
Int J Softw Tools Technol Transfer (2016) 18:121–128
DOI 10.1007/s10009-015-0403-0

TACAS 2014

Some recent advances in automated analysis

Erika Ábrahám1 · Klaus Havelund2

Published online: 13 October 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Due to the increasing complexity of software sys-
tems, there is a growing need for automated and scalable
software synthesis and analysis. In the last decade, active
research in the formal methods community brought inter-
esting results and valuable tools. However, there are still
challenges to face and hard problems that need to be solved.
We briefly outline some recent trends, and review some
of the latest achievements, introducing six papers selected
from the 20th International Conference on Tools and Algo-
rithms for theConstruction andAnalysis of Systems (TACAS
2014).

Keywords Analysis · Parallel algorithms · Satisfiability
modulo theories · Runtime verification · Probabilistic
systems

1 Introduction

This special issue of the journal Software Tools for Technol-
ogy Transfer (STTT) contains revised and extended versions
of six papers selected out of 42 papers presented at the 20th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’14) [4], held

The research performed by this author was carried out at Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

B Klaus Havelund
Klaus.Havelund@jpl.nasa.gov

1 RWTH Aachen University, Aachen, Germany

2 Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, USA

in Grenoble, France during April 7–11, 2014, as part of the
Joint European Conferences on Theory and Practice of Soft-
ware (ETAPS). The peer-reviewed papers collected in this
special issue have been invited by the guest editors amongst
the top papers presented at TACAS’14 based on their rele-
vance to STTT.

TACAS is a forum for researchers, developers, and users
interested in rigorously based tools and algorithms for the
construction and analysis of systems. The research areas
covered by TACAS include, but are not limited to, formal
methods, software and hardware specification and verifi-
cation, static analysis, dynamic analysis, model checking,
theorem proving, decision procedures, real-time, hybrid and
stochastic systems, communication protocols, programming
languages, and software engineering. TACAS provides a
venue where common problems, heuristics, algorithms, data
structures, andmethodologies in these areas can be discussed
and explored.

Due to the increasing complexity of software systems,
there is a growing need for automated software synthesis
and analysis. In the last decade, active research in the formal
methods community brought interesting results and valu-
able tools. However, there are still challenges to face and
hard problems that need to be solved. As the size of our
software systems is increasing, the scalability of the auto-
mated synthesis and analysis techniques is a highly relevant
issue.

The selected papers cover four domains, which we believe
form trends within the formal methods community, and
which are discussed below and organized as follows. Sec-
tion 2 discusses parallel algorithms and their application to
for example model checking. Section 3 discusses SAT and
SMT solving. Section 4 discusses runtime verification. Sec-
tion 5 discusses hybrid and probabilistic verification. Finally
Sect. 6 concludes the paper.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-015-0403-0&domain=pdf


122 E. Ábrahám, K. Havelund

2 Distributed and parallel algorithms

Nowadays, nearly all personal computers have many-core
CPUs, the usage of cloud and grid computing is rising,
and there are great advances in supercomputer architectures.
The performance of the fastest supercomputers available
today has reached the PetaFLOPS scale, i.e., they can execute
1015 floating point operations per second (FLOPS). The next
generation of Exa-scale supercomputers with 1018 FLOPS
performance is under development.

Distributed and parallel computing techniques make use
of such hardware structures to solve computationally inten-
sive problems. Typical areas for massively parallel appli-
cations are, e.g., weather forecasting, climate research, and
simulations of chemical, biological and physical processes.

However, the efficient usage of these distributed and
parallel computer architectures is not at all trivial. The com-
putational effort might be unbalanced between the processes,
such that one process might need to wait for a long time
for results computed by another process, thereby wasting
available computing resources. Last but not least, massive
communication (e.g., message broadcasting in a massively
parallel application) can be itself a bottleneck for effi-
ciency.

For these reasons, achieving a linear speedup (in the num-
ber of used cores) for the computation time is hard to realize.
Performance analysis techniques and tools help the devel-
opers to identify execution bottlenecks via monitoring the
program execution, and computing and visualizing charac-
teristic quantities like, e.g., average waiting times at certain
control points. However, there is a strong need for further
improvements. We still have problems to exploit the capabil-
ities of Peta-scale supercomputers, and no one knows yet how
to achieve this at the forthcoming Exa-scale, where, besides
scalability issues, additional problems like increased failure
rates must be faced [3].

Besides efficiency, a central problem is the correctness
of parallel programs, which has different facets. Dead-
locks can happen when threads or processes wait for each
other in a cyclic manner, such that none of them can con-
tinue its execution. Furthermore, correct parallel programs
should preferably (in the general case) yield the same result,
independently of the temporal order of process executions.
For example, in multi-threading, mutual exclusion must be
used in a safe manner to assure atomic computation where
needed. To achieve functional correctness, if a problem is
decomposed into sub-problems, the result must be carefully
synthesized from the sub-results.

To assure such correctness properties, formalmethods can
be used for the verification of parallel programs. Whereas
the theoretical roots for the verification of parallel programs
are historically relatively deep [12,31,62,66,71], current
approaches are still far from being scalable at the super-

computing level. New advances in this direction use parallel
computing itself for verification, i.e., the verification algo-
rithms themselves are parallel programs. Besides deductive
techniques, powerful parallel model checking approaches
have become available. However, to achieve scalability, also
these techniquesmust reach an optimal load balance between
the parallel running model checking processes.

Early attempts to overcome this problem include, e.g.,
techniques for partial order reduction and slicing [42,52],
and randomization [19,75]. Several efforts have been made
to parallelize the Spin model checker. An early attempt on
distributedmodel checking in Spin is described in [64].More
recent work can be classified into two categories: multi-core
approaches [40,53,55] where model checking is distributed
on several cores on the same machine, and cloud approaches
[54,56] where model checking is distributed on multiple
machines in the cloud. Concerning multi-core approaches,
[55] is a general method for safety verification, while [53]
and [40] concern an algorithm for partial verification of live-
ness properties with parallel breadth-first search. Concerning
cloud approaches, [54] describes how the use of massive
parallelism in a cloud-computing context may deliver near
real-time performance. This is furthermore an application of
what is referred to a swarm approach, where multiple inde-
pendent and different instances of the verification problem
are launched in parallel.

In this volume we report on three latest developments on
this research front. The paperConcurrent Depth-First Search
Algorithms based on Tarjan’s Algorithm [68], by Gavin
Lowe, an extension of the TACAS’14 conference paper
[67], deals with parallelization issues for some important
graph-related problems: finding strongly connected com-
ponents, cycles and lassos in graphs. Tarjan’s algorithm is
widely used in its sequential version; however, its efficient
parallelization was still an open challenge. The proposed
parallelized version may find application in model checking
algorithms, for example to check which states are divergent,
i.e., which states can lead to an unbounded number of internal
steps.

The paper FDR3—A Parallel Refinement Checker for
CSP [43], by Thomas Gibson-Robinson, Philip Armstrong,
Alexandre Boulgakov, and A. W. Roscoe, extends the
TACAS’14 publication [44]. It presents the FDR3 tool,
which is a rewrite and of the FDR2 refinement checker
with extended functionalities. Amongst its several improve-
ments is a new parallel refinement-checking algorithm, able
to achieve a near-linear speedup as a function of number of
cores utilized (including clusters of cores), and a new algo-
rithm used to construct the internal representation of CSP
processes. FDR3 is furthermore able to efficiently make use
of on-disk storage once main memory is exhausted. FDR3
relies on Tarjan’s algorithm, and future work includes pursu-
ing alternativemethods of parallelizing divergence checking,

123



Some recent advances in automated analysis 123

including methods based on Gavin Lowe’s work presented
in this volume.

The paper Many-Core On-the-Fly Model Checking of
Safety Properties Using GPUs [80], by AntonWijs and Dra-
gan Bošnački, presents another parallelization approach for
model checking. A previous version of this paper was pub-
lished in [79]. Despite advances in model checking, state
space explosion is still a hindrance for scalability. Smart
concurrent solutions can push forward the boundaries of
applicability; however, the resources for concurrent execu-
tion are relatively limited on standard home computers. To
best exploit these resources, this work makes use of General
Purpose Graphics Processors (GPUs) for the computations.
This is an extremely challenging path of research, to which
this paper makes an important contribution.

3 SAT and SAT-modulo-theories solving

A further active research area is the integration of differ-
ent techniques to form powerful and efficient tools. In this
context, logical encoding of problems and the usage of SAT
and SAT-Modulo-Theories (SMT) solving for satisfiability
checking are frequently employed.

SAT solving aims at the automated check of propositional
logic formulas for satisfiability. The technology develop-
ment started around1960. First approaches used enumeration
and resolution [29]. The combination of enumeration with
propagation led to the well-known DPLL algorithm [28].
A breakthrough regarding efficiency and scalability was
achieved by combining enumeration and propagation with
resolution to identify reasons to explain why certain (partial)
assignments do not satisfy a formula. This resulted in the
conflict-directed clause learning approach [69,82], whose
impact is well reflected in the following citation from the
zChaff webpage: “We have success stories of using zChaff to
solve problems with more than one million variables and 10
million clauses. (Of course, it can’t solve every such prob-
lem!)”. After the pioneer solvers GRASP [69] and zChaff
[82], a variety of other SAT solvers were developed with
watched-literal techniques and smart heuristics, for e.g.,
clause learning and forgetting, dynamic variable ordering and
restarts. Just to mention one of them, MiniSAT [38] is not
only highly efficient but also small and, therefore, well suited
for understanding and teaching the SAT mechanisms.

The scalability of SAT solvers opened the way to real-
world applications. Besides academic applications in differ-
ent research areas, nowadays also many companies use SAT
solving, e.g., to solve huge combinatorial problems or for
digital circuit design and verification.

The introduction of a standardized input language was a
great achievement and an important milestone in the success
of SAT solving. On the application side, it allows users to for-

malize their problems once and apply a wide range of solvers
to them. On the development side, it enabled the collection of
large benchmark sets and the start of competitions in 2002.
In 2014, the SAT competition had an impressive number of
79 participants with 137 solvers. The SATLive! forum and
dedicated conferences and journals further support the com-
munity with platforms for exchange.

The SAT developments showed promising results to apply
similar technologies to more expressive logics, resulting in
SAT-Modulo-Theories (SMT ) solving. The idea is to use
SAT solvers to get solutions for the Boolean skeleton of
quantifier-free first-order logic problems, and use different
theory solvers to check the corresponding sets of theory con-
straints for consistency. Some of the important milestones in
this area were the development of decision procedures for
combined theories [70,74], and the extension DPLL(T) [37]
of the DPLL approach for SAT with theories.

One of the first theories considered for SMT solving were
equalities and uninterpreted functions, bit-vectors and array
theory. Later on, also solutions for linear real and integer
arithmetic and fragments thereof were implemented. Latest
developments address challenging extensions also for non-
linear arithmetic theories. These theories are supported by a
large and still increasing number SMT solvers, e.g., the tools
AProVE [45], CVC [11], HySAT/iSAT [41], MathSAT [26],
MiniSmt [81], OpenSMT [24], SMT-RAT [27], VeriT [23],
Z3 [30], or Yices [36].

Due to the increased level of expressiveness, SMT finds
application in a wide range of domains like, e.g., verifica-
tion (model checking, static analysis, termination analysis),
test case generation, controller synthesis, predicate abstrac-
tion, equivalence checking, scheduling, planning, or product
design automation and optimization.

Also the SMT community profits from the SMT-LIB input
standard and from competitions since 2005. In 2014, 20
solvers participated in 32 logical categories.

Where does the development go? Surely, a still major
issue is efficiency and scalability. Whereas for easier the-
ories already large problem instances can be solved, despite
encouraging evolution, SMT solving for non-linear real and
integer arithmetic is a yet upcoming area. To tackle those
problems, we need dedicated SMT solvers for specific prob-
lem classeswith further novel lemmageneration and learning
techniques, elegant ideas for the combination of decision pro-
cedures, and clever parallelization approaches. A big poten-
tial lies in learning from decision procedures and technolo-
gies used in symbolic computation [1]. Regarding functional-
ities, there is also a trend to increase applicability by generat-
ing unsatisfiable cores and interpolants, handling quantified
formulas, and offering techniques for optimization.

In this volume two contributions are devoted to SAT and
SMT solving. SATMC 3.0, a SAT-based bounded model
checker for security-critical systems is presented in the paper

123



124 E. Ábrahám, K. Havelund

SATMC: a SAT-basedModel Checker for Security Protocols,
Business Processes, and Security APIs [7], by Alessandro
Armando, Roberto Carbone, and Luca Compagna, as an
extension of [6]. It is distinguished by combining techniques
originally developed for planning with techniques devel-
oped for the analysis of reactive systems. SATMC has been
applied in avariety of applicationdomains, including security
protocols, security-sensitive business processes, and cryp-
tographic APIs. SATMC supports a powerful specification
language, including rewrite rules, Horn clauses, and first-
order LTL formulae. It leverages NuSMV to generate a SAT
encoding for the LTL formulae and MiniSAT to solve the
SAT problems.

The paperMonitoringModulo Theories [33], byNormann
Decker, Martin Leucker and Daniel Thoma, an extended ver-
sion of the conference paper in [32], considers an SMT-based
approach to runtime verification of temporal properties over
first-order theories. It lifts monitor synthesis procedures for
propositional temporal logics to a temporal logic over struc-
tures within a first-order theory, and proposes a first-order
monitoring algorithm that combines SMT solving and clas-
sical monitoring of propositional temporal properties. The
approach is here applied to LTL, and the Z3 SMT solver is
used for solving data constraints. However, the approach is
generic and can be applied to any suitable temporal logic,
and any first-order theory can be chosen for which an SMT
solver is available.

4 Runtime verification

The scalability issue often associated with formal methods
is due to the desire to verify (analyze) all possible execution
paths of the system being analyzed, and potentially for all
possible inputs. This problem is in general NP-complete, and
in practice becomes infeasible without relaxing on the kind
of properties being proven or the confidence in the result.
Testing is the practical less perfect alternative to full verifi-
cation. Here test inputs are generated using a more or less
automated strategy, and outputs are verified using more or
less sophisticated test oracles (monitors). In industrial prac-
tice, test input generation is typically not automated (rather:
test cases are manually created), and monitors are typically
not very sophisticated, for example just comparing text files
with a diff-command.

Runtime verification [39,50,65] (RV) is a subfield of
computer science focusing on just analyzing systems exe-
cutions, including collections thereof, either during test (the
test oracle problem), or after deployment. The field is not
concerned with test case generation, which is one of the
main focuses of test research. The purpose of the field is
to focus study how much we can get out of one or more
execution traces, in other words: just by observing what the

system does when executing. The field obviously intersects
with testing by contributing to how to write advanced test
oracles.

Runtime verification as a field covers various sub-fields.
Specification-based monitoring is concerned with checking
a program execution against a formal specification of one or
more requirements. A program P to be monitored is instru-
mented to emit a sequence τ of observable events, which are
fed into a monitor, which as a second input takes a specifica-
tionψ of expectedbehavior. The trace is thenmatched against
the specification, also formalized as: τ |� ψ . Instrumenta-
tion can, for example, be performed using aspect-oriented
programming. Static analysis can be used to minimize the
number of instrumentation points, a topic receiving increas-
ing attention by the research community.

Events in practice carry data, as in: open(“file42”),
in contrast to propositional events, such as openFile,
and it must be possible to refer to these data in spec-
ifications. Recent research has focused on efficient and
low-impact monitoring of such data carrying events, referred
to as parametric monitoring. Such data must be stored and
especially searched efficiently as part of the monitor. The
1st Intl. Competition of Software for Runtime Verification
(CSRV’14), in particular focusing on parametric monitoring,
was held together with the RV conference in 2014 in Toronto,
Canada.

Detection of a property violation can be used not only for
testing an application, but also during operation in the field,
to cause a change of behavior by triggering fault-protection
code, which steers the application out of a bad situation.
The extreme RV solution is planning and scheduling tech-
niques, which continuously adapt to the current situation.
For a survey relating verification and validation to planning
and scheduling, see [21].

Over the last 15 years numerous specification-based
runtime verification systems have been developed, only a
few of which will be mentioned here. Initial specification-
based systems could only handle propositional events. These
include, for example, Temporal Rover [35], MaC [63],
and Java PathExplorer [51]. The first systems to handle
parameterized events appeared around 2004, and include
[5,14,25,76]. Several parametric monitoring systems have
appeared since then. RV systems usually implement specifi-
cation languageswhich are based on formalisms such as state
machines [13,25,46], regular expressions [5,25], temporal
logic [17,18,25,32,48,76], variations over the μ-calculus
[14], grammars [25], and rule-based systems [16,49]. A few
of these logics incorporate time as a built-in concept, typi-
cally embedded in temporal logics, as for example in [17]. If
no special concept of time is introduced, time observations
can be considered as just data (time stamps).

Runtime verification systems are based on different algo-
rithms. Slicing-based algorithms have shown very efficient

123



Some recent advances in automated analysis 125

[5,13,25]. These algorithms conceptually slice a trace into
projections, a projection for each parameter combination.
The efficiency of these algorithms generally comes at the
cost of lack of some expressiveness, as pointed out in [13].
Other monitoring systems represent data as constraints. A
constraint-based system is the first-order linear temporal
logic described in [18]. Some systems based on linear tempo-
ral logic apply rewriting of temporal formulas. These include,
for example, [14,15,48,76]. Rule-based systems, such as
[16,49] operate with a collection of facts, usually organized
in an efficient data structure/network, which is modified by
the rules.

Most of the logics mentioned above are so-called external
DSLs, small languages with their own grammar and parser.
However, also systems have been developed which offer
APIs in programming languages (also referred to as inter-
nal DSLs), for writing monitors. These include [15,22,49].

Specifications can be written by humans, or they can be
learned from nominal executions, also referred to as spec-
ification mining [57]. A form of runtime verification not
requiring specifications is what we will refer to as run-
time analysis, where program executions are analyzed with
specialized algorithms. Examples include algorithms for
detecting concurrency problems such as deadlock potentials
[20] and data races [8,73]. Finally, trace visualization of exe-
cution traces supports human comprehension of what the
system does [72]. Trace visualization is related to specifica-
tion mining in that it produces an abstraction the system’s
behavior, although only for the eyes.

The focus of future runtime verification research will
include continued studies of how to optimize monitoring
algorithms, to use less time and less space. Static analy-
sis can be combined with dynamic analysis to minimize
the code instrumentation performed, thereby reducing the
impact on the monitored program. Another way of looking
at this problem is to use static analysis to prove as much
as possible of a property, and then use runtime verification
to monitor the remaining unproved proof obligations. There
will be continued research in expressive and succinct log-
ics, potentially merging well-known logical systems such as
temporal logic, regular expressions, and state machines/rule
systems.Wemay eventually see the emergence of such logics
in programming languages as part of the design-by-contract
paradigm. Specifications are hard to write, and specification
mining and visualization may contribute a great deal to ease
this task. Each time we run our program, we should learn
from it. The ultimate proof of success of this field will be
widespread deployment of monitoring against logic-based
requirements in industrial applications.

This area of research is represented in this volume by
the paper Monitoring Modulo Theories [33], by Normann
Decker, Martin Leucker, and Daniel Thoma, already men-
tioned in Sect. 3.

5 Probabilistic systems

Probabilistic systems are systems with randomized behavior.
Some examples are probabilistic algorithms which involve
random values drawn from some probability distributions,
computer systemswith inherent randomization such as quan-
tum computers or approximate computing, or biological
systems whose evolution can be modeled probabilistically.

There are different languages to model probabilistic sys-
tems. Popular automata-based modeling formalisms for
probabilistic systems are discrete- and continuous-time
Markov chains, and variants thereof which exhibit non-
determinism such as Markov decision processes or proba-
bilistic automata. Probabilistic programs use, additionally to
the standard programming constructs, probabilistic branch-
ing and probabilistically determined values in assignments,
and are well suited for high-level modeling.

To describe the behavior of probabilistic models, proba-
bilistic properties like “the (maximal) probability to reach a
set of bad states is at most 0.1” can be formalized in different
property specification languages. Probabilistic computation
tree logic (PCTL) extends the logic CTL with probabilities
and can be used to describe properties of discrete-time mod-
els. Continuous stochastic logic (CSL) is a PCTL extension
supporting the specification of continuous-time properties.
Last but not least, probabilistic linear-time temporal logic
(PLTL), a probabilistic extension of LTL can be used to spec-
ify probabilistic liveness properties.

Efficient model checking algorithms for these models and
logics have been developed, implemented in a variety of
software tools, and applied to case studies from various
application areas. The crux of probabilistic model checking
[9,10,59,60] is to appropriately combine techniques from
numerical mathematics and operations research with stan-
dard reachability analysis and model checking techniques.
In this way, properties can be automatically checked up
to a user-defined precision. Markovian models comprising
millions of states can be checked rather fast by dedicated
tools such as MRMC [58] and PRISM [61]. These tools are
currently being extended with counterexample generation
facilities to enable the possibility to provide useful diagnostic
feedback in case a property is violated [2].

To be able to formalize and analyze systemswith uncertain
behavior or incomplete specification, also parametric mod-
eling languages and probabilistic model checking techniques
for them were investigated, resulting in tools like PARAM
[47] and PROPhESY [34].

Despite this intensive and successful developments, there
remain several challenging hard and practically relevant
problems to be solved. There were some achievements on
probabilistic hybrid systems, which have certain probabilis-
tic components either in their discrete or in their continuous
behavior. However, these techniques need to be strengthened

123



126 E. Ábrahám, K. Havelund

to reach practical applicability. Also scalability is still an
issue. Thoughmodel checking tools can handle hugemodels,
novel symbolic approaches and abstraction techniques are
needed to analyze probabilistic programs with large variable
domains or large-scale parallelism. To mention a last chal-
lenge, probabilistic domain-specific languages and formal
methods for their analysis would help to model and analyze
applications from the area of high-performance computation
and approximate computing.

The application of existing techniques and tools to case
studies is extremely important, as it brings highly valu-
able insights to applicability, it highlights bottlenecks, drives
research to important practical problems, and eases tech-
nology transfer to industry. In this volume, a report on an
interesting case study is given in the paper Probabilistic
Verification and Synthesis of the Next Generation Airborne
Collision Avoidance System [78], by Christian von Essen and
Dimitra Giannakopoulou, extending the TACAS’14 publica-
tion [77]. ACAS X, the next-generation airborne collision
avoidance system considers probabilistic models to repre-
sent different types of uncertainty. The authors give a nice
example of how the power of existing formal methods and
frameworks can be bundled by integrating them into a tool
dedicated to a special problem class.

6 Conclusion

Some recent advances in automated analysis have been dis-
cussed and related to selected papers from TACAS 2014,
included in this volume. Four domains have been identi-
fied: the parallelization of algorithms—including algorithms
for verifying systems, specifically model checking; SAT
and SMT solving with a basis in first-order logic; runtime
verification; and finally probabilistic systems. Parallel algo-
rithms, SAT/SMT solving, and runtime verification illustrate
different ways of dealing with the scalability problem of for-
mal methods. Parallel algorithms and SAT/SMT solving can
be considered successful techniques for solving the tradi-
tional verification problem, whereas runtime verification is
an example of shifting the problem from verification of full
models to analysis of single traces. Probabilistic systems
modeling and verification is an example of a new domain,
requiring new techniques all together.

Acknowledgments We are grateful to all authors for their contribu-
tions and to the reviewers of TACAS’14 and of this special issue for
their thorough and valuable work.

References

1. Ábrahám, E.: Building bridges between symbolic computation and
satisfiability checking. In: Proceedings of the 2015 ACM Inter-

national Symposium on Symbolic and Algebraic Computation
(ISSAC’15), pp. 1–6. ACM Press, New York (2015)

2. Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.-P.,
Wimmer, R.: Counterexample generation for discrete-timeMarkov
models: an introductory survey. In: FormalMethods for Executable
Software Models—14th International School on Formal Methods
for the Design of Computer, Communication, and Software Sys-
tems (SFM’14), Advanced Lectures. LNCS, vol. 8483, pp. 65–121.
Springer, Berlin (2014)

3. Ábrahám, E., Bekas, C., Brandic, I., Genaim, S., Johnsen,
E.B., Kondov, I., Pllana, S., Streit, A.: Preparing HPC appli-
cations for exascale: challenges and recommendations. CoRR.
arXiv:1503.06974 (2015)

4. Ábrahám, E., Havelund, K. (eds.): Proceedings of the 20th Inter-
national Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’14). LNCS, vol. 8413. Springer,
Berlin (2014)

5. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins,
S., Lhoták, O., de Moor, O., Sereni, D., Sittamplan, G., Tib-
ble, J.: Adding trace matching with free variables to AspectJ. In:
Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA’05), pp. 345–364. ACM Press, New York (2005)

6. Armando, A., Carbone, R., Compagna, L.: SATMC: a SAT-based
model checker for security-critical systems. In: Proceedings of the
20th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’14). LNCS, vol.
8413, pp. 31–45. Springer, Berlin (2014)

7. Armando, A., Carbone, R., Compagna, L.: SATMC: a SAT-based
model checker for security protocols, business processes, and
security APIs. Int. J. Softw. Tools Technol. Transf. doi:10.1007/
s10009-015-0385-y (2015)

8. Artho, C., Havelund, K., Biere, A.: High-level data races. Softw.
Test. Verif. Reliab. 13(4), 207–227. doi:10.1002/stvr.281 (2003)

9. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Perfor-
mance evaluation and model checking join forces. Commun. ACM
53(9), 76–85 (2010)

10. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT
Press, Cambridge (2008)

11. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović,
D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Proceedings of
the 23rd International Conference on Computer Aided Verification
(CAV’11). LNCS, vol. 6806, pp. 171–177. Springer, Berlin (2011)

12. Barringer, H.: A Survey of Verification Techniques for Parallel
Programs. LNCS, vol. 191. Springer, Berlin (1985)

13. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard,
D.: Quantified event automata—towards expressive and efficient
runtime monitors. In: Proceedings of the 18th International Sym-
posium on FormalMethods (FM’12). LNCS, vol. 7436, pp. 68–84.
Springer, Berlin (2012)

14. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based
runtime verification. In: Proceedings of the 5th International
Conference on Verification, Model Checking, and Abstract Inter-
pretation (VMCAI’04). LNCS, vol. 2937, pp. 44–57. Springer,
Berlin (2004)

15. Barringer, H., Havelund, K.: TraceContract: a Scala DSL for trace
analysis. In: Proceedings of the 17th International Symposium on
Formal Methods (FM’11). LNCS, vol. 6664, pp. 57–72. Springer,
Berlin (2011)

16. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for
run-time monitoring: from Eagle to RuleR. J. Log. Comput. 20(3),
675–706 (2010)

17. Basin, D.A., Klaedtke, F., Müller, S.: Policy monitoring in first-
order temporal logic. In: Proceedings of the 22nd International
Conference onComputerAidedVerification (CAV’10). LNCS, vol.
6174, pp. 1–18. Springer, Berlin (2010)

123

http://arxiv.org/abs/1503.06974
http://dx.doi.org/10.1007/s10009-015-0385-y
http://dx.doi.org/10.1007/s10009-015-0385-y
http://dx.doi.org/10.1002/stvr.281


Some recent advances in automated analysis 127

18. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to
first-ordermonitoring. In: Proceedings of the 4th InternationalCon-
ference on Runtime Verification (RV’13). LNCS, vol. 8174, pp.
59–75. Springer, Berlin (2013)

19. Behrmann, G., Hune, T., Vaandrager, F.: Distributing timed model
checking—how the search order matters. In: Proceedings of the
12th International Conference on Computer Aided Verification
(CAV’00). LNCS, vol. 1855, pp. 216–231. Springer, Berlin (2000)

20. Bensalem, S., Havelund, K.: Dynamic deadlock analysis of multi-
threaded programs. In: Proceedings of the First Haifa International
Conference on Hardware and Software Verification and Testing
(HVC’05). LNCS, vol. 3875, pp. 208–223. Springer, Berlin (2006)

21. Bensalem, S., Havelund, K., Orlandini, A.: Verification and valida-
tion meet planning and scheduling. Softw. Tools Technol. Transf.
16(1), 1–12 (2014)

22. Bodden, E.: MOPBox: A library approach to runtime verification.
In: Proceedings of the 2nd International Conference on Runtime
Verification (RV’11). LNCS, vol. 7186, pp. 365–369. Springer,
Berlin (2011)

23. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT:
An open, trustable and efficient SMT-solver. In: Proceedings of the
22nd International Conference on Automated Deduction (CADE-
22). LNCS, vol. 5663, pp. 151–156. Springer, Berlin (2009)

24. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The
OpenSMT solver. In: Proceedings of the 16th International Con-
ference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’10). LNCS, vol. 6015, pp. 150–153. Springer,
Berlin (2010)

25. Chen, F., Roşu, G.: Parametric trace slicing and monitoring.
In: Proceedings of the 15th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’09). LNCS, vol. 5505, pp. 246–261 (2009)

26. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The
MathSAT5 SMT solver. In: Proceedings of the 19th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’13). LNCS, vol. 7795, pp. 93–107.
Springer, Berlin (2013)

27. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Abraham, E.:
SMT-RAT: an open sourceC toolbox for strategic and parallel SMT
solving. In: Proceedings of the 18th International Conference on
Theory andApplications of Satisfiability Testing (SAT’15). LNCS.
Springer, Berlin (2015)

28. Davis, M., Logemann, G., Loveland, D.: A machine program for
theorem-proving. Commun. ACM 5(7), 394–397 (1962)

29. Davis, M., Putnam, H.: A computing procedure for quantification
theory. J. ACM 7(3), 201–215 (1960)

30. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Pro-
ceedings of the 14th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’08).
LNCS, vol. 4963, pp. 337–340. Springer, Berlin (2008)

31. de Roever, W.P., de Boer, F.S., Hannemann, U., Hooman, J.,
Lakhnech, Y., Poel, M., Zwiers, J.: Concurrency Verification:
Introduction to Compositional and Noncompositional Methods.
Cambridge Tracts in Theoretical Computer Science, vol. 54. Cam-
bridge University Press, Cambridge (2001)

32. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo the-
ories. In: Proceedings of the 20th International Conference on
Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’14). LNCS, vol. 8413, pp. 341–356. Springer, Berlin
(2014)

33. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo
theories. Int. J. Softw. Tools Technol. Transf. doi:10.1007/
s10009-015-0380-3 (2015)

34. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bru-
intjes, H., Katoen, J.-P., Ábrahám, E.: Prophesy: a probabilistic
parameter synthesis tool. In: Proceedings of the 27th International

Conference onComputerAidedVerification (CAV’15). LNCS, vol.
9206, pp. 214–231. Springer, Berlin (2015)

35. Drusinsky, D.: The temporal rover and the ATG rover. In: Proceed-
ings of the 7th International SPIN Workshop on Model Checking
and Software Verification (SPIN’00). LNCS, vol. 1885, pp. 323–
330. Springer, Berlin (2000)

36. Dutertre, B.: Yices 2.2. In: Proceedings of the 26th International
Conference onComputerAidedVerification (CAV’14). LNCS, vol.
8559, pp. 737–744. Springer, Berlin (2014)

37. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for
DPLL(T). In: Proceedings of the 18th International Conference
on Computer Aided Verification (CAV’06). LNCS, vol. 4144, pp.
81–94. Springer, Berlin (2006)

38. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proceedings
of the 6th International Conference on Theory and Applications
of Satisfiability Testing (SAT’03). LNCS, vol. 2919, pp. 502–518.
Springer, Berlin (2004)

39. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime ver-
ification. In: Summer School Marktoberdorf 2012—Engineering
Dependable Software Systems. IOS Press, Amsterdam (2013)

40. Filippidis, I., Holzmann, G.J.: An improvement of the piggyback
algorithm for parallel model checking. In: Proceedings of the
2014 International Symposium on Model Checking of Software
(SPIN’14), pp. 48–57. ACM Press, New York (2014)

41. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Effi-
cient solving of large non-linear arithmetic constraint systems with
complex Boolean structure. J. Satisf. Boolean Model. Comput.
1(3–4), 209–236 (2007)

42. Garavel, H., Mateescu, R., Smarandache, I.: Parallel state space
construction for model-checking. In: Proceedings of the 8th
International SPIN Workshop on Model Checking of Software
(SPIN’01), pp. 217–234. Springer, Berlin (2001)

43. Gibson-Robinson, T., Armstrong, P., Boulgakov,A., Roscoe,A.W.:
FDR3: a parallel refinement checker for CSP. Int. J. Softw. Tools
Technol. Transf. doi:10.1007/s10009-015-0377-y (2015)

44. Gibson-Robinson, T., Armstrong, P.J., Boulgakov, A., Roscoe,
A.W.: FDR3—a modern refinement checker for CSP. In: Proceed-
ings of the 20th International Conference on Tools and Algorithms
for the Construction andAnalysis of Systems (TACAS’14). LNCS,
vol. 8413, pp. 187–201. Springer, Berlin (2014)

45. Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto,
C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S.,
Thiemann, R.: Proving termination of programs automaticallywith
AProVE. In: Proceedings of the 7th International Joint Conference
on Automated Reasoning (IJCAR’14). LNAI, vol. 8562, pp. 184–
191. Springer, Berlin (2014)

46. Goubault-Larrecq, J., Olivain, J.: A smell of ORCHIDS. In: Pro-
ceedings of the 8th InternationalWorkshoponRuntimeVerification
(RV’08). LNCS, vol. 5289, pp. 1–20. Springer, Berlin (2008)

47. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a
model checker for parametric Markov models. In: Proceedings of
the 22nd International Conference on Computer AidedVerification
(CAV’10). LNCS, vol. 6174, pp. 660–664. Springer, Berlin (2010)

48. Hallé, S., Villemaire, R.: Runtime enforcement ofweb servicemes-
sage contracts with data. IEEE Trans. Serv. Comput. 5(2), 192–206
(2012)

49. Havelund, K.: Rule-based runtime verification revisited. Softw.
Tools Technol. Transf. 17(2), 143–170 (2014)

50. Havelund, K., Goldberg, A.: Verify your runs. In: Proceedings of
the 1st IFIP TC 2/WG 2.3 Conference on Verified Software: The-
ories, Tools, Experiments (VSTTE’05), pp. 374–383 (2008)

51. Havelund, K., Roşu, G.: Efficient monitoring of safety properties.
Softw. Tools Technol. Transf. 6(2), 158–173 (2004)

52. Heyman, T., Geist, D., Grumberg, O., Schuster, A.: Achieving
scalability in parallel reachability analysis of very large circuits.
In: Proceedings of the 12th International Conference on Com-

123

http://dx.doi.org/10.1007/s10009-015-0380-3
http://dx.doi.org/10.1007/s10009-015-0380-3
http://dx.doi.org/10.1007/s10009-015-0377-y


128 E. Ábrahám, K. Havelund

puter Aided Verification (CAV’00), pp. 20–35. Springer, Berlin
(2000)

53. Holzmann, G.J.: Parallelizing the SPIN model checker. In: Pro-
ceedings of the 19th International Workshop on Model Checking
Software (SPIN’12). LNCS, vol. 7385, pp. 155–171. Springer,
Oxford (2012)

54. Holzmann, G.J.: Proving properties of concurrent programs. In:
Proceedings 20th International Symposium on Model Checking
Software (SPIN’13). LNCS, vol. 7976, pp. 18–23. Springer, Berlin
(2013)

55. Holzmann, G.J., Bošnački, D.: The design of a multicore extension
of the SPIN model checker. IEEE Trans. Softw. Eng. 33(10), 659–
674 (2007)

56. Holzmann, G.J., Joshi, R., Groce, A.: Swarm verification tech-
niques. IEEE Trans. Softw. Eng. 37(6), 845–857 (2011)

57. Isberner, M., Howar, F., Steffen, B.: Learning register automata:
from languages to program structures. Mach. Learn. 96(1–2), 65–
98 (2014)

58. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen,
D.N.: The ins and outs of the probabilistic model checker MRMC.
Perform. Eval. 68(2), 90–104 (2011)

59. Kwiatkowska, M.Z.: Model checking for probability and time:
from theory to practice. In: Proceedings of the 18th IEEE Sym-
posium on Logic in Computer Science (LICS’03), pp. 351–360.
IEEE Computer Society Press, Piscataway (2003)

60. Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model
checking. In: Formal Methods for Performance Evaluation—
7th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems (SFM’07),
Advanced Lectures. LNCS, vol. 4486, pp. 220–270. Springer,
Berlin (2007)

61. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: verifi-
cation of probabilistic real-time systems. In: Proceedings of the
23rd International Conference on Computer Aided Verification
(CAV’11). LNCS, vol. 6806, pp. 585–591 (2011)

62. Lamport, L.: Proving the correctness of multiprocess programs.
IEEE Trans. Softw. Eng. 3(2), 125–143 (1977)

63. Lee, I., Kannan, S., Kim,M., Sokolsky, O., Viswanathan, M.: Run-
time assurance based on formal specifications. In: Proceedings of
the InternationalConference onParallel andDistributedProcessing
Techniques and Applications (PDPTA’99), pp. 279–287. CSREA
Press, Las Vegas (1999)

64. Lerda, F., Sisto, R.: Distributed-memory model checking with
SPIN. In: Proceedings of the 5th and 6th International SPIN
Workshops on Theoretical and Practical Aspects of SPIN Model
Checking, pp. 22–39. Springer, Berlin (1999)

65. Leucker,M., Schallhart, C.: A brief account of runtime verification.
J. Log. Algebraic Program. 78(5), 293–303 (2008)

66. Levin, G.M., Gries, D.: A proof technique for communicating
sequential processes. Acta Inform. 15(3), 281–302 (1981)

67. Lowe, G.: Concurrent depth-first search algorithms. In: Proceed-
ings of the 20th International Conference on Tools and Algorithms
for the Construction andAnalysis of Systems (TACAS’14). LNCS,
vol. 8413, pp. 202–216. Springer, Berlin (2014)

68. Lowe, G.: Concurrent depth-first search algorithms based on Tar-
jan’s algorithm. Int. J. Softw. Tools Technol. Transf. doi:10.1007/
s10009-015-0382-1 (2015)

69. Marques-silva, J.P., Sakallah, K.A.: Grasp: a search algorithm
for propositional satisfiability. IEEE Trans. Comput. 48, 506–521
(1999)

70. Nelson, G., Oppen, D.C.: Simplification by cooperating deci-
sion procedures. ACM Trans. Program. Lang. Syst. 1(2), 245–257
(1979)

71. Owicki, S., Gries, D.: Verifying properties of parallel programs: an
axiomatic approach. Commun. ACM 19(5), 279–285 (1976)

72. Reiss, S.P., Tarvo,A.:What ismy programdoing? Programdynam-
ics in programmer’s terms. In: Proceedings of the 2nd International
Conference onRuntimeVerification (RV’11). LNCS, vol. 7186, pp.
245–259. Springer, Berlin (2011)

73. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.:
Eraser: A dynamic data race detector for multithreaded programs.
ACM Trans. Comput. Syst. 15(4), 391–411 (1997)

74. Shostak, R.E.: A practical decision procedure for arithmetic with
function symbols. J. ACM 26(2), 351–360 (1979)

75. Stern, U., Dill, D.L.: Parallelizing the Murφ verifier. In: Pro-
ceedings of the 9th International Conference on Computer Aided
Verification (CAV’97), pp. 256–267. Springer, Berlin (1997)

76. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In: Pro-
ceedings of the 5th InternationalWorkshoponRuntimeVerification
(RV’05). ENTCS, vol. 144(4), pp. 109–124. Elsevier, Amsterdam
(2006)

77. von Essen, C., Giannakopoulou, D.: Analyzing the next generation
airborne collision avoidance system. In: Proceedings of the 20th
International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’14). LNCS, vol. 8413,
pp. 620–635. Springer, Berlin (2014)

78. von Essen, C., Giannakopoulou, D.: Probabilistic verification
and synthesis of the next generation airborne collision avoid-
ance system. Int. J. Softw. Tools Technol. Transf. doi:10.1007/
s10009-015-0388-8 (2015)

79. Wijs, A., Bošnački, D.: GPUexplore: many-core on-the-fly state
space exploration using GPUs. In: Proceedings of the 20th Inter-
national Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’14). LNCS, vol. 8413, pp. 233–
247. Springer, Berlin (2014)

80. Wijs, A., Bošnački, D.: Many-core on-the-fly model checking of
safety properties using GPUs. Int. J. Softw. Tools Technol. Transf.
doi:10.1007/s10009-015-0379-9 (2015)

81. Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational
arithmetic. In: Proceedings of the 16th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR-16). LNAI, vol. 6355, pp. 481–500. Springer, Berlin (2010)

82. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient
conflict driven learning in a Boolean satisfiability solver. In: Pro-
ceedings of the 2001 IEEE/ACM International Conference on
Computer Aided Design (ICCAD’01), pp. 279–285. IEEE Com-
puter Society Press, Piscataway (2001)

123

http://dx.doi.org/10.1007/s10009-015-0382-1
http://dx.doi.org/10.1007/s10009-015-0382-1
http://dx.doi.org/10.1007/s10009-015-0388-8
http://dx.doi.org/10.1007/s10009-015-0388-8
http://dx.doi.org/10.1007/s10009-015-0379-9

	Some recent advances in automated analysis
	Abstract
	1 Introduction
	2 Distributed and parallel algorithms
	3 SAT and SAT-modulo-theories solving
	4 Runtime verification
	5 Probabilistic systems
	6 Conclusion
	Acknowledgments
	References




