
Int J Softw Tools Technol Transfer (2017) 19:73–96
DOI 10.1007/s10009-015-0402-1

REGULAR PAPER

Model checking of state-rich formalism Circus by linking
to CSP ‖ B

Kangfeng Ye1 · Jim Woodcock1

Published online: 3 November 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Since state-rich formalism Circus is a combina-
tion of Z, CSP, refinement calculus and Dijkstra’s guarded
commands, its model checking is intrinsically more com-
plicated and difficult than that of individual state-based
languages or process algebras. Current solutions translate
executable constructs ofCircus programs to Java with JCSP,
or translate them to CSP processes. Data aspects of Circus
programs are expressed in the Java programming language
or as CSP processes. Both of them have disadvantages. This
work presents a new approach to model-checking Circus by
linking it to CSP ‖ B; then we utilise ProB to model-check
and animate the CSP ‖ B program. The most significant
advantage of this approach is the direct mapping of the
state part in Circus to Z and finally to B, which maintains
the high-level abstraction of data specification. In addition,
introduction of deadlock, invariant violation checking, LTL
formula checking and animation is another key advantage.
We present our approach, a link definition for a subset of
Circus constructs, as well as a popular case study (reac-
tive buffer) to show the practical usability of our work. We
conclude with a discussion of related work, advantages and
potential limitations of our approach and future work.

Keywords Circus · CSP ‖ B · CSP · Z · B · ProB · Model
checking · Buffer

B Kangfeng Ye
ky582@york.ac.uk

Jim Woodcock
jim.woodcock@york.ac.uk

1 Department of Computer Science, University of York, York,
UK

1 Introduction

In the past two decades, the advent of model checking [14], a
technique used for the verification of a finite-state system by
automatically and exhaustively checking whether the model
meets a given specification, has been getting ever increas-
ing interest from both industry and academia. Verification of
systems specified using formal methods by model checking
is one among these. Comparing to theorem proving, another
technique for formal verification, the advantages of model
checking, including an automated checking procedure, coun-
terexamples for debugging and the capability of temporal
logic properties checking, make it very important for a for-
malism to support both model checking and theorem proving
in a complementary way.

Traditional research in formal methods often focuses
on two schools: state-based, model-oriented specification
languages such as Z [47], B [5] and VDM [26]; and
behaviour-oriented process algebras such as CSP [25,43],
CCS [32] and ACP [8]. But in recent decades, there is an
increasing research interest in specification languages that
integrate both state and behavioural aspects. Early solutions
aim to combine them together, such as CSP-OZ [18], ZCCS
[23], Z and CSP [34,44], and CSP ‖ B [46]. Fischer gave
a summary of combination solutions of Z and process alge-
bras [19]. However, state-rich formalism Circus [49] is not
a simple combination of Z and CSP. It is a combination
of Z, CSP, refinement calculus [33] and Dijkstra’s guarded
commands [16]. Therefore, its model checking is intrinsi-
cally more complicated and difficult than that of individual
Z and CSP. The complexity of model checking Circus is
increased due to two main factors. The first one is state space
explosion challenge. Basically, the state of a system spec-
ified by Circus is the state of its processes. However, for
each process it may contain state and behaviour, and conse-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-015-0402-1&domain=pdf

74 K. Ye, J. Woodcock

quently its state is a combination of both variable state and
action state. In addition, the process’s variable and action
states are dynamically constructed and destroyed along with
invocation and destroy of the process. It possibly has infinite
number of distinct states as well. Because of this hierarchi-
cal structure of Circus and possible infinite states, how to
represent and search its state space including infinite state
space and infinite data type efficiently is really a challenge.
Another factor is Circus’s very rich notations from Z, CSP
and guarded commands. Along with its powerful expressive-
ness and high-level abstraction, all make the development
of its model checker—to parse and typecheck Circus pro-
grams, check deadlock and livelock, check refinement in
terms of Circus action refinement and data refinement and
CSP failure-divergence refinement—difficult. In addition,
the relationship between state and behaviour in early solu-
tions is always orthogonal during development. Therefore,
they can use the existing tools for each school separately.
However, for Circus its syntax is a free mixture of CSP
and Z. As a result it cannot use current Z and CSP tools
directly.

Our proposed approach to model-check Circus in this
paper is to link Circus to CSP ‖ B that integrates state and
behaviour through synchronisation of operations. On the one
hand, the state part inCircus is transformed to theBmachine.
On the other hand, the behavioural part is converted to CSP.
The resultant CSP and B specifications maintain high-level
abstractionof the initialCircus specificationbecause they are
specification languages rather than programming languages.
Accordingly, it is more direct and powerful to specify the
state part in B than in CSP. Furthermore, the final CSP ‖ B
can be model-checked by ProB [3], a model checker and ani-
mator for multiple languages. Apart from these, with ProB
we introduce LTL and CTL [14] property checking, auto-
matic and manual animations and refinement checking into
Circus specification.

Our contribution is to define a formal link from Circus to
CSP ‖ B.With this link, we take themodel checking intoCir-
cus by model-checking CSP ‖ B using ProB. Additionally,
to establish the link between them, we studied the transfor-
mation from Z in ISO Standard [4] dialect to Z in ZRM [47]
and finally to B, and the transformation of Circus expres-
sions from ISO Standard Z to CSP as well. The soundness of
the link from Circus to the intermediate CSP and Z in ZRM
is proved based on their semantics in Hoare and He’s Unify-
ing Theories of Programming (UTP) [24]. We also studied
the correctness of the link from Z in ZRM to B though it
relies on the implementation of ProB. Furthermore, because
of the expressiveness and high-level abstraction of Circus,
it is impossible to define an inverse link from CSP ‖ B to
Circus and achieve exactly the same Circus constructs as
the original constructs. Hence, our link is one direction only

fromCircus toCSP ‖ B and can not formGalois connections
[24].

The rest of the paper is structured as follows. We give a
brief introduction of Circus and CSP ‖ B in Sect. 2. Then
in Sect. 3, the link function, its decomposition and overall
strategies are described. Afterwards, Sect. 4 presents a subset
of rules for each link function. A case study of a buffer is
undertaken in Sect. 5 to illustrate how our approach works.
Finally, in Sect. 6, we discuss related work, our work’s pros
and cons and future work.

2 Background

2.1 Circus

The BNF syntax of Circus is shown in Fig. 1. A Circus
program consists of a sequence of paragraphs: Z paragraph,
channel declaration, channel set definition or a process defini-
tion.A category, that is decoratedwith an additional star, such
as CircusPar∗, denotes a possibly empty list of CircusPar,
while a category decorated with an additional plus, such
as N+, denotes a non-empty list of Z identifiers N. Par,
SchemaExp, Exp, Pred and Decl represent Z paragraphs,
schema expressions, expressions, predicates and declarations
defined in the reference manual [47], respectively.

A Circus paragraph can be a Z paragraph, a channel dec-
laration, a channel set declaration, or a process declaration.
A channel declaration is very similar to that in CSP except a
schema channel declarationwhichmerely groups the channel
declarations into the schema. And a channel set declaration
relates a name to a set of channels. Additionally, a process
can be defined in the process declaration as a parametrised
process (Decl • ProcDef), an indexed process , an explicitly
defined process (begin · · · state · · · • A end), or a com-
pound process which is defined in terms of CSP operators or
the indexed operator (�i�). In particular, the indexed process
(IP =̂ i : T � P) is new to Circus. For its instantiation
IP�e�, it behaves like P, but for each channel c in P, it is
changed to c i.e. In addition, a process renaming operator
(P[cold := cnew]) substitutes the channels in cnew for the
channels in cold in the process P.

An explicitly defined process is composed of a state
schema, which declares a set of state components in the
process, multiple schemas and action declarations (possibly
none of them), a main action, which defines the behav-
iour of this process. An action can be a schema expression
((SchExp)), a command, an action defined in terms of CSP.
And a command can be an assignment (:=), an alternation
(if · · · fi), a guarded command ((g) � A), a variable block
(varDecl • A), a parametrisation by value (val), by result
(res) and by value-result (vres), a specification statement

123

Model checking of Circus by linking to CSP ‖ B 75

Fig. 1 Syntax of Circus

(:[]), an assumption ({}), or a coercion ([]). Particularly, for
CSP actions, the parallel composition (A1 �ns1 | cs | ns2 �A2

where ns1 and ns2 are the state partitions of the actions A1

and A2 separately) and the interleaving (A1 ||[ns1 | ns2]|| A2)
in Circus are slightly different. Both A1 and A2 have a copy
of all variables in scope and may change the value of these
variables. But only the changes made to the variables in ns1
and ns2 have an effect in the final state of the parallel com-
position and the interleaving. Furthermore, state components
and local variables in an action can be renamed by a renaming
operator (A[vold := vnew]).

A simple buffer [12] specification in Circus is illustrated
in Fig. 2. The size of the buffer is bounded by maxbuff , a
global constant declared in the axiomatic paragraph. After-
wards, two typed channels input and output are declared to
allow only natural number on their communications. Then
an explicitly defined process, named Buffer, is defined. This
process has two state variables buff and size. And the ini-
tial state of the process is an empty buffer where buff is an
empty sequence and size is equal to 0. In addition to the
state schema and the initial schema, there are two schemas
InputCmd and OutputCmd defined as well. They are invoked
by their corresponding schema expressions (InputCmd) and
(OutputCmd) in the actions Input and Output, respectively.
The behaviour of Buffer is specified by its main action: it is

Fig. 2 The specification of buffer

initialised to the initial state; after that, it provides input (in
case the buffer is not full) and output (in case the buffer is not
empty) events to its environment continuously. Accordingly,
it buffers the input message in its end and increases its size
by one, or outputs its head and decreases its size by one.

Additionally, sinceCircus is a combination of several dif-
ferent languages that have different semantics, there arises an
issue about how to unify its semantics into one. For exam-
ple, CSP-OZ introduces the failures-divergences model [43]

123

76 K. Ye, J. Woodcock

into Object-Z [11] classes and then integrates CSP processes
withObject-Z classes based on the same failures-divergences
semantics. ButCSP ‖ B treats a Bmachine as a CSP process,
and gives CSP traces, stable failures and failures-divergences
semantics to B machines [46]. Circus needs to combine not
only Z and CSP, but also the guarded command language and
the refinement calculus. Circus formalises its model in UTP
because UTP is a common framework for the unification of
programs from different paradigms. Denotational semantics
[38,39,49] and operational semantics [21,51,52] of Circus
have been given.

2.2 Unifying theories of programming

UTP is a unified framework to form theoretical basis for
describing and specifying computer languages across dif-
ferent paradigms such as imperative, functional, declarative,
nondeterministic, concurrent, reactive and high-order. A the-
ory in UTP is described from three parts: alphabet, a set of
variable names for the theory to be studied; signature, rules of
primitive statements of the theory and how to combine them
together to get more complex program; and healthiness con-
ditions, a set of mathematically provable laws or equations
to characterise the theory.

The alphabetised relational calculus [13] is the most basic
theory in UTP. A relation is defined as a predicate with
undecorated variables (v) and decorated variables (v′) as its
alphabet. v denotes the observation made initially and v′
denotes the observation made at the intermediate or final
state. The behaviour of a design is described from initial
observation and final observation by relating precondition
P to postcondition Q as (P � Q) [24,50]. It is defined as
(P � Q =̂ okay ∧ P ⇒ okay′ ∧ Q) where okay records the
program has started and okay′ that it has terminated.

But a reactive process cannot be characterised from the
final observation alone because it interacts with its environ-
ments (other programs and users). It must take intermediate
states into account. Therefore, three extra variables and their
dashed counterparts are introduced: tr and tr′, the sequences
of the events occurred; ref and ref ′, the sets of events
that may be refused; wait and wait′, the boolean variables
that denote whether the process has terminated (true) or is
in an intermediate state (false). Cavalcanti and Woodcock
[13] lift the theory of reactive processes to CSP processes.
“CSP processes are reactive; moreover they are R-image
of designs” [13, Fig. 1, p. 257]. The reactive processes are
expressed as the reactive design (R(P � Q)).

2.3 Combination of CSP and B

CSP ‖ B [9] is a combination of CSP and B aiming to intro-
duce behavioural specification into state-based B machines.
The B method characterises abstract state, operations with

respect to their enabling conditions and their effect on the
abstract state, while CSP specifies overall system behav-
iour. But different from Circus, the CSP specification and B
machine inCSP ‖ B are always orthogonal. They are individ-
ually complete specifications and can be checked separately.

Semantically the combination of CSP and B works
in terms of CSP. The B machine, which has operations
Ops ({Op1, . . . , Opn}) and variables Vars ({v1, . . . , vm}),
is regarded as a process Bproc (1). The operation Opi is
enabled if its precondition holds or enabled(Opi) is true.
CSP may have all or part of events from the events Ops
({Op1, . . . , Opn}) that have the same name as operationsOps
in B. CSP and B processes are composed together by a gen-
eralised parallel composition in CSP, as shown in (2). B and
CSP synchronise on events Ops in CSP and operations Ops
in B. If an event Opi in Ops is allowed by the CSP specifica-
tion and at the same time the operation Opi in B is enabled as
well, then they can make progress. After that, the state Vars
of the B machine, which are specified in the predicate of
operation Opi, are updated. Otherwise, if Opi is not allowed
at the same time as Opi is enabled, neither of them can make
progress. In addition, for events only in CSP and not having
corresponding operations in B, they engage independently.
Conversely, for operations only specified in B and not in
CSP, they are prevented from executing. If none of opera-
tions required by CSP specification are enabled or the CSP
process is blocked, then the CSP ‖ B program is deadlocked.
Consequently no state can be changed and no event can be
engaged.

Bproc =̂ μ X •
⎛

⎝

(Op1 → X)<I enabled(Op1)>I ST O P
� . . .

� (Opn → X)<I enabled(Opn)>I ST O P

⎞

⎠

(1)

CSP ‖ B =̂ (CSP ‖
Ops

Bproc) \ {|Ops|} (2)

2.4 ProB

ProB is a model checker and animator developed by the
University of Düsseldorf originally for the B language. It
has been extended to support a variety of formal specifica-
tion languages, such as Z, CSP, Event-B [6], TLA+ [27],
Promela and CSP ‖ B. Particularly, the dialect of Z sup-
ported is ZRM [47] and the syntax of CSP is written in CSPM

[45]. The main functions of ProB include temporal logic and
refinement model checking, deadlock and invariant viola-
tion checkingwith counterexamples available, automatic and
manual animations, visualisation of state spaces and test-case
generation. Its kernel is written in SICStus Prolog [10]. Most
importantly, its source code is open and licensed under EPL
v1.0 [17].

123

Model checking of Circus by linking to CSP ‖ B 77

3 Link definitions

3.1 Overall link function

A function Υ (pronounced “upsilon”) is defined to map a
Circus program to a CSP ‖ B program.

Circus Υ===⇒ CSP ‖ B

The overall strategies of Υ are defined.

– Fundamentally, the state part of Circus is linked to a B
machine and the behavioural part to a CSP specification.
Some constructs such as command actions,which specify
both state and behaviour, aremapped to constructs in both
B and CSP.

– The definitions, such as type definitions, abbreviation and
axiomatic definitions, are mapped to the counterparts in
B and possibly in CSP if they are referred to in the behav-
ioural part of Circus.

– State components in Circus are mapped to variables in
B. However, since state components are encapsulated in
explicitly defined processes, they are merged to form
variables in B when mapped.

– Operational schemaswithin an explicitly definedprocess,
which includes the state schema in its declaration and is
not included by other schemas, are mapped to operations
in B. However, these operations are restricted to manip-
ulate variables that are mapped from state components
of the same processes in Circus and never change vari-
ables that are mapped from state components of different
processes.

– Channel declarations are mapped to channel declarations
in CSP.

– The main action of an explicitly defined process is
mapped to a same name process in CSP.

– Compound processes are linked to the same name
processes in CSP.

3.2 Υ function decomposition

Because a Circus program is linked to a CSP ‖ B pro-
gram with a complete B machine and a CSP specification,
we decompose the Υ function into two functions: Ω (pro-
nounced “omega”) function and Φ (pronounced “phi”)
function. The Ω function is responsible for the translation
of the state part in Circus to B, while the Φ function is for
that of the behavioural part to CSP.

However, Circus itself is not a simple combination of
the CSP and Z languages but a free mixture of CSP and
Z with additional guarded commands. An exact example is
the assignment command that may specify both state and
behaviour. For instance, this action (3) inputs a value x over

Circus Rewritten Circus CSP B

Rwrt

Ω

Φ

Z

Sc
he
m
a

Sc
hE

xp

CSP

C
om

m
un
ic
at
io
n

C
om

m
an
d

Vars

Invs

Ops

Ops

Procs

Z

G
en St C
m
d

G
en St C
m
d

CSP

Fig. 3 Translation function (Υ) decomposition

c channel; then the assignment command updates the state
variable s to x plus the local variable l. In this action, state and
behaviour are mixed together. As a result,Ω andΦ functions
cannot apply to the original Circus program directly.

c?x → s := x + l (3)

Thus, another function, named Rwrt , is defined. It aims to
rewrite a Circus program to separate the state and behav-
ioural parts into Z and CSP. The action (3) is rewritten to an
action and a schema (4) according to the Rwrt Rule 7 which
is defined latter. Finally, Ω and Φ can be easily applied to
this rewritten Circus program.

c?x → (AssOp), (4)

whereAssOp == [ΔP StPar ;l? : Tl?;x? : Tc | s′ = x?+l?]
The relation of Υ function decomposition is displayed in

Fig. 3. In a rewrittenCircus program, state and behaviour are
separate.Noconstructwill specify both state andbehaviour at
the same time. The interaction between them highly depends
on schema expressions. The original schemas and schema
expressions in Z and behaviour, respectively, are still kept
in the rewritten program. In addition, it is worth noting that
additional operational schemas are added in Z, and any direct
state components accessed and updated in Circus actions
will rely on schema expressions. Furthermore, for other con-
structs such as commands, they are rewritten to additional
schemas and their schema expressions as well. Finally, we
state that the rewritten Circus program has the same struc-
ture as the original program, which means state components
of each process are still encapsulated in its own process.

3.2.1 Ω function decomposition

For the Ω function, our strategy is to reuse the currently
available solution [41] in ProB to translate Z in ZRM to B.

123

78 K. Ye, J. Woodcock

Considering this strategy, we map the state part of the Cir-
cus program to ISO Standard Z first because Circus itself is
written in ISO Standard Z, then to Z in ZRM and finally from
ZRM to B by ProB. Accordingly, the Ω function is decom-
posed as well: the Ω1 function translates the state part in Z
in a rewritten Circus specification to a complete specifica-
tion in ISO Standard Z by merging all state components and
schemas from all processes; the Ω2 function syntactically
transforms Z in ISO Standard Z to that in ZRM; theΩ3 func-
tion, translation function from ZRM to B, is implemented in
ProB and stated in Daniel Plagge et al.’s work [41].

3.3 Link strategies

In addition to the overall strategies and link functions, some
other strategies are defined:

– Every rule defined forΥ is sound unless stated otherwise.
The soundness of the map is based on UTP semantics. If
the corresponding linked constructs in CSP ‖ B have the
same semantics as the original constructs inCircus, then
the link is sound.

– From the design perspective, a design P1 � Q1 is
equal to another design P2 � Q2 if, and only if, (P1 =
P2) ∧ (P1 ⇒ (Q1 = Q2)). If both designs have the
same alphabets (ok, v, and their dashed counterparts),
the same preconditions that imply the equal postcon-
dition, we say they are semantically equal.

– From the reactive process (R(P � Q)) perspective, if
both reactive processes have the same alphabets (ok,
wait, tr, ref , v, and their dashed counterparts), the
same preconditions that imply the equal postcondi-
tion and the same other observation variables, we say
two reactive processes are semantically equal.

– For state-based specification languages such as Z and
B, their semantics are specified in the designs of UTP.
But for CSP and the behavioural part ofCircus, their
semantics are specified in the reactive theory of UTP.

– State components of Circus are maintained in a Z spec-
ification and finally a B machine. Thus we require they
are updated only in the B machine but can be accessed
in both B and CSP programs. The CSP specification will
not maintain states. If a process in the CSP specification
needs to get the value of variables in B, it shall retrieve
them through a communication between CSP and B.

4 Link rules

4.1 Identifiers

In ISO Z Standard, an identifier is a DECORWORD that is
composed of WORD and STROKE [4, 8.4]. Stokes (’, ! and

?) are very important part inZ specification.Theymaydenote
dashed variables, input variables and output variables within
a schema. In addition, they may form the schema decoration
and binding construction expressions as well. A word can be
a keyword, operator or name. In addition to letter, digital and
underscore (), a name may have other special symbols such
as subscript and superscript.

However, the pattern of an identifier or name in CSPM

and B, [a-zA-Z][a-zA-Z0-9] [15,20], is limited. It
begins with an alphabetic character ([a-zA-Z]) and is
followedbyanynumber of alphanumeric characters or under-
scores. Particularly, for CSPM , it can be optionally followed
by prime characters (’).

Therefore, we restrict the pattern used in Circus for a
name the same as that in CSPM and B. But for strokes, they
are necessary and specially treatedwhen translating to CSPM

and B.

4.2 Circus rewriting function—Rwrt

The Rwrt function is defined to rewrite Circus constructs to
facilitate the application of theΦ function and theΩ function
in the later stage.

Rwrt Rule 1 (Parametrised process) For the parametrised
process, it is expanded to a number of explicitly defined
processes, provided that T in (5) is finite and has n elements:
x1, . . ., xn. The number of explicitly defined processes is
equal to the cardinality of T .

Rwrt (process PP =̂ x : T • P)

=
⎛

⎝

Rwrt (process PP x1 =̂ P[x1/x])
. . .

Rwrt (process PP xn =̂ P[xn/x])

⎞

⎠ (5)

where the substitution notation P[x1/x] denotes the expres-
sion x1 consistently substituted for free occurrences of the
variable x in P.

Rwrt Rule 2 (Indexed process) An indexed process (6) is
rewritten to a parametrised process with all its channels
renamed at first; then it is expanded to a number of explicitly
defined processes by the parametrised process rule (5).

Rwrt (process IP =̂ i : T � P)

= Rwrt (process IP =̂ i : T • P[c := c i.i])

=
⎛

⎝

Rwrt (process IP i1 =̂ (P[c := c i.i])[i1/i])
. . .

Rwrt (process IP in =̂ (P[c := c i.i])[in/i])

⎞

⎠

=
⎛

⎝

Rwrt (process IP i1 =̂ P[c := c i.i1])
. . .

Rwrt (process IP in =̂ P[c := c i.in])

⎞

⎠ (6)

123

Model checking of Circus by linking to CSP ‖ B 79

where P[c := c i.i] denotes the renaming of each channel c
in P to c i.i.

Rwrt Rule 3 (Renaming operator) The renaming operator
P[cold := cnew] renames the channel cold in P to the channel
cnew.

Rwrt (P[cold := cnew]) = (FRen(P, {(cold, cnew)})) (7)

where FRen(P, {x, y}) is a renaming function that replaces
occurrences of the term x in P to the term y.

Rwrt Rule 4 (Indexed process with renaming) In Circus, the
indexed process notation is commonly used with the renam-
ing operator together to define more expressive processes.
Therefore,

Rwrt ((process IP =̂ i : T � P) [c i := d])
= Rwrt ((process IP =̂ i : T • P[c := c i.i]) [c i := d])

[Rwrt Rule 2]

=

⎛

⎜

⎜

⎜

⎜

⎝

Rwrt

(

process IP i1 =̂
((P[c := c i.i]) [i1/i]) [c i := d]

)

. . .

Rwrt

(

process IP in =̂
((P[c := c i.i]) [in/i]) [c i := d]

)

⎞

⎟

⎟

⎟

⎟

⎠

[Rwrt Rule 1]

=

⎛

⎜

⎜

⎜

⎜

⎝

Rwrt

(

process IP i1 =̂
(P[c := c i.i1]) [c i := d]

)

. . .

Rwrt

(

process IP in =̂
(P[c := c i.in]) [c i := d]

)

⎞

⎟

⎟

⎟

⎟

⎠

[Substitution]

=
⎛

⎝

Rwrt (process IP i1 =̂ P[c := d.i1])
. . .

Rwrt (process IP in =̂ P[c := d.in])

⎞

⎠

[Rwrt Rule 3]

For explicitly defined processes, the Rwrt function is to
separate the state part and the behavioural part as well as
renaming of state components, schema paragraphs and action
paragraphs. Consequently, all interactions between state and
behaviour are through schema expressions only.

Rwrt Rule 5 (Additional state components retrieve schemas)
The rule for state components retrieve schemas is shown in
Fig. 4, where B function denotes the body of the action. For
each state component in an explicitly defined process, one
schema is added to retrieve the value of this state component.
The name of the output variable in this schema is composed
of the state component name and !. And its type is the same
as the type of the state component.

Fig. 4 Additional schemas for state components retrieve

Fig. 5 Renaming

Rwrt Rule 6 (Renaming of state components, schemas, actions
and their references)The rule for renaming is shown inFig. 5.
State components, schemaparagraphs, action paragraphs and
each reference to them within an explicitly defined process
are renamedbyprefixing the process’s name.The only excep-
tion is that the reference to state components in action is not
changed.

Rwrt Rule 7 (Action rewriting) The rule for action rewriting
is illustrated in Fig. 6, where P assOp (8) is a schema added
in the process of this assignment. The definitions of Rpre and
Rpost functions are given in Definition 1. To rewrite the exter-
nal choice, a Rmrg function is provided to merge the rewriting
prefixes of both actions and it is defined in Definition 2. Note
that it is not syntactically correct in Circus because schema
expression actions cannot be a channel event in communica-
tion. But when schema expression actions are translated to
events in CSP, it is valid in the final CSP ‖ B.

P assOp == [ΔP StPar ; l? : Tl? ; l! : Tl! |
P s′ = (es[l?/l]) ∧ l! = (el[l?/l])] (8)

123

80 K. Ye, J. Woodcock

Fig. 6 Action rewriting

Definition 1 (Rpre and Rpost) Rewriting an action to get the
value of state components in its first construct, Rwrt(A), is
composed of Rpre(A) and Rpost(A) which denotes the pre-
fix (state components retrieve schema expressions) and the
remaining, respectively:Rwrt(A) = Rpre(A) → Rpost(A). For
example,

Rpre(Skip) = Rpost(Skip) = Skip

Rpre(Stop) = Rpost(Stop) = Stop

Rpre(c!si! . . .!sj → A) = (OP si) → · · · → (OP sj)
Rpost(c!si! . . .!sj → A) = c!si! . . .!sj → Rwrt(A)

Rpre(g) = (OP si) → · · · → (OP sj)
Rpost(g) = g

provided the condition g evaluates state components si,. . . ,sj

and OP si is the schema name for state component si.

Definition 2 (Rmrg) A Rmrg
(

Rpre(A1), Rpre(A2)
)

function is
defined to merge the rewriting prefixes of A1 and A2 into one
final prefix. Basically, it is equal to Rpre(A1) → Rpre(A2) if
each state component retrieve schema expression inRpre(A2),

(OP si), is different from any in Rpre(A1). However, for any
state component retrieve schema expression in Rpre(A2), if it
is the same as that in Rpre(A1), it is removed from Rpre(A2)

before combination. For example,

Rmrg

(

(OP x), (OP y)
)

= (OP x) → (OP y)

Rmrg

(

(OP x), (OP y) → (OP x)
)

= (OP x) → (OP y)

Fig. 7 Ω1 function

4.3 Circus state part to B—Ω

4.3.1 Circus state part to ISO standard Z—Ω1

The functionΩ1 translates the state part in a rewrittenCircus
program to a Z specification in ISO Standard Z. Because the
state part ofCircus is alsowritten in ISOStandardZ, formost
constructs they are just a direct map without changes. How-
ever, a rewritten Circus program still has the same structure
as the original program—all state components and schemas
are encapsulated within the processes—but the state and
schemas in a ISO Standard Z specification are flat. There-
fore, we need to merge all state components and schemas
into one global and flat specification in ISO Standard Z.

Ω1 Rule 1 (States and schemas merge) If there are more than
one explicitly defined process, their states and operations are
merged in the resultant Z specification. Assume there are n
explicitly defined processes, named P1, P2, . . . , Pn, in aCir-
cus specification. Their states and schemas are merged as
shown in Fig. 7. The state schema is a conjunction of state
schemas from all processes, as well as the Init schema. All
other schemas from each process will be translated to corre-
sponding schemas with their own declaration and predicate.
Additionally they shall keep state components from other
processes unchanged by including Ξ of all other state para-
graphs into their declaration.

123

Model checking of Circus by linking to CSP ‖ B 81

4.3.2 ISO standard Z to ZRM—Ω2

The function Ω2 takes the constructs in ISO Standard Z as
input and outputs the corresponding constructs in ZRM. It
is only syntactical transformation. Only the transformation
rules used in this paper are shown.

Ω2 Rule 1 (Schema decoration)

Ω2(S
′) = S′ Ω2((S)′) = S′

Ω2 Rule 2 (Horizontal schema) In ISO standard Z, == is
used for horizontal schema but =̂ in ZRM. Thus,

Ω2(==) = =̂

4.3.3 ZRM to B machine—Ω3

Our Ω3 function, which translates from Z in ZRM to B
machine, uses the implementation of ProZ [41] in ProB.
Since ProB is the model checking tool for CSP ‖ B spec-
ification, our solution is to translateCircus to Z in ZRM and
CSP specifications and then supply them to ProB. Eventu-
ally, ProB translates Z to B by ProZ and model-checks it as
CSP ‖ B specification.

Furthermore, because only a considerable subset of Z is
implemented in ProB and others [41] shown below are not
supported, our solution is accordingly restricted.

– Generic definitions cannot be supported. Therefore,
genericity in Circus is not supported.

– Reflexive-transitive closure construct is not supported.

4.4 Circus behaviour to CSP and Z—Φ

The function Φ transforms the behavioural part of a Circus
specification to CSP and possibly Z.

Φ Rule 1 (Types, expressions and operators) The translation
rules for only a very small number of types and expressions
are shown below.

– Φ(N) = Nat where Nat = {0..MAXINT} and MAXINT
is a constant declared in the beginning of CSP specifica-
tion.

– Φ(n . . m) = {n..m}.
– Φ(T1×T2) = Φ(T1).Φ(T2) if Cartesian product is used

in the channel expression.
– Φ(T1×T2) = cross(Φ(T1),Φ(T2)) if Cartesian product

is used in other places.
– Φ(seq T) = fseq(Φ(T)) because Seq function in CSPM

is an infinite set of finite sequence, it cannot be the type
of channel in CSP of ProB. Otherwise, it results in the
infinite enumeration error. Our solution is to treat seq T

Fig. 8 fseq function

as a partial function Z � �→ T but with extra restriction of
maximum number of elements in its domain. Therefore,
fseq function is defined in Fig. 8. MAXINS denotes the
maximum number of instances for model checking and it
is put in the beginning of CSP specification like MAXINT .

* The cardinality of fseq(s) is equal to

MAXINS
∑

n=0

(card(s))n

and if the size of s is 4 and MAXINS is 5, then the size
of fseq(s) is 1365.

* MAXINS is set by users but what is its optimum value
highly depends on the programs to be checked and
the computer that ProB runs on. On a powerful com-
puter, it can be set to a higher value but still maintain
reasonable model checking resources (memory, CPU
and time) consumption.

– Abbreviation definition (AbbrDef == Expr) is linked to
(nametype AbbrDef =Φ(Expr)) in CSP.

Φ Rule 2 (Axiomatic definition) An axiomatic definition

x : T

p

is translated to x = c, where c is an instance from the set
{x | x < -T, p} and shall be assigned manually before
model checking. Notes: c shall match the value of constant x
in Z.

Φ Rule 3 (Channel declaration) The link of the channel dec-
laration inCircus to that inCSP is direct and straightforward.

Φ (channel chn name) = channel chn name

Φ (channel chn name : T) = channel chn name :Φ (T)

123

82 K. Ye, J. Woodcock

Φ Rule 4 (Channel set)

Φ({| |}) = {||}
Φ({| c1, c2, . . . , cn |}) = {|c1, c2, . . . , cn|}

Φ Rule 5 (Channel set declaration)

Φ(channelset N == {| |}) = (N = {||})
Φ(channelset N == {| c1, c2, . . . , cn |}) =

(N = {|c1, c2, . . . , cn|})

4.4.1 Actions

The rules for a subset of Circus actions are shown below.

Φ Rule 6 (Basic actions) The link of the basic actions in
Circus to those in CSP is direct and straightforward.

Φ (Stop) = ST O P

Φ (Skip) = SK I P

Φ (Chaos) = div

Φ Rule 7 (Prefixing) The link of the prefixing in Circus to
that in CSP is direct and straightforward.

Φ (c → A) = c →Φ (A)

Φ (c.e → A) = c.Φ (e) →Φ (A)

Φ (c!e → A) = c!Φ (e) →Φ (A)

Φ (c?x → A (x)) = c?x →Φ (A (x))
Φ (c?x : p → A (x)) = c?x : {y | y <- Φ (Tc) ,Φ (p) } →

Φ (A (x))

Φ Rule 8 (Schema expression as action) A schema expres-
sion as action (SExp) is linked to an external choice of the
same name event SExp with input and output variables and
another event SExp f which precondition is the negation of
precondition of SExp. Therefore, if the precondition of SExp
holds, it engages SExp event; otherwise, it engages SExp f
event and consequently diverges as div. Finally, these events
are hidden from communication by adding both events to
HIDE CSPB. That makes it semantically equal to schema
expression as action in Circus.

Φ
(

(SExp)
)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

channel SExp : Φ (Ti) .Φ (To)

channel SExp f : Φ (Ti)

HIDE CSPB ={|SExp, SExp f |}
(SExp!ins?outs → SK I P � SExp f !ins → div)
SExp f = [

ΞStPar ; ins? : Ti | ¬pre SExp
]

provided SExp is a schema in Z with input variables ins? and
output variables outs!; SExp f is an additional schema in Z;

particularly, its predicate is the negation of the precondition
of SExp.

Φ Rule 9 (Simplified schema expression as action) If the
precondition of SExp always holds such as state component
retrieve schema expressions and assignments, the rule 8 is
simplified because it is not possible to make its precondition
be evaluated to false.

Φ
(

(SExp)
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

channel SExp : Φ (Ti) .Φ (To)

HIDE CSPB ={|SExp|}
{

(SExp!ins?outs → SK I P) if (SExp) as process
(SExp!ins?outs) if (SExp) as communication

Φ Rule 10 (Miscellaneous actions)

Φ
(

(g) � A
) = Φ(g)&Φ(A)

Φ (A1 ; A2) = Φ (A1) ;Φ (A2)

Φ (A1 A2) = Φ (A1)Φ (A2)

Φ
(

A \ cs
) = Φ (A) \ cs

Φ (μX • A (X)) = let X =Φ (A (x)) within X

Φ Rule 11 (External choice) External choice of actions in
Circus is only resolved by external events of the process or
termination. Internal events of the process, such as schema
expression as action and assignment, would not resolve it.
Thus we restrict the actions that can occur in external choice
construct to AA.

Φ (AA1 � AA2) = Φ (AA1)�Φ (AA2)

where AA can be one of actions below.

• Basic actions: Skip, Stop, or Chaos
• Prefixed actions: c?x? . . .!e! · · · → A
• Guarded commands: (g) � AA

Furthermore, provided both actions are guarded commands
and their conditions (g1 and g2) are mutually exclusive, that
is, g1 = ¬g2, then their guarded actions are not restricted.

Φ
(

(g1) � A1 � (g2) � A2
)

= Φ
(

(g1) � A1
)

�Φ
(

(g2) � A2
)

Φ Rule 12 (Iterated operator)

Φ
(

; x : T • A (x)
) = ;x:Φ(T) • Φ (A (x))

Φ
(

� x : T • AA (x)
) = �x:Φ(T)

• Φ (AA (x))

Φ
(x : T • A (x)

) = x:Φ(T)
• Φ (A (x))

Φ Rule 13 (Parallel composition and interleaving) Variables
in parallel composition are partitioned to ns1 and ns2. Both

123

Model checking of Circus by linking to CSP ‖ B 83

actions can access the initial value of all variables from ns1
and ns2, but they can only modify variables in their own
partition ns1 and ns2, respectively. Our solution is to declare
temporary variables tpv1 and tpv2 which are initialised to the
initial value of all variables in scope pv1 and pv2 for A1 and
A2. Instead of updating pv1 and pv2, we update tpv1 and tpv2.
Eventually, only variables in ns1 and ns2 are updated to the
value of corresponding variables in tpv1 and tpv2, and others
are discarded.

Φ(A1 � ns1 | cs | ns2 � A2)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Φ

⎛

⎝var tpv1 •
⎛

⎝

tpv1 := pv1;
(A1[tpv1/pv1]);
ns1 := tpns1

⎞

⎠

⎞

⎠

‖
cs

Φ

⎛

⎝var tpv2 •
⎛

⎝

tpv2 := pv2;
(A2[tpv2/pv2]);
ns2 := tpns2

⎞

⎠

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Φ(A1 ||[ns1 | ns2]|| A2)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Φ

⎛

⎝var tpv1 •
⎛

⎝

tpv1 := pv1;
(A1[tpv1/pv1]);
ns1 := tpns1

⎞

⎠

⎞

⎠

|||

Φ

⎛

⎝var tpv2 •
⎛

⎝

tpv2 := pv2;
(A2[tpv2/pv2]);
ns2 := tpns2

⎞

⎠

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Φ Rule 14 (Parallel composition and interleaving (disjoint
variables in scope))

Φ
(

A1 � ns1 | cs | ns2 � A2
) = Φ (A1) ‖

cs
Φ (A2)

Φ (A1 ||[ns1 | ns2]|| A2) = Φ (A1) |||Φ (A2)

provided

ns1 = α (A1) = scpV (A1)

ns2 = α (A2) = scpV (A2)

where scpV is a function to get a set of all variables in scope
in an action.

Φ Rule 15 (Variable block) A variable block is linked to
replicated internal choice in CSPwhich declares a set of local
variables x and their initial value is arbitrary chosen. We use
the memory model [35] (Definition 5) in CSP to maintain
local variables. The linked process in CSP is put in parallel
with replicated parallel of a set ofmemory cell processes. For
each variable in x, there is a unique memory cell (MemCell
process) that is distinguished by i.

Φ (var x : T • A) = x:Φ(T)
• FMem (Φ (A), {x})

Definition 3 (MemCell Process) A MemCell process
defined below is the mechanism in CSP to store the value
of a local variable. For each local variable, it shall have a
MemCell process. Therefore, the process is distinguished
by number i which is a unique number for each variable.
MemCell process is initialised by seti at first, and after that
it will continuously provide update and retrieve of the vari-
able by seti and geti channels, respectively. Additionally, it
is capable of terminating successfully through end event.

MemCelli = seti?x → MCelli(x)
MCelli(x) = seti?y → MCelli(y)

� geti!x → MCelli(x)
� end → SK I P

Definition 4 (FVar function) FVar(P, v) function makes
every access to each local variable l from the set v in CSP
process P by geti?l, and every update to l by seti!l. For exam-
ple,

FVar(c?x!y!z → P, {x, y, z}) = geti?y → getj?z →
c?x!y!z → setk !x → FVar(P, {x, y, z})

FVar(c?x!y!z → P, {y}) = geti?y → c?x!y!z →
FVar(P, {y})

FVar(P, {}) = P

Definition 5 (FMem) The function FMem gives a memory
model for CSP process P to store and retrieve local variables,
which are shown in a set v with m elements: l1, . . . , lm.

FMem (P, v)

=

⎛

⎜

⎜

⎜

⎝

(set1!l1 → · · · → setm!lm → SK I P;
FVar (P, v) ; end → SK I P)

‖
vs

(

‖
{|end|}

{MemCelli | i ∈ {1..m}}
)

⎞

⎟

⎟

⎟

⎠

\ vs,

where vs = {|set1, get1, set2, get2, . . . , setm, getm, end|}
Φ Rule 16 (Action renaming) The variable vold is renamed
to the vnew by the action renaming.

Φ (A[vold := vnew]) = Φ (A[vnew/vold)

Φ Rule 17 (Action invocation) An action reference is the
body of the action.

Φ (A) = Φ (B (A)) providedA =̂ B (A)

Φ Rule 18 (Parametrised action) A parametrised action
invocation is the body of the parametrised action with the
parameters x substituted by the expressions e.

Φ (A (e)) = Φ (B (A) [e/x]) providedA =̂ x : T • B (A)

123

84 K. Ye, J. Woodcock

4.4.2 Processes

Φ Rule 19 (Explicitly defined process) For an explicitly
defined process, its main action is linked to a CSP process.
Its state schema and operational schemas are linked to Z and
finally B by the Ω function in Sect. 4.3.

Φ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

process P =̂ begin
state StPar == [decl | pred]
Pars == [· · ·]
APars =̂ B(APars)
• A

end

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= (P =Φ(A))

Φ Rule 20 (Process invocation) A process invocation is the
process itself.

Φ(P) = P

Φ Rule 21 (Compound process) For a compound process
defined in terms of CSP operators, it is simply an operator
expansion.

Φ (P ; Q) = Φ (P) ;Φ (Q)

Φ (P � Q) = Φ (P) �Φ (Q)

Φ (P Q) = Φ (P) Φ (Q)

Φ(P � cs � Q) = Φ (P) ‖
cs

Φ (Q)

Φ(P ||| Q) = Φ (P) |||Φ (Q)

Φ
(

P \ cs
) = Φ (P) \ cs

Φ Rule 22 (Iterated process)For a process defined in terms of
an iteratedoperator inCSP, it is simply anoperator expansion.

Φ(; x : T • P(x)) = ;x:Φ(T) • Φ(P(x))
Φ(� x : T • P(x)) = �x:Φ(T)

• Φ(P(x))

Φ(x : T • P(x)) = x:Φ(T)
• Φ(P(x))

Φ(�CS � x : T • P(x)) = ‖
CS x:Φ(T)

• Φ(P(x))

Φ(||| x : T • P(x)) = |||x:Φ(T)
• Φ(P(x))

Φ Rule 23 (Parametrised process invocation) For the para-
metrised process invocation, it is simply linked to its corre-
sponding explicitly defined process after rewriting.

Φ (PP(const)) = PP const
Φ (PP(x)) = (x ==Φ(x1))&PP x1

� (x ==Φ(x2))&PP x2
· · ·
� (x ==Φ(xn))&PP xn

where const denotes a constant.

Φ Rule 24 (Indexed process invocation) For the indexed
process invocation, it is simply linked to its corresponding
explicitly defined process after rewriting.

Φ (IP�const�) = IP const
Φ (IP�x�) = (x ==Φ(x1))&IP x1

� (x ==Φ(x2))&IP x2
· · ·
� (x ==Φ(xn))&IP xn

5 Case study: reactive buffer

This section shows how the specification of a buffer and
its implementation, a distributed reactive buffer, from the
paper [12] can be linked to CSP ‖ B by the links defined.
Eventually, we model-check them by ProB. Particularly, the
implementation is checked to be both a trace refinement and
a failure refinement of the specification.

5.1 Buffer specification

The specification of BufferSpec inCircus is shown in Fig. 2.

5.1.1 Rewriting by Rwrt

According to our link definitions in Sect. 3, aCircus program
such as BufferSpec is linked to a CSP ‖ B program by the
function Υ .

First, it is transformed by the Rwrt function to get a rewrit-
ten program RewrittenBufferSpec. We add two schemas,
named Op buff and Op size, to retrieve state components
buff and size, respectively, by the Rwrt Rule 5. Then we
rename state components, schemas, actions and their ref-
erences by prefixing Buffer by the Rwrt Rule 6. The only
exception is the references to state components size and buff
in the action. Finally, we rewrite the main action of the
process Buffer by the Rwrt Rule 7. After that, we get the
rewritten program as shown in Fig. 9.

5.1.2 The behavioural part

Then the behavioural part of the rewritten program is trans-
lated by the Φ function (Φ (RewrittenBufferSpec)) to get a
CSP specification illustrated in Fig. 10. The rules of the Φ

function that are applied sequentially are the channel decla-
ration Φ Rule 3, the explicitly defined process Φ Rule 19,
the type and expression Φ Rule 1, the sequential composi-
tionΦ Rule 10, the simplified schema expression as actionΦ

Rule 9, the basic actionΦ Rule 3, the prefixingΦ Rule 7, the
external choiceΦ Rule 11, the guarded commandΦ Rule 10
and the schema expression as action Φ Rule 8.

5.1.3 The state part

Note that the behavioural translation of the schema expres-
sions Buffer InputCmd and Buffer OutputCmd in Fig. 10

123

Model checking of Circus by linking to CSP ‖ B 85

Fig. 9 Rewritten specification of buffer

Fig. 10 The behavioural part translation

produces two additional schemas—Buffer InputCmd f and
Buffer OutputCmd f—according to the schema expression
as action Φ Rule 8, and they are added in the rewritten pro-
gram RewrittenBufferSpec before the translation of the state
part to get RewrittenBufferSpec1.

Eventually, the state part of RewrittenBufferSpec1 is
linked by Ω function to get a Z specification in Fig. 11,
where the Ω3 function is applied in the later stage within
ProB.

5.2 Distributed reactive buffer

The distributed cached-head ring buffer [12], an imple-
mentation of the buffer in Sect. 5.2, is a result of final
development of refinement strategies. It is composed of the
process Controller [12, Fig. 4], the process RingCell [12,

Sect. 7.6], the indexed ring cell process IRCell [12, Sect. 7.6]
and the process Ring [12, Sect. 7.6]. Finally, the process
Buffer [12, Sect. 7.4] is a parallel composition of the process
Ring and the process Controller. Obviously, this program
shall have the definition of maxbuff and maxring and the
declaration of channels. In addition, we name this distributed
cached-head ring buffer as DisBuffer and define additional
abbreviation RingIndex. These definitions and declarations
are shown in Fig. 12. Note that the original RingCell has no
initialisation schema and we explicitly add a schema named
Init, that has the predicate true. The Init is the first event in
the main action of the RingCell.

5.2.1 Rewriting by Rwrt

First, the process IRCell is rewritten by the Rwrt Rule. Partic-
ularly, the setRingIndex shall be determined before rewriting
the IRCell. We assume maxring is equal to 3 and thus
RingIndex = 1 . . 3.

Rwrt

⎛

⎝

process IRCell =̂
(i : RingIndex � RingCell)

[rd i, wrt i := read, write]

⎞

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Rwrt

(

process IRCell 1 =̂
(RingCell[rd, wrt := read.1, write.1])

)

Rwrt

(

process IRCell 2 =̂
(RingCell[rd, wrt := read.2, write.2])

)

Rwrt

(

process IRCell 3 =̂
(RingCell[rd, wrt := read.3, write.3])

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

[Renaming Operator Rwrt Rule 4]

The IRCell is expanded to three explicitly defined pro-
cesses IRCell 1, IRCell 2 and IRCell 3. They are similar
to the RingCell except that the channels rd and wrt in the
RingCell are renamed.

Along with the Controller and RingCell, now we have
five explicitly defined processes. According to the Rwrt rule

123

86 K. Ye, J. Woodcock

Fig. 11 The state part translation

Fig. 12 The preamble of DisBufferSpec

in Fig. 4, five additional schemas for the Controller and one
for the RingCell are added within them to access each state
component. For IRCell 1, IRCell 2 and IRCell 3, they are
similar. That is shown in Fig. 13.

Then we rename state components, schemas, actions and
their references of the Contoller and RingCell by prefixing
Controller and RingCell , respectively, by the Rwrt Rule in
Fig. 5. The renamed Controller and RingCell are shown in
Fig. 14 and Fig. 15 separately. It is also the similar case for
IRCell 1, IRCell 2 and IRCell 3.

Fig. 13 Additional schemas for state retrieve

123

Model checking of Circus by linking to CSP ‖ B 87

Fig. 14 Renaming of Controller

Fig. 14 continued

Fig. 15 Renaming of RingCell

In the end, the main action of the Controller and the
RingCell is rewritten by the Rwrt Rule in Fig. 6. To begin
with, the main action of the Controller is rewritten.

Rwrt

⎛

⎜

⎜

⎝

(Controller ControllerInit) ;μX •
⎛

⎝

Controller InputController
�

Controller OutputController

⎞

⎠ ; X

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

Rwrt

(

(Controller ControllerInit)
)

;

Rwrt

⎛

⎝μX •
⎛

⎝

Controller InputController
�

Controller OutputController

⎞

⎠ ; X

⎞

⎠

⎞

⎟

⎟

⎟

⎠

[Sequential Composition]

=

⎛

⎜

⎜

⎝

(Controller ControllerInit) ;μX •
Rwrt

⎛

⎝

⎛

⎝

Controller InputController
�

Controller OutputController

⎞

⎠ ; X

⎞

⎠

⎞

⎟

⎟

⎠

[Schema Expression and Recursion]

123

88 K. Ye, J. Woodcock

=
⎛

⎝· · · Rwrt

⎛

⎝

Controller InputController
�

Controller OutputController

⎞

⎠ ; Rwrt (X)

⎞

⎠

[Sequential Composition]

=

⎛

⎜

⎜

⎜

⎜

⎝

· · · Rmrg

(

Rpre (Controller InputController) ,

Rpre (Controller OutputController)

)

→
⎛

⎝

Rpost (Controller InputController)
�

Rpost (Controller OutputController)

⎞

⎠ ; X

⎞

⎟

⎟

⎟

⎟

⎠

[External Choice and Action Invocation]

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

· · · Rmrg

⎛

⎜

⎝

(Controller OP size),

(Controller Op size) →
(Controller Op cache)

⎞

⎟

⎠ →
⎛

⎝

(

(size < maxbuff) � input?x → · · ·)
�
(

(size > 0) � output!(cache) → · · ·)

⎞

⎠ ; X

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

[Equation (9) and (12)]

=

⎛

⎜

⎜

⎜

⎜

⎝

· · ·(Controller Op size) → (Controller Op cache)
→
⎛

⎝

(

(size < maxbuff) � input?x → · · ·)
�
(

(size > 0) � output!(cache) → · · ·)

⎞

⎠ ; X

⎞

⎟

⎟

⎟

⎟

⎠

[Definition 2 of Rmrg]

Among them, the action Controller InputController is
rewritten to

Rwrt (Controller InputController)

= Rwrt

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(size < maxbuff) � input?x →
⎛

⎜

⎜

⎜

⎝

(size = 0) � (Controller CacheInput)
�

(size > 0) � write.top!x →
(Controller StoreInputController)

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

[Action Invocation]

=
(

Rpre (size < maxbuff) → Rpre
(

input?x → (· · ·))

→ (size < maxbuff) � Rpost
(

input?x → (· · ·))

)

[Guarded Command]

=
(

(Controller OP size) → (size < maxbuff)�
Rpost (input?x → (· · ·))

)

[Definition 1 of Rpre and Rpost]

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(Controller OP size) → (size < maxbuff) � input?x

→ Rwrt

⎛

⎜

⎜

⎜

⎝

(size = 0) � (Controller CacheInput)
�

(size > 0) � write.top!x →
(Controller StoreInputController)

⎞

⎟

⎟

⎟

⎠

[Prefixing]

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

· · ·

Rmrg

⎛

⎝

Rpre

(

(size = 0) � (· · ·)
)

,

Rpre

(

(size > 0) � write.top!x → (· · ·)
)

⎞

⎠

→

⎛

⎜

⎜

⎝

Rpost

(

(size = 0) � (· · ·)
)

�

Rpost

(

(size > 0) � write.top!x → (· · ·)
)

⎞

⎟

⎟

⎠

[External Choice]

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

· · ·

Rmrg

⎛

⎜

⎝

(Controller OP size),

(Controller OP size) →
(Controller OP top)

⎞

⎟

⎠

→

⎛

⎜

⎜

⎜

⎝

(size = 0) � (Controller CacheInput)
�

(size > 0) � write.top!x →
(Controller StoreInputController)

⎞

⎟

⎟

⎟

⎠

[Equation (10) and (11)]

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(Controller OP size) → (size < maxbuff)�
input?x → (Controller OP size) →
(Controller OP top) →
⎛

⎜

⎜

⎜

⎝

(size = 0) � (Controller CacheInput)
�

(size > 0) � write.top!x →
(Controller StoreInputController)

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

[Definition 2 of Rmrg] (9)

where

Rwrt

(

(size = 0) � (Controller CacheInput)
)

=
(

(Controller OP size) → (size = 0)�

Rpost

(

(Controller CacheInput)
)

)

[Guarded Command and Definition 1 of Rpre and Rpost]

=
(

(Controller OP size) → (size = 0)�
(Controller CacheInput)

)

[Schema Expression] (10)

and

Rwrt

(

(size > 0) � write.top!x →
(Controller StoreInputController)

)

=
(

(Controller OP size) → Rpre (write.top!x → · · ·)
(size > 0) � Rpost

(

write.top!x → (· · ·)
)

)

[Guarded Command and Definition 1 of Rpre and Rpost]

123

Model checking of Circus by linking to CSP ‖ B 89

=
⎛

⎜

⎝

(Controller OP size) → (Controller OP top)
→ (size > 0)�
write.top!x → (Controller StoreInputController)

⎞

⎟

⎠

[Prefixing and Schema Expression]
(11)

Analogous to the rewriting ofController InputController,
Controller OutputController is rewritten to

Rwrt (Controller OutputController)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(Controller Op size) → (Controller Op cache) →
(size > 0) � output!(cache) → (Controller Op size)

→ (Controller Op bot)

→

⎛

⎜

⎜

⎜

⎝

(size > 1) � read.bot?x →
(Controller StoreNewCacheController)

�

(size = 1) � (Controller NoNewCache)

⎞

⎟

⎟

⎟

⎠

(12)

In addition, it is the similar case for the rewriting of the
main action of theRingCell, IRCell 1, IRCell 2 and IRCell 3
as well. Eventually, their main actions after rewriting are
illustrated in Fig. 16.

5.2.2 The behavioural part

The behavioural part of the rewritten program is translated
by the Φ function to get a CSP specification.

First of all, the axiomatic definition of the maxbuff and
the maxring is translated to

maxbuff = c

maxring = c − 1

by the Φ Rule 2, where c is a constant that is manually
assigned before the model checking. For example, c = 3.

The abbreviation definition RingIndex is transformed to

nametype RingIndex = {1..maxring}

by the Φ Rule 1.
The channel declarations are transformed to

channel input, output : Nat

channel read, write : RingIndex.Nat

channel rd, wrt : Nat

channel rd i, wrt i : RingIndex.Nat

by theΦ Rule 3 and their expressions are transformed by the
Φ Rule 1.

Fig. 16 Rewrite of the main actions

The behaviour of the Controller process is specified by its
main action ma(Controller) in Fig. 16.

Φ (process Controller =̂ . . .) =
Controller =Φ (ma (Controller)) [Φ Rule 19]

123

90 K. Ye, J. Woodcock

Then its main action is translated. Here, the additional
channel declarations and events added in HIDE CSPB are
omitted. In addition, when a schema expression is linked by
Φ Rule 8, an additional schema is added in the state part.

For example, Φ
(

(Controller CacheInput)
)

generates the

schema Controller CacheInput f . This is omitted here as
well.

Φ (ma (Controller))

= Φ
(

(Controller ControllerInit)
)

;Φ
(

μX • . . .
)

[Sequential Composition Φ Rule 10]
= Controller ControllerInit → SK I P;Φ

(

μX • . . .
)

[Schema Expression Φ Rule 9, Basic Actions Φ Rule 6]

= · · · let X = Φ

⎛

⎜

⎝

(Controller Op size) →
(Controller Op cache) →
· · ·

⎞

⎟

⎠ within X

[Recursion Φ Rule 10]

= · · ·
⎛

⎝

Controller Op size?size →
Controller Op cache?cache →
Φ (· · · � · · ·)

⎞

⎠

[Schema Expression Φ Rule 9, Prefixing Φ Rule 7]

= · · ·Φ
(

(size < maxbuff) � · · ·
)

� Φ
(

(size > 0) � · · ·
)

[External Choice Φ Rule 11]
= · · · ((size < maxbuff)&Φ (input?x → · · ·) � · · ·)

[Guarded Command Φ Rule 10]

= · · ·
(

input?x → Controller Op size?size →
Controller Op top?top → Φ (· · ·)

)

� · · ·

[Prefixing Φ Rule 7, Schema Expression Φ Rule 9]

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

· · ·
⎛

⎜

⎜

⎜

⎜

⎝

(size == 0)&Φ
(

(Controller CacheInput)
)

�

(size > 0)&write.top!x →
Φ

(

(Controller StoreInputController)
)

⎞

⎟

⎟

⎟

⎟

⎠

� · · ·
[Guarded Command Φ Rule 10, Expression, Prefixing]

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

· · ·
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

· · ·
⎛

⎝

Controller CacheInput!x → SK I P
�

Controller CacheInput f !x → div

⎞

⎠

�

· · ·
⎛

⎝

Controller StoreInputController → SK I P
�

Controller StoreInputController f → div

⎞

⎠

� · · ·
[Schema Expression Φ Rule 8]

= · · · � Φ
(

(size > 0) � · · ·
)

[Similar to previous steps]

The behaviour of theRingCell process is given by its main
action ma(RingCell) in Fig. 16. Its translation is similar to
that of the Controller process.

Φ (ma (RingCell))

= · · ·

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

RingCell Init → SK I P ; let X =
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

RingCell Op v?v →
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

rd!v → SK I P
�

wrt?x →
⎛

⎝

RingCell CellWrite!x → SK I P
�

RingCell CellWrite f !x → div

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

;X

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

within X

[Φ Rules]

The behaviour of IRCell 1, IRCell 2 and IRCell 3 is their
main actions as well. Only the translation of IRCell 1 is dis-
played below.

Φ (ma (IRCell 1))

= · · ·

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

IRCell 1 Init → SK I P ; let X =
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

IRCell 1 Op v?v →
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

read.1!v → SK I P
�

write.1?x →
⎛

⎝

IRCell 1 CellWrite!x → SK I P
�

IRCell 1 CellWrite f !x → div

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

;X

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

within X

[Φ Rules]

The Ring process is the interleaving of the indexed IRCell
processes. It is link to

Φ
(

Ring =̂ (||| i : RingIndex • IRCell�i�)
)

=
(

Ring = |||i:RingIndex
• Φ (IRCell�i�)

)

[Iterated Interleave Φ Rule 22]

=
⎛

⎝Ring = |||i:RingIndex
•

⎛

⎝

(i == 1)&IRCell 1
� (i == 2)&IRCell 2
� (i == 3)&IRCell 3

⎞

⎠

⎞

⎠

[Indexed Process Invocation Φ Rule 24].

123

Model checking of Circus by linking to CSP ‖ B 91

The Buffer process is translated to the Buffer process in
CSP below.

Φ

(

process Buffer =̂
(

Controller � {| read, write |} � Ring
) \ {| read, write |}

)

=
⎛

⎜

⎝

Buffer =
Φ

(

Controller ‖
{|read,write|}

Ring

)

\ {|read, write|}

⎞

⎟

⎠

[Process hide Φ Rule 21, Channel Set Φ Rule 4]

=
⎛

⎜

⎝

Buffer =
(

Controller ‖
{|read,write|}

Ring

)

\ {|read, write|}

⎞

⎟

⎠

[Parallel Φ Rule 21, Process Invocation Φ Rule 20]

The Buffer process is the main process of the DisBufferSpec
program. Thus when translated to CSP, the MAIN process is
the Buffer.

MAIN = Buffer

5.2.3 The state part

After the rewriting in Sect. 5.2.1 and the behaviour transla-
tion in Sect. 5.2.2, we have five explicitly defined processes:
Controller, RingCell, IRCell 1, IRCell 2 and IRCell 3.

For the Controller, additional schemas are added by the
schema expression as action Φ Rule 8 during the link of the
behaviour to CSP.

– Controller CacheInput f
– Controller StoreInputController f
– Controller NoNewCache f
– Controller StoreNewCacheController f

For the RingCell, IRCell 1, IRCell 2 and IRCell 3, one
additional schema is added for each process. They are
RingCell CellWrite f , IRCell 1 CellWrite f , IRCell 2 Cell
Write f and IRCell 3 CellWrite f separately.

The state part of the program is linked to a B machine by
the Ω function that is composed of the Ω1, the Ω2 and the
Ω3. The Ω3 is applied within ProB and so it is skipped here.

To begin with, the axiomatic definition and the abbrevia-
tion RingIndex are moved to the Z program directly.

Then the states and schemas from five explicitly defined
processes are merged by the Ω1 Rule 1. After that, the Ω2

function is simply applied. Finally, the state part is linked to
a Z program.

The state schemas are merged as shown.

Controller ControllerState =̂ [
Controller size : 0 . . maxbuff ;

Controller ringsize : 0 . . maxring;

Controller cache : N;
Controller top, Controller bot : RingIndex |
Controller ringsize mod maxring =
(Controller top − Controller bot) mod maxring ∧

Controller ringsize = max { 0, Controller size − 1 }
]
RingCell CellState =̂ [RingCell v : N | true]
IRCell 1 CellState =̂ [RingCell 1 v : N | true]
IRCell 2 CellState =̂ [RingCell 2 v : N | true]
IRCell 3 CellState =̂ [RingCell 3 v : N | true]
State =̂ Controller ControllerState ∧

RingCell CellState ∧ IRCell 1 CellState ∧
IRCell 2 CellState ∧ IRCell 3 CellState

The initialisation schemas are merged.

Init =̂ [State′ | Controller top′ = 1 ∧
Controller bot′ = 1 ∧ Controller size′ = 0 ∧ true]

(13)

All other schemas aremerged as well. However, for a schema
fromoneprocess, it shall include the state schemas fromother
processes in its declaration part by Ξ notation to make sure
no change is made to the state components from others. For
example, theController Op size schema from theController
becomes

Controller Op size =̂ [ΞController ControllerState;

ΞRingCell CellState ; ΞRingCell 1 CellState;

ΞRingCell 2 CellState ; ΞRingCell 3 CellState;

size! : 0 . . maxbuff | size! = Controller size],

Controller CacheInput becomes

Controller CacheInput =̂ [ΔController ControllerState;

ΞRingCell CellState ; ΞRingCell 1 CellState;

ΞRingCell 2 CellState ; ΞRingCell 3 CellState;

x? : N | Controller size = 0 ∧
Controller size′ = 1 ∧ Controller cache′ = x? ∧
Controller bot′ = Controller bot ∧
Controller top′ = Controller top],

and Controller CacheInput f is transformed to

Controller CacheInput f =̂ [
ΞController ControllerState;

ΞRingCell CellState ; ΞRingCell 1 CellState;

123

92 K. Ye, J. Woodcock

ΞRingCell 2 CellState ; ΞRingCell 3 CellState;

x? : N | ¬preController CacheInput]

The translation of other schemas are very similar and thus
skipped.

5.3 Model checking by ProB

Now we have got the final CSP program (Fig. 10) and the Z
program (Fig. 11) for the buffer specification, and the CSP
program (Sect. 5.2.2) and the Z program (Sect. 5.2.3) for
the distributed buffer. Both of them can be model-checked
by ProB. But before performing model checking, the value
of the constants MAXINT , MAXINS and maxbuff shall be
considered at first.

5.3.1 Maximum instances MAXINS and maximum size
of buffer maxbuff

For the buffer specification, the type of buffer is seqN. When
linked to CSP ‖ B, we use fseq (Fig. 8) that introduces the
bound constant MAXINS. Finally, the size of the set of finite
sequences by fseq highly relies on the value of MAXINS as
well as the data set s. The defined fseq computes the result
relied on several intermediate functions (squash, pfun, rel
and cross) which are defined in the functional language as
well. The consumption of resources during resolution is still
high. If the size of s is big and MAXINT is large, ProB will
take longer time to compute all possible finite sequences. For
an instance, on the system having 2GB RAM and 2.5 GHz
CPU, and runningUbuntu12.04, it takes approximately thirty
minutes for ProB to load the CSP program when the size of s
is 4 (MAXINT is set to 3) and MAXINS is 5. However, if the
size of s is reduced to 2,we can increaseMAXINS to 9 tomake
ProB load the CSP program still in a shorter time. Alterna-
tively, instead of using the functional language to resolve
fseq, we can compute all finite sequences in advance by
another language, let us say Perl, then include them explicitly
into a set and replace fseq in CSP programs by this set. For
example, if s is {0, 1} and MAXINT is 2, then we can get this
set as {〈〉, 〈0〉, 〈1〉, 〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}. By this way,
it can reduce the program load time tremendously. But the
loss of flexibility is a side effect because we have to compute
this set in advance and externally (out of ProB).

For the buffer specification the value of maxbuff shall be
less than or equal to MAXINS.

5.3.2 Data independence and MAXINT

The type of data (T) in both the buffer specification and the
buffer implementation is N. According to the definition of
data independence [28, Sect. 2.7] and [43, Sect. 15.3.2], both

the linked buffer programs in CSP ‖ B are data-independent
because they input values of N along their input channels,
store them in a sequence or a set of ring cells and then
output values in order along their output channels without
any computations. And they do not perform any explicit and
implicit equality tests over T ; therefore, they satisfy NoEqT
[28,42]. In addition, the Buffer process in the linked buffer
specification (Fig. 10) satisfies Norm [28,42]. According to
Theorem 17.2 [42], the threshold of the size of T such that the
implementation is a refinement of the specification in terms
of traces, failures and failures-divergences is 2. There is a
similar conclusion in the book [42, p.397] that the threshold
of an N-bounded buffer for any N is 2. So for the refinement
check, we can set MAXINT to 1 as there are two elements
{0, 1} and set maxbuff to 3. Actually, we also checked the
refinement when MAXINT is increased to 3.

5.3.3 Model checking of buffer specification

When model-checking this case by ProB, we notice ProB
kernel treats seq T as set(couple(integer, T)) in Z and B.
But it fails to match the sequence type in CSP. Therefore, it
generates an incompatible type error. We change the imple-
mentation of predicatetype ok andis csp set type
in specfile.pl of ProB kernel source code to make set(
couple(integer, T)) match the sequence type in CSP.

Additionally, div, the most divergent process, is not avail-
able in CSPM as well as ProB. We define a process DIV as
div → ST O P , where div is a special event, in CSP for div.
Though DIV is not a divergent process, we can check dead-
lock of combination of CSP and Z specifications to achieve
divergence checking. We use the deadlock checking to find
this kind of divergence because it is a more direct check-
ing in ProB. In case that a deadlock is found, we check the
counterexample to see if the last event is div or not. If the
last event is div, it means the original Circus specification
can lead to divergence. Alternatively, LTL formula check-
ing can be used to check deadlock as well. For example, the
LTL formula (not F e(div)), which denotes the state-
ment that finally div event is enabled, is not true. When it
comes to this case, if we remove guarded conditions in Input
or Output action in Fig. 2, the specification diverges because
the precondition of InputCmd and OutputCmd may not hold.
In the final CSP specification in Fig. 10, the corresponding
boolean guard is removed as well. Using ProB, we can easily
find the deadlock and the last event is div; therefore, it finds
divergence.

Deadlock and Invariant Violation Checking Finally, we can
model-check the combination of CSP and Z specifications
and there is no deadlock found. A comparison of the model
checking performance for different configuration of con-
stants is shown in Table 1. This experiment was undertaken

123

Model checking of Circus by linking to CSP ‖ B 93

Table 1 Model checking performance comparison (buffer specifica-
tion)

MAXINT MAXINS maxbuff Time (ms) Memory
(MB)

3 3 1 122 38

3 3 2 538 38

3 3 3 2152 39

3 4 4 28,022 40

3 5 5 443,306 78

1 9 9 16,802 68

on ProB Linux version, which is modified based on ProB
1.5.0-Beta, on Ubuntu.

Deadlock and Divergence Checking by CSP Assertions
ProB is capable of deadlock anddivergence checking through
CSP assertions as well. By adding the following three asserts
to the CSP program (Fig. 10), we checked the deadlock free
and divergence free of the Buffer process with the combina-
tion of constants in Table 1 successfully.

assert Buffer :[deadlock [F]]
assert Buffer :[deadlock [FD]]
assert Buffer :[livelock free]

5.3.4 Model checking of distributed reactive buffer

One issuewe found is about the well-definedness of themod-
ulo operation in Zwhen it is translated to the counterpart inB.
In Z, the modulo operation is defined on the integer dividend
and the non-zero integer divisor [47]. However, it is defined
on thenatural number dividend and thenon-zeronatural num-
ber divisor in B machine. Therefore, when model-checking
this case by ProB that translates the modulo to the modulo
operation in B, it triggers an error about the well-definedness
of the modulo because the dividend of the modulo in Z is
possibly less than 0. Thus, we modified the implementation
of the modulo operation in ProB to use the modulo operation
mod in SICStus Prolog. Because the modulo operation in Z
uses truncation towards minus infinity [47] and in Prolog it
is the integer remainder after floored division [2], they use
the same definition ofmodulo—floored division [29]. Hence,
the well-definedness of mod in Z is retained.

In addition, ProB uses the built-in command time in Tcl
to measure the elapsed time for the model checking task. It
can count up to 4,294,967,295 microseconds, approximately
72 minutes, for a task in a 32-bit machine; otherwise, it will
cause the overflow. For the model checking of this case with
the maxbuff larger than 3, it requires longer time and causes
the overflow. Therefore, the output result about the time is
not useful. We record the timestamp before the task execu-

Table 2 Model checking performance comparison (buffer implemen-
tation)

MAXINT maxbuff maxring Time (ms) Memory
(MB)

3 2 1 38,039 53

3 3 2 2,582,944 837

1 4 3 951,593 913

1 4 3 236,532 318a

a This row is the result with substituted initialisation schema

tion and the timestamp after the completion of the task by
clockmilliseconds in Tcl and then calculate the dif-
ference between two timestamps. This is the model checking
time.

Deadlock and invariant violation checking There is no dead-
lock or divergence found. A comparison of the model
checking performance is shown in Table 2. Note that due
to the state space exploration and resource limitation, we are
not able to model check this case if maxbuff is larger than
3 and MAXINT is 3 because ProB runs out of memory on
Linux with 3 GB memory. We can set the MAXINT to 1 to
reduce the state space. The result is shown in the third row.
Further methods like more specific initialisation can be used
to tremendously decrease the size of the state space. For an
instance, if we substitute (13) by the initialisation schema
(14), the model checking result is displayed in the fourth
row.

Init =̂ [State′ | Controller top′ = 1 ∧ Controller bot′ = 1

∧ Controller size′ = 0 ∧ Controller ringsize′ = 0

∧ Controller cache′ = 0 ∧ RingCell v′ = 0

∧ IRCell 1 v′ = 0 ∧ IRCell 2 v′ = 0

∧ IRCell 3 v′ = 0 ∧ IRCell 4 v′ = 0] (14)

Deadlock and divergence checking by CSP assertions By
adding the following three asserts to the CSP program (Sect.
5.2.2), we checked the deadlock free and divergence free
of the Buffer process with the combination of constants in
Table 2 successfully.

assert Buffer :[deadlock [F]]
assert Buffer :[deadlock [FD]]
assert Buffer :[livelock free]

5.3.5 Refinement checking

In addition, ProB can check if an implementation inCSP ‖ B
is a trace refinement of a specification inCSP ‖ B [30].When
checking the trace refinement, an issuewe got in ProB for our
case, after inspecting source code, is that ProB refinement

123

94 K. Ye, J. Woodcock

Table 3 Refinement check performance

Model MAXINT maxbuff maxring Time (ms)

Traces 1 3 2 109,180

Failures 1 3 2 122,440

Traces 3 3 2 342,440

Failures 3 3 2 355,320

checker compares the traces of both the specification and
the implementation according to their transitions in the same
state space. That works for the refinement of two processes in
the same CSP program for the CSP model or the refinement
of two processes in the same CSP program for the CSP ‖ B
model. But for our case, the specification and the implemen-
tation have the different Z programs and it is impossible to
put their CSP programs into one CSP file. Thus we modi-
fied therefinement checker.pl of ProB to search the
traces by the transitions from their own separate state space.
After model-checking the buffer specification, we save its
state space for later refinement check to a file. Then we load
the buffer implementation to ProB, select “trace refinement
check” function and open the saved state space file for the
specification. Finally, ProB will show the result: the imple-
mentation is a trace refinement of the specification; or if not
a trace refinement, a counter example is provided.

We checked the trace refinement between the buffer spec-
ification and the buffer implementation and finally got the
result the distributed reactive buffer is a trace refinement of
the buffer specification for MAXINT and maxbuff equal to 3
and 3 separately. Furthermore, ProB has an option to check
failures.We checked the failure refinement between the spec-
ification and the implementation as well and finally found the
distributed reactive buffer is also a failure refinement of the
buffer specification with the same constants. The refinement
checking performance is shown in Table 3. According to
Sect. 5.3.2, we can conclude the buffer implementation is a
failure refinement of the buffer specification.

However, if maxbuff between the specification and the
implementation is not equal, ProB gives an error with a coun-
terexample provided.

6 Conclusions and future work

Related work Model checking and animation are regarded
as a very important tool support for the application of for-
malisms in both academia and industry. There are three
existing solutions for implementing or model-checking Cir-
cus programs. The first solution is JCircus [22,36,37] which
translates a concrete Circus program to a Java program with
JCSP [48].After that, linkingCircus toCSP [7] aims to trans-
late Circus to CSPM and then use FDR2 [1] to model-check

CSP specification. The last one is mappingCircus processes
and refinement to CSP processes and refinement [31,40] that
transforms stateful Circus to stateless Circus first by intro-
ducing thememorymodel and then converts statelessCircus
to CSP. The first is not a model checking solution but imple-
mentation instead, and it is restricted to executable Circus
programs because Java is an imperative programming lan-
guage and not a high-level specification language. Therefore,
before supplying the Circus program to JCircus, it has to be
refined to a concrete program. For the second solution, it is
not clear how to connect the data part to the behavioural part
of aCircus program. The third solution transforms both state
and behavioural parts to CSP specification, which means all
states are maintained in CSP. It is restricted to divergence-
freeCircus. Furthermore, it is not convenient and capable in
CSP to maintain very complex states and rather difficult to
understand the final CSP specification if it contains a lot of
state operations.

Our work Comparatively, our work linksCircus toCSP ‖ B
to express the behavioural and state parts, which maintains
the high-level abstraction. And using B to specify the state
part is more straightforward and easier than using CSP. The
capability of linkingmost of constructs inCircus toCSP ‖ B
is another advantage becauseCircus itself consists of a large
amount of syntactic constructs. Additionally, the capabili-
ties of deadlock checking, LTL formula checking, refinement
checking, automatic and manual animations are very impor-
tant as well. Last but not least, we achieve the divergence
checking of original Circus program by deadlock checking
of CSP ‖ B.

However, this work has some limitations as well. Gener-
ics in Circus are not supported; for CSP ‖ B, its state is
composed of the state from B and the state of the process
from CSP and is expressed as a pair [9]; thus its state space
is more complex for exploration; limited actions can occur in
both sides of external choice (Φ Rule 11) due to the seman-
tics of external choice [38]; the rule of parallel composition
of actions (Φ Rule 13) achieves semantical equality, but is
difficult to implement because we need to keep a copy of
temporary variables in CSP for both state variables in B and
local variables, which makes the state maintained in CSP
temporarily before merge and is against our strategy that
state and behaviour are separated in B and CSP; how to trace
CSP ‖ B back to Circus is an issue.

Future work By now, we have defined the translation rules
for a large subset of constructs in Circus, given the sound-
ness, and developed a simple translator which can deal with
very limited rules. We will continue to study a more com-
plicated case, extend the translator to support approximately
all rules defined. Most significantly, we need to minimize
the limitations. For instance, we may modify the operational

123

Model checking of Circus by linking to CSP ‖ B 95

semantics of CSP ‖ B in ProB to make external choice
resolved only by external events and termination but not com-
munication between CSP and B, which makes all actions can
occur in external choice. In addition, for link of axiomatic
definition to CSP (Φ Rule 2), we will modify the implemen-
tation of ProB to make it instantiated to the same value as
in Z.

Acknowledgements We thank Leo Freitas and Andrew Butterfield
for discussions about the link approach, CZT as well as the insights of
difficulties.

References

1. FDR2: a refinement checker for establishing properties of models
expressed in CSP. www.fsel.com/software.html

2. SICStus prolog manual (arithmetic expressions). https://
sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dari_
002daex.html#ref_002dari_002daex

3. The ProB animator and model checker. http://www.stups.uni-
duesseldorf.de/ProB/index.php5/Main_Page

4. ISO/IEC: Information technology-Z formal specification notation-
syntax, type system and semantics (2002). http://standards.iso.
org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_
2002(E).zip

5. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cam-
bridge University Press, Cambridge (2005)

6. Abrial, J.R.: Modeling in Event-B: System and Software Engineer-
ing. Cambridge University Press, Cambridge (2010)

7. Beg, A., Butterfield, A.: Linking a state-rich process algebra to
a state-free algebra to verify software/hardware implementation.
In: Proceedings of the 8th International Conference on Frontiers
of Information Technology (FIT ’10), pp. 47:1–47:5. ACM, New
York (2010)

8. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous com-
munication. Inf. Control 60(1–3), 109–137 (1984)

9. Butler, M., Leuschel, M.: Combining CSP and B for specification
and property verification. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A.
(eds.) FM 2005: Formal Methods. Lecture Notes in Computer Sci-
ence, vol. 3582, pp. 221–236. Springer, Berlin, Heidelberg (2005)

10. Carlsson, M.: Sicstus PROLOG user’s manual 4. Swedish Insti-
tute of Computer Science (2015). ISBN: 9783735737441. https://
sicstus.sics.se/sicstus/docs/latest4/pdf/sicstus.pdf

11. Carrington, D.A., Duke, D.J., Duke, R., King, P., Rose, G.A.,
Smith, G.: Object-Z: an object-oriented extension to Z. In: Formal
Description Techniques for Distributed Systems and Commu-
nication Protocols (FORTE ’89), pp. 281–296. North-Holland
Publishing Co., Amsterdam (1990)

12. Cavalcanti, A., Sampaio, A., Woodcock, J.: A refinement strategy
for Circus. Form. Asp. Comput. 15(2–3), 146–181 (2003)

13. Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in
unifying theories of programming. In: Cavalcanti, A., Sampaio, A.,
Woodcock, J. (eds.) Refinement Techniques in Software Engineer-
ing. Lecture Notes in Computer Science, vol. 3167, pp. 220–268.
Springer, Berlin, Heidelberg (2006)

14. Clarke Jr, E.M., Grumberg, O., Peled, D.A.: Model Checking.MIT
Press, Cambridge (1999)

15. Clearsy: B language reference manual (version 1.8.6). http://www.
atelierb.eu/ressources/manrefb1.8.6.uk.pdf

16. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall,
Englewood Cliffs (1976)

17. Eclipse: Eclipse public license–v 1.0. http://www.eclipse.org/org/
documents/epl-v10.html

18. Fischer, C.: CSP-OZ: a combination of object-Z and CSP (1997)
19. Fischer, C.: How to combine Z with process algebra. In: ZUM, pp.

5-23 (1998)
20. Formal systems (Europe) Ltd: FDR2 user manual, fdr 2.94 edn

(2012)
21. Freitas, L.: Model checking Circus. Ph.D. thesis (2005)
22. Freitas, A., Cavalcanti, A.: Automatic translation from Circus to

Java. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006:
Formal Methods. Lecture Notes in Computer Science, vol. 4085,
pp. 115–130. Springer, Berlin, Heidelberg (2006)

23. Galloway, A., Stoddart, B.: An operational semantics for ZCCS.
In: Proceedings of the 1st International Conference on Formal
Engineering Methods (ICFEM ’97). IEEE Computer Society,
Washington, DC (1997). ISBN: 0-8186-8002-4

24. Hoare, C., He, J.: Unifying Theories of Programming, vol. 14.
Prentice Hall, Englewood Cliffs (1998)

25. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-
Hall, Englewood Cliffs (1985)

26. Jones, C.B.: Systematic Software Development using VDM, 2nd
edn. Prentice Hall, Englewood Cliffs. Prentice Hall International
Series in Computer Science (1991)

27. Lamport, L.: Specifying Systems: The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley, Boston
(2002)

28. Lazic, R.: A semantic study of data independence with application
to model checking. Ph.D. thesis (1999). http://www.dcs.warwick.
ac.uk/~lazic/thes_corr.ps.gz

29. Leijen, D.: Division and modulus for computer scientists (2001).
http://research.microsoft.com/pubs/151917/divmodnote.pdf

30. Leuschel, M., Butler, M.J.: Automatic refinement checking for B.
In: ICFEM, pp. 345-359 (2005)

31. Marcel Oliveira Augusto Sampaio, P.A.R.R.A.C.J.W.: Composi-
tional analysis and design of CMLmodels. COMPASS deliverable
D24.1 (2013)

32. Milner, R.: A Calculus of Communicating Systems. Lecture Notes
in Computer Science, vol. 92. Springer, Berlin (1980)

33. Morgan, C.C.: Programming from Specifications. Prentice Hall
International Series in Computer Science 2nd edn. Prentice Hall,
Englewood Cliffs (1994)

34. Mota, A., Sampaio, A.: Model-Checking CSP-Z. In: FASE, pp.
205–220 (1998)

35. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state
based use case models. Form. Asp. Comput. 1-50 (2012). doi:10.
1007/s00165-012-0258-z

36. Oliveira, M.V.: Formal derivation of state-rich reactive programs
using Circus. Ph.D. thesis, University of York (2005)

37. Oliveira, M., Cavalcanti, A., Woodcock, J.: Formal development
of industrial-scale systems in Circus. ISSE 1(2), 125–146 (2005)

38. Oliveira, M., Cavalcanti, A., Woodcock, J.: A denotational seman-
tics for Circus. Electr. Notes Theor. Comput. Sci. 187, 107–123
(2007)

39. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for
Circus. Form. Asp. Comput. 21(1–2), 3–32 (2009)

40. Oliveira, M., Sampaio, A., Conserva Filho, M.: Model-checking
Circus state-rich specifications. In: E. Albert, E. Sekerinski (eds.)
Integrated Formal Methods, Lecture Notes in Computer Science,
pp. 39-54. Springer International Publishing, Berlin (2014). doi:10.
1007/978-3-319-10181-1_3

41. Plagge, D., Leuschel, M.: Validating Z specifications using the
ProB animator and model checker. In: J. Davies, J. Gibbons (eds.)
Integrated Formal Methods, Lecture Notes in Computer Science,
vol. 4591, pp. 480-500. Springer, Berlin (2007). doi:10.1007/978-
3-540-73210-5_25

123

www.fsel.com/software.html
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dari_002daex.html#ref_002dari_002daex
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dari_002daex.html#ref_002dari_002daex
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dari_002daex.html#ref_002dari_002daex
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Main_Page
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Main_Page
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
https://sicstus.sics.se/sicstus/docs/latest4/pdf/sicstus.pdf
https://sicstus.sics.se/sicstus/docs/latest4/pdf/sicstus.pdf
http://www.atelierb.eu/ressources/manrefb1.8.6.uk.pdf
http://www.atelierb.eu/ressources/manrefb1.8.6.uk.pdf
http://www.eclipse.org/org/documents/epl-v10.html
http://www.eclipse.org/org/documents/epl-v10.html
http://www.dcs.warwick.ac.uk/~lazic/thes_corr.ps.gz
http://www.dcs.warwick.ac.uk/~lazic/thes_corr.ps.gz
http://research.microsoft.com/pubs/151917/divmodnote.pdf
http://dx.doi.org/10.1007/s00165-012-0258-z
http://dx.doi.org/10.1007/s00165-012-0258-z
http://dx.doi.org/10.1007/978-3-319-10181-1_3
http://dx.doi.org/10.1007/978-3-319-10181-1_3
http://dx.doi.org/10.1007/978-3-540-73210-5_25
http://dx.doi.org/10.1007/978-3-540-73210-5_25

96 K. Ye, J. Woodcock

42. Roscoe, A.: Understanding Concurrent Systems, 1st edn. Springer,
New York (2010)

43. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice
of Concurrency. Prentice Hall PTR, Upper Saddle River, NJ, USA
(1997)

44. Roscoe, A.W., Woodcock, J., Wulf, L.: Non-interference through
determinism. J. Comput. Secur. 4(1), 27–54 (1996)

45. Scattergood, B.: The semantics and implementation of machine-
readable CSP. Ph.D. thesis, University of Oxford (1998)

46. Schneider, S., Treharne, H.: CSP theorems for communicating B
machines. Form. Asp. Comput. 17(4), 390–422 (2005)

47. Spivey, J.M.: Z Notation: A Reference Manual: Prentice Hall
International Series in Computer Science, 2nd edn. Prentice Hall,
Englewood Cliffs (1992)

48. Welch, P.H.: Process oriented design for Java: concurrency for all.
In: PDPTA, vol. 1, pp. 51–57. CSREA Press (2000)

49. Woodcock, J., Cavalcanti, A.: The semantics of Circus. In: Bert, D.,
Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002: Formal
Specification and Development in Z and B. Lecture Notes in Com-
puter Science, vol. 2272, pp. 184–203. Springer, Berlin, Heidelberg
(2002)

50. Woodcock, J., Cavalcanti, A.: A tutorial introduction to designs
in unifying theories of programming. In: Boiten, E.A., Derrick, J.,
Smith,G. (eds.) IntegratedFormalMethods. LectureNotes inCom-
puter Science, vol. 2999, pp. 40–66. Springer, Berlin, Heidelberg
(2004)

51. Woodcock, J., Cavalcanti, A., Freitas, L.: Operational semantics for
model checking Circus. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A.
(eds.) FM 2005: Formal Methods. Lecture Notes in Computer Sci-
ence, vol. 3582, pp. 237–252. Springer, Berlin, Heidelberg (2005)

52. Woodcock, J., Cavalcanti, A., Gaudel, M.C., Freitas, L.:
Operational semantics for Circus. Formal aspects of comput-
ing (2007). https://www.cs.york.ac.uk/ftpdir/pub/leo/utp/journal-
pub/circus-operational-semantics.pdf

123

https://www.cs.york.ac.uk/ftpdir/pub/leo/utp/journal-pub/circus-operational-semantics.pdf
https://www.cs.york.ac.uk/ftpdir/pub/leo/utp/journal-pub/circus-operational-semantics.pdf

	Model checking of state-rich formalism Circus by linking to CSP"026B30D B
	Abstract
	1 Introduction
	2 Background
	2.1 Circus
	2.2 Unifying theories of programming
	2.3 Combination of CSP and B
	2.4 ProB

	3 Link definitions
	3.1 Overall link function
	3.2 Υ function decomposition
	3.2.1 Ω function decomposition

	3.3 Link strategies

	4 Link rules
	4.1 Identifiers
	4.2 Circus rewriting function---Rwrt
	4.3 Circus state part to B---Ω
	4.3.1 Circus state part to ISO standard Z---Ω1
	4.3.2 ISO standard Z to ZRM---Ω2
	4.3.3 ZRM to B machine---Ω3

	4.4 Circus behaviour to CSP and Z---Φ
	4.4.1 Actions
	4.4.2 Processes

	5 Case study: reactive buffer
	5.1 Buffer specification
	5.1.1 Rewriting by Rwrt
	5.1.2 The behavioural part
	5.1.3 The state part

	5.2 Distributed reactive buffer
	5.2.1 Rewriting by Rwrt
	5.2.2 The behavioural part
	5.2.3 The state part

	5.3 Model checking by ProB
	5.3.1 Maximum instances MAXINS and maximum size of buffer maxbuff
	5.3.2 Data independence and MAXINT
	5.3.3 Model checking of buffer specification
	5.3.4 Model checking of distributed reactive buffer
	5.3.5 Refinement checking

	6 Conclusions and future work
	Acknowledgements
	References

