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Abstract A system development case study problem based
on a set of aircraft landing gear is examined in Hybrid
Event-B (an extension of Event-B that includes provision for
continuously varying behaviour as well as the usual discrete
changes of state). Although tool support for Hybrid Event-B
is currently lacking, the complexity of the case study pro-
vides a valuable challenge for the expressivity and modelling
capabilities of the Hybrid Event-B formalism. The size of the
case study, and in particular, the number of overtly indepen-
dent subcomponents that the problem domain contains, both
significantly exercise the multi-machine and coordination
capabilities of the modelling formalism. These aspects of the
case study, vital in the development of realistic cyberphysical
systems in general, have contributed significant improve-
ments in the theoretical formulation of multi-machine Hybrid
Event-B itself.

Keywords Hybrid Event-B · Landing gear case study ·
Refinement · Multicomponent systems

1 Introduction

This paper reports on a treatment of a landing gear system
case study (see [17]) using Hybrid Event-B. Hybrid Event-B
[9,10] is an extension of the well-known Event-B frame-
work, in which continuously varying state evolution, along
with the usual discrete changes of state, is admitted. Since air-
craft systems are replete with interactions between physical
law and the engineering artefacts that are intended to ensure
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appropriate aircraft behaviour, they are prime examples of
cyberphysical systems [15,19,26,31], especially when one
takes into account the increasing use of remote monitoring of
such systems via global communication networks. As such,
there is a prima facie case for attempting the landing gear
problem using Hybrid Event-B. In the case of landing gear
systems specifically, a good idea of the real complexity of
such systems can be gained from Chapter 13 of [33].

Given that landing gear is predominantly controlled by
hydraulic systems (see Chapter 12 of [33]), it might be imag-
ined that the requirements for the present case study [17],
would feature relevant physical properties quite extensively.
Of course Hybrid Event-B would be ideally suited to model
and quantify the interactions between these physical proper-
ties and the control system—for example, on the basis of
the theoretical models and practical heuristics detailed in
references such as [1,22,25]. However, it is clear that the
requirements in [17] have been heavily slanted to remove
such aspects almost completely, presumably because the
overwhelming majority of tools in the verification field would
not be capable of addressing the requisite continuous aspects.
Instead, the relevant properties are reduced to constants (per-
haps accompanied by margins of variability) that delimit the
duration of various physical processes. This perspective is
appropriate to a treatment centred on system control via iso-
lated discrete events, such events being used to mark the
start and end of a physical process while quietly ignoring
what might happen in the interior. While this approach cer-
tainly reduces the modelling workload, the penalty paid for
it is the loss of the ability to justify the values of these con-
stants during the verification activity, whether this be on the
basis of deeper theory or of values obtained from lower level
phenomenological models.

Despite this reservation, a small number of simple con-
tinuous behaviours are left within the requirements in [17].
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These are confined to simple linear behaviours of some parts
of the physical apparatus. Although they are very simple,
these linear behaviours are nevertheless enough to demon-
strate many of the essential capabilities of the Hybrid Event-B
formalism in dealing with continuous phenomena and their
interaction with discrete events.

Besides the continuous behaviours that need to be
addressed by any comprehensive formalism for cyberphysi-
cal systems, there are the issues of structure and architecture.
Genuine cyberphysical systems are invariably composed of
a(n often large) number of components, each with some
degree of autonomy—while they nevertheless remain cou-
pled to, and interact with, each other. The multi-machine
version of Hybrid Event-B is intended to confront the chal-
lenges that this raises. Fortunately, the landing gear case study
[17] is rich enough in structure to adequately exercise these
aspects of the formalism.

The rest of this paper is as follows. Section 2 overviews
the landing gear system, emphasising those elements that
are of most interest to our development. Section 3 then gives
a summary of single machine Hybrid Event-B. Section 4
extends this to cover multiple machines. The issues explored
here lead to the hypergraph structured system architectures
discussed in Sect. 5.

Section 6 then gives an architectural overview of the
subsequent development, relating the general discussion of
Sect. 5 to the specific architecture of the case study. Sec-
tion 7 introduces the case study itself, indicating the most
significant elements (from our point of view). Section 8 deals
extensively with the nominal development via a series of
refinements from a simple initial model.

We then move to the faulty regime. Regarding the intro-
duction of faults, the present case study proves to be a
fertile vehicle for exploring how the retrenchment frame-
work [11,12,14] can handle the incompatibilities involved in
extending from a nominal to a faulty regime, and the essential
ideas are given in Sect. 9. Section 10 then applies these ideas
to the faulty regime of the case study, again proceeding via a
series of steps that breaks down the complexity of the task.

Section 11 shows how the retrenchment Tower Pattern
can lead to further checking of the development. Section 12
discusses the development of a time-triggered implementa-
tion level model, as would arise in a genuine implementation.
Section 13 looks back at the main lessons that emerged from
the case study and summarises the most useful patterns that
were developed. Issues that merit further attention are also
discussed in some detail there. Section 14 concludes.

Comparison with the conference version. In the conference
version of the case study [6], hereafter referred to as Conf,
only the nominal regime of the case study was covered. Still,
this proved sufficient to bring out the main benefits of the
approach, and, through the complexity of the case study,

highlighted several issues that needed to be handled better
in the multi-machine context. Here, a more comprehensive
development is covered. Various detailed differences from
the earlier treatment are mentioned below, as they arise.

2 Landing gear overview

The definition of the landing gear case study together with
its requirements is presented in [17]. Here, we give the gist
of it, focusing on features of most interest to the Hybrid
Event-B treatment. Figure 1, reproduced from [17], shows
the architecture of the system.

The sole human input to the system is the pilot handle:
when pulled up it instructs the gear to retract, and when pulled
down it instructs the gear to extend. The signal from the han-
dle is fed both to the (replicated) computer system and to
the analogical switch, the latter being an analogue device
that gatekeeps powerup to the hydraulic system, to prevent
inappropriate gear movement even in the case of computer
malfunction. In a full treatment including faulty behaviour,
there are further inputs to the computer systems from the
sensors. These can behave in a relatively autonomous man-
ner, to reveal faults to the computer(s) to which the system is
required to be, to some extent, resilient. A further point con-
cerns the shock absorber sensors. These are modelled using
a guard rather than as inputs. The relevant issue is discussed
at the beginning of Sect. 7.

The analogical switch passes a powerup command from
the computers to the general electrovalve.1 This pressurises
the rest of the landing gear hydraulic system, ready for spe-
cific further commands to manipulate its various parts, these
being the doors of the cabinets that contain the gear when
retracted, and the gear extension and retraction mechanisms
themselves. Beyond this, both the analogical switch and the
output of the general electrovalve are monitored by (tripli-
cated) sensors that feed back to the computer systems, as is
discernible from Fig. 1.2

What is particularly interesting about the system so far
is that the arrangement of these various interconnections
between system components is evidently quite far from the
kind of tree shape that facilitates clean system decomposi-
tion. Thus, the handle is connected to the computers, and the
handle is connected to the analogical switch. But the analog-
ical switch is also connected to the computers, so ‘dividing’
the computers from the analogical switch in the hope of ‘con-
quering’ structural complexity will not work, and obstructs
the clean separation of proofs into independent subproofs

1 As a rule, commands from the two computers are ORed by the com-
ponents that obey them.
2 A large number of other sensors also feed back to the computers, but
this not relevant to the point we are making just now.

123



The landing gear system in multi-machine Hybrid Event-B 207

Front door 
cylinder 

Right door 
cylinder 

Left door 
cylinder 

Aircraft hydraulic 
circuit 

General electro-valve 

Electro-valve (close doors) 

Electro-valve  
          (open doors) 

Electro-valve (retract gears) 

Electro-valve 
(extend gears) 

Front gear 
cylinder 

Right gear 
cylinder 

Left gear 
cylinder 

O
rd

er
s 

to
 e

le
ct

ro
-v

al
ve

s 

From discrete sensors (gear extended / 
not extended, gear retracted / not 
retracted, door closed / not closed, door 
open / not open, …) 

Discrete sensor (pressure OK / not OK) 

(retraction 
circuit) 

(retraction 
circuit) 

(extension 
circuit) 

(extension 
circuit) 

Analogical switch 

Towards the 
cockpit 

Fig. 1 Architectural overview of the landing gear system, reproduced from [17]

concerning analogical switch and computers separately. This
poses a significant challenge for our modelling methodology,
and gave rise to the need for new interconnection mechanisms
(at least it did so in Conf), as discussed in Sects. 4 and 6.

Beneath the level of the general electrovalve, it is a lot
easier to see the system as comprised of the computers on
the one hand, and the remaining hydraulic components on
the other, connected together in ways that are rather more
tractable by readily understood interconnection mechanisms.

Since there is presently no specific tool support for Hybrid
Event-B, our case study is primarily an exploration of mod-
elling capabilities. As explained below, a major element of
this is the challenge of modelling physically separate compo-
nents in separate machines, and of interconnecting all these
machines in ways appropriate to the domain, all supported
by relevant invariants. Depending on the complexity of the
interconnection network, this can require novel machine
interconnection mechanisms, introduced for pure Event-B
in [5]. The suitability of proposals for such mechanisms can

only be tested convincingly in the context of independently
conceived substantial case studies like this one, so it is grati-
fying that the mechanisms exercised here fare well in the face
of the complexities of the requirements of the case study.

3 Hybrid Event-B, single machines

In this section we look at Hybrid Event-B for a single
machine. In Fig. 2, we see a bare bones Hybrid Event-B
machine, HyEvBMch. It starts with declarations of time and
of a clock. In Hybrid Event-B, time is a first class citizen in
that all variables are functions of time, whether explicitly or
implicitly. However, time is special, being read-only. Clocks
allow more flexibility, since they are assumed to increase
like time, but may be set during mode events (see below).
Variables are of two kinds. There are mode variables (like u)
which take their values in discrete sets and change their values
via discontinuous assignment in mode events. There are also
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Fig. 2 A schematic Hybrid Event-B machine

pliant variables (such as x,y), declared in the PLIANT clause,
which typically take their values in topologically dense sets
(normally R) and which are allowed to change continuously,
such change being specified via pliant events (see below).

Next are the invariants. These resemble invariants in dis-
crete Event-B, in that the types of the variables are asserted
to be the sets from which the variables’ values at any given
moment of time are drawn. More complex invariants are sim-
ilarly predicates that are required to hold at all moments of
time during a run.

Then, we have the events. The INITIALISATION has a
guard that synchronises time with the start of any run, while
all other variables are assigned their initial values as usual.

Mode events are direct analogues of events in discrete
Event-B. They can assign all machine variables (except time
itself). In the schematic MoEv of Fig. 2, we see three para-
meters i?,l,o!, (an input, a local parameter, and an output,
respectively), and a guard grd which can depend on all the
machine variables. We also see the generic after-value assign-
ment specified by the before-after predicate BApred, which
can specify how the after-values of all variables (except time,
inputs and locals) are to be determined.

Pliant events are new. They specify the continuous evo-
lution of the pliant variables over an interval of time. The
schematic pliant event PliEv of Fig. 2 shows the structure.
There are two guards: there is iv, for specifying enabling
conditions on the pliant variables, clocks, and time; and
there is grd, for specifying enabling conditions on the mode
variables. The separation between the two is motivated
by considerations connected with refinement. (For a more
detailed discussion of issues such as this, see [9].)

The body of a pliant event contains three parameters
i?,l,o!, (again an input, a local parameter, and an output)
which are functions of time, defined over the duration of the
pliant event. The behaviour of the event is defined by the
COMPLY and SOLVE clauses. The SOLVE clause speci-
fies behaviour fairly directly. For example, the behaviour of
pliant variable y and output o! is given by a direct assign-
ment to the (time dependent) value of the expression E(…).

Alternatively, the behaviour of pliant variable x is given by
the solution of the first-order ordinary differential equation
(ODE) D x = φ(. . .), where D indicates differentiation with
respect to time (In fact, aside from some small technical
details, the semantics of the y,o! = E case is given in terms of
the ODED y,D o! = D E , so that x, y and o! satisfy the same
regularity properties). The COMPLY clause can be used to
express any additional constraints that are required to hold
during the pliant event via its before-during-and-after predi-
cate BDApred. Typically, constraints on the permitted range
of values for the pliant variables, and similar restrictions, can
be placed here.

The COMPLY clause has another purpose. When spec-
ifying at an abstract level, we do not necessarily want to
be concerned with all the details of the dynamics—it is
often sufficient to require some global constraints to hold
which express the needed safety properties of the system. The
COMPLY clauses of the machine’s pliant events can house
such constraints directly, leaving it to lower level refinements
to add the necessary details of the dynamics. (In fact, a major
use to which we put the COMPLY capability in our case study
is to demand that pliant variables, which would otherwise be
unconstrained during a (n essentially default) pliant event,
remain constant during it. This is mentioned in Sect. 10.)

Briefly, the semantics of a Hybrid Event-B machine is as
follows. It consists of a set of system traces, each of which
is a collection of functions of time, expressing the value of
each machine variable over the duration of a system run. (In
the case of HyEvBMch, in a given system trace, there would
be functions for clk,x,y,u, each defined over the duration of
the run.)

Time is modelled as an interval T of the reals. A run
starts at some initial moment of time, t0 say, and lasts either
for a finite time, or indefinitely. The duration of the run T

breaks up into a succession of left-closed right-open subinter-
vals: T = [t0 . . . t1), [t1 . . . t2), [t2 . . . t3), . . .. The idea is that
mode events (with their discontinuous updates) take place at
the isolated times corresponding to the common endpoints of
these subintervals ti , and in between, the mode variables are
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constant and the pliant events stipulate continuous change in
the pliant variables.

Although pliant variables change continuously (except
perhaps at the ti ), continuity alone still admits a wide range
of mathematically pathological behaviours. (For example,
speaking measure-theoretically, ‘most’ continuous functions
are non-differentiable almost everywhere.) To eliminate such
pathologies, we insist that on every subinterval [ti . . . ti+1)

the behaviour is governed by a well-posed initial value prob-
lem D xs = φ(xs . . .) (where xs is a relevant tuple of pliant
variables and D is the time derivative). ‘Well posed’ means
that φ(xs . . .) has Lipschitz constants which are uniformly
bounded over [ti . . . ti+1) bounding its variation with respect
to xs, and that φ(xs . . .) is measurable in t. Moreover, the
permitted discontinuities at the boundary points ti enable an
easy interpretation of mode events that happen at ti .

The differentiability condition guarantees that from a spe-
cific starting point, ti say, there is a maximal right-open
interval, specified by tMAX say, such that a solution to the
ODE system exists in [ti . . . tMAX). Within this interval, we
seek the earliest time ti+1 at which a mode event becomes
enabled, and this time becomes the preemption point beyond
which the solution to the ODE system is abandoned, and
the next solution is sought after the completion of the mode
event.

In this manner, assuming that the INITIALISATION event
has achieved a suitable initial assignment to variables, a sys-
tem run is well formed, and thus belongs to the semantics of
the machine, provided that at runtime:

• Every enabled mode event is feasible, i.e. has an
after-state, and on its completion enables a pliant
event (but does not enable any mode event).3 (1)

• Every enabled pliant event is feasible, i.e. has a time-
indexed family of after-states, and EITHER: (2)

(i) During the run of the pliant event, a mode event
becomes enabled. It preempts the pliant event,
defining its end. ORELSE

(ii) During the run of the pliant event, it becomes infea-
sible: finite termination. ORELSE

(iii) The pliant event continues indefinitely: nontermi-
nation.

Thus, in a well-formed run mode events alternate with pli-
ant events. The last event (if there is one) is a pliant event
(whose duration may be finite or infinite). In reality, there are
a number of semantic issues that we have glossed over in the
framework just sketched. We refer to [9] for a more detailed
presentation.

3 If a mode event has an input, the semantics assumes that its value only
arrives at a time strictly later than the previous mode event, ensuring
part of (1) automatically.

We point out that the presented framework is quite close to
the modern formulation of hybrid systems. See, e.g. [27,32]
for representative modern formulations, or [19] for a per-
spective stretching further back.

4 Top-down modelling of complex systems, and
multiple cooperating Hybrid Event-B machines

The principal objective in modelling complex systems in the
B-Method is to start with small simple descriptions and to
refine to richer, more detailed ones. This means that, at the
highest levels of abstraction, the modelling must abstract
away from concurrency. By contrast, at lower levels of
abstraction, the events describing detailed individual behav-
iours of components become visible. In a purely discrete
event framework, like conventional Event-B, there can be
some leeway in deciding whether to hold all these low-level
events in a single machine or in multiple machines—because
all events execute instantaneously, isolated from one another
in time (in the usual interpretation), and in between, nothing
changes.

4.1 Multi-machine systems via INTERFACEs

In Hybrid Event-B, the issue just mentioned is more press-
ing. Because of the continuous behaviour that is represented,
all components are always executing some event. Thus,
an integrated representation risks hitting the combinatorial
explosion of needing to represent each possible combination
of concurrent activities within a separate event, and there is a
much stronger incentive to put each (relatively) independent
component into its own machine, synchronised appropri-
ately. To put it another way, there is a very strong incentive
to not abstract away from concurrency, an impulse that
matches with the actual system architecture. In Hybrid Event-
B, there is thus an even greater motivation than usual for the
refinement methodology to make the step from monolithic
abstract and simple descriptions to more detailed and con-
crete concurrent descriptions, convincingly.

In our approach, this is accomplished using normal Hybrid
Event-B refinement up to the point where a machine is large
enough and detailed enough to merit being split up. After that,
the key concept in the decomposition strategy is the INTER-
FACE construct. This is adapted from the similarly named
idea in [21], to include not only declarations of variables
(as in [21]), but of the invariants that involve them, and also
their initialisations. (Thus, an interface becomes a kind of
shell of a machine, except one without any specific events to
change the variables’ values, and thus permitting any change
of value imposed by the events of a machine accessing the
interface, provided it preserves the invariants.) A community
of machines may have access to the variables declared in an
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interface provided each such machine CONNECTS to the
interface. All events in such machines must preserve all of
the invariants in the interface, of course. An important point
is that all invariants involving the interface’s variables must
be recorded in the interface, which assists a (putative) tool
to mechanically monitor whether all the needed proof oblig-
ations in the verification of a machine have been adequately
discharged.

The way that this strategy is defined in [5] and in
[10] means that provided the relevant combinatorial rules
are followed regarding what is visible where, the ideas
just described can serve equally well as a discipline for
composing separate (and in principle, independently con-
ceived) components in a component-based system construc-
tion discipline. This gives an alternative to the refinement
and decomposition-based methodology just discussed. Of
course, with suitable attention to the formal details, both
approaches can coexist. A combination of refinement ideas
and composition ideas can be used in the same development,
since the addition of new components to a system can be
viewed as a refinement of the system at the component level,
analogously to the way that addition of new variables and
their behaviours to an individual component is a refinement
of the system at the level of variables. The paper [5] gives a
brief description aimed at the (familiar, discrete-only) Event-
B context, whereas [10] gives a more detailed discussion,
taking all the additional considerations of Hybrid Event-B
into account, and explaining how (de)composition and refine-
ment all can be viewed as different sides of the same coin.

4.2 Type II invariants in multi-machine systems

Although we said above that an interface contains all of
the invariants mentioning any of its variables, in practice
this can be too restrictive. If a system architecture con-
tains many components that are tightly coupled in complex
ways, aggregating all the needed invariants together with the
variables that they mention, when this involves many inter-
connected components, may result in a single interface that
is too large and unwieldy for convenient and independent
development. To cater for such an eventuality, the approach
described in [5,10] permits also type II invariants (tIIi’s),
which are defined to be of the form: U (u) ⇒ V (v), where
variables u and v belong to different interfaces. This pattern
for invariants is sufficient to express many kinds of depen-
dency between components, without forcing variables u and
v to belong to the same interface, aiding decomposition. In
a tIIi, the u and v variables are called the local and remote
variables, respectively. By convention, a tIIi resides in the
interface containing its local variables, and the remote vari-
ables must also reside in an interface. Syntactically, each of
these interfaces will contain a reference to the other.

By restricting to tIIi’s as the only means of writing invari-
ants that cross-cut across two interfaces (and, implicitly,
across the machines that access them), we can systematise,
and then conveniently mechanise, the verification of such
invariants. Thus, for a tIIi like U (u) ⇒ V (v), it is suffi-
cient for events that update the u variables to preserve ¬U
(if it is true in the before-state) and for events that update
the v variables to preserve V (if it is true in the before-state).
These observations are helpful in ‘dividing and conquering’
the verification task to promote separate working, while yet
being sufficient to express a large fraction of the properties
that may be required to hold between two different machines.

4.3 Synchronisation in multi-machine systems

As well as sharing variables via interfaces, multi-machine
Hybrid Event-B systems need a mechanism to achieve syn-
chronisation between machines—preferably, a mechanism
that is more convenient than creating such a thing ab initio
from the raw semantics. For this the shared event paradigm
[18,30] turns out to be the most convenient. In this scheme,
mode event groups, i.e. specified mode events in two (or
more) machines of the system, are deemed to be required
to execute simultaneously. In practice, it means that for each
such event, its guard has to be re-interpreted as the conjunc-
tion of the guards of all the events in the group. The restriction
that only mode events are eligible for such synchronisation
simplifies the theory of the synchronisaiton mechanism con-
siderably. Moreover, it proves to be no real restriction at all.
According to the semantics sketched in Sect. 3, to launch the
synchronised execution of a family of pliant events spread
across several machines, it would be sufficient to arrange (via
the mode event synchronisation mechanism) the synchro-
nised execution of a corresponding family of mode events
whose primary purpose was to enable all the pliant events.
But this is easy to program in general.

5 Hypergraph-based system architectures

The sections above described an armoury of techniques that
can be applied to the problem of system specification and
development. However, by itself, this gives no advice about
how these techniques ought to be used in any particular case.
Here, we give some guidance on that point.

Our principal recommendation is that wherever possible,
systems should have a hypergraph architecture. In the
light of the commentary above, this means that there should
be a hypergraph in which the machines of the systems consti-
tute the nodes, and the interfaces should form the hyperedges
connecting families of nodes (i.e. machines).4

4 An equivalent way of saying the same thing is the familiar recasting
of hypergraphs as bipartite conventional graphs, with machine nodes
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What this implies is that the variables that a machine
needs to manipulate at various times typically split into a
number of constituencies, each focused on a different con-
cern. In turn, each such concern may involve a number of
machines to achieve its goals. Provided the concerns do not
overlap, the variables for each concern will be distinct from
the variables for other concerns, and can thus be placed in an
interface focused on that concern, to be manipulated by the
machines that are involved with that concern as necessary. In
this manner, we arrive at the machine = node and interface
= hyperedge hypergraph structure.

This system architecture proposal is well validated in the
landing gear case study. In the Conf version, this pattern
was not followed (for reasons explained below). Instead,
interfaces were associated with machines, each containing
the variables typically written by that machine. Each Conf
machine also needed access to interfaces containing the
variables it read but did not update. Although this was a
reasonable proposal architecturally, expressing dependencies
between machines was made more cumbersome. A good deal
of use was made of the tIIi mechanism discussed earlier
to express needed dependencies, with the attendant cross-
referencing between interfaces.

In the present development, a different tack was taken
regarding a specific design decision (we give the specific
details in Sect. 8). This made the hypergraph structure much
more convenient. As a result of the different structure, all
uses of the tIIi mechanism were eliminated in the present
work. This was a byproduct of the hypergraph architecture
that was quite unexpected (until the detailed work revealed
it). This simplification of the architectural challenge via a
hypergraph structure leads to our promoting it as a generic
good thing. Of course, the tIIi mechanism remains avail-
able for situations in which even the hypergraph architecture
implies a need for sufficiently complex cross-cutting inter-
dependencies between machines and interfaces.

Of course, the issues we have discussed above need to be
managed at the syntactic level. In [10], we describe in detail
how this is done via the PROJECT file. At a given level of a
development, the project file takes care of four issues. First, it
lists the components (interfaces and machines) that constitute
the system at that level. Second, it defines the synchronisa-
tions that need to hold between individual machine events.
Third (though not relevant for the present development), it
is the place where instantiation issues can be dealt with (in
a component-based methodology using a component repos-
itory, or similar). Fourth, it can contain a reference to a file
of global invariants; these would be overreaching invariants,

Footnote 4 continued
and interface nodes, and edges that connect a single machine to a sin-
gle interface (Then, each interface node, with all its incident edges,
constitutes a hyperedge of the previous description).

derivable from the contents of all the interfaces of the project,
to be used as required in the development process.

6 Case study architectural overview

In this section, we describe how the preceding ideas play out
in the landing gear case study. Figure 3 shows the system
architecture. Rectangles represent components of the sys-
tem; rounded corners for machines and unrounded corners
for interfaces. Figure 3 splits into three phases. The first, at
the top, shows the very first model: Level_00_PilotAndLights
Nominal. This is then refined and decomposed at level 01 into
three machines: Level_01_PilotNominal, Level_01_Comp1
Nominal, Level_01_Comp2Nominal. The decomposition is
represented by the diagonal dashed lines in the figure.

Below the higher horizontal dashed line is the remainder
of the nominal development. Machine suffixes are ‘Nominal’,
interface suffixes are ‘_IF’. The nominal development itself
consists of levels 00, 01, 02, 03, 04, 05, 06, 07. The series of
numbers in each rectangle indicate the development levels at
which components are introduced or changed. Thus, at level
04, the development consists of Pilot, Central_IF, Comp1,

Comp2, AnalogicalSwitch, General_EV .
The solid lines represent the CONNECTS relationships

between machines and interfaces. Since each such line indeed
joins a machine to an interface, the bipartite graph represen-
tation of the hypergraph structure is clear from the structure
of the middle layer of Fig. 3, so that all levels of the nominal
development fit it. Thus, Central_IF contains the variables
that embody the interaction between the computers, and the
analogical switch and general electrovalve, while Hydraulic-
Cylinders_EV_IF contains the variables that embody the
interaction between the computers and the hydraulic cylin-
ders. The important point is that these sets of variables are
disjoint, leading to a clean structure.

Below the second dashed line is the faulty develop-
ment. Whereas the nominal development is accomplished
entirely using refinement and refinement-compatible tech-
niques, the faulty development entails departures from pre-
viously established behaviours. We deal with this using
retrenchment, in two development levels: 10 and 11. The
faulty level identifiers are separated from the nominal
ones by writing two slashes in the level number series of
each component. The shadows behind the interface compo-
nents Central_IF_Faulty and HydraulicCylinders_EV_IF_
Faulty denote the Nominal versions that the faulty versions
have been retrenched from, and which still play a role behind
the scenes in the faulty development. All this is explained
below. Clearly, the earlier hypergraph structure persists.

Regarding the nature of the refinements used in this case
study, it is worthwhile pointing out that, overwhelmingly, the
successive levels of the modelling refine their predecessor
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PilotAndLightsNominal
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PilotNominal
01 Central_IF

03/04/05

Comp1Nominal
01/03/04/05/06/07

Comp2Nominal
01/03/04/05/06/07

HydraulicCylinders_EV_IF
06

DoorsOpen_EV_Nominal
06

DoorsClose_EV_Nominal
06

GearExtend_EV_Nominal
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PilotFaulty
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Comp1Faulty
01/03/04/05/06/07//11

Comp2Faulty
01/03/04/05/06/07//11

HydraulicCylinders_EV_IF_Faulty
06//10

DoorsOpen_EV_Faulty
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DoorsClose_EV_Faulty
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GearExtend_EV_Faulty
06//10
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AnalogicalSwitchFaulty
02/03/04//10 General_EV_Faulty

04/05//10
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Central_IF_Faulty
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Fig. 3 Overview of the multi-machine Hybrid Event-B landing gear
system development architecture. Rectangles depict interfaces (suffix
‘_IF’ for nominal regime interfaces, ‘_IF_Faulty’ for faulty regime
interfaces). Rounded rectangles depict machines (suffix ‘Nominal’ for

nominal regime machines and ‘Faulty’ for faulty regime machines).
Numbers associated with components indicate the development levels
(from 00,01,02,03,04,05,06,07 nominal, 10,11 faulty) at which compo-
nents are introduced or undergo change

levels by the aggregation of fresh design detail. This makes
the details of the refinement (and in particular the details of
the verification of the refinement via the requisite proof oblig-
ations) relatively trivial. The refinement relation between
two successive levels is just a projection from the concrete
level to the abstract level that forgets the newly introduced
detail. Although on the face of it this fails to exercise the data
refinement capabilities of Hybrid Event-B to any significant
degree, by contrast, the fact that real time is treated a just a
parameter in Hybrid Event-B implies that any nontrivial data
refinement will work by simply applying a discrete event
style data refinement to the abstract and concrete variables
in a parameterised way.

The exception to these remarks for this case study arises in
the use of retrenchment, in which greater variance between
abstract variables and their concrete counterparts is required
than can be accommodated via refinement. However, it turns
out that capturing these relationships between abstract and
concrete can only be done using the additional machinery

found in retrenchment, whereas the refining parts of the rela-
tionships remain as simple as before. This rather reinforces
the preceding point.

7 Model development preliminaries

Having covered the architectural issues, we now look at the
development in more detail. We start by clarifying our inter-
pretation of some minor inconsistencies in the spec [17].
First, we assume that the pilot controls the gear via a han-
dle for which handle UP means gear up, and handle DOWN
means gear down. We also assume that in the initial state
the gear is down and locked, since the aircraft does not levi-
tate when stationary on the ground, presumably. Connected
with this requirements aspect is the absence of provision in
[17] of what is to happen if the pilot tries to pull the handle
up when the aircraft is not in flight. Presumably the aircraft
should not belly-flop to the ground, so we just incorporate
a suitable guard on the handle movement events, based on
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the value of the shock absorber sensors. This leaves open the
question of what would actually happen if the pilot pulled the
handle up when the plane is on the ground. Does the handle
resist the movement, or does gear movement remain pend-
ing until released by the state of the shock absorber sensors,
or . . .?

This issue, in turn, raises a further interesting question.
Although the fact just pointed out causes no special problem
for an event-by-event verification strategy like the B-Method,
the absence of any explicit requirement that allows the shock
absorber to change value would be equivalent to the aircraft
never leaving the ground, leading to the absence of any non-
trivial gear manipulation traces for a trace-based verification
strategy to work on. Thus, for a model checking approach of
any kind to work, suitable additional events would have to be
introduced into the model, for just the purpose of allowing
the aircraft to leave the ground.

Pursuing the technical strategy advocated earlier, among
other things implies that in the final development, each com-
ponent that is identifiable as a separate component in the
architectural model should correspond to a machine in its
own right. Thus, at least, we should have separate machines
for: the pilot subsystem (handle and lights), the two com-
puters, the analogical switch, the general electrovalve, and
the individual movement electrovalves (and their associated
hydraulic cylinders). In concert with this was the desire to
use variables that correspond directly to quantities discussed
in the requirements document. The aim was to strive for the
closest possible correspondence between requirements and
formal model, in the belief that this improves the engineering
process. It is possible that this perspective led to a granularity
in the modelling which was not optimally efficient. However,
the main priority in this study was to challenge the expres-
sivity of the framework, rather than to test the efficiency of
any putative tool implementation.

In addition to the above, the requirements concerned with
the faulty regime in [17] mention the variables normal_mode
and anomalyk , without going into any explanation about
their further purpose. This made it less clear how best to
model these requirements. In the end, it was decided to
create a fresh interface Level_11_Cockpit_IF_Faulty to con-
tain those variables (and other quantities were conveniently
included there too). This would in fact be needed if those vari-
ables were to be used by machines that modelled a cockpit
display, for example (in contrast to the pilot’s lights, which
fall within the scope of the given requirements).

As mentioned earlier, both the Conf development and the
present one above all constituted modelling challenges for
the Hybrid Event-B formalism. The lessons that had already
been learned from Conf were applied in the present develop-
ment (see Sect. 8), which in turn generated further questions
to be considered in future (see Sect. 13 for those). One notable
element of this process was the change to the hypergraph

architecture, which so dramatically eliminated the need for
any type II invariants between interfaces.

8 The nominal regime

We now comment on the various levels of the nominal devel-
opment, level by level. Along the way, we describe further
notational conventions used in the development, as we did
for the architectural overview already given. Adhering to
the vision of the B-Method, the development starts very
simply, and proceeds to add detail via layers of refinement
and composition, with most of the steps of the development
being quite small. Table 1 summarises the nominal devel-
opment levels. The full details of the models in each level
can be found at [3], with each level defined via the rele-
vant PROJECT construct. The site [3] contains not only the
present development (with all the levels aggregated into a
single file) but also the previous Conf development.

Level 00. Level 00 starts the development. Because it is so
small, we can quote a lot of the details, which will be helpful
for other descriptions below. The PROJECT file for level 00
needs only to indicate the PilotAndLightsNominal machine,
the sole construct at this level.

The PilotAndLightsNominal machine starts with its name,
and the variables introduced for the handle and the green and
orange lights. The invariants just state the values these are
drawn from (i.e. their types). The initialisation is obvious
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Table 1 Summary of the levels of the nominal development

Level Feature

00 Pilot’s view

01 Adds two computer machines and decomposes

02 Adds the analogical switch machine

03 Adds the triplicated analogical switch sensors

04 Adds the general electrovalve machine

05 Adds the triplicated general electrovalve sensors

06 Adds the movement electrovalves and hydraulic cylinders

07 Adds the timing automaton

(green is ON initially to indicate that the gear is down when
the aircraft is in its initial state on the ground), after which
there are the less trivial events.

PliTrue is the default pliant event—every Hybrid Event-B
machine needs at least one pliant event because the machine
must describe what is happening at all times, which can-
not be done via mode events alone. Pliant event PliTrue
just demands that the invariants are maintained, since the
principal concern of the PilotAndLightsNominal machine is
with the nontrivial mode events. These are PilotGearUP (and
the analogous PilotGearDOWN) and GearStartMoving (and
other mode events to switch the orange and green lights on
and off).

PilotGearUP has a WHERE guard: handle = DOWN ,
which says the handle can only be pulled up if it is down to
start with. The other part of the guard, in? = pilotGearUP_X ,
is the Hybrid Event-B metaphor for indicating that the event
is stimulated from the environment and not from some other
part of the system model. Thus in? denotes an input variable,
and pilotGearUP_X is its required value when the input is
supplied.5 The body of the event, handle := UP, does not
use the input, so the only role the input plays is to indicate

5 In discrete Event-B, events are assumed to execute lazily, i.e. not at
the very instant they become enabled (according to the normal interpre-
tation of how event occurrences map to real time). In Hybrid Event-B,
mode events must execute eagerly, i.e. as soon as they are enabled (in
real time), to model physical phenomena.
This is because physical law is similarly eager: if a classical physi-
cal system reaches a state in which some transition is enabled, it is
overwhelmingly the case that energetics and thermodynamics force the
transition to take place straight away. Hybrid Event-B, in being designed
to model physical systems, must therefore conform to this. As a conse-
quence, typical Event-B models, in which a new after-state immediately
enables the next transition, would cause an avalanche of mode event
occurrences if interpreted according to Hybrid Event-B semantics.
To avoid this, and yet to allow the modelling convenience of permitting
lazily executed mode events in Hybrid Event-B, the convention is that
if a mode event has an input, at runtime the input value arrives at some
time strictly later than the time of execution of the previous mode event,
thus introducing a delay—if there is no input, execution is eager. The
delay is nonzero, but undetermined unless more precisely constrained
by restrictions in the event’s guard. So having an input is the Hybrid
Event-B metaphor for ensuring lazy execution, even if the input value
is not used.

the asynchronous timing of the event. The suffix ‘_X’ on the
input value is a naming convention used in this development
to indicate the use of this metaphor.

The GearStartMoving event is very similar to the event
PilotGearUP we just discussed, except that there is no term
orange = OFF in the guard; we explain this shortly. This
completes level 00.

Level 01. Level 01 REFINESandDECOMPOSES the level
00 machine PilotAndLightsNominal. In detail, it first intro-
duces the first collection of variables needed for the two
computing machines, Comp1 and Comp2, and then sec-
ond, decomposes the result into the three separate level 01
machines: PilotNominal, Comp1Nominal, Comp2Nominal,
furthermore doing all this in one step to save verbosity.

The relationship between these machines deserves com-
ment. Each of the level 00 mode events has become, at level
01, an event that is synchronised between an event in Pilot
and another in Comp1 or Comp2. As another notational con-
vention, events which are synchronised are named with a
_S suffix for visibility, although the actual definitions of the
synchronisations are in the level 01 project file. The handle
movement events are initiated by the pilot, so are modelled
as previously, with, e.g. an in? = pilotGearUP_X guard to
indicate the source of the external initiative for the event. The
corresponding Comp1 or Comp2 events merely synchronise
passively and update a corresponding variable. On the other
hand, the lights switching on and off events are initiated by
the computers, in response to (as yet undefined) behaviour in
the rest of the system, so the in? = gearStartMoving_X guard
moves from the pilot machine to the computer machines for
these events, and this time, it is the pilot machine that syn-
chronises passively.6

At this point, we hit the most significant difference
between the Conf development and this one. Although it is
not visible in Fig. 1, the communication from pilot to com-
puters is a wired AND, and from computers to pilot is a wired
OR. In Conf, some effort was made to model this faithfully,
creating a machine to serve as the fictional single comput-
ing system presented to the pilot, interacting with the two
real computers. This modelling style entailed the fictional
computer synchronising with each of the two real comput-
ers, and proved to be extremely verbose—the authenticity
was far outweighed by the obfuscating verbosity. Suffice it
to say that the corresponding part of the present development
occupies about a third of the text of the Conf development. It
was this aspect, mainly, that made a hypergraph architecture
excessively cumbersome in Conf, without the realisation (at
the time), of how much modelling convenience was being
given up by doing so.

6 Ultimately, the spontaneous occurrences of the GearStartMoving (and
similar) events in the Comp machines will be refined to the more deter-
ministic behaviour of more complete computing machines.
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CLOSED_INIT CLOSED_FIN OPEN0

•••• •

clk_AnSw

Fig. 4 The analogical switch machine’s transitions when interrupted
by a fresh handle event

In the present development, there is no fictional com-
puter, and the OR is done in the pilot machine rather than
outside—so the modelling is slightly less authentic. It turns
out that this has consequences. If a single pilot event (such
as the pilot’s GearStartMoving_S) has to synchronise with
each of the two computers’ corresponding events (called also
GearStartMoving_S in Comp1 and Comp2) then, assuming
some asynchrony between Comp1 and Comp2, the pilot’s
GearStartMoving_S would be executed twice. This means
that the pilot’s event must be idempotent—executing it a sec-
ond time needs to have no effect.7

Now, we see why there was no orange = OFF guard in
GearStartMoving_S earlier. If there had been, the second
occurrence of GearStartMoving_S would have been disabled
in the pilot machine, causing problems.8

We have discussed this point with some care because the
same issue arises every time the computers issue commands
to any of the remaining equipment, e.g. to the analogical
switch, or to the hydraulic apparatus. In all such cases, the
synchronised event in the receiving machine must be idem-
potent.

Level 02. Level 02 introduces the analogical switch. The
analogical switch is open by default. When a handle event
occurs, the switch slowly closes (which takes from time 0
till time CLOSED_INIT ), remains closed for a period (from
time CLOSED_INIT till time CLOSED_FIN , allowing the
onward transmission of commands from the computers to
the general electrovalve), and then slowly opens again (from
time CLOSED_FIN till time OPEN). If a handle event occurs
part way through this process, Fig. 4 shows how the behaviour
is affected: during closing, no effect; while closed, the closed
period is restarted; during reopening, closing is restarted from
a point proportional to the remainder of the reopening period.

A clock, clk_AnSw (clk_xxx being another naming con-
vention, used for clocks), controls this activity. For this to
work, the pilot’s handle events are further synchronised with
analogical switch events that reset clk_AnSw to the appro-

7 Dealing with this properly in the Conf development caused the major-
ity of the excessive verbosity.
8 It may be argued that the phenomenon being discussed is absent at
level 00, so the guard could have been included there, and removed at
level 01, but in Event-B refinement, guards are strengthened, so this
would have prevented the 00 to 01 development step from being an
Event-B refinement.

priate value, depending on its value at the occurrence of the
handle event (N. B. The pilot’s handle events reach the ana-
logical switch directly, and not via the computing modules,
this being part of the complex interaction between pilot, ana-
logical switch, and general electrovalve).

Two further events (AnSw_CLOSED_INIT_reached and
AnSw_CLOSED_FIN_reached) mark the transitions
between episodes: from closing to closed, and from closed
to reopening. Since these are ‘new’ events in an Event-B
refinement, their STATUS is convergent, and a (N-valued)
VARIANT is included in the analogical switch machine, that
is decreased on each occurrence of either of them. As usual,
since N is well founded, the decrease of the variant implies
that the new events cannot continue to occur indefinitely
without the occurrence of ‘old’ events.

We dwelt on this last point a little since it introduces a
useful pattern in the development that is reused a number of
times below. Suppose an activity, engaged in by a number of
actors, needs to progress through a series of tasks t1,t2,t3, cir-
cumscribed by a series of deadlines: DL1 < DL2 < DL3,

all the deadlines being measured from a common starting
point. Then, a useful variant that is decreased by events that
mark the completion of the stages within the deadlines is:

No. of actors yet to complete t1 within DL1 +
No. of actors yet to complete t2 within DL2 +
No. of actors yet to complete t3 within DL3 +
0 × No. of actors past DL3

If the actors need to be in a specific state at each stage, etc. this
can be built into the expressions occurring above. The idea
is that as each actor completes the tasks and the deadlines
expire in turn, the expressions above stop contributing to the
variant, ensuring its decrease.

Level 03. Level 03 introduces the (triplicated) analogical
switch sensors. The main reason for not doing this in the pre-
vious level is to exercise the composition and architectural
features of the multi-machine formalism, to confirm that it
is flexible enough to cope with this kind of gradual elabo-
ration of components that are already present. In contrast to
the Conf development, in this development, sensors respond
asynchronously: each sensor is permitted to respond in its
own right within a small time window following the closure
or opening of the switch. This requires more ‘new’ events,
and the variant that ensures their convergence is based once
more on the pattern just described.9

9 In fact, the most compact way of writing the variant requires count-
ing the identities of sensors satisfying the requisite properties. Strictly
speaking this is outside the usual kind of B-Method type system, but
it could be simulated by some more cumbersome programming. In our
paper exercise, we sidestep this problem for the sake of clarity.
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Here is the event that sets the ith analogical switch
sensor to CLOSED. Note how temporal nondeterminism
is dealt with by inputting a time which is loosely con-
strained within the event guard (In fact, the WHERE guard is
equivalent to (AnSw_CLOSED_INIT < clk_AnSw <AnSw_
CLOSED_INIT + AnSw_DL)∧ AnSwClosed, but having an
external input means that the event does not have execute
eagerly, and thus does not have to disable itself).

N. B. More naming conventions: sens_xxxi names a sensor
and i always indexes over a triple of sensors (In the same vein,
k always indexes over the two computers in the development).
Suffix ‘_DL’ denotes a deadline or delay.

The way that the sensors are handled embodies another
pattern introduced in this development. This one concerns a
framework for ‘timed stimulus and response’. One machine
(in this case, the pilot machine) executes a stimulus event
(in this case, moving the handle) to which a timely response
(in this case, the activation of the analogical switch’s sen-
sors) is anticipated. The stimulus event is synchronised in
the responding machine with a clock value on a clock within
the responding machine (in this case, the analogical switch’s
clock clk_AnSw). The synchronisation (in this case, the
earlier handle event) opens a time window in the respond-
ing machine (in this case between AnSw_CLOSED_INIT
and AnSw_CLOSED_INIT + AnSw_DL) within which the
responding event takes place (the timing restriction being
enforced via the responding event’s guard). We see all this in
the event AnSw_CLOSED_INIT_close_sens_AnSwi above.

Of course, the purpose of the sensors is to enable some-
thing else to happen elsewhere in the system. In this case, it is
in the computers, which need to be aware of the sensors; their
gear movement events (such as GearStartMoving_S earlier)
need to be refined to acquire stronger guards, now with all
three sens_AnSwi set to CLOSED conjoined, to enable them.

We observe at this point that our general purpose timed
stimulus and response pattern could equally well have been
used to model the handle sensors and their role in the control
of the system. In fact, though, we did not model the handle
sensors in this development, using event synchronisation to
model the cooperation between handle and computers. This
is equivalent to assuming that the handle never fails, since the
synchronisation forces the computer event whenever there is
a handle event.

The presence of the sensors permits quite a number of
invariants connecting the behaviour of the analogical switch
clock, the analogical switch state and the behaviour of the
analogical switch sensors to be written. This and the addi-
tional involvement of the computers with the analogical
switch sensors prompts the creation of an interface, the level
03 Central_IF. The analogical switch’s clock, its variables
and invariants are all moved there. The analogical switch
machine and the two computing machines all CONNECT to
this interface.

Level 04. Level 04 commences the introduction of the gen-
eral electrovalve. The approach is similar to the introduction
of the analogical switch, in that there is a new machine for
the general electrovalve to model its behaviour. The general
electrovalve machine is connected to the Central_IF inter-
face because of the way the general electrovalve is connected
to the remaining components.

It is clear from Fig. 1 and from the accompanying discus-
sion, that the pilot, computers, analogical switch and general
electrovalve are all interconnected in a quite complicated way
(giving especial interest to this case study). Now, that all of
these components are present in the development, the ‘chain
of command’ between them can be better represented. Thus,
level 04 introduces variables comp2answk and answ2genev
to represent the commands from the computers via the switch
to the general electrovalve, and variable genEVoutput to rep-
resent the output of the general electrovalve to the rest of the
hydraulics. All these variables reside in Central_IF.

Unlike for the other components of the landing gear sys-
tem though, the description of the general electrovalve in
[17] does specify some continuous behaviour, albeit that
this is simple linear behaviour. We take the opportunity to
model this using nontrivial Hybrid Event-B pliant events in
the general electrovalve machine. For instance, the growth
of pressure in the door and gear movement circuits is given
by the following pliant event:

In this event, The INIT clause only permits the behaviour
described if answ2genev is true. In that case, D, the time
derivative symbol in Hybrid Event-B signals an ordinary dif-
ferential equation (ODE) system in the SOLVE clause that
has to be solved to define the behaviour. The right hand side
(RHS) of this ODE contains a case analysis. If the pres-
sure genEVoutput is less than HIGH, the its value increases
linearly. As soon as it reaches HIGH though, the bool2real
function makes the RHS zero, which maintains genEVoutput
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at the high level. In the Conf development, a mode event
separated these two phases because of the different synchro-
nisation of sensors there. In this development, there is no
intervening mode event, and the RHS represents a genuine
case analysis.

There is a corresponding pliant event that governs the
decrease of genEVoutput when answ2genev is false. It con-
tains a similar case analysis that stops the linear decrease
once the level drops to LOW. The increasing and decreasing
episodes are separated by mode events that are synchro-
nised with the analogical switch’s mode events that move
answ2genev between true and false. This is as required by
(1) and (2) above.

We can take this argument further. In reality, a piece
of equipment like the general electrovalve obeys a single
physical law which would state that the rate of change of
genEVoutput was governed by a particular physical property
(most probably depending on the properties of a hydraulic
accumulator elsewhere in the hydraulic circuit). As such, it
would be fair to define it in Hybrid Event-B using a single
ODE such as D genEVoutput = some_expression, leading to
a machine with a single plaint event and nothing else. Taking
our linear modelling seriously, an explicit such event would
resemble:

In PressureLaw, the value of answ2genev in the RHS
switches between increasing and decreasing episodes, so the
RHS of the ODE now contains a four-way case analysis.
In terms of modelling, it does not change much aside from
the elimination of mode events. In terms of automated ver-
ification though, it increases the burden on any automated
analysis system, since such a system would have to discover
the four-way case analysis automatically. The range of pos-
sibilities considered, from the four pliant events of the Conf
development, through the two pliant events of the present
development, to the single pliant event PressureLaw above,
are all connected to the issue of instantiation of a standard
component into a specific development. The description in
[10] gives a simple proposal, based on simple renaming of
the elements of a standard component, but there is clearly
scope for more elaborate schemes.

Level 05. Level 05 completes the development of the general
electrovalve by incorporating its sensors. This is done in the
same way that it was done for the analogical switch. New
events are introduced in the general electrovalve machine

to assign the sensors, governed by the same asynchronous
setting pattern. Their convergence is confirmed by a variant
built according to the same variant pattern we discussed ear-
lier. Other events, primarily in the computer machines, are
refined to take note of the sensors.

Of course, most of the preceding could have been accom-
plished in many fewer development steps than we expended.
The main purpose in the more numerous small steps we took
was to confirm that such increments of functionality could be
handled by the multi-machine formalism without problems.
Furthermore, small steps are much easier to handle for auto-
mated verification (looking forward to mechanical support
for Hybrid Event-B).

Level 06. We proceed to level 06. Now, that the general
electrovalve can be powered up and down, this level intro-
duces the individual movement electrovalves, and implicitly,
the hydraulic cylinders that they manipulate. Little further
purpose is served by slicing the development into small
increments, given that the patterns for doing this are well
established by now, so we introduced all in one step, the four
movement electrovalves, their sensors, and a new interface
HydraulicCylinders_EV_IF.

Each of the four movement electrovalves and cylin-
ders gives rise to a new machine: DoorsOpen_EV , Doors
Close_EV , GearExtend_EV , GearRetract_EV . These four
machines are identical in structure, so only Doors
Open_EV is written out in full. The HydraulicCylinders_
EV_IF contains all the variables needed for this step, and
they are coordinated using the same collection of by now
familiar patterns.

The Compk machines grow steadily larger due to the
accumulating set of variables that they have to be sensitive
to. They also display an interesting phenomenon. There are
‘new’ events to initiate the manipulation of the movement
hydraulic cylinders, and to detect the completion of their
movement tasks. Normally, new events need to decrease a
variant. However, during the movement tasks, the handle may
be manipulated an arbitrary number of times, which can even
prolong the task indefinitely if it is a gear movement task. It is
true that ‘old’ events (the handle manipulation events) inter-
leave the new event occurrences, and thus it would be possible
to invent state variables that could be used to create a suitable
variant. But such variables would not address any system
requirements, so they were not introduced. Consequently,
the new events were defined with STATUS ‘ordinary’, not
‘convergent’. This absolves them from the obligation of
decreasing any variant (In a more realistic development, such
variables would typically prove more useful in the faulty
regime, but we did not introduce them here; further related
comments appear below).

The situation just discussed illustrates a general point.
The more an event relies on input or stimulus from the
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Fig. 5 The approximate timing
diagram for the level 07
computing machine
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environment, the weaker are the properties that we can
expect to be able to prove regarding aspects that depend
on this external influence—the potentially arbitrary inter-
vention of handle movement events during landing gear
operation being a case in point. Only when events depend
on variables or stimuli that are fully internalised in the
model, can we expect to prove relatively strong prop-
erties regarding them, since we can then identify and
thence quantify all the influences that they might depend
on.

This portion of the development also shows eloquently
the benefits of the hypergraph system architecture. Although
the computers have to converse with the handle, the analogi-
cal switch and the general electrovalve on the one hand, and
with the movement cylinders on the other hand, these con-
versations involve separate sets of variables, so the variables
can be conveniently partitioned into the Central_IF and the
HydraulicCylinders_EV_IF interfaces, respectively, the sep-
aration benefiting separate development.

Level 07. We proceed to level 07. Up to now, the impetus for
executing any particular event that is potentially available in
a machine has come from the environment, via the technique
of using an external input that is created for that sole purpose.
Where there are synchronised families of events, one of them
is allocated the external input and the rest are synchronised
with it. Having reached a fairly complete level of detail in
the nominal regime, the final step in modelling is to remove
this artifice, and replace it with explicit timing constraints.
This is the job of level 07. We observe that explicit tim-
ing information is already included in subsystems for which
the description is relatively complete, such as the analogi-
cal switch, and the general and movement electrovalves, so
the level 07 development step only concerns the computing
modules.

In attempting to incorporate the timing information into
the computing modules, it was tempting to try to intro-
duce the timing constraints in a step-by-step fashion. For
example, one could imagine having only non-overlapping
raising and lowering episodes first, and then adding the extra
complexities brought about by allowing raising and lower-
ing episodes to overlap. However, it was soon realised that
the complexity and interconnectedness of the timing con-

straints was such that a stepwise approach would need to
allow guard weakening as well as guard strengthening in
various events.10 Since the Event-B notion of refinement is
not designed for guard weakening (the goal of guard weak-
ening being delegated to relative deadlock freedom POs), the
idea was abandoned in favour of a monolithic approach that
introduced all of the computing modules’ timing machinery
in one go.

Figure 5 outlines the behaviour of the computing mod-
ules’ clock clk_Handlek , when the handle is manipulated
during the course of gear extending or retracting. Unlike
Fig. 4 though, where the behaviour illustrated is close to
what the model describes (since the analogical switch just
responds to handle events in a self-contained way), Fig. 5
neglects important detail. For example, consider a Pilot-
GearUP_S event while the gear is extending. Then, the
retracting sequence has to be executed, but only from the
position that the extending sequence has reached. So first,
clk_Handlek is changed to stop the gear extending command.
Then, the clk_Handlek clock is changed to a time sufficiently
before the gear retracting command time, that there is cer-
tainty that hydraulic hammer11 has subsided. Once it is safe
to activate the gear retracting command, the gear retract-
ing command is activated, and then clk_Handlek is changed
again to advance the clock in proportion to the undone part
of the gear extending activity. In effect, we use clk_Handlek

intervals as part of the state machine controlling the behav-
iour of the computing modules (along with some additional
internal variables). This proves especially convenient when
the state transitions involved concern delays between com-
mands that need to be enforced to assure mechanical safety
(e.g. as in the hydraulic hammer case, just discussed). Such

10 For example, introducing conflicting handle events gives rise to the
need to extend the time interval within which certain other events are
required to occur, thus weakening the event guards that express such
temporal constraints.
11 Hydraulic hammer is the term for the collection of transient shock
waves that propagate round the hydraulic system when relatively abrupt
changes are inflicted on its control surfaces (i.e. the pistons in the vari-
ous cylinders), and which are typically damped using a relatively elastic
hydraulic accumulator somewhere in the hydraulic circuit to avoid dam-
age to the hydraulic circuit components.
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fine detail is not visible in Fig. 5, but it makes the design
of the level 07 events quite complicated. As a result, the
size of the Compk machines grows considerably at level
07; the movement events grow because of the extra detail,
but, most particularly, the original handle events are refined
into a large number of subevents, to cater for all the differ-
ent things that need to happen depending on where in the
sequence of activities an interruption by a fresh handle event
occurs.

We can give an example of the preceding in the event Pilot-
GearDOWN_DoorsClose_Start_DoorsClose_End_S. It def-
ines what happens when the pilot pulls the handle down
while the doors are closing at the end of a previous manoeu-
vre (which must have been a gear retraction manoeuvre, so
that clk_Handlek is between DoorsClose_Start_TIME and
DoorsClose_End_TIME). Then, Compk’s clock is moved
to just before DoorsClose_End_TIME so that door closure
control can be tidied up, doors_open_progress_timek is set
to the appropriate portion of the door opening period, and
the doors_open_modek variable is set to INTERRUPTED,
so that when reopening is started, the opening event can
react to doors_open_progress_timek instead of opening the
doors from the beginning. By manipulating the clock value,
it is easy to allow for the subsidence of hydraulic hammer
before switching between extension and retraction of the
gear.

9 Retrenchment and the introduction of faults

Our technique for incorporating faults into the development
is based on retrenchment. This is an approach that dates back
to [13], especially in the context of the B-Method. More

up to date treatments include [11,12,14,29]. Applications
to mechanised fault tree construction include [7,8].

Retrenchment is a technique that allows an event to be
modified during a development step more drastically than
permitted by refinement. This implies that the kinds of guar-
antee that refinement can typically offer are missing from
development steps that are described via retrenchment. In that
sense, retrenchment can be seen as a formally documented
requirements engineering and requirements modification
framework. Of course, the modification of a nominal model
to incorporate and tolerate faults falls neatly within this
remit.

Formally, and using Event-B terminology,12 retrenchment
relates pairs of events (rather as refinement does): an event in
an ‘abstract’ level model and a corresponding event in a ‘con-
crete’ level model. Because the aim is to have a notion that
can coexist smoothly with refinement (c.f. [11]), retrench-
ment is characterised by a PO similar in structure to a typical
refinement PO, but populated with additional data that yields
the more liberal notion. Besides the events that are related,
there can be other events at both levels that are unrelated to
one other by the retrenchment PO—no restrictions are placed
on these.

We adapt a little the formal syntactic structure of retrench-
ment for Event-B given in [2] to fit the framework of
Sect. 3 a bit better. If a concrete model retrenches an abstract
model, the state variables of the two models are related via
a RETRIEVES clause. This is essentially like a collection
of joint invariants during refinement in conventional Event-
B, except that we distinguish them syntactically for easier
manipulation.13 Such RETRIEVES clauses can occur in
interfaces (to relate abstract and concrete interface variables)
and in machines (to relate abstract and concrete machine
variables). With this in place, the schematic structure of a
retrenched event now appears as follows.

12 Retrenchment has been explored for Event-B specifically in [2].
13 Thus far, we have not needed this kind of data refinement facility,
since all refinement was expressed by the aggregation of new detail, and
of further constraints on existing behaviour. But now, we need to alter
some of the previously defined behaviour, so we need to distinguish the
behaviours of earlier and new versions of variables.
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The above shows the details for a mode event; for pli-
ant events, the idea is essentially the same, as we describe.
After the event name and status, the abstract event that is
being retrenched is identified. Then, come the guards, which
have just the same structure as for conventional mode or pli-
ant events, as applicable. The WITH alternative is to express
nontrivial relationships between abstract and concrete locals,
when needed—this works just as for refinement in conven-
tional Event-B. After that come the only visible differences
from conventional events, the OUT and CONC clauses. The
idea is that if the simulation of the concrete by the abstract
event is able to reestablish the RETRIEVES relation and all
the invariants, then any additional facts for that case can be
accommodated in the OUT(put) clause. Alternatively, if the
simulation of the concrete by the abstract event is not able to
reestablish the RETRIEVES relation and the invariants, then
any relevant facts for that case can be accommodated in the
CONC(edes) clause. Both clauses offer maximum expres-
sivity, in that abstract and concrete before- and after-values
can be mentioned in them for mode events. For pliant events,
the whole of these variables’ behaviours during the pliant
event are available—thus, they both act as (and therefore
replace) the COMPLY clause, one for the retrieving case
and the other for the conceding case. Given how expres-
sive the OUT and CONC clauses are, it is often useful to
have a trivial RETRIEVES relation, delegating all aspects of
the relationship between abstract and concrete variables to
the WHEN/WITH and OUT and CONC clauses. Below we
describe how these facilities are used in building the faulty
regime of the landing gear case study.

In the literature, various notions that do not conform to
refinement have been proposed for incorporating faults into
formal models. These permit the concrete model to depart
from the abstract model in specific ways. In many cases,
these ways are, in fact, very similar to what the retrench-
ment PO permits. In the cases of interest to us, once faults
have occurred error recovery is modelled, and after it has
completed, system behaviour is allowed to rejoin refining
behaviour. In this category, we can cite, e.g. [23] and [24].
Their authors typically call their notions by names that are
‘flavours of refinement’, but given the explicit departure from
refining behaviour that is permitted, we prefer the formula-
tion used here.

10 The faulty regime

To model the landing gear faulty regime, we use the well-
known fault injection technique. Each potentially failing
element xxx has an associated boolean fault variable ff_xxx
(another naming convention). To each potentially failing
component, we add an fault injection event (parameterised
by failing element, as required) Inject_A_Faultxxx . This sets

Table 2 Summary of the levels of the faulty development

Level Feature

10 Electromechanical component failures

11 Computer failures

the relevant fault variable to TRUE, and sets the failing ele-
ment to an arbitrary value. Additionally, we assume elements
fail hard, so once set at the point of failure, neither the fail-
ing element nor its fault variable ever changes again. The
elements that are allowed to fail this way are the sensors
(since it is only the sensors that the Compk machines can
react to); also, the Compk machines themselves can fail
(using ff _compk), which disables all further computation by
Compk . Regarding the sensors, the Compk machines also
maintain variables OK_sens_xxxk to record which sensors
have (not) failed, to ensure that no more than one out of
each triple of sensors has failed during normal operation.
As noted earlier, in this study, for simplicity, we did not
model the handle sensors or their failure; nor did we model
failure of the shock absorber sensors. But we could have
done it, by the same techniques described below. The con-
struction of the faulty regime was approached in stages, as
was the case for the nominal regime. Table 2 gives a sum-
mary.

Level 10. Level 10, the successor of level 07, is the first
faulty regime level. This level models the easiest part of
the faulty regime, the failures of the basic electromechan-
ical components, namely: the analogical switch, the general
electrovalve, and the four gear movement hydraulic cylin-
der sets. We capture the transition from level 07 to level 10
using a retrenchment from the level 07 project to the level 10
project.

In common with many development situations in which
there is a considerable difference between behaviours at the
two levels, the RETRIEVES relation for this retrenchment
is taken to be TRUE. This does not constrain the concrete
model in any way, and we can describe the deviation from
the abstract to concrete behaviour quite adequately in the
other data of the retrenchment, namely the WHEN/WITH
guard relations (for the before-states) and the OUT and
CONC relations (for the after-states, and their relation-
ships with the before-states). This RETRIEVES relation
appears in the two interfaces of the development, since all
the electromechanical components’ variables reside in these
interfaces.

The change in an event of the electromechanical com-
ponents in the presence of fault injection is illustrated in
the following example, taken from the faulty analogical
switch.
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If the fault is not active, then the behaviour is as
before: sens_AnSwi : | sens_AnSw′

i = OPEN ; while in the
presence of a hard fail, we have: sens_AnSwi : | sens_AnSw′

i =
sens_AnSwi which says that the after-value of sens_AnSwi is
the same as its before-value.

In the former case, the OUT clause is established, i.e. we
have sens_AnSw′

i = sens_AnSw′ 05
i , or that the level 10 after-

value of sens_AnSwi is equal to its abstract counterpart,
indicated via the 05 superscript. In the latter case, we establish
merely that sens_AnSw′

i ∈ {OPEN, CLOSED}, since there is
no control over the faulty value that sens_AnSwi is stuck at.

In this development step, all of the events of the electro-
mechanical components are affected the exact same way. The
Compk machines are unaffected. Consequently, as soon as
there is a failure in an electromechanical component, the
Compk machines become insensitive to it, since they demand
unanimity from the sensors.

Note how the separation of concerns made explicit by
having many different machines in this development is
very beneficial in dividing and conquering the complex-
ities of the faulty regime. Thus, we could focus on the
failures of the electromechanical subsystem first, without
needing to involve the computers. The fact that we are using
retrenchment is helpful in not needing to define all the behav-
iours relevant to a specific failure scenario in one go (as
would need to be the case if we attempted this via refine-
ment).

Level 11. The failure behaviour of the Compk machines is
tackled at level 11. Referring to level 07 (which contains the
final nominal Compk machine), a typical Compk event either
reacts to a handle movement, or stimulates (or reacts to) some
activity in the electromechanical system, or manipulates the
lights. There are no other cases.

It is easy to integrate faulty behaviour into the handle
movement events. We assume the handle does not fail, so the
Compk machines receive these events reliably. Whether any-
thing happens depends on the state of the Compk machines

themselves. Hard fails of the Compk machines are mod-
elled using the ff _compk variables, whereas failures detected
in the electromechanical components which are not to be
compensated are recorded using the variables anomalyk .
All events thus include the term ¬(ff _compk ∨ anomalyk)

in their guards (Also, at the start of any sequence of activ-
ity, the landing gear shock absorber sensors are checked to
indicate that the aircraft is in the AIR). Therefore, for the han-
dle movement events, the inclusion of the additional guards
is sufficient. Also, for the events that signal the pilot by
manipulating the lights, inclusion of these additional guards
is enough, since we assume that cockpit functionality never
fails.

The movement events are trickier. Under nominal oper-
ation, initiation of a movement is done when clk_Handlek

reaches a suitable value (conditional on other variables, and
on the relevant sensors being unanimous about a cylinder’s
condition)—termination is triggered by the last relevant sen-
sor indicating success. In the faulty regime, two out of three
trustworthy sensors indicating success is sufficient. But the
first two trustworthy sensors will always indicate success
regardless the behaviour of the last one, so the events for
the ‘2of3_OK’ cases must be fired on a timeout, to give
the last sensor time to respond. Additionally, the movement
events are already split into NORMAL and INTERRUPTED
cases since their behaviour needs to differ depending on
whether a previous sequence has been interrupted by a fresh
handle event before completion. Addition of faulty behav-
iour thus generates a four-way split. But this only covers
the cases compatible with eventually acceptable behaviour.
There remain cases for each movement event which are
not to be compensated, when at least two sensors out of
three are misbehaving. So there must be Anomaly_xxx events
at level 11 that catch these cases and set the anomalyk

variable and unset normal_mode, and this last case cov-
ers the transmutation of the nominal regime into the faulty
regime.

Here is an Anomaly_xxx example (for gear retracting). The
test is that at least two sensors are not registering correctly
and the timeout has expired. The latter means that at least two
sensors on the same device failed somewhere. Otherwise, a
‘2of3_OK’ case would have succeeded.
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Level 00

Level 07 Level 11
Level 10

Fig. 6 The Tower Pattern, schematically illustrating the landing gear
development. The nominal development, performed via series of
descending vertical refinement steps appears on the left. Retrenchment
steps, shown horizontally, construct the faulty regime in two stages,
arriving at the Level 11 system at the bottom right

11 Fault handling and the Tower Pattern

The series of refinements and retrenchments we have
described is a good example of the Tower Pattern [11].
This envisages a world of system models spread over a two-
dimensional surface. Different models that lie on the same
vertical line are assumed to be related by (a suitable notion
of) refinement, and different models that lie on the same
horizontal line are assumed to be related by retrenchment.
In this scheme, the trajectory we have taken in our devel-
opment is shown in the solid line of Fig. 6. The earliest
model, level 00, is at the top left, and it is refined through
seven refinement layers to level 07 to complete the nominal
development.14 Then, we embark on retrenchments towards
the right to get the faulty regime at level 11 in the bot-
tom right corner. The theorems of [11] guarantee that there
are system models (consistent with the development) at all
the grid points of the rectangle generated by the downward
and rightward trajectories. With this picture, we can addi-
tionally do the following: from the bottom right corner, we
can undo the various levels of refinement (in an essentially
automatic way according to the theorems of [11]) to get an
ultimate abstraction of the faulty regime model at a level
corresponding to level 00. Since the refinements were all
based on the aggregation of design detail, the corresponding
abstractions will all be based on the forgetting of that detail
in the faulty context. The end result will therefore be a level
00 analogue of the level 11 machine Level_11_PilotFaulty.
The only serious difference from the level 00 machine is the
inclusion of the red light, as befits a faulty retrenchment of
it.15

We are not done yet though. The case study description
in [17] lists a collection of requirements in its final section.
The opportunity was taken to take these on board verba-

14 Figure 6 shows four layers instead of seven.
15 Because of the simplicity of these two models, this retrenchment is
a degenerate one, which defaults to a refinement.

tim, within the multi-machine Hybrid Event-B methodology.
The methodology permits the PROJECT file to contain a
GLOBINVS declaration indicating a file of global invari-
ants. These are supposed to be provable from the contents of
all the interfaces in the project.

In [17], the requirements we have in mind were a mixture
of kinds. Some of them were obviously expressible as state
invariants, while others were much more like liveness con-
straints. While the latter might present problems for a purely
discrete methodology without explicit liveness facilities, the
presence of real time in Hybrid Event-B and of deadlines
in the requirements permitted the translation of these into
time- sensitive invariants,16 thus falling within the remit of
the basic Hybrid Event-B methodology. These translated
requirements all appear in the global invariants construct
Level_11_LandingGearSystem_GI . The conventions that are
demanded for global invariants insist that they be derivable
from the interfaces in the project, so in order that all of
the variables needed by the global invariants were correctly
declared, a number of the variables needed by the Compk

machines were moved into a new interface created at level
11 specially for the purpose: Level_11_Cockpit_IF_Faulty.
This interface could also serve a wider objective, if modelling
of the cockpit display were to be included in the development.

One further job was done at level 11. Whereas in previ-
ous development steps, the text highlighted only the changed
parts (e.g. newly refined events), abbreviating unchanged
parts using ellipses, for example, and copying unchanged
components verbatim in their most recently updated form,
at level 11, all these missing details have been filled in.
This includes filling in all the details of the default pliant
events that interleave the mode events in the majority of the
machines. Where the modelling metaphor involved the use
of pliant variables for signals that needed to change instanta-
neously in synchronised mode events, their constancy outside
of these mode events is demanded using the CONST modal-
ity [4] in the relevant COMPLY clause of the default pliant
event.

We are still not done yet though. The integration of the
nominal and faulty regimes into one unified development
encourages further cross-checking, beyond the global invari-
ants just discussed, as follows. During the nominal develop-
ment, as successive components are introduced, it is tempting
to write additional, and quite strong invariants, knowing that
these hold in the nominal regime. In fact, this was done
during the development of the analogical switch and gen-
eral electrovalve and similar components, and the additional
invariants can be seen in the relevant interfaces (especially

16 Above, we said that invariants had to be true at all times. There is
no contradiction. Time- sensitive invariants that are always true can
be written in the form condition on time or on clocks ⇒ property of
variables.
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in Central_IF). In the faulty regime, these invariants no
longer hold, and this fact necessitates the retrenchment of
the Central_IF and HydraulicCylinders_EV_IF interfaces to
their level 10/11 versions, Central_IF_Faulty and Hydraulic-
Cylinders_EV_IF_Faulty. But as long as no fault has been
activated, these stronger invariants will hold in a run of the
system. This suggests using the Tower Pattern development
architecture to close the verification loop in the following
way.

It would be quite feasible to mechanise a process, to be
applied to the faulty system as follows: (a) delete/disable
all fault injection events from the development; (b) unify
each interface’s nominal and faulty versions and include the
resulting interface in the development;17 (c) then reverify
everything. Particularly with a variable naming convention
like the one we have used in this development, in which the
same names are used at successive levels, by doing the pre-
ceding, the stronger invariants are made to apply within the
faulty regime, and they will be expected to hold, since the
faulty behaviour has been rendered unreachable.18 In a realis-
tic version of this process, the above steps would most likely
need to be strengthened by additional invariants expressing
the absence of faults, since their unreachability would be
implicit from the point of view of an individual event, whose
guard might still be sensitive to the possibility of faults.

12 The time-triggered loop

A practical implementation of a system like the present one
will ultimately culminate in a time-triggered loop implemen-
tation. That is to say, the computing systems will have a timer
interrupt, which will regularly wake them at a predetermined
frequency, and upon being woken, the timer value, the inter-
nal state, and the sensors will all be examined to determine
what, if anything, needs to happen.

In principle, the events of the level 11 system are fine-
grained enough that we would want to see them directly
implemented in the time-triggered loop system. Two issues
immediately emerge. The first is relatively trivial, and con-
cerns the observation that the time-triggered implementation
is typically a sequential program, so that some reconfiguring
of the event descriptions may be required to fit this para-
digm better, in particular when the events of our ‘ideal’ event
system occur sufficiently close in time that they have to be
accommodated in the same polling routine. We regard this as
a relatively minor refactoring issue. The second concerns the

17 While the nominal version contains the stronger invariants, the faulty
version contains the references to the abstract variable names, so both
are needed. Furthermore, they are compatible, since the retrenchment
step just removes the former and adds the latter.
18 With different naming conventions, more/different refactoring might
be needed to achieve this overall effect.

fact that, in a time-triggered loop, events are not executed
at exactly the time that the level 11 system would execute
them.19 It is the job of this section to explore this.

One rather simple approach is to assume that all events
happen at some exact multiple of the sampling period. Pro-
vided the sampling period is short enough, this is often good
enough from an engineering viewpoint. Then, the behaviour
of the implementation is just a subset the behaviours per-
mitted by the abstract model, and the latter can simply be
viewed as an over-generous safety property. Consequently,
the relationship between abstract and implementation models
becomes a straightforward refinement, based on an identity
retrieve relation (and on the predictability of linearly evolv-
ing behaviours for those parts of the system expressed in
continuous terms).

However, in reality, events will not all happen at a multiple
of the sampling period, and those assumptions will not hold.
The consequence of this is that the abstract model becomes,
not a safety property, but a requirement, and the implemen-
tation must address all of the behaviours it permits.

Several observations now follow. The first is that only the
computing systems are modified by the time-triggered imple-
mentation. The electromechanical components continue to
behave as before. The second is that because we model han-
dle stimuli via events synchronised with the computers (and
not via sensors), we are forced to restrict handle events to
occur at exact multiples of the sampling period.20 The third
is that regarding the electromechanical components, when
they are stimulated they behave just as they did before, so no
modelling change is needed there. The fourth is that when
the electromechanical components attempt to stimulate the
computer(s), the computer(s) can only react at predetermined
times, so that the synchrony of the relevant events in our
detailed modelling would need to be broken, a delay between
a stimulus and its processing would need to be introduced,
and the consequences of that delay would need to be captured
in the formal relationship between abstract and concrete sys-
tems. In summary, a system run would now be broken up

19 This is based on the assumption that the specifications of these events
remain as in the level 11 system, but that the times at which they occur
changes—this also being connected with the issue of whether the polling
frequency is high enough.
20 As a digression, suppose we modelled handle events via sensors.
Then, putting aside practicability considerations, in theory, there could
be an arbitrary number of handle events within a single sampling period.
But only the parity of this number would count. If there were an even
number of events, the situation seen by the computer(s) at the end of
the sampling period would be the same as before, and the preceding
activity would continue undisturbed. If there were an odd number of
events, it would be the same as a single handle event, and a new gear
movement activity would be started, or the orientation of the previously
ongoing one would be reversed. Interesting effects might occur if, due
to asynchrony, one computer detected an even number of events and the
other computer detected an odd number of events.
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into some events in which the computer(s) stimulated the
electromechanical components, where the timing would be
as before, and other events in which the electromechanical
components stimulated the computer(s), but where the reac-
tion would be delayed by up to a sampling period.

One popular way of accommodating this kind of disparity
in behaviours between abstract and concrete models is the
retiming technique [16,20,28]. In this, the concrete model is
given a more elastic notion of time, so that despite the asyn-
chronies caused by time-triggering, corresponding events in
the two models nevertheless occur ‘at the same time’—time
is ‘wiggled a bit’ in the jargon of [20]. Of course, a lot of
detailed inequalities have to be proved, so that one can be
sure that unrelated events do not collide with one another, or
get put out of temporal or causal order.

In general, the present author is disinclined towards the
retiming approach. A time like 3 o’clock should refer to the
same moment in all models in an engineering development.
Otherwise, there is a risk of confusion between developers at
the requirements level. In fact, the Hybrid Event-B formalism
explicitly forbids retiming, by insisting that time progresses
in exactly the same way in all models of a development chain.
Of course, this viewpoint does not make the need for the com-
plicated, detailed facts necessitated by the retiming approach,
go away. Rather, a better place for them would be a more
complex refinement retrieve relation, supplemented where
needed by suitable retrenchment data.

If we apply this perspective to our development, we
identify two different regimes. In the first, the relation-
ship between the level 11 and time-triggered systems is a
retrieve relation identity. This applies any time the com-
puting systems can be said to ‘have the initiative’. This
covers the handle events (because, as we said above, han-
dle events are synchronised with the computing systems),
and those events in which the computing systems issue com-
mands to the electromechanical components. In the other,
the electromechanical components’ sensors feed back to
the computing systems, with the attendant delays before
response. In the first regime, a retrieve relation that consists
of clauses such as:

condition on time and state variables

⇒ var11 = vart-t (3)

captures what we have been saying above. In this, the 11
and t-t superscripts refer to the level 11 and time-triggered
versions of the model variable var, and we need a conjunction
of such terms to make the relationship between level 11 and
the time-triggered system precise.

In the second regime, a retrieve relation that contains many
clauses such as:

condition on time and state variables

⇒
(((−−−−−−−−→
var11(�t/Δ	)

)))

= vart-t(t) (4)

is needed. This says that at any time t, if the relevant condi-
tions on the time and on various state variables are satisfied,
then the value of the time-triggered variable vart-t will equal
the value of the level 11 variable var11, at a time that corre-
sponds to the last sample time �t/Δ	, whereΔ is the sampling
interval. The optional overrightarrow selects, on a case by
case basis, whether it is the actual value at �t/Δ	 itself that
is required, or its left limit.

Clauses like (4) cover variables for which the behaviour
is piecewise constant, only. In our case study, we also have
linearly increasing behaviours (for the general electrovalve).
For that, the right hand side of (4) must be replaced by a rela-
tion between the actual and time-delayed values, according
to the relevant rate of change. And that is not all. The lin-
ear behaviour of the general electrovalve gets cut off at the
lowest and highest values, where it remains constant, till the
opposite behaviour is required by the analogical switch. This
requires clauses that instead of (4), describe the end effects
of these periods of linear behaviour.

If enough effort were invested in identifying all the rele-
vant cases, then a refinement could be proved between level
11 and the time-triggered system. This would depend on a
collection of axioms that enforced relationships between the
various durations occurring in our development that ensured
that the different cases just discussed did not ‘crash into each
other’, ruining the refinement. A less exacting collection of
axioms might only enable a retrenchment to be proved, rather
than a refinement, and a collection of even weaker axioms
might not even permit that. Note that in all cases, there may
be many complexities arising from the need to ensure that
for each variable, there was always at least one clause in
the retrieve relation that enforced the needed relationship
between the two models.

What we have discussed is already complicated, and
this was for a situation where piecewise constant behav-
iours predominated. Life gets even more complex when we
contemplate situations in which sensors and actuators send
values that can vary in more complex and unpredictable ways.
The effects of these low-level issues can have a major impact
on the stability and predictability of the behaviour of cyber-
phyisical systems.

13 Review, modelling patterns, lessons, issues

In the last few sections, we have overviewed the landing
gear case study, redone since the Conf treatment in the by
now more fully developed multi-machine Hybrid Event-B
formalism of [10]. The final system in the series of devel-
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opment steps was the level 11 system, taking into account
that we did not write out the time-triggered system in full. In
the level 11 system documentation, we took the additional
trouble to write out all the details, in contrast to previous
levels, where we concentrated on writing out the changed
parts of components while abbreviating unchanged parts, and
simply copied unchanged components from the preceding
level.

As the development progressed, and it became clear that
certain techniques worked well to address certain modelling
challenges, the amount of work per step increased. While
this can be convenient for human comprehension of the
development process, it can be the enemy of automatic ver-
ification, where small steps tend to be much more digestible
for machines.

To exercise the architectural capabilities of multi-machine
Hybrid Event-B, we placed each identifiable component
in its own machine. This represents one kind of expres-
sivity extreme—each machine was a simple as it could
be, but it increased the challenge of keeping all these
machines properly related, while striving to maximise inde-
pendent working. At the opposite end of the expressivity
spectrum lies the possibility of putting each computer into
a machine, and putting all the physical components into
another. Conceptually, this would be feasible for the follow-
ing reason. Each physical component is designed to have
self-contained physical behaviour. Thus, if its pliant behav-
iour were to be captured by a single, universally enabled
pliant event (covering all the different behaviours that it
might be required to exhibit in a given application), then
all of these pliant events would be independent, and would
thus be capable of being conjoined into a single pliant
event.

To illustrate this, suppose the state of apparatus A was
described by pliant variable xA, and its behaviour was spec-
ified via the ODE D xA = φA(xA . . .). Likewise suppose
apparatus B had state xB , and behaviour given via the ODE
D xB = φB(xB . . .). We assume that apparatus A and appa-
ratus B are independent, so, since engineering in general is
described using local realistic theories, φA will not depend
on xB and φB will not depend on xA. In such a case,
we can put ODE D xA = . . . in a machine for appara-
tus A and ODE D xB = . . . in a machine for apparatus
B.

But equally easily, we could construct one big machine
for both apparatus A and apparatus B, and describe the joint
pliant behaviour via the vector ODE:

[
D xA

D xB

]
=

[
φB(xA . . .)

φB(xB . . .)

]

In fact, semantically, there is no difference. The semantics for
the multiple machine formulation is (behind the scenes) for-

mulated in a global manner, even if the syntactic appearance
is partitioned into multiple machines for the convenience of
designers. So a conjoined description is perfectly feasible.

Beyond this, we furthermore note that the mode events
belonging to all the different physical components could also
coexist in the same machine, easily enough. We saw some
of the consequences of this in our discussion of the analog-
ical switch above, where we stressed the consequences for
automated verification.

13.1 Modelling patterns

In our step-by-step development, we identified a set of use-
ful modelling patterns that appeared widely applicable. We
summarise these now.

P1 The organisation of a development according to the
hypergraph architecture proved to be a major advantage
in terms of structural clarity. It permitted many complex
invariants to be easily expressed. This gives the concept
very wide applicability. The notions of type II invariants,
and of global invariants in a project, supplements this by
making different types of cross-cutting invariant avail-
able.

P2 The pattern (� j no. of actors in (DLj/stagej)) for variants
that track progress through, and ensure termination of,
some sub-procedure is very general and ought to be more
widely known.

P3 Using a component’s clock as an adjunct to its state
machine proved to be extremely convenient in over-
coming the complexities inherent in achieving a safe
and transparent design, when safety-sensitive activities
with extended duration needed to overlap due to too
close proximity of external stimuli. Modelling mechan-
ical safety delays using pure state machine techniques
would have made the state machines much more cum-
bersome, and, importantly, made the design much more
opaque. Simply adjusting the clock to allow a safety
margin of time to elapse before the next required action
proved to be an elegant solution.

P4 In Hybrid Event-B, stimulus and response normally need
to be separated temporally. A useful general purpose
pattern for modelling this has the stimulus event syn-
chronised with starting a clock in the response event’s
machine. This allows the response event itself to be trig-
gered by a timeout or the entry into a time period. This
kind of modelling permits many different kinds of coop-
eration to be expressed.

P5 The introduction of faults in a principled way, starting
bottom-up from faults in the lowest level components,
and using retrenchment to step back from nominal
behaviour in a stepwise manner, proved to be a useful
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organisational technique for mastering the the complex-
ity of faulty system behaviour.

P6 Once faults had been incorporated as in P5, the check
back to nominal behaviour when faults were disabled via
the retrenchment architecture, offered the possibility of
useful additional confirmation of correct design.

13.2 Issues and questions

As well as these positive outcomes of the exercise, detailed
examination of the issues thrown up by the case study
revealed a number of areas for further development of the
Hybrid Event-B framework itself. Among these we can give
the following.

Q1 In contexts in which there is significant use of replicated
components, such as the present one, the availability of
expressive and flexible indexing techniques for defining
collections of such components is important for expres-
sivity and succinctness. In the present development, this
was addressed by meta level indexing, but it would be
needed in the formal framework in a mature formalism.

Q2 In contexts in which there is significant possibility of
component failure, the rather hardwired synchronisa-
tion mechanisms in the present framework can prove
inadequate. An example of this occurs when we expect
a synchronisation under nominal conditions and yet
accept a partial version if one of the machines has failed.
It is fairly clear that the present development has not
fully taken on board all the requirements that arise in
this context, for example, when synchronisation is only
needed when the last of a set of components that behave
asynchronously has responded.

Q3 A possible contribution to Q2 is to allow events to have
more than one name, e.g. EvName1 ALSO EvName2
ALSO EvName3 STATUS . . ., etc. Then, the different
names of the same event body could appear in different
synchronisation schemes. This, by itself, is not enough
though.

Q4 The present development used state variables exclu-
sively. It neglected the possibilities made available using
the I/O semantics of synchronised events. This may lead
to certain advantages, and is a possibility that should be
explored.

Q5 The use of clocks as part of the state machine (P3) is very
convenient but embodies assumptions that only certain
things happen within particular time ranges. Different
tradeoffs between this approach and using more detailed
state machines should be explored, and their pros and
cons should be understood.21

21 As an explicit example, consider that in the level 11 model, the
anomalyk cases were called on (in principle) quite short timeouts, in

Q6 Although type II invariants were available if needed, the
hypergraph architecture rendered them unnecessary in
this development. Is this a general truth or just a fortu-
nate property of the present case study? In the opposite
direction, is there a requirement for even more gen-
eral, or more complex, cross-cutting invariant patterns
in other problem domains?

Q7 Are there ways of further integrating the modelling of
nominal and faulty behaviours, beyond what has been
suggested by the disabling-of-faults technique?

Q8 The most appropriate handling of the implementation of
complex event-based systems in terms of time-triggered
systems raises many questions. Although the essential
mathematical challenges are not novel, the most appro-
priate way of packaging the important elements so that
they can be deployed with the least risk, and maximum
engineering benefit, remains as a nontrivial challenge
for the future. The simple predominantly piecewise con-
stant behaviours of the present development already
generate a number of complex detailed cases, and these
do not even touch on the additional frequency domain
questions that arise when sensors and actuators have to
deal with rapidly varying signals. Reconciling the estab-
lished frequency domain techniques with state-based
refinement frameworks remains as a significant open
question for future research.

Q9 Of course, doing an exercise like the present one by
hand is really tricky—playing the role of a human IDE
is extremely error prone. Almost every re-reading of
some fragment of the development revealed another bug
(although typically (and reassuringly), the overwhelm-
ing majority of such bugs were of a kind that would
easily be picked up mechanically by surface syntactic
checking). Proper machine support is obviously vital
when doing such a development in a serious way.

We regard the above questions as outcomes of this study that
are just as valuable as the positive results of the modelling
exercise itself.

14 Conclusions

This paper has described the development of the landing gear
case study in the multi-machine Hybrid Event-B framework,
as it is defined in [10]. We deliberately approached the devel-
opment in a way that would put the formalism under the

Footnote 21 continued
order not to allow clk_Handlek to overrun into the next nominal event.
More finegrained state modelling (as noted earlier) could obviously
avoid this problem if knowledge of equipment behaviour justified wait-
ing longer, in case some physical component responded rather late.
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maximum stress, so as to identify what worked well, and
what issues connected with the formalism might warrant fur-
ther investigation. We surveyed the resulting good and bad
points in the previous section.

In the earlier part of the work, in the nominal develop-
ment where it was legitimate to rely on the perfect working
of all the components, it was easy to specify the required
behaviour in a very tightly controlled way. In the B-Method
generally, this shows itself as the opportunity to write many
precise invariants concerning the behaviour. However, when
the faulty regime is contemplated, the vast majority of these
stronger properties no longer hold, so the intriguing question
arises as to how one can combine the two worlds in a way that
might be most beneficial for the final delivered system. One
of the opportunities offered by this case study was the chance
to examine this question in a context that was relatively con-
vincing regarding the complexities of a real application.

On this point, the author utilised his established work on
retrenchment to try to reconcile the two worlds. Especially
in the light of the convenient naming convention used in this
development, it proved possible to reintroduce the stronger
nominal invariants into a version of the faulty regime which
had the fault injection mechanism switched off. A practi-
cal version of this might well necessitate the inclusion of
additional axioms/invariants expressing the non-occurrence
of faults, to facilitate the verification process.

To summarise, the landing gear case study has proved to
be an excellent vehicle for significantly exercising the Hybrid
Event-B framework. Since it was conceived independently of
the framework, it does not fall into the trap of only including
modelling issues anticipated to be convenient for the formal-
ism, as a case study conceived by the framework’s designers
might have done, even despite their best efforts. All this bodes
well for the development of tool support for the framework.
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