
Int J Softw Tools Technol Transfer (2017) 19:367–390
DOI 10.1007/s10009-016-0416-3

REGULAR PAPER

The first reactive synthesis competition (SYNTCOMP 2014)

Swen Jacobs1,2 · Roderick Bloem1 · Romain Brenguier3 · Rüdiger Ehlers4,5 ·
Timotheus Hell1 · Robert Könighofer1 · Guillermo A. Pérez3 ·
Jean-François Raskin3 · Leonid Ryzhyk6,7 · Ocan Sankur3,8 · Martina Seidl9 ·
Leander Tentrup2 · Adam Walker6

Published online: 9 April 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract We introduce the reactive synthesis competition
(SYNTCOMP), a long-term effort intended to stimulate and
guide advances in the design and application of synthe-
sis procedures for reactive systems. The first iteration of
SYNTCOMP is based on the controller synthesis problem
for finite-state systems and safety specifications. We pro-
vide an overview of this problem and existing approaches
to solve it, and report on the design and results of the first
SYNTCOMP. This includes the definition of the benchmark
format, the collection of benchmarks, the rules of the com-
petition, and the five synthesis tools that participated. We
present and analyze the results of the competition and draw
conclusions on the state of the art. Finally, we give an outlook
on future directions of SYNTCOMP.

Keywords Synthesis · Reactive systems · Competition ·
Experimental evaluation · Benchmarks · Safety games

B Swen Jacobs
jacobs@react.uni-saarland.de

1 Graz University of Technology, Graz, Austria

2 Saarland University, Saarbrücken, Germany

3 Université Libre de Bruxelles, Brussels, Belgium

4 University of Bremen, Bremen, Germany

5 DFKI GmbH, Bremen, Germany

6 NICTA, Sydney, Australia

7 Carnegie Mellon University, Pittsburgh, USA

8 CNRS, IRISA, Rennes, France

9 Johannes-Kepler-University Linz, Linz, Austria

1 Introduction

Ever since its definition by Church [23], the automatic syn-
thesis of reactive systems from formal specifications has
been one of the major challenges of computer science,
and an active field of research. A number of fundamen-
tal approaches to solve the problem have been proposed
(see e.g., [31,53,54]). Despite the obvious advantages of
automatic synthesis over manual implementation and the
significant progress of research on theoretical aspects of
synthesis, the impact of formal synthesis procedures in prac-
tice has been very limited. One reason for this limited
impact is the scalability problem that is inherent to synthe-
sis approaches. The reactive synthesis problem is in general
2EXPTIME-complete for LTL specifications [53]. A number
of approaches have recently been invented to solve special
cases of the problem more efficiently, either by restricting
the specification language [12], or by a smart exploration of
the search space [29,32–35,59].While important progress on
the scalability problem has beenmade, an additional problem
is the lacking of maturity and comparability of implementa-
tions, and a lack of incentive for the development of efficient
implementations [27]. Solving different aspects of this prob-
lem is the main motivation of SYNTCOMP, as explained in
the following (inspired by [48]).

Synthesis tools are hard to compare Research papers that
introduce a new algorithm in many cases do include a com-
parison of its implementation against the existing ones.
However, the comparison of a large number of tools on a
benchmark set of significant size can take weeks or months
of computation time. This is often circumvented in research
papers by comparing the new results to existing experimental
data (usually obtained under different experimental condi-
tions), or by comparing against a small number of tools on

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-016-0416-3&domain=pdf

368 S. Jacobs et al.

a small benchmark set. In both cases, this limits the value
of the experimental results. In contrast, SYNTCOMP pro-
vides reliable results for a significant number of synthesis
tools on a large benchmark set, with consistent experimental
conditions.

It is hard to exchange benchmark sets Related to the com-
parison of tools, we note that almost every existing tool
uses its own input language, and benchmarks have to be
translated from one format to another in order to compare
different tools. This makes it hard to exchange benchmark
sets, and adds another source of uncertainty when compar-
ing tools. SYNTCOMPaims to solve these issues by defining
a standard benchmark format, and by collecting a benchmark
library that is publicly available for the research community.

Usability of synthesis tools Implementations ofmany synthe-
sis approaches do exist [8,14,28], but they cannot effectively
be used as black-box solvers for applications. The defini-
tion of a standard language is a first step in this direction. In
addition, the competition forces tool developers to produce
implementations that are sufficiently robust to work on the
complete benchmark library of SYNTCOMP with a fixed
configuration. Thus, SYNTCOMP promotes the simplicity
of use that comes with push-button approaches that do not
require any user intervention.

Summing up, the goal of the reactive synthesis compe-
tition (SYNTCOMP) is to foster research in scalable and
user-friendly implementations of synthesis techniques.

Related competitions Competitions have been used to
achieve these goals in many related fields, including auto-
mated reasoning [5,43,62] and automated verification [6].1

A difference of synthesis competitions to most of the compe-
titions in automated reasoning or verification is that solutions
to the synthesis problem can be ranked according to inherent
quality criterions that go beyond mere correctness, such as
reaction time or size of the solution. Thus, a synthesis com-
petition also needs to measure the quality of solutions with
respect to these additional metrics.

In parallel to SYNTCOMP 2014, the syntax-guided syn-
thesis competition (SyGuS-COMP) was held for the first
time [1]. The focus of SyGuS-COMP is on the synthesis of
functional instead of reactive programs, and the specification
is given as a first-order logic constraint on the function to be
synthesized, along with a syntactic constraint that restricts
how solutions can be built. The goals of SyGuS-COMP are
similar to those of SYNTCOMP, but for a fundamentally
different class of programs and specifications.

Timeline The organization of the first SYNTCOMP began
formally with a presentation and discussion of ideas at the

1 See also: the HardwareModel Checking Competition, http://fmv.jku.
at/hwmcc/. Accessed February 2016.

second Workshop on Synthesis (SYNT) in July 2013. The
organization team consisted of Roderick Bloem, Rüdiger
Ehlers and Swen Jacobs. The decision for the specification
format was made and announced in August 2013, and a call
for benchmarks, along with the rules of the competition, was
published in November 2013. In March 2014 we published
our reference implementation, and benchmarks were col-
lected until the end of April 2014. Participants had to submit
their tools until the end ofMay 2014, and the experiments for
the competition were executed in June and July 2014. The
results were first presented at the 26th International Con-
ference on Computer Aided Verification (CAV) and the 3rd
SYNT Workshop in July 2014.

Goals The first competition had the following goals:

– define a class of synthesis problems and a benchmark
format that results in a low entry-barrier for interested
researchers to enter the competition,

– collect benchmarks in the SYNTCOMP format,
– encourage development of synthesis tools that support
the SYNTCOMP format,

– provide a lobby that connects tool developers with each
other, and with possible users of synthesis tools.

SYNTCOMP 2014 was already a success before the exper-
imental evaluation began: within less than 10 months after
the definition of the benchmark format, we collected 569
benchmark instances in 6 classes of benchmarks, and 5 syn-
thesis tools from 5 different research groups were entered
into the competition. For four of the tools, at least one
of the developers was present at CAV and/or the SYNT
workshop.

Overview The rest of this article describes the background,
design, participating solvers (called entrants), and results of
SYNTCOMP 2014. We will introduce the synthesis prob-
lem for safety specifications, as well as different approaches
for solving it, in Sect. 2. We define the SYNTCOMP format
in Sect. 3, and describe the benchmark set for SYNTCOMP
2014 in Sect. 4. Section 5 defines the rules of the competition.
In Sect. 6wegive an overviewof the entrants of SYNTCOMP
2014, followed by some notes on the execution of the com-
petition in Sect. 7. In Sect. 8, we present and analyze the
experimental results of the competition.

Note that Sects. 4 and 6, as well as parts of Sect. 2 are
based on the descriptions that the respective benchmark and
tool authors had to supply in order to participate. The setup of
the competition framework as described in Sect. 7 was taken
care of by Timotheus Hell. The remainder of this article is
original work of the SYNTCOMP organizers.

This article is based on the first description of the
SYNTCOMP format [39] and a preliminary version of the
SYNTCOMP 2014 report [40].

123

http://fmv.jku.at/hwmcc/
http://fmv.jku.at/hwmcc/

The first reactive synthesis competition (SYNTCOMP 2014) 369

2 Problem description and synthesis approaches

Informally, the reactive synthesis problem consists of finding
a system C that satisfies a given specification ϕ in an adver-
sarial environment. In general, systems may be infinite-state
(programs) or finite-state (circuits), and specifications can
come in different forms, for example as temporal logic for-
mulas or as monitor circuits.

For thefirst SYNTCOMP,weaimed for a lowentry-barrier
for participants, and to keep the competition manageable in
terms of tasks like the definition of input and output format,
and the verification of results. To this end, we only consider
the synthesis of finite-state systems from pure safety spec-
ifications modeled as monitor circuits. The monitor circuit
reads two kinds of input signals: uncontrollable inputs from
the environment, and controllable inputs from the system to
be synthesized. It raises a special output BAD if the safety
property ϕ has been violated by the sequence of input signal
valuations it has read thus far.

Then, the realizability problem is to determine if there
exists a circuit C that reads valuations of the uncontrollable
inputs and provides valuations of the controllable inputs such
that BAD is not raised on any possible execution. The synthe-
sis problem is to provide such a C if it exists. As a quality
criterion, we consider the size of the produced implementa-
tion, which not only correlates with the cost of implementing
a circuit in hardware, but often also leads to implementations
which have other desirable properties, like short reaction
time.

2.1 Synthesis as a safety game

The traditional approach to reactive synthesis is to view the
problem as a game between two players [20,54,63]: the envi-
ronment player decides uncontrollable inputs, and the system
player decides controllable inputs of the monitor circuit.
States of the game are valuations of the latches in themonitor
circuit. A state is safe if BAD is not raised. The goal of the
system player is to visit only safe states, regardless of the
environment behavior.

Game-based synthesis In a first step, a so-called winning
region for the systemplayer is computed. Thewinning region
W is the set of all states from which the system player can
enforce the specification, i.e., from which it can guarantee
that the environment cannot force the game into an unsafe
state.

In a second step, a winning strategy is derived from the
winning region. For every state and every valuation of the
uncontrollable inputs, the winning strategy defines a set of
possible valuations of the controllable inputs that can ensure
that the winning region is not left.

The last step is to implement this strategy in a circuit,
where a concrete choice for the controllable inputs has to
be made for every state and valuation of uncontrollable
inputs.

All of the tools in SYNTCOMP 2014 implement such a
game-based synthesis approach, in one form or another.
Symbolic encoding To achieve acceptable scalability, it
is important to implement synthesis algorithms symboli-
cally, i.e., by manipulating formulas instead of enumerating
states [2]. In synthesis, symbolic algorithms are usually
implemented with Binary Decision Diagrams (BDDs) [19,
60]. Most of the tools in SYNTCOMP 2014 use BDD-based
approaches with different optimizations to achieve good per-
formance in synthesis time and circuit size.

However, BDDs also have scalability issues, in particular
the growing size of the data structure itself. Alternatively,
the problem can be encoded into a sequence of propo-
sitional satisfiability (SAT), quantified Boolean formulas
(QBF), or satisfiability modulo theories (SMT) problems.
The enormous performance improvements in decision pro-
cedures for satisfiability over the last decades encourage such
approaches.

In the following, we give a mostly informal description of
the three synthesis techniques used by the tools that entered
SYNTCOMP 2014: BDD-based game solving (Sect. 2.3),
SAT-/QBF-based game solving (Sect. 2.4), and template-
based synthesis (Sect. 2.5).

2.2 Preliminaries: circuits and games

LetB = {0, 1}. If X denotes a finite set of Boolean variables,
then any v ∈ B

X is called a valuation of X . Sets of valuations
of X are represented by quantified Boolean formulas on X ,
which are made of propositional logic and first-order quan-
tification on X . A formula f with free variables X will be
written as f (X), and for the same formula under a given valu-
ation v of X wewrite f (v). If the free variables are X∪Y , we
also write f (X,Y). For a set of variables X = {x1, . . . , xn},
we write ∃X instead of ∃x1∃x2 . . . ∃xn , and similarly for uni-
versal quantification. For a set of variables X = {x1, . . . , xn},
we use X ′ to denote {x ′

1, . . . , x
′
n}, a set of primed copies of

the variables in X , usually representing the variables after a
step of the transition relation.

Then, the synthesis problem is given as a (sequential)mon-
itor circuit M over the sets of variables L , Xu , Xc, where

– L are state variables for the latches in the monitor circuit,
– Xu are uncontrollable input variables,
– Xc are controllable input variables, and

123

370 S. Jacobs et al.

Xu

C

M
Xc

LL

BAD

Fig. 1 Synthesis problem with monitor circuit M and (unknown) sys-
tem circuit C

– BAD ∈ L is a special variable for the unsafe states, i.e., a
state is unsafe iff BAD = 1.2

We assume that the system has a unique initial state, in which
all latches in L including BAD are initialized to 0.

A solution of the synthesis problem is a sequential circuit
C with inputs L ∪ Xu and outputs Xc, such that the compo-
sition of C and M is safe, i.e., states with BAD = 1 are never
reached, for any sequence of (uncontrollable) inputs Xu and
starting from the unique initial state. The synthesis problem
is depicted in Fig. 1.

Note that a circuit defines a (Mealy-type) finite-state
machine in the standard way. With the additional distinc-
tion between controllable and uncontrollable inputs and the
interpretation of BAD as the set of unsafe states, it defines
a safety game: the set of states is BL (valuations of latches
L), with initial state 0L . The transition relation of themonitor
circuit can be translated into a formula T (L , Xu, Xc, L ′) that
relates valuations of L , Xu, Xc to the valuation of (next-state
variables) L ′. In every turn of the game, first the environment
player chooses a valuation of Xu , and then the system player
chooses a valuation of Xc. The successor state is computed
according to T (L , Xu, Xc, L ′). A strategy of the system
player is a function that maps the sequence of valuations of
L and Xu seen thus far to a set of possible valuations for Xc.
It is deterministic if it always maps to a unique valuation. A
strategy is winning for the system player if it avoids entering
the unsafe states regardless of the actions of the environment.
Two-player safety games are determined, i.e., for every such
game either the environment player or the systemplayer has a
winning strategy. Amemoryless strategy only depends on the
current values of L and Xu . For safety games, there exists a
winning strategy iff there exists a memoryless winning strat-
egy. A deterministic memoryless winning strategy can be
represented as a circuit, and thus provides a solution to the
synthesis problem.

2 For simplicity, we assume that BAD is a latch. If BAD is not a latch
in the given monitor circuit, then it can be described as a formula
f (L , Xu , Xc). In this case we can obtain a problem in the described
form by extending the circuit with a new latch that takes f (L , Xu , Xc)

as an input and provides output BAD.

2.3 BDD-based game solving

For a basic BDD-based algorithm, assume that the transition
relation T (L , Xu, Xc, L ′) and the sets of initial and unsafe
states are each represented as a single BDD (see e.g., [24]).
To determine whether the environment has a strategy that
guarantees its victory, one repeatedly computes the set of
states fromwhich it can force the game into the unsafe states.
If S(L ′) is a formula over the latches L ′, representing a set of
states, then the set of uncontrollable predecessors of S(L ′)
can be computed as the set of valuations of latches L that
satisfy

UPRE(S(L ′)) = ∃Xu ∀Xc ∃L ′. S(L ′) ∧ T (L , Xu, Xc, L
′).

Tocompute thewinning regionW (L)of the systemplayer,
we first compute the least fixpoint of UPRE on BAD:

μS(L). UPRE(S(L ′) ∨ BAD′) (1)

The resulting set of latch valuations represents the states from
which the environment can force the game into the unsafe
states. Since two-player safety games are determined, the
complement of this set is the winning region W (L) for the
system player (see, e.g., [63]).

That is, if during our fix-point computation we notice that
the environment can force the game from the initial state
to the unsafe states, then we can stop—the specification is
unrealizable. Otherwise, the initial state will be contained
in the winning region W (L), and W (L) represents a non-
deterministic strategy λ for the system player, which can be
described as a function λ that maps a valuation s ∈ B

L of
the latches and a valuation σu ∈ B

Xu of the uncontrollable
variables to a set of possible valuations for the controllable
variables:

λ(s, σu) = {σc ∈ B
Xc | ∀L ′. T (s, σu, σc, L

′) → W (L ′)}.

To solve the synthesis problem, in principle any determiniza-
tion of λ can be chosen to obtain a functional strategy for the
system player.

In order to compute the winning region efficiently and to
find a strategy that can be represented as a small circuit, a
number of optimizations can be used. We introduce some of
the common optimizations in the following, in order to be
able to compare and distinguish the participants that use a
BDD-based approach.

Partitioned transition relation and direct substitution To
be efficient, the explicit construction of the BDD for the
transition relation should be avoided. This can be achieved
by partitioning the transition relation into a set of sim-
pler relations, inspired by similar approaches for the model
checking problem [21,24,55]. A common approach is to

123

The first reactive synthesis competition (SYNTCOMP 2014) 371

split T (L , Xu, Xc, L ′) into a set of (functional) relations
{ fl(L , Xu, Xc)}l∈L , where each fl represents the next-state
value of latch l.

Then, the uncontrollable predecessor can be computed as

UPRE(S(L ′)) = ∃Xu ∀Xc. S(L ′)[l ′ ← fl(L , Xu, Xc)]l∈L ,

avoiding to ever build the monolithic transition relation, as
well as having to ever declare a next state copy of any latch
variable in the BDDmanager. Substituting individual latches
with functional BDDs is directly supported by existing BDD
packages, e.g., function bddVectorCompose in the CUDD
package [60]. This will be called partitioned transition rela-
tion in the tool descriptions.

A special case of this approach is to identify those latches
that only store the value of some other variable from the last
step, i.e., the latch update function has the form fl = x for
some x ∈ L ∪ Xu ∪ Xc, and use the substitution of latches
by fl only for them. In this case, we only substitute with a
single existing variable instead of a functional BDD, which
can be done, e.g., with CUDD’s bddVarMap method. This
will be called direct substitution in the tool descriptions.

BDD reordering Efficiency of BDD-based algorithms
depends to a large extent on the size of BDDs, which in turn
depends on the variable ordering [3]. To keep the data struc-
tures small, reordering heuristics are commonly used to try
to minimize BDDs at runtime [57]. Standard BDD packages
come with pre-defined reordering strategies. Algorithms that
do not use reordering at all are usually not competitive.

Efficient computation of UPRE In the fix-point computa-
tion, we repeatedly use the UPRE operation to compute the
set from which the environment wins the game. This opera-
tion consists of conjoining the current set of states with the
transition relation, followed by resolving the quantification
over inputs and current states to get the description of the set
of predecessor states. The latter is called (existential or uni-
versal) abstraction over these variables. In practice, it is often
preferable to not use this strict order, but instead do conjunc-
tion and abstraction in parallel. This is directly supported in
some BDD packages, e.g., in CUDD’s bddAndAbstract
method.Wewill call this optimization simultaneous conjunc-
tion and abstraction.

Eager deallocation of BDDs Another optimization is to
deallocate BDDs that are no longer needed as soon as pos-
sible. Not only do these BDDs take up memory, but more
importantly they are also counted and analyzed for BDD
reordering. Thus, removing suchBDDs saves space and time.
We will call this eager deallocation.

Abstraction-based algorithmsFor systems that have a large
state space, an abstraction approach may be more efficient
than precise treatment of the full state space [25,36,37]. This

can be done by defining a set of predicates P (which may
simply be a subset of the state variables of the system [26,47])
and computing over- and under-approximations of the UPRE

function, with respect to the partitioning of the state space
defined by the predicates in P . Computing fixpoints for these
approximations is usually much cheaper than computing the
precise fixpoint for the system. If the system player wins the
game for the over-approximation of UPRE, then it also wins
the original game. If the system player loses for the under-
approximation of UPRE, then it also loses the original game.
If neither is the case, then the abstraction is insufficient and
needs to be refined by introducing additional predicates.

Extraction of small winning strategies To obtain from λ a
functional strategy that can be represented as a small circuit,
a number of optimizations is commonly used. To this end,
let λc be the restriction of λ to one output c ∈ Xc. We want
to obtain a partitioned strategy, represented as one function
fc(L , Xu) for every c ∈ Xc:

– For every c ∈ Xc, in some arbitrary order, compute
the positive and negative co-factors of λc, i.e., the val-
ues s, σu for which λc(s, σu) can be 1 or 0, respectively.
These can be used to uniquely define fc, e.g., by letting
fc(s, σu) = 0 for all values in the negative co-factor,
and fc(s, σu) = 1 otherwise [11]. This will be called
co-factor-based extraction of winning strategies.

– After extracting the functions fc(L , Xu) for all c ∈ Xc,
one can minimize the strategy by doing an additional for-
ward reachability analysis: compute the reachable states
with this strategy, and restricting all fc to values of L that
are actually reachable.

– After translating the functions fc(L , Xu) into an AIG
representation, a number of minimization techniques can
be used to obtain small AIGs [49,50]. The verification
tool ABC 3 [17] implements a number of these minimiza-
tion strategies that can be used in a black-box fashion
to obtain smaller circuits, and we will call this approach
ABC minimization.

2.4 Incremental SAT- and QBF-based game solving

In contrast to the BDD-based approaches already presented,
the SAT- andQBF-based approaches start with a coarse over-
approximation of the winning region, represented as a CNF
formulaW (L) over the state variables L . This approximation
is incrementally refined, such that W (L) eventually repre-
sents the winning region symbolically.

More concretely, we initialize W (L) to the set of all safe
states ¬BAD. In each iteration, the underlying solver is used

3 http://www.eecs.berkeley.edu/~alanmi/abc/. Accessed February
2016.

123

http://www.eecs.berkeley.edu/~alanmi/abc/

372 S. Jacobs et al.

to compute a state s |� W (L) ∧ UPRE(¬W (L ′)) within the
current candidate version W (L) of the winning region from
which the environment player can enforce to leave W (L) in
one step.Obviously, such a state cannot be part of thewinning
region. Hence, we refine W (L) by removing this state. The
state s can be represented as a cube over the state variables
L , so removing s from W (L) amounts to adding the clause
¬s.

In order to remove a larger region from W (L), the
algorithm tries to generalize the clause ¬s by removing lit-
erals, as long as the resulting clause ¬s̃ still only excludes
states from which ¬W (L) can be reached by the environ-
ment in one step. More specifically, literals are dropped
as long as (W (L) ∧ ¬s̃) → UPRE(¬W (L ′)) holds. Once
W (L)∧UPRE(¬W (L ′)) becomes unsatisfiable, i.e., nomore
state exists from which the environment can enforce to leave
W (L), we have found the final winning region and the algo-
rithm terminates.

Implementation and optimizationsA simple realization of
this approach uses a QBF solver both to compute a state s
and to generalize the inducedblocking clause¬s. Agenerally
more efficient approach is to use two competing SAT solvers
for the two different quantifiers in UPRE when computing
s. Other optimizations include the utilization of reachabil-
ity information during the computation of s and during the
generalization of¬s. A detailed description of different real-
izations and optimizations can be found in [13].

Extraction of small winning strategies To obtain an imple-
mentation from the winning region, different methods can
be applied. One possibility is to compute a certificate for the
validity of the QBF formula

∀L , Xu ∃Xc, L
′. W (L) → (

T (L , Xu, Xc, L
′) ∧ W (L ′)

)

in the form of functions defining the variables in Xc based on
L and Xu using methods for QBF certification [52]. Another
option are learning-based approaches that have also been pro-
posed for BDD-based synthesis, but work particularlywell in
a SAT-/QBF-based framework [9,30]. Similar to the BDD-
based methods for extracting small winning strategies, these
learning approaches also compute solutions for one output
c ∈ Xc at a time. They start with a first guess of a concrete
output function, and then refine this guess based on coun-
terexamples.

2.5 Template-based synthesis

In order to compute a winning region, symbolically repre-
sented as a formula W (L) over the state variables L , this
approach constructs a parameterizedCNF formula W̃ (L , P),
where P is a certain set of Boolean template parameters.
Different concrete values for these parameters P induce a dif-

ferent concrete CNF formula W (L) over the state variables.
This is done as follows. First, the approach fixes a maximum
number N of clauses. Then, for every clause and every state
variable, it introduces parameters defining whether the state
variable occurs in the clause, whether it occurs negated or
unnegated, and whether the clause is used at all. This way,
the search for a CNF formula over the state variables [the
winning region W (L)] is reduced to a search for Boolean
constants (values for the template parameters P). A QBF
solver is used to compute template parameter values such
that (a) the winning region contains only safe states, (b) the
winning region contains the initial state, and (c) from each
state of the winning region, the system player can guarantee
that the successor state will also be in the winning region,
regardless of the choice of the environment. This is done
by computing a satisfying assignment for the variables P in
QBF:

∃P ∀L , Xu ∃Xc, L
′.

W̃ (L , P) → ¬BAD ∧
Init(L) → W̃ (L , P) ∧
W̃ (L , P) → (

T (L , Xu, Xc, L
′) ∧ W̃ (L ′, P)

)
.

More details can be found in [13].

3 Benchmark format

For the first SYNTCOMP, we have chosen to use an exten-
sion of the AIGER format that is already used in automatic
verification and is suitable for our selected range of prob-
lems, as well as extendable to other classes of problems.
Furthermore, the format poses a low entry-barrier for devel-
opers of synthesis tools, as synthesis problems are directly
given in a bit-level representation that can easily be encoded
into BDDs and SAT-based approaches. In the following, we
first recapitulate the AIGER format,4 defined by Biere as
the specification language for the hardware model check-
ing competition (HWMCC).5 Then we show an extension of
AIGER to a specification format for synthesis problems with
safety specifications, developed for SYNTCOMP. Finally,
we define how to use the AIGER format for solutions of
synthesis problems in this setting.

3.1 Original AIGER Format

The AIGER format was developed as a compact and simple
file format to represent benchmarks for the hardware model
checking competition (HWMCC). Benchmarks are encoded

4 http://fmv.jku.at/aiger/. Accessed February 2016.
5 http://fmv.jku.at/hwmcc/. Accessed February 2016.

123

http://fmv.jku.at/aiger/
http://fmv.jku.at/hwmcc/

The first reactive synthesis competition (SYNTCOMP 2014) 373

as multi-rooted and-inverter graphs (AIGs) with latches that
store the system state. We use version 20071012 of the
format. There is an ASCII variant and a more compact
binary variant of the format. Since the binary format is more
restricted and thus harder to extend than the ASCII format,
we have chosen to work with the ASCII variant for SYNT-
COMP. In the following, we explain the structure of AIGER
files for model checking of safety properties.

A file in AIGER format (ASCII variant) consists of the
following parts:

1. Header,
2. input definitions,
3. latch definitions,
4. output definitions,
5. AND-gate definitions,
6. symbol table (optional), and
7. comments (optional).

Header The header consists of a single line
aag M I L O A

whereaag is an identifier for theASCII variant of theAIGER
format, M gives the maximum variable index, and I, L,
O, A the number of inputs, latches, outputs, andANDgates,
respectively.

In the rest of the specification, each input, latch, output,
andANDgate is assigned a variable index i . To support nega-
tion, variable indices i are even numbers, and the negation
of a variable can be referred to as i + 1. Variable index 0 is
reserved for the constant truth value false, and accordingly
1 refers to true. In the following, all numbers that represent
inputs, latches, outputs or AND-gates need to be smaller or
equal to 2M+1.

Input definitions Every input definition takes one line, and
consists of a single number (the variable index of the input).
Inputs are never directly negated, so they are always repre-
sented by even numbers.

Latch definitions Every latch definition takes one line, and
consists of an even number (the variable index that represents
the latch), followed by a number that defines which variable
is used to update the latch in every step. Latches are assumed
to have initial value 0.

Output definitions Every output definition takes one line,
and consists of a single number (representing a possibly
negated input, latch, or AND-gate). For our class of (safety)
problems, there is exactly one output, and safety conditions
are encoded such that the circuit is safe if the output is
always 0.

AND-gate definitions Every AND-gate definition takes one
line, and consists of three numbers. The first is an even num-

ber, representing the output of the AND-gate, and is followed
by two numbers representing its (possibly negated) inputs.

Symbol table The symbol table assigns names to inputs,
latches, and outputs. It is optional, and need not be complete.
Every line defines the name of one input, latch, or output, and
starts with i,l,o, respectively, followed by the number of
the input, latch, or output in the sequence of definitions (not
the variable index of the input—so the first input is always
defined by a line starting with i0, the first latch with l0).
This is followed by an arbitrary string that names the variable.

3.2 Modified AIGER format for synthesis specifications

The SYNTCOMP format is a simple extension of theAIGER
format for controller synthesis: we reserve the special string
“controllable_” in the symbol table, and prepend it to
the names of controllable input variables. All other input
variables are implicitly uncontrollable.

The synthesis problem defined by an extended AIGER file
is to find a circuit that supplies valuations for the control-
lable inputs, based on valuations of uncontrollable inputs
and latches of the given circuit, such that the output always
remains 0.

3.3 Output of synthesis tools in AIGER format

Starting from an input as defined in Sect. 3.2, we define when
an AIGER file is a solution of the synthesis problem. Infor-
mally, the solution must contain the specification circuit, and
must be verifiable by existing model checkers that support
the AIGER format. We give a more detailed definition in the
following.

3.3.1 Syntactic correctness

Below we define how the input file can be changed in order
to obtain a syntactically correct solution. Unless specified
otherwise below, the output file must contain all lines of the
input file, unmodified and in the same order.

Header The original header line
aag M I L O A

must be modified to
aag M’ I’ L’ O A’

where

– I’ = I − c
(for c controllable inputs in the specification)

– L’ = L + l
(for l additional latches defined in the controller)

– A’ = A + a
(for a additional AND-gates defined in the controller)

– M’ = I’ + L’ + A’

123

374 S. Jacobs et al.

The correct value for c can be computed from the symbol
table of the input file, while correct values for l and a depend
on the number of latches and AND-gates in the solution.

Inputs Definitions for uncontrollable inputs remain
unchanged. Definitions for controllable inputs are removed,
and the corresponding variable indices have to be redefined
either as new latches or AND-gates (see below).

LatchesNo definitions of latches may be removed, but addi-
tional latches may be defined in the lines following the
original latches.

OutputsNo definitions of outputs may be removed, no addi-
tional outputs may be defined.

AND-gates No definitions of AND-gates may be removed,
but additional AND-gates may be defined in the lines follow-
ing the original AND-gates.

Global restrictions All variable indices of controllable
inputs have to be redefined exactly once, either as a new
latch or as a new AND-gate. New latches and AND-gates
may be defined using the remaining (uncontrollable) inputs,
any latches, or newly defined AND-gates, but not original
AND-gates.6

Symbol table and comments The symbol table remains
unchanged. Comments may be removed or modified at will.

3.3.2 Semantic correctness

All input files will have the same structure as single safety
property specifications used in HWMCC. In particular, this
means that there is only one output, and the system is safe
if and only if this output remains 0 for any possible input
sequence.

Any output file satisfying the syntactical restrictions
described in Sect. 3.3.1 is an AIGER file. It is correct if for
any input sequence (of the uncontrollable inputs), the output
always remains 0. We say that it is a solution to the syn-
thesis problem defined by the input file if it is successfully
model checked by an AIGER-capable model checker within
a determined time bound.

4 Benchmarks

The benchmark set for the first SYNTCOMP consisted of
569 benchmark problems overall, out of which 390 are real-

6 The reason for disallowing original AND-gates is that we want the
controller towork only based on the state of the given circuit (i.e., values
of latches), and the uncontrollable inputs. Original AND-gates can be
duplicated in the controller if necessary.

izable and 179 unrealizable.7 Most of the benchmarks existed
before in other formats, and have been translated to our new
format. The full set of benchmarks used in SYNTCOMP
2014 is available in directory Benchmarks2014 of our
public Git repository at https://bitbucket.org/swenjacobs/
syntcomp/. In the following, we first explain how bench-
marks have been collected, translated and tested, and then
describe the different sets of benchmarks.

4.1 Collection of benchmarks

One of the major challenges for the first SYNTCOMP was
the collection of benchmarks in the extended AIGER format.
Following the decision to use this format, a call for bench-
marks was sent to the synthesis community. Many synthesis
tools have their own benchmark set, but none of them pre-
viously used the SYNTCOMP format, and therefore such
benchmarks had to be translated. Since we restrict to safety
specifications currently, such a translation usually involves
a safe approximation of liveness by safety properties, and
results in a family of benchmark instances for different pre-
cision of the approximation.

Generation and translation of benchmarks One method
for obtaining benchmarks in AIGER format is based on a
translation fromLTLspecifications, togetherwith a reduction
to a bounded synthesis problem, as used inAcacia+8 [14,33].
The idea is to (1) translate the negation of the LTL for-
mula into a universal co-Büchi automaton; (2) strengthen
this automaton into a universal k-co-Büchi automaton that
accepts awordw if and only if all the runs onw visit rejecting
states at most k times—such an automaton defines a safety
objective and can be easily made deterministic. (3) Finally,
a safety game is obtained by encoding succinctly this deter-
ministic safety automaton as an AIGER specification. We
thus obtain a family of benchmark instances, one for each
valuation of k. If the original LTL specification is realizable,
then the resulting benchmark instance will be realizable for
sufficiently large k. This translation from LTL to AIGER has
been implemented by Guillermo A. Pérez in the ltl2aig

routine.9

Another successful way of obtaining benchmarks was to
start from Verilog code, and use a toolchain composed of the
vl2mv routine of the VIS system10 [16], followed by trans-
lation toAIGER (and optimization) byABC11 [17], and from

7 Numbers regarding realizability are to the best of our knowledge. The
realizability status has not been verified for all benchmark instances.
8 http://lit2.ulb.ac.be/acaciaplus/. Accessed February 2016.
9 https://github.com/gaperez64/acacia_ltl2aig. Accessed February
2016.
10 http://vlsi.colorado.edu/~vis/. Accessed February 2016.
11 http://www.eecs.berkeley.edu/~alanmi/abc/. Accessed February
2016.

123

https://bitbucket.org/swenjacobs/syntcomp/
https://bitbucket.org/swenjacobs/syntcomp/
http://lit2.ulb.ac.be/acaciaplus/
https://github.com/gaperez64/acacia_ltl2aig
http://vlsi.colorado.edu/~vis/
http://www.eecs.berkeley.edu/~alanmi/abc/

The first reactive synthesis competition (SYNTCOMP 2014) 375

binary AIGER format to ASCII format by the aigtoaig
routine from the AIGER tool set.12 Liveness properties can
be approximated by safety properties, and we obtain a family
of benchmark instances for different approximations. Such
an approximation is explained in more detail in Sect. 4.3.
This approach will be called the Verilog toolchain below.

Finally, a number of benchmarks have been obtained by
translation from structured specifications for the generalized
reactivity(1) game solver SLUGS.13 The term “structured”
in this context refers to support for constraints over (non-
negative) integer numbers, which are automatically compiled
into a purely Boolean form. The purely Boolean generalized
reactivity(1) safety specification is then translated into amon-
itor automaton in AIGER format, which is finally optimized
using the ABC toolset by applying the command sequence
rewrite. We will call this approach the SLUGS toolchain
below.

Testing and classification of benchmarks To test the
resulting benchmarks, we fed them to our reference imple-
mentation Aisy,14 and compared the produced solution to the
expected result. Since our reference implementation is not as
efficient as the participants of the competition, a significant
number of benchmarks was only solved during the competi-
tion, but not in our initial tests. Those that were not solved
were classified into realizable and unrealizable according
to informed guesses of the benchmark authors. During the
competition, this resulted in three problem instances being
re-classified from unrealizable to realizable, or vice versa.

4.2 Toy examples

These benchmarks are based on original Verilog specifica-
tions that have been translated to AIGER using the Verilog
toolchain. The set includes specifications of basic circuits like
adders, bit shifters, multipliers, and counters. Additionally, it
contains some specificationswith typically very simple prop-
erties, e.g., that outputs must match inputs, or that the XOR
of inputs and outputs must satisfy some property. All exam-
ples are parameterized in the bit-width of the controllable
and uncontrollable inputs, ranging between 2 and 128 bits
on some examples, and for each example there are two ver-
sions, using the optimizing and non-optimizing translation
by ABC, respectively. Overall, this set contains 138 bench-
marks.

All AIGER files contain the original Verilog code, as well
as the commands used to produce the AIGER file, in the

12 http://fmv.jku.at/aiger/. Accessed February 2016.
13 http://github.com/ltlmop/slugs. Accessed February 2016.
14 https://bitbucket.org/art_haali/aisy-classroom. Accessed February
2016.

comments section. This set of benchmarks was provided by
Robert Könighofer.

4.3 Generalized buffer

The well-known specification of an industrial generalized
buffer was developed by IBM and subsequently used as a
synthesis benchmark for Anzu [45] and other tools. It is para-
meterized by the number of senders which send data to two
receivers. The buffer has a handshake protocol with each
sender and each receiver. A complete Genbuf consists of a
controller, a FIFO, and a multiplexer. In this benchmark, the
FIFO and multiplexer are considered as part of the environ-
ment, and the controller is synthesized. As a synthesis case
study for Anzu, it has been explained in detail by Bloem et
al. [11]. Robert Könighofer translated these benchmarks to
AIGER, as explained in the following.

Liveness-to-safety translation For Anzu, the Genbuf bench-
mark contains Büchi assumptions {A1, . . . , Am} that are sat-
isfied if all state sets Ai are visited infinitely often, and Büchi
guarantees {G1, . . . ,Gn} requiring that all G j are visited
infinitely often if all assumptions are satisfied. Three dif-
ferent translations into safety specifications were performed.
Translation “c” (for counting) applies thewell-known count-
ing construction: amodular counter i ∈ {0, . . . ,m} stores the
index of the next assumption. If an accepting state s ∈ Ai

of this next assumption is visited, the counter is incremented
modulo m + 1. If i has the special value 0, it is always incre-
mented. The same counting construction is applied to the
Büchi guarantees with counter j ∈ {0, . . . , n}. Finally, a
third counter r is used to enforce a minimum ratio between
the progress in satisfying guarantees and assumptions: when-
ever j is incremented, r is reset to 0. Otherwise, if i = 0,
then r is incremented. If r ever exceeds some bound k, then
BAD is set. A controller enforcing that BAD cannot become 1
thus also enforces that all G j are visited infinitely often if all
Ai are visited infinitely often. Translation “b” (for bitwise)
is similar, but uses one bit per assumption and guarantee
instead of a counter. It thus avoids imposing an (artificial)
order between properties. Translation “f” (for full set) is
similar to “b” but resets r only if all guarantees have been
seen in a row (rather than only the next one).

Translation to AIGER Anzu comes with scripts to con-
structGenbuf benchmark instanceswith different numbers of
senders. These scripts were modified to output a Verilog rep-
resentation, and from there the Verilog toolchain was used
to obtain benchmarks in AIGER format. The final specifi-
cation is parameterized in (1) the number of senders which
send data; (2) the type (c, b or f) and the bound k of the
liveness-to-safety translation, and (3) whether or not ABC
optimizations are used in the translation. All AIGER files
contain the original Verilog code (which in turn contains the

123

http://fmv.jku.at/aiger/
http://github.com/ltlmop/slugs
https://bitbucket.org/art_haali/aisy-classroom

376 S. Jacobs et al.

Anzu specification it was created from), as well as the com-
mands used to produce the AIGER file, in the comments
section. Overall, this set contains 192 benchmark instances.

4.4 AMBA bus controller

This is a specification of an arbiter for the AMBA AHB
bus, based on an industrial specification by ARM. Like the
Genbuf case study, it has been used as a synthesis bench-
mark for Anzu [45] and other tools. It is parameterized with
the number of masters that can access the bus and have to
be coordinated by the arbiter. The AMBA AHB bus allows
masters to request different kinds of bus accesses, either as
a single transfer or as a burst, where a burst can consist
of either a specified or an unspecified number of transfers.
Besides correctmodelingof these different formsof accesses,
the specification requires responses to all requests (that are
not eventually lowered), as well as mutual exclusion of bus
accesses by different masters. As a synthesis case study for
Anzu, it has been explained in detail by Bloem et al. [10].

The Anzu specification has been translated by Robert
Könighofer to AIGER format using the Verilog toolchain
in the same way as for the Genbuf benchmark. Instances are
parameterized in the number of masters, and (as for Genbuf)
the type (c, b or f) and the bound k of the liveness-to-safety
translation, as well as whether or not ABC optimizations are
used in the translation. All AIGER files contain the original
Verilog code (which in turn contains the Anzu specification
it was created from), as well as the commands used to pro-
duce the AIGER file, in the comments section. Overall, this
set contains 108 benchmarks.

4.5 LTL2AIG benchmarks

This set contains several benchmarks provided in theAcacia+
tool package [14], translated into AIGER format using the
ltl2aig routine. The set includes:

– 50 benchmarks from the test suite included with the syn-
thesis toolLily15 [44],with specifications of traffic lights
and arbiters in different complexity (25 original exam-
ples, each with 2 different choices of k).

– 4 versions of the Genbuf case study, but in a much more
challenging form than the specification mentioned in
Sect. 4.316 This version is only specified for 2 senders
and 2 receivers, and for 4 different choices of k.

15 http://www.iaik.tugraz.at/content/research/opensource/lily/.
Accessed February 2016.
16 We conjecture that this version is more challenging because it is
based on a large LTL specification, which is translated to a single,
very big Büchi automaton in the first step of the ltl2aig routine.
This results in a circuit that is much more complex than the ones from
Sect. 4.3.

– 5 versions of a load balancer case study, originally pre-
sented with synthesis tool Unbeast17 [28].

– 23 benchmarks that use the synthesis tool to obtain a
deterministic Büchi automaton for the given LTL speci-
fication (if possible), and

– 18 benchmarks for a similar conversion from LTL to
deterministic parity automata. The latter two conversions
are mentioned as applications of synthesis procedures by
Kupferman and Vardi [46].

Overall, this set contains 100 benchmarks.

4.6 Factory assembly line

This benchmark models an assembly line with multiple tasks
that need to be performed on the objects on the conveyor belt.
The specification models a number of robot arms (fixed to
2), a number n of objects on the conveyor belt, and a number
m of tasks that may have to be performed on each object
before it leaves the area that is reachable by the arms. The
belt moves after a fixed number k of time steps, pushing all
objects forward by one place, and the first object moves out
of reach of the arms (while a new object enters at the other
end of the belt). The arms are modeled such that they cannot
occupy the space above the same object on the belt, and can
move by at most one position per time step. In particular, this
means that they cannot pass each other. Whenever an arm is
in the same position as an object that has unfinished tasks, it
can perform one task on the object in one time step. Usually,
the assumption is that at most m − 1 of the m tasks need to
be performed on any object, but there may be a fixed number
c of glitches in an execution of the system, which means that
an object with m open tasks is pushed onto the belt.

This specification has been translated by Rüdiger Ehlers
from original benchmarks for the SLUGS GR(1) synthesis
tool, using the SLUGS toolchain. Overall, this set contains
15 benchmarks, for different values of m (3–7), n (3–6), k
(1–2) and c (0–11).

4.7 Moving obstacle evasion

This benchmark models a controller for a robot that moves
on a quadratic grid of parametric size m, and has to avoid
colliding with a moving obstacle (of size 2× 2 grids). In any
time step, the robot and the obstacle can onlymove by atmost
one grid in x and y direction. Additionally, the obstacle can
usually only move at most every second time step. However,
as in the assembly line benchmarks, there may be a fixed
number c of glitches in an execution of the system, which in

17 http://www.react.uni-saarland.de/tools/unbeast/. Accessed Febru-
ary 2016.

123

http://www.iaik.tugraz.at/content/research/opensource/lily/
http://www.react.uni-saarland.de/tools/unbeast/

The first reactive synthesis competition (SYNTCOMP 2014) 377

this case means that the obstacle moves even though it has
already moved in the immediately preceding time step.

This specification has been translated by Rüdiger Ehlers
from original benchmarks for the SLUGS GR(1) synthesis
tool, using the SLUGS toolchain. Overall, this set contains 16
benchmarks, for different values of m (8–128) and c (0–60).

5 Rules

The rules for SYNTCOMP were inspired by similar compe-
titions such as the SAT competition and the HWMCC. The
basic idea is that submitted tools are evaluated on a previously
unknown set of benchmarks, without user intervention. A
simple ranking of tools can be obtained by checking only the
correctness of solutions, and counting the number of problem
instances that can be solvedwithin a given timeout. However,
the goal of synthesis is to obtain implementations that are not
only correct, but also efficient. Therefore, we also considered
refined rankings based on the quality of the produced solu-
tions, measured by the size of the implementation.

Tracks The competition was separated into two tracks: the
realizability track which only required a binary answer to the
question whether or not there exists a circuit that satisfies the
given specification, and the synthesis track which was only
run on realizable benchmarks, and asked for a circuit that
implements the given specification. The motivation for this
split was again to have a low entry-barrier for tool creators,
as an efficient realizability checker can be implemented with
less effort than a full synthesis tool that produces solutions
and optimizes them for size. Indeed, two out of five submit-
ted tools make use of this split and only supply a realizability
checker, and these two tools solve more problems in the real-
izability track than any of the full synthesis tools.

SubtracksEach trackwas divided into a sequential subtrack,
where tools can use only one core of the CPU, and a parallel
subtrack, allowing tools to use multiple cores in parallel. The
decision to have both sequential and parallel executionmodes
was based on the expectation that parallelization would often
be trivial—i.e., a number of different but largely independent
strategies running in parallel.18 Therefore, we also wanted
to evaluate tools in sequential execution mode in order to
measure and identify the single best strategy.

5.1 Entrants

We asked for synthesis tools to be supplied in source code,
licensed for research purposes, and we offered to discuss

18 In particular, non-trivial parallelization is difficult for BDD-based
tools, since none of the existing parallel BDD packages supports all
features needed for the optimizations mentioned in Sect. 2.3.

possible solutions if this restriction was a problem to any
prospective participant. This was not the case for any of the
research groups that contacted us regarding the competition.
The organizers reserved the right to submit their own tools
and did so in the form of Basil, implemented by R. Ehlers,
and Demiurge, implemented in part in the research group of
R. Bloem. We encouraged participants to visit SYNT and
CAV for the presentation of the SYNTCOMP results, but
this was not a requirement for participation.

We allowed up to three submissions per author and sub-
track, where submissions are considered to be different if
source code, compilation options or command line arguments
are different. This limit was chosen to allow some flexibil-
ity for the tool creators, while avoiding the flooding of the
competition with too many different configurations of the
same tool. All tools must support the input and output for-
mat of SYNTCOMP, as defined in Sect. 3. Additionally, each
entrant to SYNTCOMP was required to include a short sys-
tem description.

The organizers committed to making reasonable efforts
to install each tool but reserved the right to reject entrants
where installation problems persisted. This was not the case
for any of the entrants. Furthermore, in case of crashes or
wrong results we allowed submission of bugfixes if possible
within time limits. In one case, a bugfix was submitted that
resolved a number of solver crashes that only appeared during
the competition runs.

5.2 Ranking

In both the realizability and the synthesis track, competition
entrants were ranked with respect to the number of solved
problems. Additionally, we consider a more fine-grained
relative ranking that distributes points for each benchmark
according to the relative performance of tools, measured
either in the time needed to find a solution, or the size of the
solution. A drawback of this relative ranking is that it does
not allow easy comparison to tools that did not participate.
As an alternative that resolves this problem, we additionally
give a quality ranking for the synthesis track that compares
the size of the provided solution to a reference size.19

For all rankings, a timeout (or no answer) gives 0 points. A
punishment for wrong answers was not necessary, since the
full set of benchmarks was made available to the participants
one month before the submission of solvers.

Correctness andranking in realizability trackFor the real-
izability track, the organizers and benchmark authors took
responsibility for determining in advance whether specifi-
cations are realizable or unrealizable, by using knowledge

19 The quality ranking was devised for the second SYNTCOMP and
was applied to the results of the first competition only after the presen-
tation of results at SYNT and CAV 2014.

123

378 S. Jacobs et al.

Table 1 Optimizations
implemented in BDD-based
tools

Technique AbsSynthe Basil Realizer Simple BDD Solver

Automatic reordering x x x x

Eager deallocation of BDDs x x

Direct substitution x (x) x x

Partitioned transition
relation

x x x

Simultaneous conjunction
and abstraction

x

Co-factor based extraction
of winning strategies

x x N/A N/A

Forward reachability
analysis

x x N/A N/A

ABCminimization x N/A N/A

Additional optimizations
(see tool descriptions)

x x x x

about how the benchmarks were generated. When in doubt,
a majority vote between all tools that solved a given bench-
mark was used to determine the correct outcome.20

In addition to a ranking based on the number of solved
problem instances, tools were evaluated with a relative rank-
ing based on the time needed to come to the solution, where
the tool with the smallest time earns the highest rank (see
below). For the sequential subtrack, tools were ranked with
respect toCPU time,while for the parallel subtrackwe ranked
tools with respect to wall-clock time.

Correctness and ranking in synthesis track In the synthe-
sis track, correctness of solutions was assessed by checking
both syntactical and semantical correctness. Syntactical cor-
rectness means conformance to our output format defined in
Sect. 3, which was checked by a separate syntax checker.
Semantical correctness was tested by a model checker
(iimc,21 based on the IC3 algorithm [15]), which had to
terminate within a separate time bound for the result to
be considered correct. As in the realizability track, there
is a ranking with respect to the number of solved problem
instances, as well as a relative ranking. The latter is in this
case based on the size of solutions, given by the number of
AND-gates in the resulting circuit. In addition, we provide a
quality ranking that awards points for every solution, based
on a comparison of the solution size to a reference size (see
below).

Relative ranking For every benchmark, all tools that provide
a correct solution are ranked with respect to the metric (time

20 This rule only had to be used in one instance, where a benchmark
was solved by only one tool, and was reported to be realizable although
unrealizable was the expected outcome. In our analysis it turned out
that the tool was correct, and the initial classification as unrealizable
was wrong.
21 http://ecee.colorado.edu/wpmu/iimc/. Accessed February 2016.

or size), and each tool obtains points based on its rank. In
detail: if k benchmarks are used in the track, then 1000/k =
p points are awarded per benchmark. If n tools solve the
benchmark, then the points for that benchmark are divided
into �n

i=1i = f fractions, and the tool which is at rank m
will get n−m+1

f · p points for this benchmark.

Quality ranking In the quality ranking, solutions are
awarded points depending on the size sizenew of the solu-
tion and a reference size sizeref . The number of points for a
solution is

2 − log10

(
sizenew
sizeref

)
.

That is, a solution that is of size sizeref gets 2 points; a solution
that is bigger by a factor of 10 gets 1 point; a solution that is
bigger by a factor of 100 (ormore) gets 0 points; and similarly
for solutions that are smaller than sizeref .

Since for the first competition we do not have reference
solutions for any of the problem instances, we use the small-
est size of any of the solutions of this competition as the
reference size. In future competitions, or for comparison of
tools that did not participate, the size of the smallest solution
that has been provided in any of the competitions before can
be used.

6 Participants

Five systems were entered into the first SYNTCOMP. In
the following, we give a brief description of the methods
implemented in each of these systems. For the BDD-based
tools, Table 1 showswhichof the optimizations fromSect. 2.3
are implemented in which tool.

123

http://ecee.colorado.edu/wpmu/iimc/

The first reactive synthesis competition (SYNTCOMP 2014) 379

6.1 AbsSynthe: an abstract synthesis tool

AbsSynthe was submitted by R. Brenguier, G. A. Pérez, J.-F.
Raskin, and O. Sankur from Université Libre de Bruxelles.
AbsSynthe implements aBDD-based synthesis approach and
competed in all subtracks.

Synthesis algorithmsAbsSynthe implements differentBDD-
based synthesis algorithms, with and without abstraction,
described in more detail in [18]. All algorithms use the BDD
package CUDD [60], with automatic BDD reordering using
the sifting heuristic.

The concrete algorithm with partitioned transition rela-
tion (C-TL) implements BDD-based synthesis with parti-
tioned transition relation and direct substitution of state vari-
ables with BDDs. In addition, when computing
UPRE(S(L ′)), then the transition functions fl of all latches
are first restricted to ¬S(L), effectively only computing the
uncontrollable predecessors which are not already in S(L).
These new states are then joined to S(L), which gives the
same result as the standard UPRE computation.

The basic abstract algorithm (A) implements synthesis
with a precomputed (monolithic) abstract transition relation,
and some additional optimizations.

The alternative abstract algorithm (A-TL) avoids using
a precomputed transition relation by implementing abstract
operators for post-state computation.

AbsSynthewas intended to compete in these different con-
figurations. However, due to a miscommunication between
tool authors and competition organizers, the necessary com-
mand line parameters were not used, such that only one
configuration participated, namely (C-TL). Unfortunately,
this error was discovered too late to run the additional
configurations before the presentation of results at CAV
2014.

However, as mentioned in [18], the abstraction-based
methods overall performedworse than the concrete algorithm
(C-TL), and thus the fastest configuration did participate in
the competition.

Strategy extraction Strategy extraction in AbsSynthe uses
the co-factor-based approach described in Sect. 2.3, includ-
ing the additional forward reachability check. When extract-
ing the circuit, every AIG node constructed from the BDD
representation is cached in order to avoid duplicating parts
of the circuit.

Implementation, availability AbsSynthe is written mostly
in Python, and depends only on a simpleAIG library (fetched
from the AIGER toolbox22) and the BDD package CUDD.23

22 http://fmv.jku.at/aiger/. Accessed February 2016.
23 http://vlsi.colorado.edu/~fabio/CUDD/. Accessed February 2016.

The source code is available at https://github.com/gaperez64/
AbsSynthe.

6.2 BASIL: BDD-based safety synthesis tool

Basil was submitted by R. Ehlers from the University of
Bremen, and implements a BDD-based synthesis approach.
Basil competed in all subtracks.

Synthesis algorithm Basil implements a BDD-based syn-
thesis algorithm, based on the BDD package CUDD. It uses
automatic reordering of BDDs with the sifting heuristic,
reconfigured in order to optimizemore greedily. In contrast to
all other BDD-based tools in the competition, it does not use
a partitioned transition relation. It does however use a tech-
nique similar to direct substitution, regarding latches that are
always updated by the value of an input variable: BDD vari-
ables that represent such inputs are double-booked as both
an input and a post-state variable of the latch, and therefore
need not be explicitly encoded into the transition relation.
Additionally, when building the transition relation it eagerly
deletes BDDs that are only used as intermediate values as
soon as they are not needed anymore. This is the case if a
gate A is not used as a controllable input or an input to a
latch, and all nodes that depend on A have been processed.

Strategy extraction Basil computes strategies with the
co-factor-based approach from Sect. 2.3, including forward
reachability analysis and ABC minimization.

As an additional optimization, during strategy extraction
the output bit BDDs are reduced in size by applying LICom-
paction [38]: a joint BDD for all output bit BDDs is built and
then, in a round-robin fashion over the outputs, the size of the
joint BDD is reduced by changing a part of it that describes
the behavior of a single output bit in a way that makes the
overall BDD smaller, but yields behavior that is contained
in the most general strategy for winning the game. In order
to minimize the care set for this operation, a reachable-state
computation is performed before every step.When no further
size reduction is found to be possible, or some timeout has
been reached, optimization by LICompaction is aborted.

Implementation, availability Basil is implemented in C++
and depends on the BDD package CUDD, as well as (option-
ally) ABC24 for strategy minimization. It is currently not
publicly available.

6.3 Demiurge

Demiurge was submitted by R. Könighofer from Graz Uni-
versity of Technology and M. Seidl from Johannes-Kepler-

24 http://www.eecs.berkeley.edu/~alanmi/abc/. Accessed February
2016.

123

http://fmv.jku.at/aiger/
http://vlsi.colorado.edu/~fabio/CUDD/
https://github.com/gaperez64/AbsSynthe
https://github.com/gaperez64/AbsSynthe
http://www.eecs.berkeley.edu/~alanmi/abc/

380 S. Jacobs et al.

University Linz.Demiurge implements incremental SAT- and
QBF-based synthesis as described in Sect. 2.4, as well as
template-based synthesis with QBF solving as described in
Sect. 2.5. Demiurge competed in all subtracks.

Synthesis algorithms Demiurge implements different syn-
thesis algorithms in different back-ends, described in more
detail in [13].

The learning-based back-end uses the incremental syn-
thesis approach to compute a winning region based on two
competing SAT solvers to compute and generalize states to
be removed from the winning region (algorithm LearnSat
from [13] with optimization RG enabled, but optimization
RC disabled).Minisat version 2.2.0 is used as underlying SAT
solver.

The parallel back-end implements the same method with
three threads refining the winning region in parallel. Two
threads perform thework of the learning-based back-end, one
usingMinisat 2.2.0 and the other using Lingeling ats. The third
thread generalizes existing clauses of the winning region fur-
ther by trying to drop more literals. Using different solvers in
the threads is beneficial because the solvers can complement
each other, sometimes yielding a super-linear speedup [13].

The template-based back-end uses a QBF solver to com-
pute awinning region as instantiation of a template for a CNF
formula over the state variables. For SYNTCOMP, DepQBF

3.02 is used as QBF solver via its API. Bloqqer, extended
to preserve satisfying assignments [58], is used as QBF pre-
processor.

Demiurge contains more back-ends that are either experi-
mental or did not turn out to be particularly competitive, and
therefore did not enter the competition. This includes a re-
implementation of the technique of Morgenstern et al. [51],
and an approach based on a reduction to effectively proposi-
tional logic (EPR). Details can be found in [13].

Strategy extraction Demiurge provides several methods for
computing strategies from the winning region. The algo-
rithm used in the competition uses a computational learning
approach as proposed in [30], but implemented with incre-
mental SAT solving or incremental QBF solving instead of
BDDs. In terms of [9], it uses the SAT-based learningmethod
without the dependency optimization, with Lingeling ats as
SAT solver. ABC minimization is used in a post-processing
step.

Implementation, availability Demiurge is implemented in
C++, and depends on a number of underlying reasoning
engines, some of them mentioned above. Because of its
modular architecture, Demiurge is easily extendable with
new algorithms and optimizations (cf. [9]), thus provid-
ing a framework for implementing new synthesis algo-
rithms and reducing the entry barrier for new research on

SAT- and QBF-based synthesis algorithms and optimiza-
tions.

Demiurge is available under the GNU LGPL license
(version 3) at http://www.iaik.tugraz.at/content/research/
design_verification/demiurge/.

6.4 REALIZER–CUDD based safety game solver

Realizer was submitted by L. Tentrup from Saarland Uni-
versity, Saarbrücken. Realizer implements BDD-based real-
izability checking, and competed in both realizability sub-
tracks. It does not support extraction of strategies.

Synthesis algorithms Realizer is based on BDD package
CUDD, and uses automatic reordering of BDDs with the
lazy sift reordering scheme. When building the BDDs that
represent the transition relation, it uses a temporary hash table
to save the BDDs for AND gates in the AIG. Before starting
the fix-point algorithm, it builds the basic data structures used
in the fixed point calculation, like the arrays mapping the
current state variable to the next (primed) state variable or the
BDD cubes used for the existential and universal abstraction.

The actual fix-point algorithm is implemented in two
variants, differing only in the way they handle the forced
predecessor function: one variant uses a monolithic transi-
tion relation, while the other uses a partitioned transition
relation. Both variants use direct substitution.

The variant with partitioned transition relation overall
performed better in preliminary experiments, so only this
one was entered into the competition in the sequential real-
izability track. Since on some examples the other variant
performed better, the parallel version uses both variants run-
ning (independently) in parallel.25

Implementation, availability Realizer is written in Python
and uses the BDD library CUDD in version 2.4.2 with the
corresponding Python bindings PyCUDD in version 2.0.2. It
is currently not publicly available.

6.5 Simple BDD solver

Simple BDD Solver was submitted by L. Ryzhyk from
NICTA, Sydney and the Carnegie Mellon University, Pitts-
burgh, and A. Walker from NICTA, Sydney. Simple BDD
Solver implements BDD-based realizability checking, and

25 Analysis of results and subsequent inspection of the source code by
the tool author showed that due to a bug the parallel version did not
work as intended, and instead used two threads with identical strategy.
As canbe seen in the results section, this lead to a decreasedperformance
overall.

123

http://www.iaik.tugraz.at/content/research/design_verification/demiurge/
http://www.iaik.tugraz.at/content/research/design_verification/demiurge/

The first reactive synthesis competition (SYNTCOMP 2014) 381

only competed in the sequential realizability subtrack. It does
not support extraction of strategies.

Synthesis algorithm(s) Simple BDD Solver is a substantial
simplification of the solver thatwas developed for theTermite
project,26 adapted to safety games given in the AIGER for-
mat. It uses the BDD package CUDD, with dynamic variable
reordering using the sifting algorithm, and eager deallocation
of BDDs. Furthermore, it uses a partitioned transition rela-
tion, direct substitution, and simultaneous conjunction and
abstraction.

Additionally, it uses an alternative form for the fix-point
computation of UPRE that avoids creating the BAD latch and
simplifies the quantification structure:

The fix-point formula (1) in Sect. 2.3 is equivalent to

μS(L). ∃Xu∀Xc∃L ′.
(
S(L ′) ∧ T (L , Xu, Xc, L

′)
) ∨ BAD′.

To avoid introducing the latch for BAD, we substitute
BAD′ with the update function for BAD—an expression
¬SAFE(L , Xu, Xc) over latches and inputs. This results
in:

μS(L) · ∃Xu∀Xc∃L ′.
(
S(L ′) ∧ T (L , Xu, Xc, L

′)
) ∨ ¬SAFE(L , Xu, Xc).

Then, quantifiers are re-arranged to

μS(L). ∃Xu∀Xc.(∃L ′. S(L ′) ∧ T (L , Xu, Xc, L
′)
) ∨¬SAFE(L , Xu, Xc),

with the safety condition outside of the innermost existential
quantification. With this formula for the fixpoint, simultane-
ous conjunction and abstraction can be used on the left-hand
side of the disjunction, and we avoid to build the potentially
large BDD of the conjunction in the left-hand side at every
iteration.

Furthermore, the tool implements a variant of the fix-
point algorithm with an abstraction-refinement loop inspired
by [26]. Since this variant has not been found to be compet-
itive on the set of competition benchmarks, it has not been
entered into the competition.

Implementation, availability Simple BDD solver is writ-
ten in the Haskell functional programming language. It uses
the CUDD package for BDD manipulation and the Attopar-
sec27 Haskell package for fast parsing. Altogether, the solver,
AIGER parser, compiler and command line argument parser

26 http://termite2.org. Accessed February 2016.
27 https://hackage.haskell.org/package/attoparsec. Accessed February
2016.

are just over 300 lines of code. The code is available online
at: https://github.com/adamwalker/syntcomp.

7 Execution

SYNTCOMP 2014 used a compute cluster of identical
machines with octo-core Intel Xeon processors (2.0 GHz)
and 64 GB RAM, generously provided by Graz University
of Technology. The machines are running a GNU/Linux sys-
tem, and submitted solverswere compiledusingGCCversion
4.7. Each node has a local 400 GB hard drive that can be used
as temporary storage.

The competition was organized on the EDACC plat-
form [4] developed for the SAT Competitions [43]. EDACC
directly supports the definition of subtracks with different
benchmark sets, different solver configurations, verification
of outputs, and automatic distribution of jobs to com-
pute nodes. During the competition, a complete node was
reserved for each job, i.e., one synthesis tool (configuration)
running one benchmark. This ensures a very high compa-
rability and reproducibility of our results. Olivier Roussel’s
runsolver [56] was used to run each job and to measure
CPU time and Wall time, as well as enforcing timeouts. As
all nodes are identical and no other tasks were run in parallel,
no other limits than a timeout per benchmark (CPU time for
sequential subtracks, wall time for parallel subtracks) was
set. The timeout for each task in any subtrack was 5000 s
(CPU time or wall time, respectively). The queueing system
in use is TORQUE.28

Some solvers did not conform completely with the out-
put format specified by the competition, e.g. because extra
informationwas displayed in addition to the specified output.
For these solvers, small wrapper scripts were used to execute
them, filtering the outputs as to conform to the specified for-
mat.

Validity of results Beyer et al. [7] recently noted that
runsolver, along with a number of other benchmark-
ing tools, has certain deficits that endanger the validity of
results. In particular, the CPU time of child processes may
not be measured correctly. First, note that CPU time is only
relevant for our results in the sequential subtracks, where
tools are restricted to a single CPU core. Furthermore, for
the participants of SYNTCOMP we note that the only child
processes (if any) are the reasoning engines for BDDs and
SAT or QBF formulas. Since these reasoning engines take up
almost all of the CPU time in solving synthesis tasks, a com-
parison of CPU time to the recorded wall time would most

28 http://www.adaptivecomputing.com/products/open-source/torque/.
Accessed February 2016.

123

http://termite2.org
https://hackage.haskell.org/package/attoparsec
https://github.com/adamwalker/syntcomp
http://www.adaptivecomputing.com/products/open-source/torque/

382 S. Jacobs et al.

probably reveal measurements that exclude child processes.
This was not the case for our results.

8 Experimental results and analysis

We present the results of SYNTCOMP 2014, separated into
realizability and synthesis tracks, followed by some obser-
vations on the state of the art. 5 tools entered the competition
and ran in 8 different configurations in the 4 tracks of
the competition.29 All of the results can be viewed online
in our EDACC system at https://syntcompdb.iaik.tugraz.at/
2014/experiments/. Furthermore, the full experimental data,
including problem instances, executable code of the solvers,
logfiles of executions, solutions produced by solvers, and
executable code for verifying the solutions is available in
directory ExperimentalData2014 of our public Git
repository at https://bitbucket.org/swenjacobs/syntcomp/.

8.1 Realizability track

In the realizability track, tools were run on the full set of 569
benchmarks. All five tools that entered SYNTCOMP com-
peted with at least one configuration in the sequential sub-
track, and 4 of them also competed in the parallel subtrack.

Sequential subtrack The sequential realizability track had
6 participants: AbsSynthe, Basil, Realizer and Simple BDD
Solver competed with one configuration each, whereasDemi-

urge competed with two different configurations. Table 2
contains the number of instances solved within the timeout
per tool, the number of instances solved uniquely by a solver,
and the accumulated points per tool according to our relative
ranking scheme.

No tool could solve all 569 benchmarks, and 13 bench-
marks were not solved by any of the tools within the timeout.
12 benchmarks were solved uniquely by one tool:

– Basil: 4 versions of the factory assembly benchmarks
(size 5×5 and 7×5, each with 10 and 11 errors).

– Realizer: gb_s2_r2_1_UNREAL.30

– Demiurge (templ): mult1x with x ∈ {2, 3, 4, 5, 6},
stay18n and stay20n.

29 As mentioned in Sect. 6.1, AbsSynthe was supposed to compete in
different configurations, but due to a miscommunication was always
started in the same configuration. The results presented here for the
relative ranking differ from those presented at CAV 2014 in that only
one of the three identical configurations of AbsSynthe is counted in the
sequential tracks.
30 This benchmark was found to be realizable by the tool, although it
was classified as unrealizable by the benchmark authors. Our analysis
confirmed it to be realizable.

Table 2 Results of the sequential realizability track

Tool Solved Unique Relative

Simple BDD Solver 542 0 262

Realizer 539 1 229

AbsSynthe 536 0 144

Basil 520 4 209

Demiurge (learn) 359 0 209

Demiurge (templ) 121 7 90

The best result in each column is in bold

Table 3 gives an overview of benchmark instances that were
solved uniquely or not solved at all, for all subtracks of the
competition.

Furthermore, Fig. 2 gives an overview of solved instances
by participant and benchmark classes (see Sect. 4), and Fig. 3
a cactus plot for the time needed by each tool to solve the
benchmarks.

Analysis Table 2 and Fig. 2 show that the BDD-based tools
AbsSynthe, Basil, Realizer and Simple BDD Solver are
very close to each other when only comparing the number
of instances solved. Furthermore, for the Amba and Genbuf
benchmarks, some tools solve all instances in the benchmark
set, i.e., wewould needmore difficult instances to distinguish
which tool is better for these classes.

Regarding the SAT- andQBF-based synthesis approaches,
Demiurge (learn) solves about as many of the LTL2AIG
benchmarks as the bestBDD-based tools, and almost asmany
of the Toy Examples. For AMBA and Genbuf Benchmarks,
Demiurge (learn) solves only about half as many benchmarks,
and for the Moving Obstacle and Factory Assembly bench-
marks can only solve one in each case. Finally, Demiurge

(templ) can solve a very good number of the Toy Examples,
and even solves 7 of them uniquely. However, it solves only
very few of the LTL2AIG benchmarks, and none of the oth-
ers.

As can be seen in Fig. 3, most tools have a steep degra-
dation with higher complexity of benchmarks, i.e., between
90 and 95 % of the benchmarks that can be solved within the
timeout of 5000 s can actually be solved very quickly, i.e., in
less than 600 s.

The uniquely solved benchmarks also show that there are
significant differences between the algorithms of different
tools. In particular, the template-based variant of Demiurge,
while not very successful overall, can determine realizability
for a relatively large number of Toy Examples that cannot be
solved by the other approaches.

Regarding the relative ranking, in Table 2 we note that
Demiurge (learn) has the same score as Basil (and higher
thanAbsSynthe), even though it canonly solve 359problems,
compared to 520 for Basil and 536 for AbsSynthe. This is

123

https://syntcompdb.iaik.tugraz.at/2014/experiments/
https://syntcompdb.iaik.tugraz.at/2014/experiments/
https://bitbucket.org/swenjacobs/syntcomp/

The first reactive synthesis competition (SYNTCOMP 2014) 383

Table 3 Benchmark instances that were solved uniquely or not solved at all in at least one subtrack

Benchmark Solved in
seq. realizability

Solved in
par. realizability

Solved in
seq. synthesis

Solved in
par. synthesis

amba8c7y Yes Yes No No

amba9c5y Yes Yes Yes Yes∗

amba10c5y Yes Yes Yes Yes∗

cnt30n No No – –

cnt30y No No No No

factory_assembly_5x5_2_10errors Yes∗ Yes∗ No No

factory_assembly_5x5_2_11errors Yes∗ Yes∗ No No

factory_assembly_7x5_2_10errors Yes∗ Yes∗ No No

factory_assembly_7x5_2_11errors Yes∗ Yes∗ No No

gb_s2_r2_1_UNREAL Yes∗ No – –

gb_s2_r2_2_REAL No No No No

gb_s2_r2_3_REAL No No No No

gb_s2_r2_4_REAL No No No No

moving_obstacle_24x24_7glitches Yes Yes No No

moving_obstacle_32x32_11glitches Yes Yes No No

moving_obstacle_48x48_19glitches Yes Yes No No

moving_obstacle_64x64_27glitches Yes Yes No No

moving_obstacle_96x96_43glitches Yes Yes No No

moving_obstacle_128x128_59glitches No No – –

moving_obstacle_128x128_60glitches No No – –

mult11 Yes Yes∗ – –

mult12 Yes∗ No No No

mult13 Yes∗ No – –

mult14 Yes∗ No – –

mult15 Yes∗ No – –

mult16 Yes∗ No No No

stay16y Yes Yes∗ Yes Yes∗

stay18n Yes∗ No – –

stay18y No No – –

stay20n Yes∗ No – –

stay20y No No – –

stay22n No No – –

stay22y No No – –

stay24n No No – –

stay24y No No – –

“Yes” means solved by more than one tool, “Yes∗” means uniquely solved. “–” means that this benchmark instance was not tested

because this ranking rewards Demiurge for being one of the
fastest tools on many of the small problem instances.
Parallel subtrack The parallel realizability subtrack had 4
participants: parallel versions of Demiurge and Realizer,31

and sequential versions of AbsSynthe and Basil. The results
are summarized in Table 4. Again, no tool could solve all 569

31 Due to a bug, the parallel version of Realizer performed worse than
the sequential version, as mentioned in Sect. 6.

benchmarks. Table 3 shows 21 benchmarks that were not
solved by any of the tools within the timeout, and 6 bench-
marks that were solved uniquely by one tool. The successful
tools are:

– Basil: 4 versions of the factory assembly benchmarks
(the same as before).

– AbsSynthe: mult11 and stay16y.

123

384 S. Jacobs et al.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

Amba Factory Assembly Genbuf Moving Obstacle LTL2AIG Toy Examples

Total AbsSynthe Basil Demiurge (learn) Demiurge (templ) Realizer Simple BDD Solver

Fig. 2 Sequential realizability track, solved instances by category

We note that Realizer could not solve the problems that it
uniquely solved in sequential execution mode. Furthermore,
Demiurge (templ) did not compete in the parallel subtrack,
therefore its uniquely solved problems from the sequential
subtrack are unsolved here.

A cactus plot for the number of benchmarks that can be
solved by each tool within the timeout is given in Fig. 4.
We do not give a detailed analysis of the number of solved
instances by category, since it is very similar to the analysis
in Fig. 2.

Table 4 Results of the parallel realizability track

Tool Solved Unique Relative

Realizer 538 0 279

AbsSynthe 536 2 219

Basil 520 4 331

Demiurge (parallel) 324 0 133

The best result in each column is in bold

0.001

0.01

0.1

1

10

100

1000

0 100 200 300 400 500 600

Ti
m

e
(s

)

Benchmarks solved

AbsSynthe Basil Demiurge (learn) Demiurge (templ) Realizer Simple BDD Solver

Fig. 3 Sequential realizability track, cactus plot

123

The first reactive synthesis competition (SYNTCOMP 2014) 385

0.01

0.1

1

10

100

1000

0 100 200 300 400 500 600

Ti
m

e
(s

)

Benchmarks solved

AbsSynthe Basil Demiurge (parallel) Realizer (parallel)

Fig. 4 Parallel realizability track, cactus plot

Analysis Figure 4 shows the same steep degradation of run-
time with increasing complexity as in the sequential case.
Concerning the effectiveness of parallel versus sequential
implementations, this subtrack shows that currently none of
the implementations benefits from using parallelism. To the
contrary, the parallel implementations of Demiurge (learn)

and Realizer were not able to solve (in 5000 s Wall time)
the problems that their sequential implementations solved
uniquely in the sequential subtrack (in 5000 s CPU time),
and AbsSynthe and Basil are sequential implementations.

Regarding the relative ranking based on Wall time, we
note another weakness of the chosen ranking system: this
ranking heavily favors implementations in C++ that have a
quick startup time. Basil solves 150 problems in less than
0.36s Wall time, which is the minimal time needed to solve
any single problem for the Python-based implementations
AbsSynthe and Realizer. That is, the relative ranking scheme
and our benchmark selection favors tools that can solve easy
benchmarks very quickly, and in particular the tools imple-
mented in C++, as they make very efficient use of Wall time.

Summing up, we see that in the realizability tracks
the BDD-based tools in general outperform the SAT- and
QBF-based approaches, except for a small subset of the
benchmarks. Between the BDD-based approaches, the dif-
ferences we could detect are rather small — the percentage
of benchmarks that can be solved by the BDD-based imple-
mentations ranges only from 91 to 95 %. None of the tools
benefits from parallelism.

8.2 Synthesis track

In the synthesis track, tools were evaluated with respect to
the relative and quality rankings (see Sect. 5.2), based on the

size of solutions. Since these rankings are only defined on
realizable specifications, we excluded all unrealizable spec-
ifications. Furthermore, we excluded most of the problems
that could not be solved by any tool in the realizability track,
since synthesis in general is harder than realizability check-
ing. Out of the remaining 382 benchmarks, we chose 157
benchmarks with the goal to ensure a good coverage of
different benchmark classes, and a good distribution over
benchmarks of different difficulty. Only three out of the five
tools that entered SYNTCOMP competed in the synthesis
track: AbsSynthe, Basil and Demiurge.

Sequential subtrack The sequential synthesis subtrack had
four participants: AbsSynthe and Basil competed with one
configuration each, and Demiurge with two different config-
urations. Table 5 shows the number of solved instances, and
the accumulated points per tool in the relative and quality
rankings. Note that a problem only counts as solved if the
solution is successfullymodel checked.Thenumber ofmodel
checking timeouts (MCTO) is also given in the table.

No tool could solve all 157 benchmarks. No benchmark
was solved uniquely by one tool, and 14 benchmarks were
solved by none of the tools (see Table 3). AbsSynthe solved
the highest number of problems and earns the highest score in
the quality ranking. Demiurge (learn) earns the highest score
in our relative ranking, even though it solves less problems
than AbsSynthe.

Both AbsSynthe and Basil produced a small number
of solutions that could not be model checked within the
separate 3600 s timeout. While counting these additional
solutions would have changed the scores of these tools, it
would not have changed the order of tools in any of the
rankings. Figures 5 and 6 give an overview of the size of
produced implementations for a subset of the benchmarks,

123

386 S. Jacobs et al.

Table 5 Results of the sequential synthesis track

Tool Solved Relative Quality MCTO

AbsSynthe 143 329 265 6

Demiurge (learn) 121 379 240 0

Basil 117 218 219 5

Demiurge (templ) 31 77 57 0

The best result in each column is in bold

showing significant differences on implementation sizes for
some instances, in particular from the AMBA and Genbuf
classes.

AnalysisRegarding the relative and quality rankings, we note
that Demiurge (learn) profits from taking solution sizes into
account. Figure 5 shows that for those instances of theAMBA
and GenBuf benchmarks that Demiurge (learn) can solve, it
provides implementations that are often by an order of mag-
nitude smaller than those of the other tools. Figure 6 shows
a number of benchmarks where the implementation sizes
are equal or very similar. Most of the time, the solutions of
Demiurge (learn) are smaller than those of AbsSynthe and
Basil, which is why it scores higher than AbsSynthe and
much higher than Basil in the relative ranking, even though
it solves less problems thanAbsSynthe, and about asmany as
Basil. In the quality ranking, the relative difference between
Demiurge (learn) and AbsSynthe is significantly smaller than
in the number of solved instances (9.5 versus 15.5 % differ-
ence).

Furthermore, we note that the benchmark set contains rel-
atively many problems that are easy to solve. For example,
AbsSynthe can solve 75 of the 157 problems in less than 0.5 s
CPU time.

Comparing the BDD-based tools, AbsSynthe solves a
number of problems that Basil cannot solve, and provides
smaller solutions in many cases.

Parallel subtrack The parallel synthesis subtrack had 3 par-
ticipants: one configuration each of AbsSynthe, Basil, and
Demiurge. Demiurge (parallel) was the only tool to use paral-
lelism in the synthesis track. The results are summarized in
Table 6. No tool could solve all 157 benchmarks, 3 bench-
marks were solved uniquely by one tool, and 14 benchmarks
were solved by none of the tools.

The benchmarks solved uniquely by one tool are:

– AbsSynthe: amba9c5y, amba10c5y, and stay16y.

Like in the sequential subtrack, bothAbsSynthe andBasil
produced a small number of solutions that could not bemodel
checked. Implementation sizes for Demiurge (parallel) are
included in Figs. 5 and 6, showing that in some cases the

Table 6 Results of the parallel synthesis track

Tool Solved Relative Quality MCTO

AbsSynthe 143 352 266 6

Demiurge (parallel) 119 393 237 0

Basil 117 235 196 5

The best result in each column is in bold

implementations are even smaller than those obtained from
Demiurge (learn), in particular for the AMBA benchmarks.

Analysis Like in the sequential synthesis subtrack, Demiurge

profits from providing small solutions, even though it solves
less problems than its competitors. Furthermore, we note that
Demiurge in this case profits from parallelism to some extent.
While it solved two problems less than the sequential Demi-

urge (learn), the solutions provided byDemiurge (parallel)were
in somecases even smaller than thoseprovidedby the sequen-
tial version.

8.3 Observations on the state of the art

BDD-based synthesis The standard BDD-based fix-point
algorithm for solving safety games is currently the most
efficient way for realizability checking based on monitor
circuits. Implementations of the algorithm build on exist-
ing BDD packages, including operations for composition,
abstraction, and dynamic reordering of BDDs. Based on
these complex BDD operations, a competitive implemen-
tation can be fairly simple, as can be seen for example in
Simple BDD Solver, which only consists of about 300 lines
of code. A few optimizations seem to be crucial, like auto-
matic reordering, partitioned transition relations, and direct
substitution. For other optimizations, like eager deallocation
of BDDs or simultaneous conjunction and abstraction, we
have mixed results: the tool authors that implemented them
report increased efficiency, butwe also have competitive tools
that do not implement them.

A drawback of BDD-based synthesis becomes apparent
when comparing the size of solutions to those of Demiurge

(learn): in many cases, the produced implementations are
much larger than necessary.

As can be expected, a deeper analysis of the runtime
behavior of BDD-based tools shows that most of the time
is spent manipulating BDDs, in particular in the automatic
reordering operations. Therefore, it can be expected that
the performance of BDD-based implementations heavily
depends on the performance of the used BDD package. Since
all of the tools in SYNTCOMP2014 use the sameBDDpack-
age, the results of the competition do not shed light on this
issue, however.

123

The first reactive synthesis competition (SYNTCOMP 2014) 387

Fig. 5 Comparison of
implementation sizes for a
subset of the AMBA and
GenBuf benchmarks 1 10 100 1000 10000 100000 1000000 10000000

amba2c7y.aag

amba3c5y.aag

amba4c7y.aag

amba5c5y.aag

amba6c5y.aag

amba7c5y.aag

amba8c7y.aag

amba9c5y.aag

amba10c5y.aag

genbuf2c3y.aag

genbuf4c3y.aag

genbuf6c3y.aag

genbuf8c3y.aag

genbuf9c3y.aag

genbuf12c3y.aag

genbuf16c3y.aag

SIZE (# AND GATES)

BE
N

CH
M

AR
K

AbsSynthe Basil Demiurge (learn) Demiurge (parallel)

Template-based synthesis The template-based algorithm
implemented in Demiurge (templ) only solves a small subset
of the benchmark set—a closer analysis shows that it only
performs well if a simple CNF representation of the winning
region exists, which applies only to few SYNTCOMPbench-
marks. Hence, its performance on average is rather poor.
However, this approach solves large instances of the mult,
cnt and stay benchmarks much faster than the competition,
or solves them uniquely.

Learning-based synthesis The learning-based algorithm
implemented in Demiurge (learn) solves far more benchmarks
than the template-based algorithm: 62 % of the benchmarks
instead of 21 % in the sequential realizability track. Still, the
approach cannot really compete with the BDD-based tools,
which solve more than 90 %. In the parallel realizability
track, the situation is similar.

In the synthesis tracks, which are restricted to realizable
problems and have rankings that take into account the size of
solutions, Demiurge (learn) performed much better. Here, it
solves 77 % of the benchmarks, compared to 78 % for Basil
and 95 % for AbsSynthe (before model checking). Addi-
tionally, the learning-based algorithm produces circuits that
are sometimes several orders ofmagnitude smaller than those
produced by theBDD-based tools. This is also highlighted by
the fact that all solutions of Demiurge (learn) are successfully
model checked, while both AbsSynthe and Basil produce a
number of solutions that can not be verified within the time-
out.

Parallel subtracks The submitted tools in general do not
use parallelization very efficiently. The parallel version of
Realizer performs worse than the sequential version due to
a bug. For the parallel version of Demiurge, the result is
double-edged: on the one hand, the parallel version solves
two problems less than the sequential version, on the other
hand the solutions provided are often even smaller than the
ones produced by the sequential version.

For BDD-based tools, the lack of efficient parallel imple-
mentations correlates with the lack of efficient parallelized
operations in BDD packages. While there have been recent
efforts to parallelize BDD operations [64,65], this pack-
age does not support the important automatic reordering of
BDDs, which makes it hard to integrate into a technique that
heavily relies on reordering.

9 Conclusions and future plans

SYNTCOMP 2014 was a big success, making the first step
towards establishing the competition as a regular event and
its benchmark format as a standard language in the synthesis
community. A number of synthesis tools have been devel-
oped specifically for the competition (AbsSynthe, Basil,
Realizer), while others are new versions or modifications of
existing tools (Demiurge, Simple BDD Solver). Recently, the
competition format has also been adopted by tool develop-
ers that have thus far not participated in SYNTCOMP [22].
Furthermore, the competition has sparked a lively discus-

123

388 S. Jacobs et al.

1 10 100 1000 10000 100000

add2y.aag

add4y.aag

add6y.aag

add8y.aag

add10y.aag

add12y.aag

add14y.aag

add16y.aag

add18y.aag

add20y.aag

bs8y.aag

bs16y.aag

bs32y.aag

bs64y.aag

bs128y.aag

cnt2y.aag

cnt4y.aag

cnt8y.aag

cnt15y.aag

mult2.aag

mult8.aag

mv2y.aag

mv4y.aag

mv8y.aag

mv12y.aag

mv16y.aag

mvs2y.aag

mvs4y.aag

mvs8y.aag

mvs16y.aag

mvs24y.aag

stay2y.aag

stay4y.aag

stay8y.aag

stay12y.aag

stay16y.aag

SIZE (# AND GATES)

BE
N

CH
M

AR
K

AbsSynthe Basil Demiurge (learn) Demiurge (parallel) Demiurge (templ)

Fig. 6 Comparison of implementation sizes for a subset of the toy example benchmarks

sion on the implementation of efficient synthesis techniques,
in particular making tool developers aware of the range of
optimizations used in BDD-based synthesis algorithms, and
alternative SAT- and QBF-based approaches that are com-
petitive at least on some classes of benchmarks.

At the time of this writing, SYNTCOMP 2015 has already
been held [41]. For the second iteration of the competition,
we have expanded the benchmark set to more challenging

benchmarks, and to a wider range of different benchmark
classes. Additionally, following ideas of Sutcliffe and Sut-
tner [61] we have developed a classification scheme for
benchmarks in terms of difficulty, based on the results
of SYNTCOMP 2014. Using this classification, in SYNT-
COMP 2015 we selected benchmarks to balance the weight
of benchmark instances from different classes and different
difficulties.

123

The first reactive synthesis competition (SYNTCOMP 2014) 389

Finally, recall that SYNTCOMP 2014 (and 2015) was
restricted to the synthesis of finite-state systems from pure
safety specifications in AIGER format. On the one hand,
this resulted in a low entry-barrier for the competition and
revived interest in the synthesis from pure safety speci-
fications, as witnessed by several new tools and research
papers related to the competition [9,13,18]. On the other
hand, many of the existing synthesis tools did not par-
ticipate because their strengths are in different kinds of
synthesis tasks, for example in the synthesis from specifi-
cations in richer specification languages such as GR(1) or
LTL. Thus, many interesting synthesis approaches are cur-
rently not covered by the competition. For SYNTCOMP
2016, we plan to extend the competition to a specifica-
tion format that includes both GR(1) and LTL specifications
[42].

Acknowledgements We thank the anonymous reviewers for their
detailed and insightful comments on drafts of this article. We thank
Armin Biere for his advice on running a competition, and Ayrat
Khalimov for supplying the reference implementationAisy for the com-
petition. The organization of SYNTCOMP 2014 was supported by the
Austrian Science Fund (FWF) through projects RiSE (S11406-N23)
and QUAINT (I774-N23), by the German Research Foundation (DFG)
as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS)
and through project “Automatic Synthesis of Distributed and Parame-
terized Systems” (JA 2357/2-1), as well as by the Institutional Strategy
of the University of Bremen, funded by the German Excellence Initia-
tive. The development of AbsSynthe was supported by an F.R.S.-FNRS
fellowship, and the ERC inVEST (279499) project. The development
of Basil was supported by the Institutional Strategy of the University
of Bremen, funded by the German Excellence Initiative. The develop-
ment of Demiurge was supported by the FWF through projects RiSE
(S11406-N23, S11408-N23) and QUAINT (I774-N23). The develop-
ment of Realizer was supported by the DFG as part of SFB/TR 14
AVACS. The development of Simple BDD Solver was supported by
a gift from the Intel Corporation, and NICTA is funded by the Aus-
tralian Government through the Department of Communications and
the Australian Research Council through the ICT Centre of Excellence
Program.

References

1. Alur, R., Bodík, R., Dallal, E., Fisman, D., Garg, P., Juniwal, G.,
Kress-Gazit, H., Madhusudan, P., Martin, M.M.K., Raghothaman,
M., Saha, S., Seshia, S.A., Singh, R., Solar-Lezama, A., Torlak,
E., Udupa, A.: Syntax-guided synthesis. In: Dependable Software
SystemsEngineering,NATOScience forPeace andSecuritySeries,
D: Information and Communication Security, vol. 40, pp. 1–25.
IOS Press (2015)

2. Alur, R., Madhusudan, P., Nam,W.: Symbolic computational tech-
niques for solving games. STTT 7(2), 118–128 (2005)

3. Aziz, A., Tasiran, S., Brayton, R.K.: BDD variable ordering for
interacting finite state machines. In: DAC, pp. 283–288 (1994)

4. Balint, A., Diepold, D., Gall, D., Gerber, S., Kapler, G., Retz, R.:
EDACC - an advanced platform for the experiment design, admin-
istration and analysis of empirical algorithms. In: LION 5. Selected
Papers, LNCS, vol. 6683, pp. 586–599. Springer, (2011)

5. Barrett, C.W., de Moura, L.M., Stump, A.: Design and results of
the first satisfiability modulo theories competition (SMT-COMP
2005). J. Autom. Reason. 35(4), 373–390 (2005)

6. Beyer, D.: Competition on software verification - (SV-COMP). In:
TACAS, LNCS, vol. 7214, pp. 504–524. Springer (2012)

7. Beyer, D., Löwe, S.,Wendler, P.: Benchmarking and resource mea-
surement. In: SPIN 2015, LNCS, vol. 9232, pp. 160–178. Springer
(2015)

8. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Könighofer, R.,
Roveri,M., Schuppan,V., Seeber,R.:RATSY-Anew requirements
analysis tool with synthesis. In: CAV, LNCS, vol. 6174, pp. 425–
429. Springer (2010)

9. Bloem, R., Egly, U., Klampfl, P., Könighofer, R., Lonsing, F.: SAT-
based methods for circuit synthesis. In: FMCAD’14, pp. 31–34.
IEEE (2014)

10. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A.,
Weiglhofer,M.:Automatic hardware synthesis from specifications:
a case study. In: DATE, pp. 1188–1193. ACM (2007)

11. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A.,
Weiglhofer, M.: Specify, compile, run: hardware from PSL. Electr.
Notes Theor. Comput. Sci. 190(4), 3–16 (2007)

12. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Syn-
thesis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938
(2012)

13. Bloem,R.,Könighofer,R., Seidl,M.: SAT-based synthesismethods
for safety specs. In: VMCAI, LNCS, vol. 8318, pp. 1–20. Springer
(2014)

14. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a
tool for LTL synthesis. In: CAV, LNCS, vol. 7358, pp. 652–657.
Springer (2012)

15. Bradley, A.R.: SAT-based model checking without unrolling. In:
VMCAI, LNCS, vol. 6538, pp. 70–87. Springer (2011)

16. Brayton, R.K., Hachtel, G.D., Sangiovanni-Vincentelli, A.L.,
Somenzi, F., Aziz, A., Cheng, S., Edwards, S.A., Khatri, S.P.,
Kukimoto, Y., Pardo, A., Qadeer, S., Ranjan, R.K., Sarwary, S.,
Shiple, T.R., Swamy, G., Villa, T.: VIS: a system for verification
and synthesis. In: CAV, LNCS, vol. 1102, pp. 428–432. Springer
(1996)

17. Brayton, R.K., Mishchenko, A.: ABC: an academic industrial-
strength verification tool. In: CAV, LNCS, vol. 6174, pp. 24–40.
Springer (2010)

18. Brenguier, R., Pérez, G.A., Raskin, J.-F., Sankur, O.: AbsSynthe:
abstract synthesis from succinct safety specifications. In: SYNT,
EPTCS, vol. 157, pp. 100–116. Open Publishing Association
(2014)

19. Bryant, R.E.: Graph-based algorithms for boolean function manip-
ulation. IEEE Trans. Comput. 35(8), 677–691 (1986)

20. Büchi, J., Landweber, L.: Solving sequential conditions by finite-
state strategies. Trans. Am. Math. Soc. 138, 295–311 (1969)

21. Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking
with partitioned transistion relations. In: VLSI, pp. 49–58 (1991)

22. Chiang, T., Jiang. J.R.: Property-directed synthesis of reactive sys-
tems from safety specifications. In: ICCAD, pp. 794–801. ACM
(2015)

23. Church, A.: Logic, arithmetic and automata. In: Proceedings of the
International Congress of Mathematicians, pp. 23–35 (1962)

24. Coudert, O., Madre, J.C.: A unified framework for the for-
mal verification of sequential circuits. In: ICCAD, pp. 126–129
(1990)

25. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxi-
mation of fixpoints. In: POPL, pp. 238–252. ACM (1977)

26. de Alfaro, L., Roy, P.: Solving games via three-valued abstraction
refinement. In: CONCUR, LNCS, vol. 4703, pp. 74–89. Springer
(2007)

123

390 S. Jacobs et al.

27. Ehlers, R.: Experimental aspects of synthesis. In: iWIGP, EPTCS,
vol. 50, pp. 1–16 (2011)

28. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: TACAS,
LNCS, vol. 6605, pp. 272–275. Springer (2011)

29. Ehlers, R.: Symbolic bounded synthesis. Formal Methods Syst.
Des. 40(2), 232–262 (2012)

30. Ehlers, R., Könighofer, R., Hofferek, G.: Symbolically synthesiz-
ing small circuits. In: FMCAD’12, pp. 91–100. IEEE (2012)

31. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic
to synthesize synchronization skeletons. Sci. Comput. Program.
2(3), 241–266 (1982)

32. Filiot, E., Jin, N., Raskin, J.: Exploiting structure in LTL synthesis.
STTT 15(5–6), 541–561 (2013)

33. Filiot, E., Jin, N., Raskin, J.-F.: Antichains and compositional
algorithms for LTL synthesis. Formal Methods Syst. Des. 39(3),
261–296 (2011)

34. Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: VMCAI, LNCS, vol.
7148, pp. 219–234. Springer (2012)

35. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6),
519–539 (2013)

36. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS.
In: CAV, LNCS, vol. 1254, pp. 72–83. Springer (1997)

37. Henzinger, T.A., Jhala, R., Majumdar, R.: Counterexample-guided
control. In: ICALP, LNCS, vol. 2719, pp. 886–902, Springer (2003)

38. Hong, Y., Beerel, P.A., Burch, J.R., McMillan, K.L.: Sibling-
substitution-based BDD minimization using don’t cares. IEEE
Trans. CAD of Integr. Circuits Syst. 19(1), 44–55 (2000)

39. Jacobs, S.: Extended AIGER format for synthesis. CoRR (2014).
arXiv:1405.5793. Accessed Feb 2016

40. Jacobs, S., Bloem, R., Brenguier, R., Ehlers, R., Hell, T.,
Könighofer, R., Pérez, G.A., Raskin, J., Ryzhyk, L., Sankur, O.,
Seidl, M., Tentrup, L., Walker, A.: The first reactive synthesis com-
petition (SYNTCOMP 2014). CoRR (2015). arXiv:1506.08726.
Accessed Feb 2016

41. Jacobs, S., Bloem, R., Brenguier, R., Könighofer, R., Pérez, G.A.,
Raskin, J.-F., Ryzhyk, L., Sankur, O., Seidl, M., Tentrup, L.,
Walker, A.: The second reactive synthesis competition (SYNT-
COMP 2015). In: SYNT, EPTCS, vol. 202, pp. 27–57. Open
Publishing Association (2016)

42. Jacobs, S., Klein, F.: A high-level LTL synthesis format: TLSF
v1.0. CoRR (2016). arXiv:1601.05228. Accessed Feb 2016

43. Järvisalo,M.,Berre,D.L.,Roussel,O., Simon,L.: The international
SAT solver competitions. AI Mag 33(1), 89–94 (2012)

44. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In:
FMCAD, pp. 117–124. IEEE Computer Society (2006)

45. Jobstmann, B., Galler, S.J., Weiglhofer, M., Bloem, R.: Anzu: A
tool for property synthesis. In:CAV,LNCS, vol. 4590, pp. 258–262.
Springer (2006)

46. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In:
FOCS, pp. 531–542. IEEE Computer Society (2005)

47. Kurshan, R.P.: Automata-theoretic verification of coordinating
processes. In: Analysis and Optimization of Systems: Discrete
Event Systems, pp. 16–28. Springer (1994)

48. Lecoutre, C., Roussel, O., van Dongen, M.R.C.: Promoting robust
black-box solvers through competitions. Constraints 15(3), 317–
326 (2010)

49. Mishchenko, A., Chatterjee, S., Brayton, R.K.: Dag-aware AIG
rewriting a fresh look at combinational logic synthesis. In: DAC,
pp. 532–535. ACM (2006)

50. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.: FRAIGs: A
unifying representation for logic synthesis and verification. Tech-
nical report, EECS Department, U. C. Berkeley (2005)

51. Morgenstern, A., Gesell, M., Schneider, K.: Solving games using
incremental induction. In: IFM’13, LNCS 7940, pp. 177–191.
Springer (2013)

52. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.:
Resolution-based certificate extraction forQBF. In: SAT’12, LNCS
7317, pp. 430–435. Springer (2012)

53. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In:
POPL, pp. 179–190. ACM Press (1989)

54. Rabin, M.O.: Decidability of second-order theories and automata
on infinite trees. Trans. Am. Math. Soc. 141, 1–35 (1969)

55. Ranjan, R.K., Aziz, A., Brayton, R.K., Plessier, B., Pixley, C.:
Efficient bdd algorithms for fsm synthesis and verification. In:
International Workshop on Logic Synthesis (1995)

56. Roussel, O.: Controlling a solver execution with the runsolver tool.
JSAT 7(4), 139–144 (2011)

57. Rudell, R.: Dynamic variable ordering for ordered binary decision
diagrams. In: ICCAD, pp. 42–47. IEEE Computer Society (1993)

58. Seidl, M., Könighofer, R.: Partial witnesses from preprocessed
quantified boolean formulas. In: DATE’14, pp. 1–6. IEEE (2014)

59. Sohail, S., Somenzi, F.: Safety first: a two-stage algorithm for the
synthesis of reactive systems. STTT 15(5–6), 433–454 (2013)

60. Somenzi, F.: Binary decision diagrams. In: Calculational System
Design, vol. 173, pp. 303. IOS Press (1999)

61. Sutcliffe, G., Suttner, C.B.: Evaluating general purpose automated
theorem proving systems. Artif. Intell. 131(1–2), 39–54 (2001)

62. Sutcliffe, G., Suttner, C.B.: The state of CASC.AICommun. 19(1),
35–48 (2006)

63. Thomas, W.: On the synthesis of strategies in infinite games. In:
STACS, pp. 1–13 (1995)

64. van Dijk, T., Laarman, A., van de Pol, J.: Multi-core BDD oper-
ations for symbolic reachability. Electron. Notes Theor. Comput.
Sci. 296, 127–143 (2013)

65. van Dijk, T., van de Pol, J.: Sylvan: Multi-core decision diagrams.
In: TACAS 2015, LNCS, vol. 9035, pp. 677–691 Springer (2015)

123

http://arxiv.org/abs/1405.5793
http://arxiv.org/abs/1506.08726
http://arxiv.org/abs/1601.05228

	The first reactive synthesis competition (SYNTCOMP 2014)
	Abstract
	1 Introduction
	2 Problem description and synthesis approaches
	2.1 Synthesis as a safety game
	2.2 Preliminaries: circuits and games
	2.3 BDD-based game solving
	2.4 Incremental SAT- and QBF-based game solving
	2.5 Template-based synthesis

	3 Benchmark format
	3.1 Original AIGER Format
	3.2 Modified AIGER format for synthesis specifications
	3.3 Output of synthesis tools in AIGER format
	3.3.1 Syntactic correctness
	3.3.2 Semantic correctness

	4 Benchmarks
	4.1 Collection of benchmarks
	4.2 Toy examples
	4.3 Generalized buffer
	4.4 AMBA bus controller
	4.5 LTL2AIG benchmarks
	4.6 Factory assembly line
	4.7 Moving obstacle evasion

	5 Rules
	5.1 Entrants
	5.2 Ranking

	6 Participants
	6.1 AbsSynthe: an abstract synthesis tool
	6.2 Basil: BDD-based safety synthesis tool
	6.3 Demiurge
	6.4 REALIZER--CUDD based safety game solver
	6.5 Simple BDD solver

	7 Execution
	8 Experimental results and analysis
	8.1 Realizability track
	8.2 Synthesis track
	8.3 Observations on the state of the art

	9 Conclusions and future plans
	Acknowledgements
	References

