
n

(
vin
)

, case- relD(ci)
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for i ∈ {1, 2}, where each tuple points to the next tuple via
a foreign key. The existence of two different chains of this
form, constructed by the DCDS using navigational effects,
implies thatD contains two different sets of foreign key con-
straints of the form:

R[A]−→Ri
1[Ai

1]−→· · ·−→Ri
n[Ai

n]−→case- relD[id]

for i ∈ {1, 2}. However, this in turn implies that in the FK-
graphGD there are two paths leading from R to case- relD,
which contradicts the hypothesis that S is case-bounded,
hence also case-isolated. ��

4.7 Decidability, at last

As we have shown in the previous sections, case-isolation
and case-boundedness do not suffice alone for achieving
decidability of soundness. In fact, all the proofs of the
undecidability theorems in this work (with the exception of
Theorem 4) employ a DCDS that is case-isolated but not
case-bounded, whereas the one of Theorem 4) employs a
DCDS that is case-bounded but not case-isolated.

In fact, the key towards decidability of data-aware sound-
ness is the combination of case-isolation and case-
boundedness.

Theorem 5 Checking soundness of case-isolated, case-
bounded DCDSs is decidable, and reducible to conventional
model checking of propositional μ-calculus.

Proof Let S = 〈D,P〉 be a case-centric DCDS that is both
case-isolated and case-bounded. Thanks to case-isolation,
S evolves each case (and related tuples) in a way that
is completely independent from that of the other cases –
cf. Lemma 2. As a consequence, the soundness of a single
case is not affected by the evolution of the other cases. Since
by definition a case-centricDCDS startswith an empty exten-
sion for its case relation, every case of S is injected into the
system through the execution of the new-case action, which
has a true precondition and treats every case homogeneously:
it simply puts every case into the initial, in state. This, in
turn, implies that all cases are sound if and only if one case
is sound. We can then replace the usual condition-action rule

true 
→ new-case()

with the following rule, which ensures that only one single
case is injected into the system:

¬case- relD(_) 
→ new-case()

Let Ŝ be DCDS obtained from S with such a replacement.
Recalling that the (data-aware) soundness property can be
formalized in μLP as Φsound (cf. Sect. 3.3), we obtain that

ΥS |� Φsound if and only if ΥŜ |� Φsound . We hence con-
sider the model checking problem ΥŜ |� Φsound .

Thanks to the modified version of the new-case
condition-action rule, in ΥŜ relation case- relD is guaran-
teed to contain at most one tuple. The claim is then obtained
by observing that:

– since S is case-bounded by hypothesis, we can apply
Lemma2, consequently obtaining that Ŝ is state-bounded
in the sense of [2].

– By [2], we know that verification of μLP properties
over state-bounded DCDSs is decidable and reducible
to conventional model checking techniques, hence so is
deciding whether ΥŜ |� Φsound . ��

Notably, the Robin Hood archery training DCDS illustrated
in Sect. 2.3 is both case-isolated and case-bounded. Hence,
Theorem 5 guarantees that soundness can be checked over
it.

By inspecting the proof of Theorem 5, we can make two
important observations. The first one is related to the gen-
erality and robustness of the result. In our setting, we are
considering the specific property of soundness, but since
decidability is obtained by a reduction to finite-state model
checking with the technique in [2], it actually holds more in
general for all temporal properties that:

1. can be expressed in μLP ;
2. obey to case-isolation, that is, they can be verifiedwithout

considering the interplay between different cases.

The second observation concerns the computational com-
plexity of the problem. The abstraction technique in [2]
provides us an immediate upper bound for checking sound-
ness of case-isolated, case-bounded DCDSs. This upper
bound is ExpTime in the size of the initial DCDS7, by con-
sidering the arity of the relations bounded by a constant. This
complexity result carries over to arbitrary μLP properties of
the aforementioned form. As for soundness, the complex-
ity can actually be tightened to PSpace, by observing that
soundness itself can be expressed in the fragment of first-
order CTL with persistent quantification (which can be seen
as a proper fragment ofμLP ). This, in turn, makes it possible
to perform verification by constructing the (abstract) transi-
tion system on-the-fly, leveraging thewell-known techniques
for CTL [5].

We close our investigation with three general observa-
tions on our decidability result. First of all, it is interesting
to notice that, by restricting the attention to read-write
relations only, the combination of case-isolation and case-
boundedness requires that FK-graphs have the shape of a

7 We ignore the contribution of the countably infinite data domain.
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tree, rooted in the case relation.8 This, in turn, implies that
case-navigational queries are tree-shaped (with a negative fil-
ter). Thisway of structuring data (and corresponding queries)
resembles document-centric processes, where each process
case works over a dedicated business object, separately from
the other cases. In our framework, such a business object
is stored in a nested-tuple relational data structure, a solu-
tion that is adopted by concrete data-centric system, such as
BizArtifact9.

Second, we stress the novelty of the decidability result of
Theorem 5: while all the key decidability results for DCDSs
and similar frameworks have been provided, so far, under the
hypothesis of state boundedness, Theorem 5 holds for a class
of DCDSs in which relations are unbounded. Decidability
is obtained thanks to the fact that, despite unboundedness,
such relations are populated by composing an unbounded
number of bounded data slices, each originating from a single
case identifier. This reflects the methodological guideline of
horizontal partitioning, in the sense discussed in Sect. 3.2.

Finally, the proof of Theorem 5 shows that case-bounded,
case-isolated DCDSs can be correctly verified by shrink-
ing their unboundedly many cases into a single, prototypical
case. This can be seen as the data-aware counterpart of sound-
ness in workflow nets [29], which is checked by introducing
a single, prototypical token into the input state of the process.

5 Conclusion

We have investigated the classical notion of case-centric
processes, but in a rich, data-aware setting, where we fully
take into account how the process control-flow operates
over a full-fledged, relational database with constraints. We
have also reformulated the standard correctness notion of
soundness accordingly. To ground our study, we have consid-
ered Data-Centric Dynamic Systems (DCDSs) as a reference
framework.

The main result of the paper is that checking whether
a case-centric DCDS is sound can be decided, under the
hypothesis that each case evolves independently from the
other, and that each single case cannot generate unbound-
edly many data directly or indirectly referring to it. Notably,
decidability is obtained by showing how to find a cutoff on
the number of process instances that must be subject to the
soundness test, having the guarantee that soundness trans-
fers to the entire system, where not limit is imposed on the
number of process instances that can be injected.

It is important to notice that this class of DCDSs is charac-
terized syntactically, and can be naturally paired with a set of

8 Read-only and cardinality-immutable relations constitute an excep-
tion to this.
9 http://sourceforge.net/projects/bizartifact/.

methodological guidelines supporting themodeler during the
design phase. In this light, the results presented here depart
from those in [2,4,6]; these rely on the semantic properties
of run- and state-boundedness, which are highly undecidable
to check, and for which only syntactic, sufficient conditions
can be provided [3]. It is also important to observe that, by
recasting the results in [11] in our setting, one can show that
all the modeling restrictions we require towards decidability
are indeed tight, i.e., soundness turns out to be undecidable
if we relax any of them.

To the best of our knowledge, the only other work that
considers verification of unbounded, data-aware processes is
[21]. Differently from this work, however, [21] aims at pro-
viding a general tight decidability result by just controlling
the number and arity of relations. The result is theoreti-
cally interesting but of very limited practical applicability,
as decidability is provided for systems working over a sin-
gle, unary relation only.

We plan to continue this line of research along two direc-
tions. First of all, we want to merge this investigation with
that of [11], on the one hand to generalize our decidability
result to the case of navigational μLP properties, and on
the other hand to go beyond case-centric processes, and con-
sider rich artifact-centric systems in which dynamic entities
co-evolve by establishing mutual many-to-many relations in
a controlled way. Second, we want to study the possibility
of practically implementing the presented techniques, in par-
ticular by attacking the exponentiality in the data that comes
with data-aware dynamic systems through modularization
techniques, taking inspiration from horizontal and vertical
partitioning as introduced here.
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