
Int J Softw Tools Technol Transfer (2017) 19:517–534
DOI 10.1007/s10009-015-0405-y

TACAS 2013

Flexible SAT-based framework for incremental bounded upgrade
checking

Grigory Fedyukovich1 · Ondrej Sery1,2 · Natasha Sharygina1

Published online: 20 October 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Software undergoes a myriad of minor changes
along its lifecycle. Each evolved transformation of a program
is expected to preserve important correctness and secu-
rity properties, in particular confirmed by a software model
checking tool. However, it may be extremely resource- and
time-consuming to repeat entiremodel checking for eachnew
version of the program. As a possible solution to this prob-
lem, we propose to conduct incremental analysis of a new
program version by reusing efforts of bounded model check-
ing of the previous program version. Our approachmaintains
over-approximations of the bounded program behaviors by
means of function summaries derived using Craig interpo-
lation. For each new version, these summaries are used to
localize the scope of model checking. A benefit of this
approach is that the cost of the upgrade checking depends on
the change impact between the two versions. If the change
impact is relatively small, then the incremental check can
drastically outperform the model checking the new pro-
gram version from scratch. We implemented the approach
in scope of the SAT-based bounded model checker for C,
eVolCheck. The evaluation of eVolCheck confirms that
incremental changes can be verified efficiently for different
classes of industrial programs.

B Grigory Fedyukovich
grigory.fedyukovich@gmail.com

Ondrej Sery
ondrej.sery@d3s.mff.cuni.cz

Natasha Sharygina
natasha.sharygina@usi.ch

1 Formal Verification Lab of the Faculty of Informatics,
Università della Svizzera italiana, Lugano, Switzerland

2 D3S, Faculty of Mathematics and Physics, Charles
University, Prague, Czech Republic

1 Introduction

To achieve stability, software must pass through a long chain
of updates and bug fixes. Each new version is developed
incrementally due to numerous reasons: (1) requirements
change and have impact on the design and implementation;
(2) errors are often discovered late in the design cycle and
must be fixed; (3) software components are updated or sub-
stituted to adapt to architectural and requirement changes;
just to name a few. An example of a program change is illus-
trated on Fig. 1. The increment operation is lifted from one
function to another one.

The state of affairs is that each new version of a given pro-
gram needs to preserve important safety and security prop-
erties. However, even a small change can have a profound
impact on the program behavior, triggering an expensive re-
verification of the whole program. In this article, we address
the problem of efficient analysis a program after a change
in symbolic verification techniques such as bounded model
checking (BMC) [4]. There is a clear need for a technique
that focuses on the incremental changes and takes advantage
of the efforts already invested in the model checking of pre-
vious versions. The target of the approach is to avoid, when
possible, re-analyzing the new program version from scratch
and to reduce analysis only to the parts of the program which
were affected by the change.

Bounded model checking has proven particularly suc-
cessful in safety analysis of software and has been imple-
mented in several tools, including CBMC [8], LLBMC [31],
VeriSoft [25], and FunFrog [37]. While BMC assumes
a loop-free approximation of the program, there are several
recent techniques for transforming programs into loop-free
programs which, if successful, do not sacrifice soundness
or completeness of the verification results. Examples of
such techniques include unwinding assertions [8], automatic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-015-0405-y&domain=pdf

518 G. Fedyukovich et al.

int g(int a, int b)
{

if (a < b)
return a;

return a - b + 1;
}

int f (int a, int b
{

return g (a, b);
}

main()
{

int x = 0;
int y = nondet();
int z = nondet();

if (y > 0)
x = f(y, z);

assert(x > 0);
}

(a)

int g(int a, int b)
{

if (a < b)
return a;

return a - b;
}

int f (int a, int b)
{

return g (a, b) + 1;
}

main()
{

int x = 0;
int y = nondet();
int z = nondet();

if (y > 0)
x = f(y, z);

assert(x > 0);
}

(b)Original program Modified program

Fig. 1 Two versions of the C program

detection of recursion depth [19], k-induction [14], and loop
summarization [27]. While we believe that these techniques
are to some extent compatible with the methods being dis-
cussed in this article, we leave this study for future work.

This article presents an incremental SAT-based BMC
approach that uses function summarizations for local upgrade
checks. It receives two versions of a program, an old and
a new one, and a bound to be used to unwind the loops
and recursive function calls in both program versions. We
assume, both versions share the same set of assertions to be
checked. Given that the old version satisfy the given asser-
tions up to the predefined bound, the goal of the approach is
to verify that the assertions hold in the new version as well.

The upgrade checking algorithmmaintains so-called sum-
maries that, in our case, over-approximate the bounded
behavior of the functions, computed bymeans of Craig inter-
polation [39]. The core idea of the algorithm is to check if the
old function summaries still over-approximate the bounded
behavior of the corresponding functions in the new program
version. If the check fails for some function call, it needs
to be propagated by the calltree traversal to the caller of the
function. If the check fails for the root of the calltree (i.e., the
“main” function of the program), an error trace is computed
and reported to the user as a witness to the violation of one
of the given assertions. On the other side, if for each func-
tion call there exists an ancestor function with the valid old
summary, then the new program version is safe up to the pre-
defined bound. Finally, for functions whose old summaries
are not valid any longer, the new summaries are synthesized
using Craig interpolation.

The upgrade checking algorithm implements the refine-
ment strategy for dealing with spurious behaviors that can

be introduced during computation of the over-approximated
summaries. The refinement procedure for upgrade checks
builds on ideas of using various summary substitution scenar-
ios [39].We further extend it to simplify the summary validity
checks by substituting the summaries of nested function calls
which are already proven valid. Failures of such checks may
bedue to the use of summarieswhich are not accurate enough.
In such case, the refinement is used to expand the involved
function calls on demand.

We implemented the algorithm in an upgrade checker
eVolCheck that uses the SAT solver and interpolator
PeRIPLO [34]. We exploit the variety of settings for interpo-
lation, incorporated in PeRIPLO, and make them accessible
from the eVolCheck running interface. It allows not only
achieving the primary BMCgoals, but also studying an effect
of different interpolants on the different classes of programs
being analyzed. We evaluated this flexible framework on a
set of industrial benchmarks. Our experimentation confirms
that the incremental analysis of upgrades is often orders of
magnitude faster than the analysis performed from scratch
within the same unwinding bound.

In summary, the contributions of the article are as follows:

– It presents a fully automated technique for bounded
model checking incremental upgrades. It is able to re-
check all previously established properties and to detect
newly introduced errors.

– It combines BMC with function summarization for local
and incremental analysis of changes. The use of Craig
interpolation to compute summaries allows capturing
symbolically all bounded execution traces through the
function and, together with the local per-function checks
of the new algorithm, often results in a more efficient
analysis than re-checking the code from scratch.

– It presents the tool eVolCheck that implements the
upgrade checking algorithm and employs the flexibility
of the interpolation algorithms provided by the underly-
ing tool PeRIPLO. We report on successful evaluation of
eVolCheck on industrial benchmarks.

Our approach relies on the following assumptions.

– Both old and new versions of the given program should
be unrolled to the same number n of loop iterations and
recursion depth. In this case, the approach guarantees to
find a real counter-example (or prove its absence) in the
resulted unrolling. There is no guarantee that an error,
appeared in the program unrolled to the number m > n
will be found.

– The algorithm relies on the fact that the unrolled calltrees
of both programversions are the same. Furthermore, each
pair of function calls corresponding to the same node
in the calltrees should have the same signature. These

123

Flexible SAT-based framework for incremental bounded upgrade checking 519

requirement can, however, be relaxed if an extra match-
ing of the function’s input/output variables in the two
versions is provided.

– The approach requires the interpolation algorithm to have
a specific tree-interpolation property (to be defined in
Sect. 2). As shown in [36], only interpolation algorithms
that generate interpolants at least as strong as those given
by Pudlák’s algorithm [33] are guaranteed to satisfy this
property.

The rest of the article is organized as follows. Sec-
tion 2 defines the notation and presents background on
function summarization in BMC (that originally appeared
in [39]). Section 3 describes and justifies the upgrade check-
ing algorithm (proposed in [38] and extended with the
preprocessing step). Section 4 describes implementation of
eVolCheck (that differs from the original one [18] by the
use of PeRIPLO). Section 5 presents new evaluation of
eVolCheck and PeRIPLO. Finally, Sect. 6 discusses the
related work and Sect. 7 concludes the article.

2 Background

Craig interpolation [12] is a well-known abstraction tech-
nique widely used in Model Checking.

Definition 1 Given formulas A and B such that A ∧ B is
unsatisfiable,Craig interpolant of (A, B) is a formula I such
that A �⇒ I , I ∧ B is unsatisfiable, and I is defined over
common alphabet to A and B.

For a pair of propositional quantifier-free formulas (A, B),
such that A ∧ B is unsatisfiable (denoted as A ∧ B �⇒
false), an interpolant always exists [33]. A commonly used
framework for computing the interpolant from a given refu-
tation proof is the labeled interpolation system (LIS) [15], a
generalization of several interpolation algorithms (including
Pudlák’s algorithm) parameterized by a labeling function.
Given a labeling function and a proof, LIS uniquely deter-
mines the interpolant.

Classical interpolation can be generalized so the partitions
of an unsatisfiable formula naturally correspond to a tree
structure. LetΦ = ∧n

i=1 φi . For K ⊆ {1 . . . n}, a partitioning
ofΦ with respect to K allows representingΦ in the following
form: Φ ≡ ΦK ∧ ΦK , where ΦK = ∧

k∈K φk and ΦK =∧
�/∈K φ�. An interpolation system is a function that, givenΦ

and K , returns an interpolant IΦ,K , a formula implied byΦK ,
inconsistent withΦK and defined over the common language
of ΦK and ΦK .

Now consider a tree T = (V, E) with n nodes V =
{1, . . . , n} imposed on Φ. Formally, a sequence of n inter-
polation systems has the T -tree interpolation property [23]

iff for any i ,
∧

(i, j)∈E
IΦ,K j ∧ φi �⇒ IΦ,Ki , where Ki =

{ j | i � j} and i � j iff node j is a descendant of node
i in T . Notice that for the root node in T , Kroot = V and
IΦ,V = false.

Interpolants are useful in various verification domains
including refinement of predicate abstraction [24], and
unbounded model checking [29] to name a few. The fol-
lowing outlines how interpolation is used for function sum-
marization in BMC [39].

Definition 2 An unwound program for a bound ν is a tuple
Pν = (F, fmain), such that F is a finite set of functions,
fmain ∈ F is an entry point and every loop and recursive call
is unrolled (unwound) ν times.

In addition, we define a relation child ⊆ F × F which
relates each function f to all the functions invoked by f .
Relation subtree ⊆ F × F is a reflexive transitive closure
of child. The set F̂ denotes the finite set of unique function
calls, with f̂main being the implicit call to the program entry
point. The relations child and subtree are naturally extended
to F̂ , such that ∀ f̂ , ĝ ∈ F̂ : child(f̂ , ĝ) �⇒ child(f, g),
and subtree is a reflexive transitive closure of the extended
relation child.

Standard software bounded model checkers encode an
unwound program to a special kind of logical formula, called
BMC formula. Although the detailed construction of the
BMC formula can be found in [8], we illustrate it on an
example in Fig. 2. It encodes the original program from

x0 = 0;
y0 = nondet();
z0 = nondet();
if (y0 > 0) {

f_a0 = y0;
f_b0 = z0;

// inline f
g_a0 = f_a0;
g_b1 = f_b0;

// inline g
if (g_a0 < g_b0)

g_ret0 = g_a0;
else

g_ret1 = g_a0 - g_b0 + 1;
g_ret2 = phi(g_ret0, g_ret1);
// end inline g;

f_ret0 = g_ret2;
// end inline f

x1 = f_ret0;
}
x2 = phi(x0, x1);
assert(x2 >= 0);

(a)

x0 = 0 ∧
y0 = nondet0 ∧
z0 = nondet1 ∧
fa0 = y0 ∧
fb0 = z0 ∧
ga0 = fa0 ∧
gb0 = gb0 ∧
gret0 = ga0 ∧
gret1 = ga0 − gb0 + 1 ∧
(y0 > 0 ∧ ga0 < gb0 =⇒

gret2 = gret0) ∧
(y0 > 0 ∧ ga0 ≥ gb0 =⇒

gret2 = gret1) ∧
fret0 = gret2 ∧
x1 = fret0 ∧
(y0 > 0 =⇒ x2 = x1) ∧
(y0 ≤ 0 =⇒ x2 = x0) ∧
x2 < 0

(b)

Fig. 2 BMC formula generation. a SSA form. b BMC formula

123

520 G. Fedyukovich et al.

Fig. 1a. First, the unwound program is converted into the sta-
tic single assignment (SSA) [13] form (Fig. 2a), where each
variable is assigned at most once. A so-called phi-function is
used tomerge values fromdifferent control-flowpaths. Func-
tions are expanded in the call site as if being inlined. Then
a BMC formula (Fig. 2b) is constructed from the SSA form.
Assignments are converted to equalities, path conditions are
computed from branching conditions and used to encode phi-
functions. Negation of the assertion expression guarded by
its path condition (true in this case) is conjuncted with the
BMC formula. If the resulting BMC formula is unsatisfiable
then the assertion holds (for unwinding up to ν). In the other
case, a satisfying assignment identifies an error trace.

2.1 Function summaries

A function summary relates input and output arguments of
a function. Therefore, a notion of arguments of a function
is necessary. For this purpose, we expect to have a set of
program variables V and a domain function D that assigns a
domain (i.e., set of possible values) to every variable fromV.

Definition 3 For a function f , sequences of variables
args fin = 〈in1, . . . , inm〉 and args fout = 〈out1, . . . , outn〉
denote the input andoutput arguments of f ,where ini , out j ∈
V for 1 ≤ i ≤ m and 1 ≤ j ≤ n. In addition, args f =
〈in1, . . . , inm, out1, . . . , outn〉 denotes all the arguments of
f . As a shortcut, we use D(f) = D(in1) × · · · × D(inm) ×
D(out1) × · · · × D(outn).

In the following, we expect that an in–out argument (e.g.,
a parameter passed by reference) is split into one input and
one output argument. Similarly, a global variable accessed
by a function is rewritten into the corresponding input or/and
output argument, depending on the mode of access (i.e., read
or/and write).

Precise behavior of a function can be defined as a relation
over values of input and output arguments of the function as
follows.

Definition 4 (Relational representation) Let f be a func-
tion, then the relation R f ⊆ D(f) is the relational repre-
sentation of the function f , if R f contains all the tuples
v̄ = 〈v1, . . . , v|args f |〉 such that the function f called with
the input values 〈v1, . . . , v|args fin|〉 can finish with the output

values 〈v|args fin|+1
, . . . , v|args f |〉.

Note that Definition 4 admits multiple combinations of
values of the output arguments for the same combination
of values of the input arguments. This is useful to model
nondeterministic behavior, and for abstraction of the pre-
cise behavior of a function. In this work, the summaries are
applied in BMC. For this reason, the rest of the text will be
restricted to the following bounded version of Definition 4.

Definition 5 (Bounded relational representation) Let f be
a function and ν be a bound, then the relation R f

ν ⊆ R f is
the bounded relational representation of the function f , if
R f

ν contains all the tuples representing computations with all
loops and recursive calls unwound up to ν times.

Then a summary of a function is an over-approximation
of the precise behavior of the given function under the given
bound. In other words, a summary captures all the behaviors
of the function and possibly more.

Definition 6 (Summary) Let f be a function and ν be a
bound, then a relation S such that R f

ν ⊆ S ⊆ D(f) is a
summary of the function f up to ν.

The relational view on a function behavior is intuitive but
impractical for implementation. Typically, these relations are
captured by means of logical formulas. Definition 7 makes a
connection between these two views.

Definition 7 (Summary formula) Let f be a function, ν a
bound, σ f a formula with free variables only from args f ,
and S a relation induced by σ f as S = {v̄ ∈ D(f) |
σ f [v̄/args f] |� true}. If S is a summary of the function f
and bound ν, then σ f is a summary formula of the function
f and bound ν.

A summary formula of a function can be directly used
during construction of the BMC formula to represent a func-
tion call. This way, the part of the SSA form corresponding
to the subtree of a called function does not have to be cre-
ated and converted to a part of the BMC formula. Moreover,
the summary formula tends to be more compact. Consid-
ering the example in Fig. 2, using the summary formula
fa0 > 0 �⇒ fret0 > 0 for the function f yields the
BMC formula in Fig. 3.

The important property of the resulting BMC formula is
that if it is unsatisfiable (as in Fig. 3) then also the formula
without summaries (as in Fig. 2b) is unsatisfiable. Therefore,
no errors are missed due to the use of summaries.

Lemma 1 Let φ be a BMC formula of an unwound program
P for a given bound ν, and let φ′ be a BMC formula of P and
ν, with some function calls substituted by the corresponding
summary formulas bounded by ν. If φ′ is unsatisfiable then
φ is unsatisfiable as well.

2.2 Interpolation-based summaries

Among different possible ways to obtain a summary for-
mula, we consider a way to extract summary formulas using
Craig interpolation. To use interpolation, the BMC formulaφ

should have the form
∧

f̂ ∈F̂ φ f̂ such that every φ f̂ symboli-

cally represents the body of the function call f̂ .Moreover, the

123

Flexible SAT-based framework for incremental bounded upgrade checking 521

x0 = 0 ∧
y0 = nondet0 ∧
z0 = nondet1 ∧
fa0 = y0 ∧
fb0 = z0 ∧
(fa0 > 0 =⇒ fret0 > 0) ∧
x1 = fret0 ∧
(y0 > 0 =⇒ x2 = x1) ∧
(y0 ≤ 0 =⇒ x2 = x0) ∧
x2 < 0

Fig. 3 BMC formula created after substituting the summary fa0 >

0 �⇒ fret0 > 0 for function f

x0 = 0 ∧
y0 = nondet0 ∧
z0 = nondet1 ∧
fa0 = y0 ∧
fb0 = z0 ∧
(y0 > 0 callstart f̂) ∧
x1 = fret0 ∧
(y0 > 0 =⇒ x2 = x1) ∧
(y0 ≤ 0 =⇒ x2 = x0) ∧
(x2 < 0 error f̂main

)

(a)

ga0 = fa0 ∧
gb0 = fb0 ∧
(callstart f̂ callstart ĝ) ∧
(callstart f̂ =⇒ fret0 = gret0)

gret1 = ga0 ∧
gret2 = ga0 − gb0 + 1 ∧
(callstart ĝ ∧ ga0 < gb0 =⇒

gret0 = gret1) ∧
(callstart ĝ ∧ ga0 ≥ gb0 =⇒

gret0 = gret2)

(b)

Fig. 4 Partitioned bounded model checking formula. a formula φ f̂main
.

b formulas φ f̂ and φĝ

symbols of φ f̂ shared with the rest of the formula correspond
only to the input and output program variables.

The formula in classical BMC is generally constructed
monolithically: all the function calls are inlined, and the vari-
ables from the calling context tend to leak into the formulas
of the called function as a part of the path condition. For
example in Fig. 2b, the variable y0 from the calling con-
text of the function f appears in the encoding of the body
of the function g, called inside f. To achieve the desired
form, we generate the parts of the formula corresponding to
the individual functions in separation and bind them together
using a boolean variable callstart f̂ for every function call.
Intuitively, callstart f̂ evaluates to true iff the corresponding

function call f̂ is reached. Another special variable is error f̂ ,

which is constrained to be true iff the function call f̂ results
in an error. Consequently, error f̂main

encodes reachability of
an error in the entire program. We call the resulting formula
a partitioned bounded model checking (PBMC) formula.

Creation of a PBMC formula for the example from Fig. 2
is shown on Fig. 4. When the functions f and g are called,
the correspondingvariables callstart f̂ and callstartĝ are true.

Therefore, the formula of the calling context (Fig. 4a) makes
it equivalent to the path condition of the call.

If the resulting PBMC formula is unsatisfiable, we com-
pute multiple Craig interpolants from a single proof of
unsatisfiability to get the set of function summaries. The
details of the summarization procedure are given in Sect. 2.3.

2.3 Summarization algorithm

Algorithm 1 outlines the method for constructing function
summaries in BMC.
PBMC formula construction (line 1).

The PBMC formula is created in the recursive method
CreateFormula as follows.

CreateFormula(f̂) � φ f̂ ∧
∧

ĝ∈F̂ :child(f̂ ,ĝ)

CreateFormula(ĝ)

For a function call f̂ ∈ F̂ , the formula is constructed by
conjunctionof the partitionφ f̂ reflecting thebodyof the func-
tion and a separate partition for every nested function call.
The logical formula φ f̂ is constructed from the SSA form of
the body of the function f . The bodies of the nested calls
are encoded into separate logical formulas (using a recursive
call toCreateFormula) and thus separate partitions in the
resulting PBMC formula.
Summarization (line 6). If the PBMC formula is unsatisfi-

able, i.e., the program is safe, the algorithm proceeds with
interpolation. The function summaries are constructed as
interpolants from a proof of unsatisfiability of the PBMC for-
mula. In order to generate the interpolant, for each function
call f̂ the PBMC formula is split into two parts. First, φsubtree

f̂

corresponds to the partitions representing the function call f̂
and all the nested functions. Second, φenv

f̂
corresponds to the

context of the call f̂ , i.e., to the rest of the encoded program.

φsubtree
f̂

�
∧

ĝ∈F̂ :subtree(f̂ ,ĝ)
φĝ

φenv
f̂

� error f̂main
∧

∧

ĥ∈F̂ :¬subtree(f̂ ,ĥ)

φĥ

Therefore, for each function call f̂ , the Interpolate
method splits the PBMC formula into A ≡ φsubtree

f̂
and B ≡

φenv
f̂

and synthesizes an interpolant I f̂ for (A, B), such that

I f̂ satisfies Definition 1. Throughout the article, wewill refer

to I f̂ as a summary of function call f̂ .
The generated interpolants are associated with the func-

tion calls by a mapping σ : F̂ �⇒ S, i.e., σ(f̂) = I f̂ .

123

522 G. Fedyukovich et al.

Algorithm 1: Function summarization in BMC

Input: Unwound program: Pν = (F, fmain) with function calls F̂
Output: Verification result: {SAFE, UNSAFE}, summaries

mapping: σ
Data: PBMC formula: φ, refutation: proof

1 φ ← CreateFormula(f̂main) ∧ error f̂main
;

2 result, proof ← Solve(φ) ; // run SAT solver

3 if result = SAT then
4 return UNSAFE, ∅;

5 foreach f̂ ∈ F̂ do // extract summaries
6 σ(f̂) ← Interpolate(proof , f̂);

7 return SAFE, σ ;

Example Assume the program on Fig. 1a is verified byAlgo-
rithm 1. It is encoded into the PBMC formula (Fig. 4) and
the PBMC formula is bit-blasted and passed to a SAT solver.
After the SAT solver proved unsatisfiability, the proof is used
to create the following summaries of the functions main, f,
g:

σ(main) = x2 > 0 (1)

σ(f) = (fa0 > 0) �⇒ (fret0 > 0) (2)

σ(g) = (ga0 > 0) �⇒ (gret0 > 0) (3)

Note that the summary of function main is expressed
over variable x2, the only common one between the body
of the function and the assertion expression. The summaries
of functions f and g are expressed over their input and out-
put variables respectively (i.e., the common language of the
function and its caller). Furthermore, formulas (2) and (3)
are semantically equivalent, but syntactically different.

Refinement. When the same program is being verified again

(e.g., with respect to a different assertion), the exact function
calls can be substituted by the summaries constructed before.
In this case, the method CreateFormula of Algorithm 1
is replaced by the following:

CreateFormula(f̂) � φ f̂ ∧
(∧

ĝ∈F̂ :child(f̂ ,ĝ)∧Ω(ĝ)=inline

CreateFormula(ĝ)

)

(∧

ĝ∈F̂ :child(f̂ ,ĝ)∧Ω(ĝ)=sum

σ(ĝ)

)

where a substitution scenario Ω : F̂ �⇒ {inline, sum,

havoc} determines how each function call should be handled.
Initially, Ω depends on the existence of function summaries.
If a summary of a function f̂ exists, it substitutes the body,
i.e., Ω(f̂) = sum. If not, f̂ is either represented precisely,

i.e.,Ω(f̂) = inline (eager scenario), or abstracted away, i.e.,
Ω(f̂) = havoc (lazy scenario).

If the PBMC formula constructed using Ω is satisfiable,
it may be due to too coarse summaries. Refinement, first,
identifies which summaries affect satisfiability of the PBMC
formula. This is done by analyzing the occurrence of sum-
maries along an error trace: the corresponding callstart f̂
variable should be evaluated to true. Second, the refined sub-
stitution scenario Ω ′ is constructed from Ω by assigning
those function calls to inline. Finally, Algorithm 1 should
proceed to the next iteration using Ω ′. If no summary is
identified for refinement, the error is real.

3 Upgrade checking

This section describes our solution to the upgrade checking
problem, the incremental summary-based BMC algorithm.
As an input, the algorithm takes two versions of the program,
old and new, and the function summaries of the old version.
If the old version or its function summaries are not available
(e.g., for the new version of the program), a bootstrapping
verification (Algorithm 1) run is needed to analyze the entire
new version of the program and to generate the summaries,
which are then maintained during the incremental runs.

The incremental upgrade check is performed in two
phases. First the two versions are compared at the syntac-
tical level. This allows identification of functions that were
modified and whose summaries need rechecking (or they
even do not exist yet). An additional output of this phase is
an updated mapping σ , which maps function calls in the new
version to the old summaries.

For example, Fig. 5a depicts an output of the preprocess-
ing, i.e., a calltree of a newversionwith two changed function
calls (gray fill). Their summaries need rechecking. In this
case, all function calls are mapped to the corresponding
old summaries (i.e., functions were possibly removed or
modified, but not added). Summaries of all the function
calls marked by a question mark may yet be found invalid.
Although the code of the corresponding functions may be
unchanged, some of their descendant functionswere changed
andmay eventually lead to invalidation of the ancestor’s sum-
mary.

In the second phase, the actual upgrade check is per-
formed. Starting from the bottom of the calltree, summaries
of all functions marked as changed are rechecked. That is,
a local check is performed to show that the corresponding
summary is still a valid over-approximation of the function’s
behavior. If successful, the summary is still valid and the
change (e.g., rightmost node in Fig. 5b) does not affect cor-
rectness of the new version. If the check fails, the summary is
invalid for the new version and the check needs to be propa-
gated to the caller, towards the root of the calltree (Fig. 5b,c).

123

Flexible SAT-based framework for incremental bounded upgrade checking 523

Fig. 5 Progress of the upgrade
checking algorithm; the faded
parts of the calltree were not yet
analyzed by the algorithm

valid summary nondet summary
affected summary

validated/new summary
invalid summary

(c)(b)(a)

changed function

When the check fails for the root of the calltree (i.e., program
entry point f̂main), a real error is identified and reported to
the user.

In the rest of the section, we present this basic algorithm
in more detail, describe its optimization with a refinement
loop and prove its correctness. Note that we describe the
upgrade checking algorithm instantiated in the context of
BMC. However, the algorithm is more general and can be
applied in other approaches relying on over-approximative
function summaries.

3.1 Basic upgrade checking algorithm

We proceed by presenting the basic upgrade checking algo-
rithm (Algorithm 2). As an input, Algorithm 2 takes the
unwound program together with the old and new versions
of the SSA form for each function call, and a mapping σ

from the function calls in the new version to the summaries
from the old version. We denote the domain of a mapping
by dom. If dom(σ) = ∅, the algorithm is inapplicable, and
instead, the bootstrapping (Algorithm 1) should be run. Thus,
we assume that dom(σ) contains at least a summary for f̂main.

The algorithm starts with computing a set changed that
collects the function calls corresponding to the functions, on
which the old and the new versions disagree (line 1). In our
implementation,we syntactically compare the corresponding
SSA forms.

The algorithm maintains a worklist WL of function calls
that require rechecking. Initially,WL is populated by the ele-
ments of the previously computed set changed (line 2). Then
the algorithm repeatedly removes a function call f̂ fromWL
and attempts to check validity of the corresponding summary
in the new version. Note that the algorithm picks f̂ so that
no function call in the subtree of f̂ occurs in WL (line 5).
This ensures that summaries in the subtree of f̂ were already
analyzed (shown either valid or invalid).

The actual summary validity check occurs on lines 8–9.
First, the PBMC formula encoding the subtree of f̂ (with
respect to the newversion of theSSA form) is constructed and

stored as φ. Then, conjunction of φ with a negated summary
of f̂ is passed to a SAT solver for the satisfiability check. If
unsatisfiable, the summary is still a valid over-approximation
of the function’s behavior.Here, the algorithmobtains a proof
of unsatisfiabilitywhich is used later to create new summaries
to replace the invalid or missing ones (lines 11–12). If sat-
isfiable, the summary is not valid for the new version (line
13). In this case, either a real error is identified (lines 15–16)
or the check is propagated to the function caller (line 18).

Note that if the chosen function call f̂ has no summary, the
check is propagated to the caller immediately (line 14) and
the summary of f̂ is created later when the check succeeds
for some ancestor function call of f̂ .

Assuming the SAT solver returns, the algorithm always
terminates with either SAFE or UNSAFE value. Creation
of each PBMC formula terminates because they operate on
the already unwound program. The algorithm terminates
with SAFE result (line 19) when all function calls requiring
rechecking were analyzed (line 4). Either all the summaries
possibly affected by the program change are immediately
shown to be still valid over-approximations (see Fig. 6a) or
some are invalid but the propagation stops at a certain level
of the calltree and new valid summaries are generated (see
Fig. 6b). The algorithm terminates withUNSAFE result (line
16), when the check propagates to the calltree root, f̂main, and
fails (see Fig. 6c). In this case, a real error is encountered and
reported to the user.

Example As a demonstration of the upgrade checking algo-
rithm, consider the upgraded version of the running example
in Fig. 1b. It is created by lifting an increment operator one
level up on the calltree (i.e, from function g to its caller,
function f). Our approach first checks if σ (g) still over-
approximates g.

In our example, the summary check of σ (g) does not suc-
ceed. As a witness of this, one can chose equal positive
numbers to be the values for the function parameters. For
example, if ga0 = gb0 then gret0 = 0 which contradicts the
formula (3).

123

524 G. Fedyukovich et al.

Fig. 6 Sample outcomes of
Algorithm 2; analyzing the
faded parts of calltree is not
required to decide safety of the
upgrade

(c)(b)(a)

Algorithm 2: Upgrade checking algorithm
Input: Unwound program: Pν = (F, fmain) with function calls

F̂ , SSA forms of both versions of Pν : codeold : F̂ →
SSA and codenew : F̂ → SSA, summaries mapping:
σ : F̂ → S

Output: Verification result: {SAFE, UNSAFE}, actualized
summaries mapping: σ

Data: temporary sets of function calls: changed,WL ⊆ F̂ ,
PBMC formula: φ, set of invalid summaries: invalid ⊆ S,
refutation: proof

1 changed ← { f̂ | f̂ ∈ F̂ , s.t. codeold(f̂) �≡ codenew(f̂)};
2 WL ← changed;
3 invalid ← ∅;
4 while (WL �= ∅) do
5 choose f̂ ∈ WL, s.t. ∀ĝ ∈ WL : ¬subtree(f̂ , ĝ);

6 WL ← WL \ { f̂ };
7 if (f̂ ∈ dom(σ)) then
8 φ ← CreateFormula(f̂);

9 result, proof ← Solve(φ ∧ ¬σ(f̂));

10 if (result = UNSAT) then
11 for (ĝ ∈ F̂ : subtree(f̂ , ĝ) ∧

(ĝ /∈ dom(σ) ∨ σ(ĝ) ∈ invalid)) do
12 σ(ĝ) ← Interpolate(proof , ĝ);

13 else invalid ← invalid ∪ {σ(f̂)};
14 if (f̂ /∈ dom(σ) ∨ σ(f̂) ∈ invalid) then
15 if (f̂ = f̂main) then
16 return UNSAFE, ∅; // real error found

17 else
18 WL ← WL ∪ {parent(f̂)}; // check the parent

19 return SAFE, σ ; // new version is safe

Then the algorithm proceeds with checking validity of
σ (f) and proves it. During this check, the new behavior of g
was encoded and its old summary (3) was not used. Given the
proof of validity of σ (f), we apply interpolation and update
σ (g) as follows:

σ(g) = (ga0 > 0) �⇒ (gret0 ≥ 0) (4)

Since there was no change in function main, the upgrade
checking terminates. The updated summary (4) is going to be

stored instead of (3) and used when another program version
arrives.
Further discussion. The presented approach can also be
viewed as a technique for reusing refutation proofs from one
unsatisfiable propositional formula to speed up SAT checks
for a slightly different formula. For instance, a large num-
ber of tools and algorithms within verification and program
analysis makemany quick calls to SAT solvers. A large num-
ber of these calls are often similar. However, to apply the idea
of Algorithm 2 to this setting, an additional input (a tree T
that describes relationships between the subformulas) should
be provided. In the scope ofmodel checking, T naturally cor-
responds to the program calltree, but in a general setting, it
could be difficult to discover it. We leave this task for a future
work.

3.2 Optimization and refinement

To optimize the upgrade check, old function summaries can
be used to abstract away the function calls. Consider the
validity check of a summary of a function call f̂ . Suppose
there exists a function call ĝ in the subtree of f̂ together with
its old summary, already shownvalid. Then this summary can
be substituted for ĝ, while constructing the PBMC formula
of f̂ (line 8). This way, only a part of the subtree of f̂ needs
to be traversed and the PBMC formula φ can be substantially
smaller compared to the encoding of the entire subtree.

If the resulting formula is satisfiable, it can be either due
to a real violation of the summary being checked or due to
too coarse summaries used to substitute some of the nested
function calls. In our upgrade checking algorithm, this is han-
dled in a similar way as in the refinement of the standalone
verification by analyzing the satisfying assignment. The set
of summaries used along the counter-example is identified.
Then it is further restricted by dependency analysis to only
those possibly affecting the validity. Every summary in the
set is marked as inline in the next iteration. If the set is empty,
the check fails and the summary is shown invalid. This refine-
ment loop (replacing lines 8–9 in Algorithm 2) iterates until
validity of the summary is decided.

This optimization does not affect termination of the algo-
rithm (in each step at least one of the summaries is refined).

123

Flexible SAT-based framework for incremental bounded upgrade checking 525

Regarding complexity, in the worst case scenario, i.e., when
a major change occurs, the entire subtree is refined one sum-
mary at a time for each node of the calltree. This may result
in a number of SAT solver calls quadratic in the size of the
calltree, where the last call is as complex as the verification
of the entire program from scratch. This article focuses on
incremental changes and thus for most cases there is no need
for the complete calltree traversal. Moreover, the quadratic
number of calls can be easilymitigated by limiting the refine-
ment laziness using a threshold on the number of refinement
steps and disabling this optimization when the threshold is
exceeded.

3.3 Correctness

This section proves the correctness of the upgrade checking
algorithm, i.e., given an unwinding bound ν, the algorithm
always terminates with the correct answer with respect to
ν. Note that throughout this section, program safety is with
respect to the unwinding bound ν provided by the user.1 Also,
we use σ f̂ as a shortcut for σ(f̂). The key insight for the
correctness is that after each successful run of Algorithm 2
(i.e., when SAFE is returned), the following two properties
are maintained.

error f̂main
∧ σ f̂main

�⇒ false (5)

Given each function call f̂ and its children calls ĝ1, . . . , ĝn :

σĝ1 ∧ · · · ∧ σĝn ∧ φ f̂ �⇒ σ f̂ (6)

The following theorem is required to prove the correctness
of Algorithm 2. It considers the tree-interpolation property of
interpolants generated from the same resolution proof using
Pudlák’s algorithm [33].

Theorem 1 Let X1 ∧ · · · ∧ Xn ∧ Y ∧ Z be an unsatisfiable
formula and let IX1 , . . . , IXn , and IXY be Craig interpolants
for pairs (X1, X2 ∧ · · · ∧ Xn ∧Y ∧ Z), . . . , (Xn, X1 ∧ · · · ∧
Xn−1 ∧ Y ∧ Z), and (X1 ∧ · · · ∧ Xn ∧ Y, Z) respectively,
derived using Pudlák’s algorithm over a resolution proof P.
Then (IX1 ∧ · · · ∧ IXn ∧ Y) �⇒ IXY .

Wewill first state and prove a version ofTheorem1 limited
to two partitions and then generalize.

Lemma 2 Let X ∧ Y ∧ Z be an unsatisfiable formula and
let IX , IY , and IXY be Craig interpolants for pairs (X,Y ∧
Z), (Y, X ∧ Z), and (X ∧ Y, Z), respectively, derived using
Pudlák’s algorithm over a resolution proof P. Then (IX ∧
IY) �⇒ IXY .

1 We expect the same ν for the old and new version. To ensure
correctness, if the user increases the bound for a specific loop, the cor-
responding function has to be handled as if modified.

Table 1 Variable classes; a, b: x occurs only in A, resp. B, ab: x occurs
in both A and B

x in Class of x for partial interpolant

IX IY IXY

X a b a

Y b a a

Z b b b

X + Y ab ab a

X + Z ab b ab

Y + Z b ab ab

X + Y + Z ab ab ab

Proof By structural induction over the resolution proof, we
show that (IX ∧ IY) �⇒ IXY for all partial interpolants
at all nodes of the proof P. As a base case, there is a clause
C and we need to consider three cases: C ∈ X , C ∈ Y , and
C ∈ Z . When C ∈ X , we have (false ∧ true) �⇒ false,
which holds. The case C ∈ Y is symmetric. When C ∈ Z ,
we have (true ∧ true) �⇒ true, which again obviously
holds.

As an inductive step, we have a nodeC1∨C2 representing
resolution over a variable x with parent nodes x ∨ C1 and
¬x ∨ C2. From the inductive hypothesis, we have partial
interpolants I 1X , I

1
Y , and I 1XY for the node x ∨ C1 so that

(I 1X ∧ I 1Y) �⇒ I 1XY and partial interpolants I 2X , I
2
Y , and

I 2XY for the node ¬x ∨ C2 so that (I 2X ∧ I 2Y) �⇒ I 2XY . We
need to consider the different cases of coloring of x based on
its occurrence in different subsets of the parts of the formula
X ∧ Y ∧ Z . The cases are summarized in Table 1.

In case x ∈ X , we have:

IX ≡ I 1X ∨ I 2X , IY ≡ I 1Y ∧ I 2Y

IXY ≡ I 1XY ∨ I 2XY

Using the inductive hypothesis, we have ((I 1X ∨ I 2X) ∧
I 1Y ∧ I 2Y) �⇒ (I 1XY ∨ I 2XY), which is the required claim
(IX ∧ IY) �⇒ IXY . The case x ∈ Y is symmetric.

In case x ∈ Z , we have:

IX ≡ I 1X ∧ I 2X , IY ≡ I 1Y ∧ I 2Y

IXY ≡ I 1XY ∧ I 2XY

Using the inductive hypothesis, we have (I 1X ∧ I 2X ∧ I 1Y ∧
I 2Y) �⇒ (I 1XY ∧ I 2XY), which is the required claim (IX ∧
IY) �⇒ IXY .

In case x ∈ X + Y + Z , using sel(x, S, T) as a shortcut
for (x ∨ S) ∧ (¬x ∨ T), we get:

IX ≡ sel(x, I 1X , I 2X), IY ≡ sel(x, I 1Y , I 2Y)

IXY ≡ sel(x, I 1XY , I 2XY)

123

526 G. Fedyukovich et al.

Using the inductive hypothesis and considering both pos-
sible values of x , we have (sel(x, I 1X , I 2X) ∧ sel(x, I 1Y , I 2Y))

�⇒ sel(x, I 1XY , I 2XY), which is the required claim (IX ∧
IY) �⇒ IXY . The other cases where x ∈ X + Y or
x ∈ X + Z or x ∈ Y + Z are subsumed by this case as
(P ∧ Q) �⇒ sel(x, P, Q) �⇒ (P ∨ Q). Structural
induction yields (IX ∧ IY) �⇒ IXY for the root of the
proof tree and for the final interpolants. ��

When we apply the result of Lemma 2 iteratively, we
obtain a generalized form for cases using multiple inter-
polants mixed with original parts of the formula, i.e., a proof
of Theorem 1.

Proof By iterative application of Lemma 2, we get (IX1 ∧
· · · ∧ IXn ∧ IY) �⇒ IXY , where IY is Craig interpolant
for the pair (Y, X1 ∧ · · · ∧ Xn ∧ Z) derived using Pudlák’s
algorithm over the resolution proof P. Using Y �⇒ IY , we
obtain the claim (IX1 ∧ · · · ∧ IXn ∧ Y) �⇒ IXY . ��

In the following two lemmas, we first show that properties
(5, 6) hold after an initial whole-program check. Then we
show that the properties are maintained between individual
successful upgrade checks.

Lemma 3 After an initial whole-program check, the proper-
ties (5, 6) hold over the calltree annotated by the generated
interpolants.

Proof Recall that the summaries are constructed only when
the program is safe. In other words, error f̂main

∧φsubtree
f̂main

�⇒
false. Thus, by definition of interpolation, error f̂main

∧ I f̂main
is obviously unsatisfiable, i.e., the property (5) holds. The
property (6) follows from Theorem 1. It suffices to choose
Xi ≡ φsubtree

ĝi
for i ∈ 1..n, Y ≡ φ f̂ , and Z ≡ φenv

f̂
. ��

Lemma 4 Properties (5, 6) are reestablished whenever the
upgrade checking algorithm successfully finishes (SAFE is
returned).

Proof Property (5) could be affected onlywhen the summary
of f̂main is recomputed (line 10). However, this happens only
when we are checking the root of the tree and, at the same
time, the check succeeds (line 12). Therefore, by definition
of interpolation, the property (5) is maintained.

If Algorithm 2 successfully finishes, then each function
call f̂ with an invalidated summary must have been assigned
a new summary σ f̂ (line 12) when some of its ancestors

ĥ passed the summary validity check (line 10). Otherwise,
the invalidation would propagate to the root of the calltree
and eventually produce anUNSAFE result. Therefore, it suf-
fices to show that the newly generated interpolants satisfy
the property (6). For this purpose, we can use the same argu-
ment as in the proof of Lemma3, again relying onTheorem1.

Note that if any already valid summaries are used in the sum-
mary validity check, we keep those (see condition on line 11)
instead of generating new ones. This is sound as we know
that σĝi �⇒ IXi , which is consistent with our claim. Ana-
logically, we also keep the old summary σĥ for the root of
the subtree that passed the check and caused generation of
the new summaries. This is sound as Iĥ �⇒ σĥ is implied
by the summary validity check. ��

We now show that the properties (5, 6) are strong enough
to show that the whole program is safe.

Theorem 2 When the program calltree annotated by inter-
polants satisfies the properties (5, 6), then error f̂main

∧
φsubtree
f̂main

�⇒ false (i.e., the whole program is safe).

Proof Property (5) yields error f̂main
∧ σ f̂main

�⇒ false.
Repeated application of the property (6) to substitute all inter-
polants on the right hand side yields the claim error f̂main

∧
φsubtree
f̂main

�⇒ false. ��
We proved correctness of the upgrade checking algorithm

in the context of bounded model checking and interpolation-
based function summaries. The upgrade checking algo-
rithm, however, is not bound to this context and can be
employed also in other verification approaches based on
over-approximative function summaries (including the use
of other interpolation algorithms). The key ingredient of the
correctness proof, property (6), has to be ensured for the par-
ticular application.

4 eVolCheck tool architecture

Wedeveloped a boundedmodel checker eVolCheck, which
focuses on incremental verification of software written in C.
It handles an external summary database to store its outputs,
which will be given as inputs for verification of each con-
sequent version. eVolCheck communicates with FunFrog
BMC [37] for bootstrapping (to create function summaries of
the original code) and exploits its interfacewith thePeRIPLO
solver [34] to solve a PBMC formula, encoded proposition-
ally, and to generate effective interpolants using different
algorithms. Altogether, the tool implements twomajor tasks:
syntactic difference check, and the actual upgrade check.
eVolCheck binaries, benchmarks used for evaluation, a
tutorial explaining how to use eVolCheck and explanation
of the most important parameters are available online for
other researchers.2

This section focuses on the actual implementation of
the eVolCheck tool, including an Eclipse plug-in, which
facilitates its use, together with details of its industrial and
academic applications.

2 http://verify.inf.usi.ch/evolcheck.

123

http://verify.inf.usi.ch/evolcheck

Flexible SAT-based framework for incremental bounded upgrade checking 527

Fig. 7 eVolCheck

architecture overview

4.1 Tool architecture

This section presents the architecture of the eVolCheck

tool as depicted in Fig. 7. The tool uses the goto- cc com-
piler provided by the CProver framework.3 The goto- cc
compiler produces an input model of the source code of C
program (called goto-binary) suitable for automated analy-
sis. Each version of the analyzed software is compiled using
goto- cc separately.
eVolCheck. The eVolCheck tool itself consists of a com-
parator, a calltree traversal, an upward refiner and a summary
checker. The comparator identifies the changed functions
calls. Note that if a function call was newly introduced or
removed (i.e., the structure of the calltree is changed), it is
considered as change in the parent function call. The calltree
traversal attempts to check summaries of all the modified
function calls bottom–up. The upward refiner identifies the
parent function call to be rechecked when a summary check
fails. The summary checker performs the actual check of
a function call against its summary. In turn, it consists of a
PBMC encoder that takes care of unwinding loops and recur-
sion, SSA-generation and bit-blasting, a solver wrapper that
takes care of communication with the solver and the inter-
polator (PeRIPLO), and a downward refiner that identifies
nested functions to be refined when a summary check fails
possibly due to too coarse summaries. Additionally, there are
two optional optimizations in eVolCheck, namely slicing
and summary optimization. The first can reduce the size of
the SSA form using slicing with respect to variables irrele-
vant to the assertions being checked. The second can compare
the existent summaries for the same function and the same
bound, and keep the more precise one.
Goto-diff. For comparing the two models, of the previous
and the newly upgraded versions, we implemented a tool
called goto- diff. The tool accepts two goto-binary models

3 http://www.cprover.org.

and analyzes them function by function. the longest com-
mon sub-sequence algorithm is used to match the preserved
instructions and to identify the changed ones.

It is crucial that goto- diffworks on the level of themod-
els rather than on the level of the source files. This way, it
is able to distinguish some of the inconsequential changes in
the code. Examples include changes in the order of function
declarations and definitions, text changes in comments and
white spaces, and simpler cases of refactoring. These changes
are usually reported as semantic changes by the purely syn-
tactic comparators (e.g., the standard diff tool). Moreover, as
goto- diff works on the goto-binary models (i.e., after the
C pre-processors) it correctly interprets also changes in the
pre-processor macros.
Solver and interpolation engine. As mentioned in Sect. 3,
to guarantee correctness of the upgrade check, eVolCheck
requires a solver that is able to generate multiple interpolants
with the tree-interpolation property from a single satisfiabil-
ity query. For this reason, we use the interpolating solver,
PeRIPLO, which performs proof-logging and provides API
for convenient specification of different partitionings of the
given formula corresponding to the functions in the calltree.
Currently, for using PeRIPLO, the PBMC formulas are bit-
blasted to the propositional level. As a result, eVolCheck
provides bit-precise reasoning.

eVolCheck has been designed to work with any inter-
polating solvers (We used in some of our experiments
OpenSMT [6], for example). The advantage of using
PeRIPLO, which we experimented with, is its ability to
adjust interpolation by (1) proof manipulation and com-
pression [3,5,11,20,35], (2) variation of the strength of
the interpolants, by choosing the labeled interpolation sys-
tems [15]. The architecture PeRIPLO is depicted on Fig. 8.
Eclipse plug-in. In order to make the tool as user-friendly as
possible, we integrated eVolCheck in the Eclipse devel-
opment environment in the form of a plug-in. For a user,
developing a program using the Eclipse environment, the

123

http://www.cprover.org

528 G. Fedyukovich et al.

Fig. 8 PeRIPLO architecture overview

eVolCheck plug-in makes it possible to verify changes as
part of the development flow for each version of the code.
If the version history of the program is empty, the boot-
strapping (initial verification) is performed first. Otherwise,
eVolCheck verifies the programwith respect to the last safe
version. Graphical capabilities of Eclipse contain a variety
of helpers, allowing configuration of the verification envi-
ronment.

The plug-in is developed using plug-in development envi-
ronment (PDE), a tool-set to create, develop, test, debug,
build and deploy Eclipse plug-ins. It is built as an external
jar-file, which is loaded together with Eclipse. The plug-in
follows the paradigm of Debugging components, and pro-
vides the separate perspective, containing aviewof the source
code, highlighted lines, reported by goto- diff, visualiza-
tion of the error traces and change impact, computed for
each upgrade checking of the program.

At the low level, the plug-in delegates the verification tasks
to the corresponding command line tools goto- cc, goto-
diff and eVolCheck. It maintains a database and external
file storage to keep goto-binaries, summaries and other meta-
data of each version of each program verified earlier.

1. The user develops a current version of the program. In
order to provide verification condition, the assertions
should be placed in the code or generated automatically
by the tool. The examples of such assertions are division
by zero, null-pointers dereferencing, array out-of-bounds
checks.

2. The user opens the debug configurations window and
chooses the file(s) to be checked and specifies the verifi-
cation parameters (Fig. 9): unwinding bound, automatic
generation of assertions and interpolation strategy. Our
plugin then automatically creates themodel (goto-binary)
from the selected source files and keeps working with it.

3. The plug-in searches for the last safe version of the
current program (goto-binary created from the same
selection of source files and the same unwinding num-
ber). If no such a version is found, it performs the
initial bootstrapping check. Otherwise, plug-in restores
the summaries and outdated goto-binary from the sub-
sidiary storage. eVolCheck then identifies the modified
code by comparing calltrees for both the current and the
previous versions. Themodified lines of code are marked
(Fig. 10) for the user review.Note thatmodified codemay
also contain some new assertions, manually or automat-
ically inserted. These assertions will be also considered
in the next step.

4. Then the localized upgrade check is performed. If it is
unsuccessful, the plug-in reports violation to the user and
provides an error trace (Fig. 11). The user can traverse
the error trace line by line in the original code and see
the valuation of all variables in all states along the error
trace. If desired, the user fixes the reported errors and
continues from Step 3.

5. In case of successful verification, the positive result is
reported (Fig. 12). The plug-in stores the set of valid and
newsummaries and the goto-binary in the subsidiary stor-
age. In addition, graphical visualization of the change
impact in the form of a coloured calltree is available
(Fig. 13).

Default parameters. By default, the tool runs without slic-
ing, without summary optimization, does not automatically
generate assertions and uses the Pudlák’s algorithm for inter-
polation without proof reduction.

5 Evaluation

To demonstrate the applicability and advantages of
eVolCheck, we provide evaluation details of several test
cases. p2p_n were provided by industrial partners for
which the changes were extracted from the project reposito-
ries.diskperf_n,floppy_n,kbfiltr_nwere derived
from Windows device driver library. The changes (with dif-
ferent level of impact, from adding an irrelevant line of
code to moving a part of functionality between functions)
were introduced manually there. The rest of the bench-
marks are crafted programs with arithmetic computations.
Pre-processing the code with the goto- cc tool generated
a collection of goto-binaries that were then processed with
eVolCheck focusing the validation to particular functional
sub-projects.

Table 2 represents results of the experiments. Each bench-
mark is shown in a separate row, which summarizes statistics
about the initial verification and verification of an upgrade.

123

Flexible SAT-based framework for incremental bounded upgrade checking 529

Fig. 9 eVolCheck configuration window

I nst (#) measures the original source code size as a number
of instructions in the goto-binary (this is the more accurate
parameter than the usual “lines of code” since it does not con-
tain declarations of the variables, empty lines of code and so
on). Total(#) represents the number of function calls in the
program, and Di f f (#) is the number of changed function
calls, identified by goto- diff.

Time (in seconds) for running goto- diff [Di f f (s)]
and for generation of the interpolants [I tp(s)] represents
the computational overhead of the upgrade checking pro-
cedure, and included to the total running time [Total(s)] of
eVolCheck. Note that interpolation can not be performed
for the buggy upgrades (marked as “err”), for which the cor-
responded PBMC formula is satisfiable; or for the identical
upgrades (marked as “id”), for which goto- diff returned
empty set of changed function calls.

To show advantages of eVolCheck, for each change we
calculated the speedup (Speedup) of the upgrade checkversus
standalone verification of the changed code fromscratch, per-
formed only for the sake of comparison and thus not shown
in the table. Finally, the number of invalidated summaries
(due to the change) is listed in I nv(#) column.
Discussion. Our evaluation demonstrates good performance
of eVolCheck. In particular, the experiments show high

effect of upgrade checking for safe upgrades since they
result in a small number of refinements (both, upward and
downward). Moreover, if the changed function are located
deeper in the calltree, this generally leads to a small num-
ber of invalidated summaries, as witnessed by the ratio
I nv(#)/Total(#). For example, consider the case, where
summaries of all changed functions were proven valid.

eVolCheck is less efficient in case of upgrades, which
affect a large amount of function calls located on the different
levels of the calltree. When the upgrade introduced a bug,
it will cause an increasing amount of upward refinements.
However, sometimes even a single buggy change introduced
in a higher level of the calltree, might be verified efficiently.

In classical model checking, confirming the absence of
bugs is usuallymore expensive (since it requires the full state-
space search) than detecting the bugs (where the search can
be terminated once a counter-example is detected). On the
contrary, eVolCheck is less time- and resource-demanding
in proving the absence of bugs. Thus, it might make sense to
run eVolCheck and a classical model checker (e.g., Fun-
Frog [17,19,37]) in parallel, and terminate both processes
whenever one of them returned a result.

The use of goto- diff has been particularly useful since it
managed to detect test caseswith small syntactic changes that

123

530 G. Fedyukovich et al.

Fig. 10 eVolCheck invokes goto- diff (changed lines are highlighted)

Fig. 11 eVolCheck error trace

123

Flexible SAT-based framework for incremental bounded upgrade checking 531

Fig. 12 eVolCheck successful verification report

Fig. 13 eVolCheck change impact

123

532 G. Fedyukovich et al.

Table 2 eVolCheck experimental evaluation

Benchmark Bootstrapping Upgrade check

Name Inst (#) Itp (s) Total (s) Diff (#) Diff (s) Itp (s) Total (s) Inv (#) Total (#) Speedup (×)

floppy 1 2434 1.455 556.231 21 1.188 0 1.304 0 187 223.21

p2p 1 276 0.633 76.884 0 0.018 id 0.018 0 8 4271.33

p2p 3 358 0.498 40.618 1 0.02 0.277 10.453 0 20 3.88

arith 36 60 20.047 40.53 2 0.001 5.997 7.663 2 5 5.29

arith 31 51 12.134 33.043 1 0.001 1.119 1.509 1 4 21.88

kbfiltr 1 1024 0.369 31.828 1 0.072 0.004 0.113 0 56 172.04

kbfiltr 1 1024 0.371 31.813 2 0.071 0.004 0.24 1 56 102.29

life 1 118 3.137 30.9 2 0.004 err 18.757 4 30 1.65

arith 2 64 8.123 26.121 2 0.002 0.52 0.927 2 5 28.12

arith 6 78 9.914 22.287 3 0.001 2.791 4.227 3 6 5.27

arith 20 70 9.83 22.125 3 0.002 3.478 4.607 3 6 4.80

arith 24 61 8.844 21.234 2 0.001 17.898 33.008 3 5 0.64

arith 19 61 5.561 21.159 1 0.002 0.434 0.571 2 5 36.93

euler 1 85 0.742 19.439 1 0.001 0.147 0.678 1 11 28.63

diskperf 1 538 0.449 19.301 1 0.027 0.014 0.183 0 19 91.91

diskperf 2 535 0.447 19.134 1 0.026 0.259 11.326 2 19 1.69

diskperf 3 523 0.4 19.017 2 0.025 0.285 11.298 2 19 1.68

arith 7 100 1.518 12.784 3 0.001 2.847 14.881 7 9 0.86

p2p 2 355 0.493 6.595 0 0.02 id 0.02 0 9 329.75

floppy 3 323 0.161 3.677 1 0.029 0.003 0.07 0 18 37.14

floppy 2 320 0.16 3.675 1 0.028 0.003 0.07 0 18 37.50

diskperf 1 1880 0.124 3.149 1 0.114 0.001 0.151 1 5 11.88

floppy 4 322 0.088 2.127 2 0.028 0 0.101 0 7 16.49

floppy 5 330 0.089 1.895 5 0.028 0.082 2.041 0 7 0.92

did not require running the main eVolCheck procedures.
For example, in p2p 1/2, the comparator proved that the
models are identical (however, the source code might still be
different), so no further checking was needed.

As expected, in the majority of the experiments, the local-
ized upgrade check provided by eVolCheck outperforms
the verification from scratch, which is indicated by speedup
> 1. Moreover, in many instances (usually on large indus-
trial cases) the speedup is large, which demonstrates good
efficiency and usefulness of the tool.

In the future, we plan to conduct a case study where the
incremental upgrade checking is applied to a realistic line of
revisions (e.g., several dozens of successive programversions
from a repository) for a given project. Unfortunately, so far
we were not provided with such long sequences of project
files.

5.1 Effect of proof compression

Small interpolants have a strong impact on the performance
in upgrade checking. Table 3 provides statistics for the two
interpolation systems of Pudlák (P) [33] and McMillan

Table 3 eVolCheck experimental evaluation with PeRIPLO proof
compression

No compression M P

#Invalid summaries 49 49

Avg |I | 174959.2 173385.67

Time (s) 1699.73 1716.81

Compression M P

#Invalid summaries 44 44

Avg |I | 9466.22 10420.37

Time (s) 1014.82 991.25

CTime/VTime ratio 0.18 0.16

(M) [29]. #Invalid summaries denotes the total number of
summaries that were proven invalid with respect to program
updates. Avg|I | and T ime(s) indicate the average size of
interpolants by means of number of logical connectives and
the average verification time over all the benchmarks. Finally,
CTime/VTime ratio estimates the average portion of compres-
sion time to verification time.

123

Flexible SAT-based framework for incremental bounded upgrade checking 533

As proven in [15], interpolants generated by M are log-
ically stronger than the ones generated by P . But in our
experimentation, the interpolant strength does not affect ver-
ification process significantly. On the other hand, the results
show that the size of interpolants seems to have definitely an
overall greater impact than interpolant strength. Verification
time is principally determined by the size of the summaries.
The interesting research direction, which is left as future
work, would investigate how the proof compression affects
the strength of interpolation (i.e., why compression reduces
the amount of invalidated summaries, as can be seen from
the table).

6 Related work

The area of software upgrade checking is not as studied
as model checking of standalone programs. The idea of an
upgrade check that reuses information learned during analy-
sis of the previous program version was employed in [7]. The
authors consider the problem of substitutability of updated
components of a system. Their algorithm is based on inclu-
sion of behaviors and uses a CEGAR loop [9] combining
over- and under-approximations of the component behaviors.
First, a containment check is performed, i.e., it is checked that
every behavior of the old component occurs also in the new
one. Second, they use a learning-based assume-guarantee
reasoning algorithm to check compatibility, i.e., that the new
component satisfies a given property when the old compo-
nent does. When compared, our approach focuses on real
low-level properties of code expressed as assertions rather
than abstract inclusion of behaviors. The use of interpolants
also appears to be a more practical approach as compared
to the application of learning regular languages techniques
employed in [7].

The authors of [21] study effects of code changes on
function summaries used in dynamic test generation (also
referred to as white-box fuzzing). White-box fuzzing con-
sists of running a program while simultaneously executing
the program symbolically in order to gather constraints on
inputs from conditional statements encountered along the
execution. The particular goal of [21] is to identify sum-
maries that were affected by the change and cannot be used
to analyze the new version. Then the actual testing is per-
formed using the preserved summaries. Due to reliance on
testing, this approach suffers of path explosion problem, i.e.,
infeasibility to cover all program paths. In contrast, we obtain
and manipulate function summaries only symbolically, thus
allowing to encode all paths into a single formula.

Another group of related work aims at equivalence check-
ing and regression verification of programs [10,16,22,26,32,
40]. Strichman et al [22] employ bounded model checking to
prove partial equivalence of programs. As in our algorithm,

their method starts with the syntactic difference check that
identifies the set of modified functions. Then it also traverses
the calltree bottom–up, and separately checks equivalence
between the old and the newversions of the function,while all
the nested calls are abstracted using the same uninterpreted
function. Differential Symbolic Execution [32] and further
established Change Impact Analysis [2] attempts to show
equivalence of two versions of code using symbolic execu-
tion or to compute a behavioral delta when not equivalent.
Clarke et al. [10] checks equivalence of a Verilog circuit and
a C program through encoding and solving quantifier-free
SAT formula.

Since finding a solution to the more general problem of
checking absolute equivalence is hard, there is a group of
techniques [16,40] that check partial (or relative) equivalence
with respect to some safety property (or a set of properties).
The approach of [28], implemented in the tool SymDiff [26],
decides conditional partial equivalence, i.e., equivalence
under certain input constraints. Moreover, SymDiff allows
extraction of these constraints and reports them to the user.
The technique from the article also belongs to this group, but
it is the only one that uses BMC and Craig interpolation.

Last group of related work includes approaches using
interpolation-based function summaries (such as [1,30]).
Although these do not consider upgrade checking, we believe
that our incremental algorithm may be instantiated in their
context similar to howwe instantiated it in the context of [39].

7 Conclusion

We presented an upgrade checking algorithm using
interpolation-based function summaries. Instead of running
bounded model checking on the entire new version of a pro-
gram, the modified functions are first compared against their
over-approximative summaries from the old version. If this
local check succeeds, the upgrade is safe. We proved that the
proposed algorithm is sound, if the summaries are generated
from the same proof using the original Pudlák’s algorithm.
Experimental evaluation using our prototype implementa-
tion supports our intuition about ability to check system
upgrades locally and demonstrates that the algorithm sig-
nificantly speeds up checking programs with incremental
changes.

Acknowledgements We thank the following people for their valu-
able contribution during the work on this paper: Murillo Miranda
Cristina Maria for her implementation work on the Eclipse plug-in;
Antti Hyvärinen for his numerous suggestions to improve the approach;
Leonardo Alt and Simone Fulvio Rollini for developing and evaluating
PeRIPLO; Michael Tautschnig for his help with CProver and goto-

cc adjustments; the PINCETTE project (http://www.pincette-project.
eu) validators for assistance with the industrial test cases; USI stu-
dents for their feedback on the eVolCheck usage and the anonymous
reviewers for their constructive comments, which helped to improve the
article.

123

http://www.pincette-project.eu
http://www.pincette-project.eu

534 G. Fedyukovich et al.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Whale: an
interpolation-based algorithm for inter-procedural verification. In:
VMCAI. LNCS, vol. 7148, pp. 39–55. Springer, Berlin (2012)

2. Backes, J.D., Person, S., Rungta, N., Tkachuk, O.: Regression ver-
ification using impact summaries. In: SPIN. LNCS, vol. 7976, pp.
99–116. Springer, Berlin (2013)

3. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman,
O.: Linear-time reductions of resolution proofs. In: HVC. LNCS,
vol. 5394, pp. 114–128. Springer, Berlin (2008)

4. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model
checking without BDDs. In: TACAS. LNCS, vol. 1579, pp. 193–
207. Springer, Berlin (1999)

5. Bruttomesso, R., Rollini, S., Sharygina, N., Tsitovich, A.: Flexi-
ble interpolation with local proof transformations. In: ICCAD, pp.
770–777 (2010)

6. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The
OpenSMT solver. In: TACAS. LNCS, vol. 6015, pp. 150–153.
Springer, Berlin (2010)

7. Chaki, S., Clarke, E., Sharygina, N., Sinha, N.: Dynamic com-
ponent substitutability analysis. In: FM. LNCS, vol. 3582, pp.
512–528. Springer, Berlin (2005)

8. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C
programs. In: TACAS. LNCS, vol. 2988, pp. 168–176. Springer,
Berlin (2004)

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.:
Counterexample-guided abstraction refinement. In: CAV. LNCS,
vol. 1855, pp. 154–169. Springer, Berlin (2000)

10. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of
C and Verilog programs using bounded model checking. In: DAC,
pp. 368–371. ACM, New York (2003)

11. Cotton, S.: Two techniques for minimizing resolution proofs. In:
SAT. LNCS, vol. 6175, pp. 306–312. Springer, Berlin (2010)

12. Craig,W.: Three uses of the Herbrand–Gentzen theorem in relating
model theory and proof theory. J. Symb. Logic 269–285 (1957)

13. Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, F.: An
efficient method of computing static single assignment form. In:
POPL, pp. 25–35. ACM, New York (1989)

14. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of
scratch-pad memory code for heterogeneous multicore processors.
In: TACAS.LNCS, vol. 6015, pp. 280–295. Springer, Berlin (2010)

15. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.:
Interpolant strength. In: VMCAI. LNCS, vol. 5944, pp. 129–145.
Springer, Berlin (2010)

16. Fedyukovich, G., Gurfinkel, A., Sharygina, N.: Incremental verifi-
cation of compiler optimizations. In: NFM. LNCS, vol. 8430, pp.
300–306. Springer, Berlin (2014)

17. Fedyukovich, G., D’Iddio, A.C., Hyvärinen, A.E.J., Sharygina, N.:
Symbolic detection of assertion dependencies for bounded model
checking. In: FASE. LNCS, vol. 9033, pp. 186–201. Springer,
Berlin (2015)

18. Fedyukovich, G., Sery, O., Sharygina, N.: eVolCheck: incremental
upgrade checker for C. In: TACAS. LNCS, vol. 7795, pp. 292–307.
Springer, Berlin (2013)

19. Fedyukovich,G., Sharygina,N.: Towards completeness in bounded
model checking through automatic recursion depth detection. In:
SBMF. LNCS, vol. 8941, pp. 96–112. Springer, Berlin (2014)

20. Fontaine, P., Merz, S., Paleo, B.W.: Compression of propositional
resolution proofs via partial regularization. In: CADE. LNCS, vol.
6803, pp. 237–251. Springer, Berlin (2011)

21. Godefroid, P., Lahiri, S.K., Rubio-González, C.: Statically validat-
ing must summaries for incremental compositional dynamic test
generation. In: SAS. LNCS, vol. 6887. Springer, Berlin (2011)

22. Godlin, B., Strichman, O.: Regression verification. In: DAC, pp.
466–471. ACM, New York (2009)

23. Gurfinkel, A., Rollini, S., Sharygina, N.: Interpolation properties
and SAT-based model checking. In: ATVA. LNCS, vol. 8172, pp.
255–271. Springer, Berlin (2013)

24. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.:
Abstractions fromproofs. In: POPL, pp. 232–244.ACM,NewYork
(2004)

25. Ivancic, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: Effi-
cient SAT-based boundedmodel checking for software verification.
Theor. Comput. Sci. 404(3), 256–274 (2008)

26. Kawaguchi, M., Lahiri, S.K., Rebelo, H.: Conditional equivalence.
Tech. Rep. MSR-TR-2010-119, Microsoft Research (2010)

27. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Win-
tersteiger, C.M.: Loop summarization using state and transition
invariants. Form. Methods Syst. Des. 42(3), 221–261 (2013)

28. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differ-
ential assertion checking. In: FSE, pp. 345–355. ACM, New York
(2013)

29. McMillan, K.L.: Interpolation and SAT-based model checking. In:
CAV. LNCS, vol. 2725, pp. 1–13. Springer, Berlin (2003)

30. McMillan, K.L.: Lazy annotation for program testing and verifi-
cation. In: CAV. LNCS, vol. 6174, pp. 104–118. Springer, Berlin
(2010)

31. Merz, F., Falke, S., Sinz, C.: LLBMC: bounded model checking of
C and C++ programs using a compiler IR. In: VSTTE. LNCS, vol.
7152, pp. 146–161. Springer, Berlin (2012)

32. Person, S., Dwyer, M.B., Elbaum, S.G., Pasareanu, C.S.: Differen-
tial symbolic execution. In: FSE, pp. 226–237. ACM, New York
(2008)

33. Pudlák, P.: Lower bounds for resolution and cutting plane proofs
and monotone computations. J. Symb. Log. 62(3), 981–998 (1997)

34. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Shary-
gina, N.: PeRIPLO: a framework for producing effective inter-
polants in SAT-based software verification. In: LPAR. LNCS, vol.
8312, pp. 683–693. Springer, Berlin (2013)

35. Rollini, S.F., Bruttomesso, R., Sharygina, N.: An efficient and flex-
ible approach to resolution proof reduction. In: HVC. LNCS, vol.
6504, pp. 182–196. Springer, Berlin (2010)

36. Rollini, S.F., Sery, O., Sharygina, N.: Leveraging interpolant
strength in model checking. In: CAV. LNCS, vol. 7358, pp. 193–
209. Springer, Berlin (2012)

37. Sery,O., Fedyukovich,G., Sharygina,N.: FunFrog: boundedmodel
checking with interpolation-based function summarization. In:
ATVA. LNCS, vol. 7561, pp. 203–207. Springer, Berlin (2012)

38. Sery, O., Fedyukovich, G., Sharygina, N.: Incremental upgrade
checking by means of interpolation-based function summaries. In:
FMCAD, pp. 114–121. IEEE (2012)

39. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based
function summaries in bounded model checking. In: HVC. LNCS,
vol. 7261, pp. 160–175. Springer, Berlin (2012)

40. Yang, G., Khurshid, S., Person, S., Rungta, N.: Property differ-
encing for incremental checking. In: ICSE, pp. 1059–1070. ACM,
New York (2014)

123

	Flexible SAT-based framework for incremental bounded upgrade checking
	Abstract
	1 Introduction
	2 Background
	2.1 Function summaries
	2.2 Interpolation-based summaries
	2.3 Summarization algorithm

	3 Upgrade checking
	3.1 Basic upgrade checking algorithm
	3.2 Optimization and refinement
	3.3 Correctness

	4 eVolCheck tool architecture
	4.1 Tool architecture

	5 Evaluation
	5.1 Effect of proof compression

	6 Related work
	7 Conclusion
	Acknowledgements
	References

