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Abstract Delta modeling is a modular, yet flexible appro-
ach to capture variability by explicitly representing differ-
ences between system variants or versions. The conceptual
idea of deltamodeling is language-independent. But, to apply
delta modeling to a concrete language, either a generic trans-
formation language has to be used or the corresponding delta
language has to be manually developed for each considered
base language.Generic languages and their tool support often
lack readability and specific context condition checking,
since they are unrelated to the base language. In this paper,we
present a process that allows synthesizing a delta language
from the grammar of a given base language. Our method
relies on an automatically generated language extension that
can be manually adapted to meet domain-specific needs. We
illustrate our method using delta modeling on a textual vari-
ant of architecture diagrams. Furthermore, we evaluate our
method using a comparative case study. This case study cov-
ers an architectural, a structural, and a behavioral language
and compares the preexisting handwritten grammars to the
generated grammars as well as the manually tailored gram-
mars. This paper is an extension of Haber et al. (Proceedings
of the 17th international software product line conference
(SPLC’13), pp 22–31, 2013).

K. Hölldobler is supported by the DFG GK/1298 AlgoSyn.

B Markus Look
look@se-rwth.de
http://www.se-rwth.de/

Ina Schaefer
http://www.tu-bs.de/isf

1 Software Engineering, RWTH Aachen University, Aachen,
Germany

2 Software Engineering and Automotive Informatics, TU
Braunschweig, Brunswick, Germany

Keywords Delta modeling · Modeling · Language
engineering · Domain specific languages · Generation ·
Software product line engineering

1 Introduction

Modeling is an important part of software development that
allows focusing on essential system aspects in various devel-
opment phases [12]. This holds for prescriptive modeling
that aims at generating (parts of) software systems as well as
descriptive modeling aiming at documentation or commu-
nication issues. Modern software systems are increasingly
variable to adapt to varying user requirements or environ-
ment conditions. Software product line engineering [37] is
a well-established approach for developing a set of systems
with commonalities and variabilities. When a product line
is constructed, all modeling techniques and languages used
have to support the desired variability to allow a seamless
integration into the development process.

There are three main ways to model variability within a
software product line: annotative, compositional, and trans-
formational variability modeling [21,57]. In this paper, we
focus on delta modeling, a transformational variability mod-
eling approach [20] which contains modular, yet flexible
variability modeling concepts. In delta modeling, a set of
diverse systems is represented by a designated core model
and a set of deltas describingmodifications to the coremodel.
A particular product configuration is obtained by applying
the changes specified in the deltas to the core model. A delta
can add, remove, modify or replace elements of a model.
Furthermore, other combined delta operations can be added
to provide more convenient delta modeling possibilities for
a developer, such as renaming or replacing elements.
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602 A. Haber et al.

Delta modeling is a generic, language-independent con-
cept. In order to use delta modeling for a particular modeling
language, appropriate delta operations have to be defined
for the considered language. Delta modeling has already
been applied to the architecture description language Mon-
tiArc [22], to the programming language Java [43], to Class
Diagrams [42], and to Simulink models [19]. Such delta
languages can be used for individual activities as well as
combined in any methodically useful way. Actually, delta
modeling can be integrated in all stages of the software
development process. In Fig. 1, we use the V-model as an
exemplary software development process to demonstrate,
where a delta language could be used. All stakeholders using
a delta language, such as designers, developers, and testers,
can benefit from the fact that the languages for describing
variability within different artifacts in different phases of
the development present themselves as homogeneous and
closely related to the known languages as possible. Thus, by
knowing a certain language, writing a delta for an artifact of
the language becomesmore intuitive. Additionally, by know-
ing one delta language, getting used to another one becomes
also feasible due to its homogeneity.

The delta-oriented variabilitymodels in different develop-
ment phases build on each other such that variability model
structures in subsequent development phases can be derived
from previous ones, as pointed out in [42].

However, to apply delta-modeling in a particular develop-
ment phase, the used modeling or programming languages
have to be extended by delta modeling concepts. The process
of developing a delta language from a modeling or program-
ming language is so far a manual process. Its result heavily
depends on the knowledge and experience of the respective
developer. This makes it hard to achieve homogeneity among
different delta languages. However, for each modeling lan-
guage that should be extended by a delta modeling language,
very similar design steps have to be taken. Hence, the devel-
opment of a delta language is very time consuming, since
without awell-definedderivationmethod similar designdeci-
sions have to bemade over and over again for every new delta
language.

In order to alleviate this problem, in this article, we intro-
duce an approach that allows us to systematically derive a
delta language for any textual modeling (or programming)
language. The main idea is to automatically generate an
initial delta language based on a common delta language
by applying a set of general derivation rules. The com-
mon delta language encapsulates the common concepts of
delta modeling present in any delta language. The gener-
ated delta language can then be manually refined to meet
domain-specific needs. Hence, the required effort for the
manual design of a delta language is alleviated as only some
adaptations have to be made. Furthermore, the generated and
adapted delta languages are strongly related to each other as

they have been derived by the same approach. This homo-
geneity of the delta languages leads to a simpler integration
of different delta modeling languages in different develop-
ment phases. In order to demonstrate the feasibility of our
approach, we have implemented it using the language tool-
bench MontiCore [17,30–32]. This article is an extended
version of [18] where we already presented the general
concept to derive a delta modeling language from a given
grammar. In this article, we enhance the presentation with
additional examples and provide a evaluation of the presented
approach by means of a comparative case study [41].

The paper is structured as follows: in Sect. 2, we illustrate
the concept of delta modeling. Section 3 gives an overview
of the language toolbench MontiCore. The method for syn-
thesizing delta modeling languages is described in Sect. 4. In
Sect. 5, we illustrate our method using a case example. Sec-
tion 6 describes the implementation of ourmethod. In Sect. 7,
we evaluate our method using a comparative case study and
discuss threats to validity in Sect. 8. Section 9 reviews related
work and Sect. 10 concludes this paper.

2 Delta modeling on MontiArc

First, we illustrate themain concepts of deltamodeling by the
example of modeling variability in the MontiArc language
[22].

MontiArc aims at modeling distributed interactive sys-
tems and allows to define components, their communication
interfaces with incoming and outgoing ports, and their inter-
nal decomposition by instantiating and connecting further
component definitions. It supports mechanisms like para-
metrization of components, generic port types, component
extension by inheritance, invariant declarations, and comfort
functions that should also be supported by a delta language.

MontiArc extends the base language Architectural Dia-
gram (ArcD) that allows to define basic architectural model
elements (components, ports, connections, see [22]). After-
wards, MontiArc adds simulation and behavior-specific
elements like invariants, timed behavior, and comfort func-
tionality to component models.

For the sake of simplicity only elements of the ArcD lan-
guage are used in the following example. Nevertheless, all
examples can be parsed by a MontiArc parser, too. In the
following two different variants of a simplified car’s interior
light control system are used to demonstrate the basic idea.

The MontiArc component model in Listing 1 describes
the internal structure of the basic variant. It consists of two
incoming ports only: the light switch and the door state. The
interior light shall be active if either the door is open or the
light switch is turned on. The referenced component a of
component type Arbiter, defined in another model and
not discussed in more detail, is handling this decision.
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Fig. 1 Exemplary usage of
different delta languages in the
V-Model development process
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Fig. 2 Graphical representation of both interior light control system
variants

1 component LightCtrl {
2 port
3 in Boolean switchState;
4 in Boolean doorState;
5

6 component Arbiter a;
7

8 connect switchState -> a.switchState;
9 connect doorState -> a.doorState;

10 connect a.lightCmd -> lightCmd;
11 }

Listing 1 Architectural diagram of the basic interior light control
system variant

In a more advanced variant given in Listing 4 the inte-
rior light system additionally evaluates the alarm status of a
corresponding alarm system. In case of an active alarm, the
light shall always flash ignoring the switch and door state. In
addition, the light shall stay active for a fixed delay after the
door has been closed. This delay is performed by the refer-
enced component d of type Delay. An equivalent graphical
representation of both variants is depicted in Fig. 2.

In order to be able to represent variants of this component
using deltas, we need a delta modeling language. The delta

1 delta DoorDelay {
2 modify component LightCtrl {
3 add component Delay d;
4

5 modify connection
6 [doorState -> a.doorState ;] {
7 set target d.input;
8 }
9 connect d.output -> a.doorState;

10 }
11 }

Listing 2 Delta to add the door delay functionality

language should allow to add, removeormodify components,
ports as well as connections and possibly other language con-
cepts, if present. Listings 2 and 3 show instances of this delta
language applied to derive the variant in Listing 4 by apply-
ing them to the component depicted in Listing 1. The first
delta modifies the component LightCtrl (cf. Listing 2,
l.2). It combines the following changes:

• it adds the component d of type Delay (cf. l.3), which
realizes the required delay functionality.

• it modifies the doorState connection of the system
to integrate d. This is accomplished by setting the target
of the connection to the incoming port of d (cf. ll.5–
8) and by connecting d to the Arbiter component a
(cf. l.10).

The second delta modifies the component LightCtrl
(cf. Listing 3, l.2) and the nested Arbiter component a
(cf. l.5), which evaluates the actual light state based on given
input. This delta combines several changes:

• an additional port is added to the LightCtrl compo-
nent (cf. l.3) as well as to the Arbiter component (cf.
l.6) to receive information about the current alarm state.
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1 delta AlarmState {
2 modify component LightCtrl {
3 add port in Boolean alarmState;
4

5 modify component a {
6 add port in Boolean alarmState;
7

8 add component Flash f;
9 ...

10

11 connect alarmState -> f.flashIn;
12 ...
13 }
14

15 connect alarmState -> a.alarmState;
16 }
17 }

Listing 3 Delta to add the alarm state evaluation functionality

1 component LightCtrl {
2 port
3 in Boolean switchState;
4 in Boolean doorState;
5 in Boolean alarmState;
6

7 component Arbiter a;
8 component Delay d;
9

10 connect alarmState -> a.alarmState;
11 connect switchState -> a.switchState;
12 connect doorState -> d.input;
13 connect d.output -> a.doorState;
14 connect a.lightCmd -> lightCmd;
15 }

Listing 4 Product variant with alarm status evaluation and door delay
functionality

• a connection between the newly introduced ports is estab-
lished (cf. l.15).

• the internal structure of theArbiter component ismod-
ified. A component realizing the flashing functionality
is added (cf. l.8) and connected (cf. l.11). Additional
modifications of the arbiter are left out for the sake of
simplicity.

In our examplewemodify twocomponents that are nested;
hence, the modify statements are nested as well. We add a
port to each of these two components; thus, we have two
add statements one for each port. The order in which the two
shown deltas are applied is not important, as both deltas do
not depend on each other. Consequently, it is also possible to
apply only one of the deltas.

One aspect, which has not been discussed so far, is
the validation of delta models. As shown in Sect. 4.3,
we use context conditions to check the correctness of our
derived model and detect potential uncertainties via the
context.

3 MontiCore language toolbench

The method of systematically synthesizing delta languages
for textual modeling languages is based on the MontiCore
language toolbench. We take languages defined as Monti-
Core grammars as input and produce delta languages that
are also defined by a MontiCore grammar as result. In this
section, we give a brief overview of MontiCore.

MontiCore supports the specification and generation of
all relevant language processing artifacts for a specific tex-
tual language that is defined by a grammar similar to EBNF.
Amongst other things, MontiCore generates the abstract and
concrete syntax of a language, a lexer, a parser, and a set
of runtime components, such as symbol tables and check-
ers for context conditions [30,56]. A MontiCore grammar is
used to define the abstract as well as the concrete syntax of
a language in a single artifact.

Listing 5 shows a simplified excerpt of the ArcD grammar
defining the language that is used for modeling the architec-
ture diagrams in Listings 1 and 4. A MontiCore grammar
starts with the keyword grammar followed by the name
of the grammar (cf. l.1) and contains a set of productions
defining available language elements. Listing 5 shows four
productions: ArcElement (cf. l.4), ArcComponent (cf.
l.6), ArcConnector (cf. l.9), and ArcInterface (cf.
l.13). ArcElement is an interface which is explained later
in this section. ArcComponent defines the component
itself, ArcConnector specifies connections between its
ports and subcomponents, and ArcInterface specifies
its ports.

A production consists of a nonterminal and a right-
hand side (RHS) which specifies attributes and compositions
within the abstract syntax tree (AST). As in EBNF, there
might be terminals (surrounded by quotation marks (cf. l.7))
and nonterminals (cf. l.7) within the RHS. MontiCore allows
to distinguish repeatedly used nonterminals by preceding the
nonterminal with an identifier (cf. ll.10–11). For instance, in

1 grammar ArchitectureDiagram extends
2 Types {
3

4 interface ArcElement;
5

6 ArcComponent implements ArcElement =
7 "component" Name "{" ArcElement* "}";
8

9 ArcConnector implements ArcElement =
10 "connect" source:Name "->"
11 targets:Name ("," targets:Name)* ";";
12

13 ArcInterface implements ArcElement =
14 "port" ...;
15

16 ...
17 }

Listing 5 Simplified excerpt of the architectural diagram grammar
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the production ArcConnector (cf. l.9), the nonterminal
Name is preceded by the identifiers source (cf. l.10) and
targets (cf. l.11). In this way, the source and the targets of
the connection can be differentiated. We also have repetition
(A*,A+), alternatives (A|B), and optionality (A?).

MontiCore also facilitates language reuse by supporting
modularity concepts like, e.g., language inheritance and com-
position (not shown here) [34,44,56]. Language inheritance
means that one or more existing grammars can be extended
and refined by defining new grammar rules or redefining
existing rules. This is denoted by the keyword extends fol-
lowed by the names of the extended grammars (cf. ll.1–2). In
this way, a language developer can focus on the differences
between the existing languages and the new language.To ease
the reusability and extensibility of languages, it is possible
to define interface-nonterminals inMontiCore grammars. An
interface-nonterminal can be used like any other nonterminal
within the grammar (cf. l.7) and is introduced by the key-
word interface (cf. l.4). This mechanism is an extended
form of alternatives. Thus, the interface definition in l.4 can
be interpreted as ArcElement = ArcComponent |
ArcConnector | . . ., where the RHS contains an alter-
native for everyproduction that implements the interface.The
language inheritance and interface concept in MontiCore is
motivated by ob-ject-oriented inheritance and provides sim-
ple means to reuse and extend existing languages [29,34].

MontiCore also supports the definition and automatic
checking of context conditions to verify that a model is
well-formed. One simple context condition can, e.g., check
whether the names of components within an architecture dia-
gram are unique.

4 Derivation process

Based on MontiCore technology, we now introduce the
method to derive a delta language for a given modeling lan-
guage. The source language L needs to have the following
properties:

• it needs to be textual
• it needs to be hierarchical.

There are three other properties that are not mandatory
prerequisites but increase ease of use:

• the elements of L can be addressed via qualified names
• the qualified names of theses elements should not contain
the character “.”.

We use the “.” character as a separator for qualified names. If
qualified names can contain the “.” character the user needs
to configure a different character as the separator.

MCG«handwritten» 
Extended-ΔL 

«generated» 
ΔL 

«predefined» 
common∆

«handwritten» 
L 

builds on 

builds on builds on 

Fig. 3 Language hierarchy of concrete delta languages

The implementation of our approach relies on the lan-
guage inheritance concepts of MontiCore. However, the
method can be applied to every context-free grammar, since
the used MontiCore concepts, such as grammar inheritance
or interface productions, can easily be expressed likewise in
EBNF. For instance, inheritance can be expressed by repeat-
ing the inherited productions and interface productions may
be expressed by disjunctions.

Figure 3 shows the language hierarchy obtained when
extending an existing source language L with delta modeling
constructs. The basis is the abstract common� language that
predefines the overall structure of delta models. It addition-
ally defines common delta operations and specifies how to
identify elements in a model. The derived delta language�L
extends this common language aswell as the source language
L .

This way all language elements of both languages are
inherited and are available in the grammar of language�L . It
is possible that the names of generated grammar rules collide
with already existing names of grammar rules. This prob-
lem can be prevented by configuring a different prefix for
the names of generated rules. The automatically derived lan-
guage�L is already complete but can also be further refined
manually to obtain a delta language Extended-�L that is
tailored to domain specific needs.

4.1 Common delta constructs

The common structure for deltas is defined in the language
common� provided as a MontiCore grammar (Listing 6).

The syntactical structure of a delta is defined in ll.8–
11. A delta has a unique name and consists of Delta-
Elements (cf. l.11). This interface is implemented by pro-
ductions that may be used directly within a delta. Each
delta has an optional ApplicationOrderConstraint
(AOC) (cf. l.10). An AOC is a logical expression over
delta names, which restricts the execution order of deltas.
It can be defined which deltas have to be applied before
the current delta and which deltas must not be applied
before. In the common grammar, DeltaModify (cf. ll.13–
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1 // Elements that may be used directly
2 // within a delta model.
3 interface DeltaElement;
4

5 // Adds concrete syntax to modifies.
6 interface ScopeIdentifier;
7

8 Delta =
9 "delta" Name

10 ("after" ApplicationOrderConstraint)?
11 "{" elements:DeltaElement* "}";
12

13 DeltaModify implements
14 DeltaOperation , DeltaElement =
15 "modify" ScopeIdentifier
16 modelElement:ModelElementIdentifierPath
17 "{" DeltaOperation* "}";
18

19 // To identify model elements.
20 interface ModelElementIdentifier;
21

22 // Hierarchical path of MEIs.
23 ModelElementIdentifierPath =
24 parts:ModelElementIdentifier
25 ("." parts:ModelElementIdentifier)*;
26

27 // Default identifier: qualified name.
28 DefaultModelElementIdentifier implements
29 ModelElementIdentifier =
30 QualifiedModelElementName ;
31

32 interface DeltaOperation;
33

34 // Operand of a delta operation.
35 interface DeltaOperand;
36

37 DeltaAdd implements DeltaOperand = "add";
38 DeltaSet implements DeltaOperand = "set";
39 DeltaRemove implements DeltaOperand
40 = "remove ";
41

42 // Default remove operation.
43 DeltaRemoveOperation implements
44 DeltaOperation =
45 DeltaRemove
46 target:ModelElementIdentifierPath ";";

Listing 6 common� MontiCore grammar

17) is the only production that implements the interface
DeltaElement, therefore every DeltaElement is rep-
resented by a DeltaModify. This interface can later also
be implemented in the Extended-�L-grammar to add fur-
ther operations that may be used directly within a delta.
The nonterminalScopeIdentifier refers to an interface
(cf. l.6) that is implemented by productions in the gener-
ated delta language and allows us to identify the model
element type which is to be modified. The nonterminal
named modelElement (cf. l.16) is used to define the con-
text that is modified by the contained DeltaOperations
(cf. l.17). Modify statements defined by the production
DeltaModify may hierarchically contain further mod-
ify statements as this production implements the interface
DeltaOperation.

A ModelElementIdentifierPath is needed to
identify elements of the model. As depicted in Listing 6, it
consists of dot-separated ModelElementIdentifiers
named parts (cf. ll.23–25). Usually, models and their ele-
ments are hierarchically structured by a contains relation.
Hence, the order of the parts has to reflect this hierarchi-
cal relation. Named model elements are typically identified
by their name. Therefore, the default ModelElement-
Identifier is a qualified name (cf. ll.28–30). Models
also contain unnamed parts, e.g., connectors in MontiArc,
respectively, ArcD. The ModelElementIdentifier
interface is implemented in a concrete delta language for
each unnamed model element that has to be identified within
a delta.

The interface DeltaOperation shown in Listing 6 is
implemented by delta operations that may be used within a
modify statement (see l.17). Concrete operations must start
with an operand DeltaOperand (cf. l.35) that defines
the syntax of the concrete operation. Default operands are
add for set-based elements of a model (cf. l.37), set
for singular elements of a model (cf. l.38), and remove
to delete elements from a set or to delete optional sin-
gular elements (cf. l.39). The default remove operation is
given in ll. 43ff. The target of the operation is identified
by a ModelElementIdentifierPath as explained
above. Distinguishing between DeltaOperation and
DeltaOperand allows us to generate a single production
rule DeltaOperation for each nonterminal in the source
language that represents all available modification operands
at once.

4.2 Derivation rules

Based on the source language L and common�, we describe
how to derive a delta language �L . For new nontermi-
nals in �L , we use a composite name consisting of the
name of the original nonterminal and the interface that
is implemented, avoiding duplicate nonterminals. Within
the following derivation rules, we use indices to represent
this.

Addressing elements In the delta language, it should be
possible to modify every model element given by the
nonterminals of the concrete language. Thus, we need to pro-
vide an implementation of the interface ModelElement-
Identifier for all nonterminals N ∈ L . With the
following rules, we ensure that every nonterminal can be
identified, either by the default production using a qualified
name or the element itself. During the automatic generation
of �L we consider an element as addressable if it con-
tains a nonterminal QualifiedName with an identifier
name.
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1a For every nonterminal N that can be identified by a qual-
ified name, the default implementation of common� is used
to address the model element.

1b For every other nonterminal N , the concrete syntaxof the
correspondingmodel element enclosed in brackets is used for
addressing it. Thus, for N, we introduce a new nonterminal
�NME I and add a production of the form:

�NME I implements ModelElementIdentifier

= “[“ N ”]”

Scope identifier The ScopeIdentifier interface of
common� is used to specify the element type that is
addressed by the ModelElementIdentifier. With
this, we are able to distinguish different model element types
if they have the same ModelElementIdentifier but
create different scopes for the modeled delta operations. At
the same time, we are able to automatically create context
conditions for checking matching identifiers and types. We
reuse the nonterminal of L as concrete syntax of �L . With
these kindof derivation rules,we are able to formulatemodify
statements that identify the model element and allow modi-
fications within this scope.

2 For every nonterminal N ∈ L, we introduce a new non-
terminal �NSI and generate a production of the form:

�NSI implements ScopeIdentifier = “N”

Delta operation With this rule, we gain the ability to spec-
ify different delta operations inside a modify statement.
The abstract grammar common� defines the interfaces
DeltaOperation and DeltaOperand. The implemen-
tation of these interfaces is needed for every nonterminal N
since those are the elements that shall be modified inside a
given scope.

3 For every nonterminal N ∈ L, we introduce a new non-
terminal�NDO and generate an operation production of the
form:

�NDO implements DeltaOperation

= DeltaOperand N

Multiple nonterminals This derivation rule is needed since
we have to consider that nonterminals might be used more
than once on the RHS of a production. In MontiCore, we
distinguish those by identifiers preceding the nonterminals,
as shown in Sect. 3. For�L we also need to distinguish these
nonterminals because we would like to be able to modify
them separately. We can reuse the identifiers and derive the
productions for those operations. We add the nonterminal

names as concrete syntax to the production to enable the
distinction between the nonterminals inside the delta.

4 For every nonterminal N ∈ L used more than once on the
RHS of a single production in L, we generate specific opera-
tion productions for each occurrence. For each identifier ni
of N , we introduce a new nonterminal �nDOi and generate
a production of the form:

�nDOi implements DeltaOperation

= DeltaOperand “ni” N

Delimiter addition Typically languages consist of block
statements that hierarchically encapsulate other statements.
Those block statements are delimited by an opening and a
closing element. Inside block statements, there can be single
statements that usually have a delimiter ending the statement.
With a delta language, we can alsomodify parts of single line
statements and not only complete single-line or block state-
ments. Those parts usually have no delimiter. In this case,
we add a delimiter to the corresponding delta production to
achieve a uniform syntax of the delta language. For this rea-
son, we analyze L and check if the nonterminal is either a
block statement or a single line statement and has, therefore,
a delimiter. Otherwise, we add a final delimiter to the non-
terminals in �L .

5 For every nonterminal N ∈ L that is neither a block
statement nor a single line statement with a line delimiter,
we modify the operation production and append a delimiter.

The derivation rules are sufficient to derive�L since they
ensure that each nonterminal of L can be addressed to be
modified, and additionally, every nonterminal can be used
together with an operand inside a given scope. Thus, it is
possible to modify every element by adding or removing
other subelements. It should be noted that the rules use con-
cepts provided by MontiCore but are not limited to them,
since these concepts can be rewritten as other productions
not using MontiCore concepts anymore. We show the appli-
cation of these rules to the ArcD Language in the derivation
process example in Sect. 5.

4.3 Context conditions

In addition to the derivation rules to create the delta lan-
guage�L , we generate context conditions that provide some
semantic checks for the delta language. The following enu-
meration provides context conditions that are automatically
generated:

1. A ModelElementIdentifier must reference an
existing element.
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This can be done via resolving its qualified name and
checking if there is an element with this name or via
checking the complete concrete syntax of the element
if used as an identifier for unnamed elements. This ele-
ment may either exist directly in the core model or might
already be added by a previous delta application.

2. A ModelElementIdentifier must reference a
model element that corresponds to its type given by the
ScopeIdentifier.
This is not ensured by the concrete syntax of the language
since most elements are addressed via qualified names
which do not provide information about the type of the
element.

3. A ModelElementIdentifierPath must be valid
in terms of its single concatenated elements.
While the previous context conditions focus on single
elements, this context condition checks the path within
the hierarchy of model elements.

4. A DeltaOperation must be applicable within the
scope of its surrounding modify statement.
This context condition can be inferred from the RHS of
the production contained in L . Within the scope of the
nonterminal on the LHS only operations affecting non-
terminals from the RHS are allowed.

5. A DeltaOperand must be applicable for its element.
Since we use the interface DeltaOperand to encap-
sulate the available delta operations, it is possible to use
either the add operand or the set operand for a model
element. While add should be used if there may be mul-
tiple possible elements, set should be used in case there
is only one possible element. By using this an optional
element is set whereas an existing element is changed. To
ensure that add can only be used to add a new element
to a collection and set can only be used for a single ele-
ment, we use this context condition. It is derivable from
the productions contained in L . Within the scope of the
nonterminal used on theLHS,we can distinguish if a non-
terminal on the RHS has a multiple cardinality and needs
add as an operand, or if it has a single cardinality and thus
needs set as an operand. This holds for multiple non-
terminals that are distinguished by given variable names.

6. An element that is mandatory for a certain model element
must not be removed.
Typically there exist remove operations for every element
within a language.But in case the production requires this
element as a singlemandatory element it is not allowed to
specify a remove operation. If the element has a multiple
cardinality or is optional this has to be possible neverthe-
less.

7. An element that should be added must not exist.
This checking for avoidance of duplicates can be either
done via the qualified nameor via equality on the attribute
level of the element.

8. An element that should be removed must exist.
This check for existence of an element can be done in a
similar way as the previous context condition.

4.4 Discussion

When automatically synthesizing a delta language �L from
an existing source language L , we reuse concepts given in
the language L . This also leads to the use of concepts of
the abstract syntax of L which are typically hidden from the
modeler who only knows the concrete syntax. But for speci-
fying a modify statement, the delta modeler has to know the
nonterminals of L as they become part of the concrete syntax
of �L . For instance, we derive the keyword that identifies
the scope of a modify operation in �L from the name of a
terminal in L .

While the abstract and concrete syntax should typically
be separated, we would like to present a method that auto-
matically derives such a language �L . Hence, the above
mentioned effect cannot be avoided completely.

In order to reduce this effect, it is possible to create a
handwritten language Extended-�L that refines �L and
overrides the productions defining these parts of the con-
crete syntax. To this end, we encapsulate the concrete syntax
in own productions that can be overridden. Also those pro-
ductions that contain, e.g., keywords that are not suitable and
should be changed can be overridden.

Reusing parts of the abstract syntax of L and automatically
synthesizing �L puts some requirements to the structure of
L . For the automatic derivation of a delta language, the design
of the abstract syntax is pretty important. The abstract syn-
tax might contain folded or expanded productions that do
not affect the concrete syntax of L . Especially the definition
of productions and the use of nonterminals is important for
deriving �L for the identification of model elements, since
it affects the identification of model elements, the nesting of
modify statements, and the feasible delta operations within
a modify block. The possible path of navigation is given
by the structure of the abstract syntax and might change if
the abstract syntax changes. Therefore, it might be useful to
restructure the grammar of L , e.g. by folding or unfolding
nonterminals.

We avoid nondeterminism since we use a dynamic looka-
head for parsing models of the context-free grammar. In
addition, the resulting grammar �L is always non-left-
recursive by construction since the derivation rules always
introduce new unique nonterminals that are only used on the
LHS of the productions and never on the RHS. The new non-
terminals are based on the names of the original nonterminals
to prevent name clashes.

MontiCore supports language reuse by grammar exten-
sion. Thus, the source language L might also be an extension
of a parent language PL . For the derivation of the delta
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Fig. 4 Language hierarchy of concrete delta languages extended by
PL and �PL

language from L , we only consider nonterminals defined
directly in the language L and do not consider inherited
nonterminals from parent languages yet. To handle language
inheritance, we assume that for every parent language PL
of L there also exists a delta language �PL , according to
the language hierarchy shown in Fig. 4. The language �L
builds upon �PL and can, therefore, also handle nontermi-
nals defined in the super language.

5 Detailed example of the derivation process

In order to demonstrate our method, we use it to derive a
delta language for the ArcD language introduced in Sect. 2.
Afterwards, this language can be used to describe the deltas
shown in Listings 2 and 3. In the following, we go through
the derivation rules step by step, as described in Sect. 4.2,
to show the contribution of each rule to the grammar of the
delta language. The following steps are depicted in Fig. 5.
Please note that a simplified grammar for ArcD is used to
demonstrate the derivation method.

Our new delta language builds on the ArcD language. In
MontiCore, this is done by extending the language (cf. Fig. 5,
part A).

For the first derivation rule, we need to implement the
ModelElementIdentifier interface for every nonter-
minal N ∈ L . In case the nonterminal N has a name we can
use the default implementation in common�. An example for
such a case is ArcComponent, because components have
names in the ArcD language. The default implementation
of ModelElementIdentifier is shown in Listing 6.
If the nonterminal N has no name, which is the case for
connections, we need to introduce a new nonterminal which
we call ArcConnectorIdentifier that encloses the
concrete syntax of an ArcConnector with square brack-
ets. The corresponding part of the grammar is shown in
part 1.

// The grammar of CommonDelta is shown in
// Listing 6

grammar DeltaArchitectureDiagram extends 
ArchitectureDiagram, CommonDelta {

DeltaArcComponent = Delta;

grammar ArchitectureDiagram extends Types {

interface ArcElement;

ArcComponent implements ArcElement =
"component" Name "{" ArcElement* "}" ;

ArcConnector implements ArcElement=
"connect" source:Name "->"
targets:Name ("," targets:Name)* ";";

ArcInterface implements ArcElement = "port" 
...;

...
}

ArcConnectorIdentifier implements 
ModelElementIdentifier = "[" ArcConnector "]";

DeltaArcComponentScopeIdentifier implements
ScopeIdentifier = "ArcComponent";

DeltaArcConnectorScopeIdentifier implements    
ScopeIdentifier = "ArcConnector";

DeltaArcInterfaceScopeIdentifier implements
ScopeIdentifier = "ArcInterface";

DeltaArcConnectorOperation implements
DeltaOperation = DeltaOperand ArcConnector;

DeltaArcComponentOperation implements
DeltaOperation = DeltaOperand ArcComponent;

DeltaArcConnectorSourceOperation implements 
DeltaOperation = 
DeltaOperand "source" source:Name ";";

DeltaArcConnectorTargetOperation implements 
DeltaOperation = 
DeltaOperand "target" target:Name ";";

}

Fig. 5 Example for the application of the derivation rules

Using the second derivation rule, we derive the Scope-
Identifiers used in the modify statements, which are
necessary to denote which architectural diagram grammar
construct we want to modify. Part 2 shows the Scope-
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1 grammar ExtendedDeltaArchitectureDiagram
2 extends DeltaArchitectureDiagram {
3 DeltaArcConnectorOperation implements
4 DeltaOperation = ArcConnector;
5 }

Listing 7 Extended-�L for the generated delta architectural diagram
language L

Identifiers for ArcComponents, ArcInterfaces,
and ArcConnectors.

With the third derivation rule, we specify the available
operations for adding or removing connectors or compo-
nents, see part 3. The delta operations are already defined
in common� (see Listing 6).

The original connector nonterminal consists of two name
elements specifying source and target of a connection. As
we would not be able to distinguish both we need to apply
the fourth derivation rule after the third one and add the key-
words ”target” and ”source” to the productions (see part 4).

The fifth and last derivation rule adds a delimiter to every
statement that is neither a block statement nor a single line
statement. In our case, this delimiter is a semicolon added by
the fifth rule (cf. part 5).

However, the resulting concrete syntax of our gener-
ated delta architectural diagram language (Delta-ArcDgen)
does not conform to the expected syntax used in Sect. 2
yet. For instance, adding a new connection shall be indi-
cated by the keyword connect instead of add connect
(cf. Listing 2, l.9). According to the workflow presented
in Sect. 6, we perform step (A7) and tailor the concrete
syntax of DeltaArcDgen by creating an extended delta lan-
guage Extended-DeltaArcDgen . This is demonstrated in
Listing 7. The shown grammar builds on the generated
language DeltaArchitectureDiagram and redefines
the production DeltaArcConnectorOperation. This
way, the expected syntax for the connection modification is
achieved.

The grammar of DeltaArcDgen , which is partly shown in
Fig. 5, in combination with its extension partly shown in
Listing 7 can be used to generate a parser for our example in
Listing 2.

The first and the last line are parsed using the Delta pro-
duction (cf. Listing 6, l.8).Within the scope of such aDelta,
onlyDeltaElements are allowed. Amodify statement is a
DeltaElement, i.e. the statementmodify component
LightCtrl {...} can be parsed using the production
DeltaModify (cf. Listing 6, ll.13–17) which imple-
ments DeltaOperation and DeltaElement. Addi-
tionally, DeltaModify requires a ScopeIdentifier
that is in our case the DeltaArcComponent-
ScopeIdentifier from the �L grammar (cf. Fig. 5,
part 2). Within the DeltaModify production multiple

DeltaOperations are allowed (cf. Listing 6, l.17), in our
examples these are the statements between ll.3 and 9 (List-
ing 2) and between ll.3 and 15 (Listing 3). They are either
parsed using the DeltaModify production (cf. Listing 6,
l.15), if they are modify statements, or by the newly gen-
erated productions DeltaArcConnectorOperation
or DeltaArcComponentOperation, if they are add
statements.

As the different add statements are pretty similar, we just
describe how one of them is parsed in detail as the other ones
are parsed similarly.We use the statement from Listing 2, l.3.

The whole statement is parsed using the DeltaArc-
ComponentOperation production (cf. Fig. 5, part 3)
which in turn uses the ArcComponent production from
the architecture diagram grammar and the DeltaOperand
nonterminal which is implemented by the DeltaAdd non-
terminal.

The statement in Listing 3, l.8 is parsed exactly the
same way, while the statement in l.3 is parsed similarly
but using a DeltaArcInterfaceOperation produc-
tion. The statements that start in ll.2 (Listing 2), 11 and 15
(Listing 3) are modify statements. They are parsed using the
DeltaModify production (cf. Listing 6, ll.13–17).

The statement that starts in Listing 2, l.5 is special
because it addresses a nonterminal that does not have a
name. Therefore, we cannot use the default implementa-
tion of the ModelElementIdentifier interface but
need to generate the ArcConnectorIdentifier pro-
duction (cf. Fig. 5, part 1) which allows us to address
connections using its complete syntax. As these statements
are also parsed using the DeltaModify productions they
can also include multiple DeltaOperations. In this case
theDeltaOperation is aDeltaArcConnectorTar-
getOperation(cf. Fig. 5, parts 4 and 5). Apart from these
two differences, it is parsed similarly to the DeltaModify
already presented. This example shows that we can parse the
DeltaArcDgen language using our newly generated grammar.

6 Implementation

In order to understand the delta generator one needs to under-
stand the principles of the MontiCore language toolbench.

MontiCore is able to generate parsers from grammars
which are used to create ASTs. TheseASTs are then the basis
for so called workflows, which are algorithms that work on
these ASTs [17].

The DeltaLSynthesisTool contains MontiCore
workflows such as DeltaGeneratorToolWorkflow
and DeltaCoCoToolWorkflow. The relationship bet-
ween the components of the delta generator is shown in Fig. 6
while their interaction is shown in Fig. 7 [in the following we
reference the comments in both figures asC (Component dia-
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Fig. 6 Components of the delta
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gram) andA (Activity diagram), respectively]. Figure 6 shows
which steps are performed by the user and which steps are
performed by the generator/parser and, therefore, automat-
ically. The delta generator is run via the MontiCore maven
plugin which allows the execution ofMontiCore tools within
a maven managed build. This allows us to integrate the delta
generator as part of a multistage setup.

The generation of a parser for �L from L is a two-
stage process. In the first stage the user provides an initial
configuration (A1) via the Project Object Model (POM-
File) of the project. This configuration for example specifies
which grammar L should be transformed to its delta coun-
terpart. The delta generator parses (A2, C1) the grammar of

L using MontiCore which creates the corresponding AST.
The DeltaGeneratorToolWorkflow adds common�

as super grammar (A4, C3) to the AST of �L . Then a visitor
is used to traverse the AST of L . The visitor also has a direct
reference to the AST of the �L-grammar and generates new
nodes for each node in the AST of L following the rules
from Sect. 4 (A5, C3). If it visits a production it analyzes
the production and creates new productions for nonterminals
on the LHS according to rule 1–3 and for nonterminals on
the RHS according to rule 4 of Sect. 4, while adhering to
rule 5.

When the visitor finishes traversing theASTof L , theAST
of�L is complete andwritten into a file using a PrettyPrinter
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(End of A3, C4). The context conditions are generated by the
DeltaCoCoToolWorkflowwhich uses theASTof L and
�L as inputs (A6, C5). In the second stage MontiCore uses
this �L-grammar to generate a parser for �L .

The user can now manually adapt �L by creating a
subgrammar Extended-�L (A7). The manual adaption
of a derived delta grammar is optional. It is useful, e.g.,
to tailor the syntax of the delta language. For example,
�L may contain unneeded modify statements for lan-
guage elements that should not be modifiable, or the syntax
of an unnamed ModelElementIdentifier should be
adjusted by introducing a new keyword. It is also possible to
add more refined delta operations such as a replace opera-
tion. The names of nonterminals of the source language can
be part of the derived delta language. This is, for example, the
case when these nonterminals need to be addressed. Some-
times the names of these nonterminals are unintuitive and
also need to be adapted while creating Extended-�L .

7 Case study

In order to evaluate our method of generating �Lgen and
manually extending it to Extended-�Lgen , we designed a
comparative case study.

An automatic approach has two potential advantages over
the manual method:

• reduced effort
• human errors are eliminated.

These advantages only justify automation, if the resulting
product is at least as expressive as the manual one and has no
disadvantages that outweigh potential benefits. The different
delta languages that have been created over time adapt the
concept of delta languages to their specific needs. It is not
possible to just dismiss these adaptions. We, therefore, need
to compare languages created by human language designers
to languages that are derived using our approach. We do this
to show that our proposed manual tailoring method is able
to create a language that reproduces the adaptions a human
designer might apply to the concept of delta languages while
still yielding a benefit over manually creating �L .

This leads to our main research question:

Main research question (MRQ) Does our approach
of generating �Lgen and manually extending it to
Extended-�Lgen yield a benefit over manually creat-
ing �Lhw?

This benefit can be examined on two levels:

• the benefits of the method itself

• the benefits for the resulting language or at least the
absence of disadvantages for the resulting language.

First we only look at the automatically derived language
�Lgen without manual tailoring/extension. Our generated
language directly contains all basic operations, namely add,
set, remove, and modify (cf. Listing 6), that are also
part of the handwritten languages in our case study. The hand-
written languages contain additional operations beyond these
basic operations.

We want to be able to express the same matters, in a
semantic way, as the preexisting handwritten languages. We,
therefore, need to check that these additional operations only
add syntactic expressiveness and not semantic expressive-
ness like a new class of operations that our approach does
not support. This leads to our first subresearch question:

Subresearch question 1 (SRQ1) Has �Lgen at least the
same semantic expressiveness as �Lhw?

In order to answer this research questionwe checkwhether
the advanced operations of the handwritten languages can be
represented as a sequence of the aforementioned basic opera-
tions and, therefore, do not add semantic expressiveness. The
research question is deliberately constrained to�Lgen , since
SRQ1 considers semantic expressiveness while the manual
extension adds syntactic features.

Of course, syntactical equal expressiveness, enabled by
the manual extension of the generated language, is also
important. However, it is always possible to create an
Extended-�Lgen that is identical to�Lhw since the sublan-
guage is able to overwrite and to introduce new productions.
Thus, establishing the possibility to create the same syntac-
tical expressiveness is inherently given. Nevertheless, such
an extension is needed and important to create a customized
and tailored language for a specific purpose with syntactic
sugar or advanced syntactic operations.

To benefit from an automated approach, the effort of creat-
ing themanual extension should be less than directly creating
the complete delta language by hand.

We use the complexity of the language as a proxy metric
for the effort it would take to create it. The complexity of
the language in our case is the number of productions and
complexity of these productions.

If the extension of the language is less complex than the
manually created one, a reduced effort in language design is
to be expected. We again consider this as an indication of
a benefit of the automated approach, leading to our second
subresearch question:

Subresearch question 2 (SRQ2) Is the complexity of
Extended-�Lgen and, therefore, the effort to create it
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smaller than the effort to create �Lhw, while being at
least as syntactically expressive?

An implicit benefit of an automated approach is that it
prevents human errors. We want to show that this implicit
benefit is an actual benefit and that human errors actually
exist in solely manually derived delta languages, even if they
are already mature projects with quality assurance. The kind
of human errors we will look at in the course of this case
study are inconsistencies of the languages introduced by the
human designer. We want to answer the following question:

Subresearch question 3 (SRQ3) Does Extended-�Lgen

contain fewer inconsistencies than �Lhw?

Consistency in our case comprises two aspects. First, for
each basic operation a reverse operation has to exist. This
way for each model element kind that may be added to a
model using an add operation, a remove operation has to
exist. A set operation may be used to revert another set
operation. Second, delta operations must not transform the
model into an inconsistent state that cannot be repaired using
further operations.

7.1 Case study design

We conduct a comparative case study [41] that compares
a preexisting handwritten delta language �Lhw to a gener-
ated delta language �Lgen with a handwritten sublanguage
Extended-�Lgen to answer the main research question. A
broad application range is important for us we, therefore,
chose an architectural, a structural, and a behavioral model-
ing language for the evaluation.

The languages have been derived using different method-
ologies and are based on different tools:

• �-MontiArc has not been created using ourmethodology
but was developed using MontiCore.

• �CDhw has been created using our methodology and is
also using MontiCore.

• The �Statechart language is not MontiCore-based and
was also not created using our methodology.

In the course of the case study we aim at answering our
subresearch questions for each of the languages. We chose a
comparative case study because each research question com-
pares either �Lgen or Extended-�Lgen with �Lhw. The
languages we chose differ from each other in various ways.
We aim to explore if these differences have any impact on
the answer of our research question.

To compare semantic expressiveness (SRQ1), we exam-
ine if a valid mapping for each advanced operation in �Lhw

to a set of basic operations in �Lgen exists. By construction,

all semantic basic operations of �Lhw are also available in
�Lgen , because both delta languages correspond to the same
source language. Thus, we explore the existence of a map-
ping from advanced to basic operations, which allows us to
answer SRQ1. As the advanced operations are deviations of
the standard construction of delta languages they are missing
from�Lgen andwe need to checkwhether they add semantic
expressiveness as part of our case study.

In order to reason about the effort it takes to create
Extended-�Lgen (SRQ2) in comparison to �Lhw (SRQ2),
we count the number of productions of Extended-�Lgen

and compare this with the number of productions of �Lhw.
However, the number of productions is only representative if
Extended-�Lgen accepts the same words as �Lhw. Thus,
we additionally explore syntactical expressiveness and count
the number of productions of Extended-�Lgen required to
achieve this for answering SRQ2. Our comparison is only
valid if the productions are of similar complexity; we dis-
cuss this in Sect. 8.1.

In order to be as syntactically expressive as �Lhw,
Extended-�Lgen needs to be able to parse at least those
words accepted by �Lhw. We obtain a test set of possi-
ble words, using a tool that is able to generate concrete
words/models out of a given grammar. These models ensure
that each derivation path within a grammar is used at least
once. Internally the tool uses the Purdom-algorithm [38].
Thus, we can ensure that the generated models cover all
paths of the resulting AST and provide a good coverage
for testing expressiveness. The number of generated test
words obviously corresponds to the size of the language
in terms of the number of productions and the number
of possible derivations. Apart from the generated words,
we also reused existing test words for �Lhw that were
available.

After generating the input words from�Lhw, we used the
delta languagegenerator to obtain�Lgen .Using the provided
extension mechanism, we manually created Extended-
�Lgen . We iteratively adapted Extended-�Lgen until the
generated parser was able to parse all words that were pre-
viously generated out of �Lhw. The generated parser of the
handwritten language �Lhw is able to accept all generated
and already existing words by construction. If Extended-
�Lgen is adaptable to also be able to parse these words, we
can conclude that Extended-�Lgen is at least as syntacti-
cally expressive as �Lhw.

While, in general, we can only state that Extended-
�Lgen is at least as expressive as �Lhw, it is in some cases
also possible to add additional test words that conform to
�Lgen but not to �Lhw. In this case, Extended-�Lgen is
syntactically more expressive.

For answering the second subresearch question, we count
the necessary productions as a metric for complexity. We
looked at the productions and operations required in the
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extension and found out that they are of similar complexity as
in �Lhw by manually comparing the productions. Thus, we
use counting as a measure for the required effort to answer
SRQ2.

For answering SRQ3, this test setup is also suited since we
are able to closely examine in both grammars if the number
of productions and operations deviate. This way, we are able
to detect inconsistencies in terms of missing operations in
�Lhw. Operations thatmay render amodel to an inconsistent
state are identified manually.

In the following subsections, we present our results and
discuss them afterwards.

7.1.1 MontiArc

In the first casewe apply ourmethod toMontiArc [22], which
has been introduced in Sect. 2. ForMontiArc, we use 67man-
ually written and 48 generated models to evaluate syntactical
expressiveness of the involved languages.

�-MontiArc has not been designed according to the me-
thod described in Sect. 4 so that this language can be regarded
as a highly customized delta language.

The following language productions of �-MontiArc add
advanced delta operations:

1. ModifyParamStatement A special modify statement
allows to modify parameter assignments of subcompo-
nents.

2. RemoveUnreachablesStatement A remove unrea-
chables operation allows to remove unconnected ports
of components.

3. ReplaceStatement A replace statement allows to
replace a subcomponent with a type-compatible subcom-
ponent.

4. RenameStatementAset ofrenameoperations to rename
ports, subcomponents, parameters and invariants.

5. AutoConStatement

• The operation expand autoconnect locally or
globally removes the autoconnect statement and
makes connectors explicit. This way they may be
explicitly modified by further delta operations.

• The reverse operationintroduce autoconnect
locally or globally removes explicit connections that
may be also created by an autoconnect and later on
introduces an autoconnect statement. This operation is
realized together with the expand autoconnect
operation in a single language production.

Additionally, some delta operations in�-MontiArc have a
syntax that is not compliant to the syntax proposed in Sect. 4.
These are realized in the following productions:

Fig. 8 Language hierarchy of the extended Delta-MontiArc grammar

1. AddArcElementStatement This production provides the
regular add operation for all architectural elements. It
additionally provides an add operation for connectors
with an adjusted syntax. Instead of add connect a
simple connect is used to add a new connector. This
corresponds to the original MontiArc syntax for creating
a connection. As this production realizes both, default
and adjusted syntax, it is not counted here.

2. AddConfigStatement Configuration elements from the
MontiArc language are also directly added without the
add operation prefix.

3. DisconnectStatement Instead of remove connect a
more intuitive disconnect is used to remove a con-
nector.

4. AddParamStatement Configuration parameters are added
with add param Type Name instead of add Type
Name.

5. AddTypeParamStatement Type parameters are added
accordingly with add typeparam.

The language hierarchy of the generator based languages
is depicted in Fig. 8, it reflects MontiArc’s language hierar-
chy.

7.1.2 Class diagrams

In the following, we present how our method can be applied
to a textual class diagram language. This language is part of
the UML/P [39,40,44] language family.

�CDhw was developed during a practical coursewith five
undergraduate student participants. The method proposed in
Sect. 4 was given to the students beforehand as a reference
implementation manual. The task of the practical course was
to develop DeltaCD based on the class diagram language,
to directly adapt the concrete syntax of the language to a
more intuitive one and to directly introduce new refactoring
language features.
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Based on the method, the students first developed a lan-
guage containing the scope identifiers CDAssociation,
CDMethod, CDAttribute, CDConstructor, and
CDEnumconstant which are in fact the names of the
nonterminals of the class diagram language as proposed in
Sect. 4. Since these keywords are less intuitive we decided
to change them to association, method, attribute,
constructor, and enumconstant.

Furthermore, we added for some add and remove
operations an additional keyword, such that remove id
to remove an attribute with name id becomes remove
attribute id.

In total we added four remove keywords, four add key-
words, and two keywords for both adding and removing.
Also a simplification was done, by adding a keyword that
enables changing the direction of an association. Thus
setleftToRight− > and setrightToLeft < −
resulting fromourmethod can be alternativelywritten asset
associationdirection − > and set associat-
iondirection < −, respectively.

Additionally, the functionality of the language was
extended by new operands, based on the refactorings defined
by Fowler et al. [11]:

1. rename Renames a given element to the new name. Pos-
sible elements are classes, interfaces, attributes, method
parameters, enums, enum constants, associations, and
methods.

2. moveMoves a given attribute or method to another class.
3. merge Merges two given classes into a new class.
4. extract Extracts a given set of attributes or methods into

a new class or a new interface. Specifying an extraction
as a subclass or a superclass of the element the attributes
or methods are taken from is also possible.

5. pullup Pulls a given attribute or method from multiple
subclasses up into a common superclass.

6. pushdown In contrast to pullup, pushdown pushes an
attribute or a method from a superclass to a subclass.

The applicability of these language features is checked
via context conditions which are not part of this case study.
These context conditions check if the pulled up attribute, the
source classes, and the target class all exist and that all source
classes have such an attribute with the same type.

Summing up, we made

• 15 syntax adaptions, such as changing and adding key-
words,

• one simplification, i.e. aggregated keywords,
• six language feature additions, such as the new operand
move.

Fig. 9 Language hierarchy of the extended Delta-CD grammar

The concrete language hierarchy of DeltaCDgen is shown
in Fig. 9. We take the existing class diagram grammar CD as
an input to generate the delta language DeltaCDgen (�Lgen)
for class diagrams. Following the proposed method Delta-
CDgen builds on a common predefined grammar common�

which already defines the basic operation to add and remove
elements of a language. To adjust the concrete syntax and
to introduce new features we manually created an extended
delta language Extended-DeltaCDgen that builds upon the
generated. For the evaluation we follow the experimen-
tal setup. We use DeltaCD, created during the practical
course, as a reference and create Extended-DeltaCDgen

(Extended-�Lgen) such that all models conforming to
DeltaCD can be accepted by Extended-DeltaCDgen . As
input models we used 156manually written and 93 generated
models.

7.1.3 Statecharts

In the last case of our case study, we evaluate how ourmethod
can be applied to a textual statechart language, called Stat-
echarx. The handwritten language we use for comparison is
neither created using our method nor using MontiCore. The
language is defined by an XText [63] grammar and describes
a subset of UML statecharts.

For the case study, we took the corresponding delta
language, independently created in XText. We used no
handwritten models for the statechart language and eight
generated ones. This delta language is inherently different
from our proposed method and uses some concepts that are
not part of our language yet. At the moment, the language is
able to define the modification of a statechart within a delta.
Within this modify block it is possible to add and remove
states, transitions, and their labels.

In order to evaluate our method with Statecharx, we man-
ually rewrote the given XText grammar to a MontiCore
grammar. This can be done straightforward since XText also
uses a textual grammar based on EBNF.While most changes
are syntactical, we adapted the referencing mechanism used
in XText to simple names. This referencing is used to spec-
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Fig. 10 Language hierarchy of the extended Delta-SCX grammar

ify within the grammar that a certain name references the
name of another model element. In the case study, we simply
use names but do not ensure anymore that the used names in
a concrete model are real references since we want to syn-
tactically evaluate the expressiveness. As a result, we got
two MontiCore grammars, i.e. the language SCX based on
the Statecharx language and the language DeltaSCX (�Lhw)
based on the handwritten delta language in XText.

As depicted in Fig. 10, we applied our generator to SCX
and obtained the generated delta language DeltaSCXgen

(�Lgen) which is based on our method. We created the
handwritten language extension Extended-DeltaSCXgen

(Extended-�Lgen) of DeltaSCXgen to mirror the changes
in the handwritten DeltaSCX. With these languages at hand
we followed our evaluation method and measured the results
in the same way as in the previous cases.

7.2 Results

The results of the presented case study motivated in Sect. 7.1
are summed up in Tables 1 and 2 as well as Figs. 11 and 12.
Defining a mapping from advanced semantic operations to
basic operations allows us to answer SRQ1, and comparing
the number of productions and operations allows us to answer
SRQ2 and SRQ3.

The left columns of Tables 1 and 2 list all advanced oper-
ations available in �-MontiArc and DeltaCD, respectively.
Since DeltaSCX does not contain any advanced operations,
it is not considered. The right column contains a sequence
of basic operations that allow to express the same semantic
operation. These basic operations are defined by DeltaMon-
tiArcgen and DeltaCDgen , respectively. The depicted syntax
is partially simplified for reasons of clarity and, thus, may
not directly correspond to the syntax of the generated delta
languages.

Figure 11 compares the number and kind of productions
in the original delta languages, the generated delta languages
and the handwritten extensions that build upon the generated
delta languages. It is distinguished between handwritten pro-
ductions and generated, respectively, provided productions.

Table 1 Mapping from advanced �-MontiArc semantic operations to
basic operations in DeltaMontiArcgen

Advanced operation Mapping to basic operations

Modify component c
(x = 5, y = 6)

modify component c {
remove arguments;
add argument x = 5;
add argument y = 6;

}
Remove unreachables for all port p in unconnected {

remove port p;
}

Replace component c1
with c2

remove component c1;
add component c2;

Rename port p1 as p2 remove port p1;
add port p2

Expand autoconnect for all connectors c
in autoconnect {

add connector c;
}
remove autoconnect;

Introduce autoconnect add autoconnect;
for all connectors c

in autoconnect {
remove connector c;

}

Handwritten productions are further distinguished in produc-
tions that add advanced delta operations (Adv.), productions
that are created to customize the syntax of delta operations
(Syntax), and other productions that either add operations
being conform to the default syntax proposed in Sect. 4 or
productions that structure the language (Other). The sum of
these three handwritten production kinds is given in column∑

hw. The number of generated and provided productions is
summed up in column Gen/Prov. Provided productions are
inherited from an existing super-grammar that has not been
handwritten by the delta language designer (e.g. language
common�). The total number of productions per language
is given in column

∑
. These results are also visualized in

the stacked bar chart on the RHS of the figure. Please note
that the contained sums

∑
hw and

∑
are not part of the bars

depicted.
It can be seen that the generated languages DeltaMonti-

Arcgen , DeltaCDgen , and DeltaSCXgen do not contain any
handwritten productions. Their total number of productions
is determined by the number of generated productions only
(73, 76 and 30, respectively).

�-MontiArc has the same number of productions that
add advanced operations than Extended-DeltaMontiArcgen
while the latter contains two more syntax-adjusting produc-
tions. �-MontiArc contains six other productions,
Extended-DeltaMontiArcgen has none. �-MontiArc con-
tains zero generated or provided productions, DeltaMon-
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Table 2 Mapping fromadvancedDeltaCD semantic operations to basic
operations in DeltaCDgen

Advanced operation Mapping to basic operations

Rename attribute a1 to a2 remove attribute a1;
add attribute a2;

Move attribute a1 from
class c1 to class c2

modify class c1 {
remove attribute a1;

}
modify class c2 {
add attribute int a1;

}
Merge class c1, c2 to class
c3

add class c3 {
for all elements e in c1, c2 {
e;

}
}
remove class c1, c2;

extract class c1 {
attribute a1;
method m1;

} as class c2;

modify class c1 {
remove attribute a1;
remove method m1;

}
add class c2 {
int a1; void m1();

}
Pullup attribute a1 from
class c2, c3 to class c1

modify class c2, c3 {
remove attribute a1;

}
modify class c1 {
add attribute int a1;

}
Pushdown attribute a1 from
class c1 to class c2, c3

modify class c1 {
remove attribute a1;

}
modify class c2, c3 {
add attribute int a1;

}

tiArcgen and Extended-DeltaMontiArcgen have the same
number of generated and provided productions.

Extended-DeltaCDgen has fewer handwritten produc-
tions of all three kinds than DeltaCD. DeltaCDgen and
Extended-DeltaCDgen have the same number of gener-
ated and provided productions. DeltaCD contains nine pro-
vided productions as it builds upon the (earlier version of)
common�.

Extended-DeltaSCXgen contains seven handwritten pro-
ductions and 30 generated while DeltaSCX contains only
eight handwritten productions. As shown in Fig. 11, Delta-
SCX has two syntactical productions and six other produc-
tionswhereas all productions of Extended-DeltaSCXgen are
syntactical.

Figure 12 contains the number of delta operations avail-
able in the given languages. These are modify, add, remove,
set, and advanced operations. The results are visualized in a
stacked bar chart on the RHS. Again the column

∑
is not

part of the depicted bars. Please note that sometimes seman-

tically equivalent operations are available with alternative
syntax. These operations are counted only once.

It can be seen that�-MontiArc consists of three times less
operations than DeltaMontiArcgen . Especially the number of
modify, remove, and set operations is considerably smaller.
Extended-DeltaMontiArcgen only contains six operations
more than DeltaMontiArcgen . These are one modify opera-
tion and five advanced operations.

DeltaCDgen consists of about two times as many oper-
ations than DeltaCD. It offers significantly more remove
operations, the number of other operations only slightly dif-
fers. Extended-DeltaCDgen contains seven more advanced
operations than DeltaCDgen .

DeltaSCXgen contains about four times as many opera-
tions asDeltaSCX.DeltaSCXdoes not contain any set opera-
tion and significantly less remove operations. It also contains
slightly less add operations. Extended-DeltaSCXgen has
only one additional modify operation compared to Delta-
SCXgen .

7.3 Discussion

Within the discussion, we answer the three research ques-
tions posed in Sect. 7. As explained previously, SRQ1
addresses the semantic expressiveness of the languages,
SRQ2 addresses the complexity of themanual adaption com-
pared to the manual created language, and SRQ3 addresses
the consistency of the languages. In the following, we answer
these questions for each evaluated language separately. Then,
we sum up the results for all examined languages within a
concluding discussion section to answer the main research
question.

7.3.1 MontiArc

Within this subsectionwewill compare the handwritten delta
language�-MontiArc to the generated delta language Delta-
MontiArcgen and its handwritten extension Extended-Del-
taMontiArcgen . The results of this comparison are used to
answer the subresearch questions.

SRQ1 Every advanced operation provided by �-MontiArc
may be mapped to a set of basic operations that are semanti-
cally equivalent, as already shown in Table 1. The modify
operation that allows to modify parameters of subcompo-
nents is mapped to a modify block that removes the used
arguments and adds the modified arguments again. Oper-
ation remove unreachables is mapped to a function
that iterates over the set of unconnected ports and removes
them accordingly. A replace operation is mapped to a
removal of the replaced subcomponent and adding the sub-
stitute afterwards. Operationrename that is used to rename,
e.g., ports, is handled the same way by removing the old port
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Language Adv. Syn. Oth.
∑

hw

Gen/
Prov

∑

Δ-MontiArc 5 4 6 15 0 15
DeltaMontiArcgen n/a n/a n/a n/a 73 73
Ext.-Delta- 5 6 0 11 73 84MontiArcgen

DeltaCD 19 43 9 71 9 80
DeltaCDgen n/a n/a n/a n/a 76 76
Ext.−DeltaCDgen 19 17 0 36 76 112

DeltaSCX 0 2 6 8 0 8
DeltaSCXgen n/a n/a n/a n/a 30 30
Ext.-DeltaSCXgen 0 7 0 7 30 37
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Fig. 11 Comparison of production statistics of original, generated, and extended delta languages

Language mod. add set rem. adv.
∑

Δ-MontiArc 1 10 0 6 6 23
DeltaMontiArcgen 15 14 21 35 n/a 85
Ext.-Delta- 15 14 21 35 6 91MontiArcgen

DeltaCD 9 13 15 13 8 58
DeltaCDgen 12 24 29 53 n/a 118
Ext.−DeltaCDgen 12 24 29 53 8 126

DeltaSCX 2 3 0 3 0 8
DeltaSCXgen 5 4 9 13 n/a 31
Ext.-DeltaSCXgen 6 4 9 13 0 32
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Fig. 12 Comparison of available delta operations in original, generated, and extended delta languages

and adding a new port with the target name and the same
type and direction. Expand autoconnect is realized by
iterating over all connectors that are created by the used
autoconnect statement and explicitly adding them to the cur-
rent scope. Afterwards, the original autoconnect statement is
removed. Finally, operation introduce autoconnect
is mapped vice versa by first adding an autoconnect state-

ment and then removing all ports that are implicitly created
by this statement.

DeltaMontiArcgen offers operations that are not available
in�-MontiArc. AllMontiArc model elements may be added
and removed in a delta. Additionally, DeltaMontiArcgen
allows fine-grained modifications of all model elements. As
summed up in the Table depicted in Fig. 12, it offers about
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3.7 times more semantic operations than �-MontiArc (85
vs. 23). These fine-grained operations are an additional fea-
ture that our approach generates while manually derived
languages are often developed iteratively. Implementing the
most important operations first makes it difficult to imple-
ment fine grained operations later.

All basic operations of �-MontiArc are per construction
also available inDeltaMontiArcgen and all its advanced oper-
ations may be mapped to semantically equivalent operations
in DeltaMontiArcgen as shown in Table 1. Thus, DeltaMon-
tiArcgen has at least the same semantic expressiveness as
�-MontiArc.

SRQ2 As a prerequisite of SRQ2, we first ensure syntactic
expressiveness to be able to investigate the complexity of the
languages.

Extended-DeltaMontiArcgen is able to accept all deltas
that are accepted by �-MontiArc. These are the manually
developed deltas as well as the delta models that have been
artificially generated by MontiCore (see Sect. 7.1). Besides
the syntax defined by �-MontiArc, Extended-DeltaMonti-
Arcgen is also able to accept deltas given in the syntax defined
by DeltaMontiArcgen . These models may not be accepted by
�-MontiArc. This way a MontiArc modeler who is aware
of the method described in Sect. 4 and does not know the
syntax of�-MontiArc may also use Extended-DeltaMonti-
Arcgen . Thus, Extended-DeltaMontiArcgen is syntactically
more expressive than �-MontiArc.

Extended-DeltaMontiArcgen has four handwritten pro-
ductions less than �-MontiArc. It contains productions to
achieve the same syntax and the same advanced operations
that are described in Sect. 7.1.1. The complexity of these
productions does not differ, because they are identically
constructed. Two additional simple syntax-adjusting produc-
tions are needed that are not part of �-MontiArc. Structural
productions are completely inherited from the generated
language DeltaMontiArcgen and the provided common�

language. Therefore, the grammar of Extended-DeltaMon-
tiArcgen is less complex than the grammar of �-MontiArc,
which also means that it is less effort to create Extended-
DeltaMontiArcgen than creating DeltaMontiArchw.

SRQ3 Following the evaluation, �-MontiArc contains some
inconsistencies in its design. It is possible to add somemodel
elements, while there is no remove operation. As depicted
in Fig. 12, �-MontiArc provides ten add operations, but
only six remove operations. In addition, it is not possible
to modify the parent type of a component in �-Monti-
Arc. Since DeltaMontiArcgen is generated according to the
method described in Sect. 4, all add or set operations have
their corresponding remove operation. Additionally, it is
possible tomodify a component’s parent type. Thus,�-Mon-

tiArc contains more inconsistencies than DeltaMontiArcgen
and Extended-DeltaMontiArcgen .

7.3.2 Class diagrams

Within this subsection we will compare the handwritten
delta language DeltaCD to the generated delta language
DeltaCDgen and its handwritten extension Extended-Delta-
CDgen . The results of this comparison are used to answer the
subresearch questions, while the main research question will
be answered in a concluding discussion.

SRQ1As before, for answering SRQ1, we map the advanced
operations of DeltaCD to basic operations in DeltaCDgen .
Table 2 shows that the six advanced operations can be
successfully mapped to a sequence of basic operations.
The rename operation can be mapped to removing the
element and adding it again with a different name. This
has to be done within the same modify scope. The move
operation corresponds to removing an element in one mod-
ify scope and adding it in a different. Furthermore, the
merge operation merges two elements into a new third
one. Thus, it corresponds to adding the union of both ele-
ments to the newly added element. The last three operations
extract, pullup and pushdown are quite similar.
Extracting corresponds to adding certain elements to a com-
pletely independent new element and removing them from
the old element, while pulling up and pushing down assume
that the new element is located up, or down, respectively, the
inheritance hierarchy.

Additionally, DeltaCDgen also contains more fine grained
operations for adding and removing elements. By con-
struction all basic operations of DeltaCD are contained in
DeltaCDgen , and we are able to map all contained advanced
operations to basic ones. Thus, DeltaCDgen has at least the
same semantic expressiveness as DeltaCD.

SRQ2 As a prerequisite of SRQ2, we again ensure syntactic
expressiveness to be able to investigate the complexity of the
language.

Extended-DeltaCDgen is able to accept all models that
can be accepted by DeltaCD, thus, it is at least as syntacti-
cally expressive as the handwritten language. It is even more
syntactically expressive since it also accepts models that can
be accepted only by DeltaCDgen , but not by DeltaCD.

DeltaCD contains 19 productions that are needed to add
advanced functionality, as shown in Fig. 11. Of course,
these productions are also required in the manual adaption.
Apart from those, Extended-DeltaCDgen contains 17 pro-
ductions that adjust the syntax of the language, as described
in Sect. 7.1.2. Due to the modular design of DeltaCDgen ,
these productions are easy to implement since they all have
the same structure and simply exchange a single keyword.
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The overall number of productions that have to be imple-
mentedmanually is cut in half taking the advanced operations
into account, while the number of productions even dropped
to a quarter not considering the advanced operations. Thus,
the manual adaption of DeltaCDgen to get Extended-Delta-
CDgen is less effort than writing the grammar of DeltaCDhw

in a solely manual approach.

SRQ3 Even though the creation of the handwritten gram-
mar DeltaCD during the practical course also followed
our method, there is a difference in terms of consistency
between the handwritten and the generated delta language
DeltaCDgen . As shown in Fig. 12, DeltaCDgen contains
considerably more remove operations than DeltaCD. The
method to derive delta languages ensures a remove opera-
tion for each add or set operation, e.g. removing the name
of a class. In DeltaCD, some remove operations were unin-
tentionally left out. Additionally, DeltaCD does not contain
modify, add or set operations for every nonterminal of
the class diagram grammar. There are only three additional
modify, but 11 more add and 14 more set operations
contained in DeltaCDgen than in DeltaCD. This difference
between the number of modify and add, set operations,
respectively, is due to the multiple use of nonterminals on the
RHS of a production which in turn leads to a single modify
but multiple add or remove operations. Thus, regarding
the third subresearch question DeltaCDgen and Extended-
DeltaCDgen have fewer inconsistencies asDeltaCDhw . Apart
from being more consistent, the manual creation of the delta
language is error prone and certain operations may be left
out or accidentally forgotten while the automated generation
guarantees that the language is complete (no possible delta
operation is missing) and consistent.

7.3.3 Statecharts

As a representative of the behavioral languages we chose a
statechart language as a base language and used the hand-
written delta language DeltaSCX for comparison to the
generated language DeltaSCXgen and its handwritten exten-
sion Extended-DeltaSCXgen . We first answer the three
posed subresearch questions and answer the main research
question in a concluding discussion.
SRQ1 As shown before, we only map the advanced opera-
tions of �Lhw to the basic operations of �Lgen . Since the
basic operations of �Lhw are implicitly contained in Delta-
SCXgen by construction and DeltaSCX does not provide any
advanced operations, SRQ1 can be answered positively.

SRQ2 As a prerequisite of SRQ2, we also ensure syntactic
expressiveness to be able to investigate the complexity of the
language.

Extended-Delta-SCXgen accepts all delta models that
have been generated for DeltaSCX. It additionally accepts
the delta models generated for DeltaSCXgen which are not
accepted by DeltaSCX. Thus, it is syntactically more expres-
sive than DeltaSCX.

Extended-DeltaSCXgen contains one handwritten pro-
duction less thanDeltaSCX. BecauseDeltaSCX has not been
developed according to the method described in Sect. 4,
Extended-DeltaSCXgen only contains simple syntax-
adjusting productions. In contrast, DeltaSCX contains only
two syntax-defining productions while containing six pro-
ductions that define the structure of a delta. Extended-Delta-
SCXgen does not need those, since they are already provided
by DeltaSCXgen . Thus, apart from having nearly the same
number of productions, we consider it to be less effort to
write the extension to create Extended-DeltaSCXgen than
creating DeltaSCXhw.

SRQ3 DeltaSCX allows to remove a state that is marked
as initial, but is not able to adjust the according marker.
Therefore, removing this state renders the statechart invalid.
Further, DeltaSCX does not foresee nesting of modify
operations and, thus, is only able to address the top-level
elements of statecharts, such as labels, states, and tran-
sitions. Therefore, elements contained in either of these
productions cannot be modified. These features are directly
provided by DeltaSCXgen because the automated approach
ensures completeness. Which in turn makes Extended-
DeltaSCXgen consistent (e.g. every add operation has a
corresponding remove operation) while DeltaSCXhw misses
operations.

7.3.4 Summary

The three presented cases have shown that our method can be
applied to behavioral, structural, as well as architectural lan-
guages.The statechart case has shown that it is also applicable
to independently defined textual languages whose definition
may be transformed into a MontiCore grammar.

For all three cases, all three subresearch questions are
answered in favor of our approach. Hence, we are able
to answer our main research question positively as well.
Thus, we conclude that our method, in fact, provides a
suitable starting point for engineering delta modeling lan-
guages. For the cases in our case study we have been able
to derive languages with less effort that are more con-
sistent while being syntactically and semantically at least
as expressive as the manually developed delta languages.
Consequently, using our method for all involved languages
in a development process leads to homogeneous delta
languages.
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8 Threats to validity

The literature mentions four main threats to empirical
research in software engineering [62]. These are threats to
conclusion validity, internal validity, construction validity,
and external validity.

8.1 Threats to conclusion validity

The conclusion validity concerns the question: “Does the
treatment/change we introduced have a statistically signif-
icant effect on the outcome we measure?” [10]. Thus the
conclusion validity concerns the degree to which the drawn
conclusions are reasonable [52].

The sample size of our case study is too small to be able to
draw conclusions that are statistically representative and go
beyond the cases we showed in the study. The conclusions
can, therefore, only be made for the cases we have studied.
Twopeople checked themetricswemeasured (e.g. number of
grammar rules) independent from each other and came to the
exact same numbers. The differences in those metrics have
been big enough to be significant for the respective cases.

For answering SRQ1 we check whether the advanced
operations of �Lhw can be mapped to basic operations of
�Lgen .

In SRQ2, we check that the effort to create the extension
Extended-�Lgen is smaller than the effort to create �Lhw

in the cases we examine. For this purpose, we compare the
number of productions that need to be written manually for
Extended-�Lgen to the number of productions of �Lhw.
We can show that the extension has less productions in all
our cases.

In order to use the number of productions as a metric
for complexity, the individual productions in �Lgen need to
be less or equally complex than in �Lhw. The complexity
of adding advanced delta operations to Extended-�Lgen

is not significantly different from the complexity of writ-
ing them directly as part of �Lhw, while refining the syntax
of an already existing operation is less complex since the
keywords of the concrete syntax can be adapted easily in
Extended-�Lgen . Due to this fact, the number of produc-
tions is a conservative measure for effort as the number of
productions in Extended-�Lgen is smaller than for �Lhw,
while the productions are less complex.

In SRQ3, we evaluate whether�Lhw is inconsistent when
compared with Extended-�Lgen . The derivation process
guarantees that for each add or set operation a correspond-
ing remove operation will be provided. But we need to
show that this is an actual benefit over handwritten lan-
guages. The handwritten languages in our evaluation have
been developed with quality control measures. We can show
that there are still inconsistencies compared to generated
languages.

Apart from the inconsistencies in the base operations there
can be inconsistencies that are introduced by advanced oper-
ations. It is still possible to introduce these inconsistencies
into the handwritten extension of the generated grammar.
This, however, ismore unlikely, because this extension builds
already upon a consistent language and it is less complex
(SRQ2) than the completely handwritten grammar.

8.2 Threats to internal validity

Internal validity refers to the question “Did the treatmen-
t/change we introduced cause the effects on the outcome?
Can other factors also have had an effect?” [10].

The metrics we used in the evaluation are the number of
productions and a comparison of the semantics of the hand-
written delta language �Lhw, the generated delta language
�Lgen , and the handwritten sublanguage Extended-�Lgen .
Consequently, the metrics solely depend on �Lhw, �Lgen ,
and Extended-�Lgen . As �Lgen was generated by our
method, the only other factors that can influence the results
are factors, which influence the quality of the grammars for
�Lhw, the language we compare the generated language to.
If the handwritten grammar �Lhw has many flaws, the gen-
erated grammar looks very good in comparison, while the
results would be different with another handwritten gram-
mar that is more complete and has less inconsistencies.

The quality of �Lhw depends on the experience the
language developers had in the cases we used for compari-
son. The languages �Lhw and Extended-�Lgen have been
developed by people with a comparably high level of expe-
rience in language development or have been supervised by
experienced language developers to provide the required bal-
ance. Therefore, we think that the results of the comparison
are valid.

In order to further mitigate this problem, we chose three
handwritten languages as the cases for our comparative case
study that already have been utilized in research or industrial
projects. We, therefore, assume that these languages do not
have a particularly bad quality.

Due to these arguments, we are convinced that our com-
parative case study has a high internal validity.

8.3 Threats to construction validity

Construction validity answers the question: “Does the treat-
ment correspond to the actual cause we are interested in?”
[10].

To answer SRQ1, we check whether we can express
the advanced operations of �Lhw using base operations of
�Lgen . The expressiveness of these semantic base operations
and the semantic expressiveness of a language are directly
related.
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The results of these comparisons only depend on the case
from the compare group, in our case language L and �Lhw,
and the case that uses our method. The only human influence
is the comparing and matching of the semantic operations of
�Lhw and �Lgen , or in other words in comparing the com-
pare case with the one that uses our method. It is unlikely
that an error occurred here as errors would only occur in one
direction and that is being not able to express an advanced
operation using base operations although it is possible. To
compare the effort of creating Extended-�Lgen (SRQ2),
the number of its productions is counted. As already dis-
cussed in Sect. 7.1, the complexity of each single production
can be neglected under the assumption that complex oper-
ations are realized similarly. Therefore, we reviewed each
production individually to ensure that they are comparable
in their complexity. Under this precondition, a direct relation
between complexity and the number of productions can be
established.

For SRQ3, a delta language is inconsistent, if it provides
operations, which cannot be undone by other operations or
which transform the model to an unrecoverable invalid state.
In relation to the first case the number of add and remove
operations are compared as for each add operation a corre-
sponding counterpart has to be given to perform an undo.
The second case is a more general indicator for an incon-
sistency, which cannot be measured easily. Therefore, each
grammar has been analyzedmanually, and all detected incon-
sistencies are discussed in Sect. 7.3 in detail to ensure a
correct interpretation. Nevertheless, it cannot be ensured that
all inconsistencies could be detected.

We provided several arguments that our treatment cor-
responds to the actual cause and, therefore, we believe our
study has a high degree of construction validity.

We can show that even mature languages have inconsis-
tencies that have been introduced through human error while
generated ones do not show these inconsistencies. Manually
extending a generated language can introduce new inconsis-
tencies (human error) but this is less likely as the extension
is less complex as shown in SRQ2.

8.4 Threats to external validity

The external validity concerns the following question: “Is the
cause and effect relationship we have shown valid in other
situations?” [10]. Therefore, external validity or transferabil-
ity decides whether our results can be transferred to other
languages or to a different setting [46].

Asmentioned before,we cannot claim statistical represen-
tativeness as three languages are too small of a sample size
and because we did not choose the languages at random. In
the context of this case study, we argue that these languages
are nevertheless best practice examples of delta languages

and that even on these best practice examples we can yield
the presented benefits.

During the evaluation, cases for different types of lan-
guages (architectural, behavioral, and structural), which had
been developed under different circumstances, have been
examined. The results are similar in all three cases and, there-
fore, we believe they would be similar in other cases, too. In
addition, the language designers involved in the cases we
use in our case study are either representatives of the delta
modeling community or have been supervised by such.

Corresponding to Sect. 8.2, we assume, as long as the
qualification of the language designers developing the man-
ual written language and the language designers extending
the generated language is on a similar level, the given results
can be transferred.

9 Related work

In this section, we discuss relatedwork in the area of variabil-
ity modeling approaches, model transformation languages
and approaches, which aim at deriving transformation lan-
guages for a specific base language.

9.1 Variability modeling

Approaches intending to model variability in modeling lan-
guages can be classified into three main directions [21,57]:
annotative, compositional, and transformational variability
modeling.

Annotative approaches consider one 150 % model repre-
senting all products of the product line. Variant annotations
expressed using, e.g., UML stereotypes [13,66] or presence
conditions [7] define which parts of the model have to be
removed to derive a concrete product model. The orthog-
onal variability model (OVM) [37] captures the variability
of product line artifacts in a separate variability model in
which artifact dependencies serve as annotations. The vari-
ability modeling language [35] is a specialization of the
OVM for architectural models. The XML-based Variant
Configuration Language (XVCL) [26,48,64] is a frame-
based [4] and language-independent annotative approach [6].
To facilitate reusing software assets among different prod-
uct variants, software assets can be split into generic and
adaptable fragments, called x-frames. Such x-frames can
contain XVCL commands that, e.g., mark variation points.
A XVCL processor traverses a hierarchy of x-frames and
assembles the frames into one or more files. An enhanced
version of XVCL, the Variant Configuration Language, is
presented in [9] and a hybrid approach for feature oriented
programming in XVCL is presented in [65]. Nevertheless,
this approach is different from delta modeling since x-
frames have to be designed especially for variability while

123



Systematic synthesis of delta modeling languages 623

delta modeling is dedicated to vary an existing model after
development. This, unfortunately, is quite often the case
in industry, where a product line emerges from a single
product.

Compositional approaches associate model fragments
with product features that are composed for a particular
feature configuration. In [24,36,57], aspect-oriented compo-
sition is used for constructingmodels. In [2], the composition
of model fragments is performed by model superimposition.
In feature-oriented model-driven development [53], a com-
bination of feature-oriented programming and model-driven
engineering, a product model is composed from a base mod-
ule and a sequence of feature modules.

Transformational approaches express variability by trans-
formation rules. The common variability language [23]
provides means to express variability of a base model in a
language that does not depend on the base modeling lan-
guage. This is done by specifying rules that describe how
model elements of a base model have to be substituted in
order to obtain a particular product model. In [27], the model
composition language MATA (modelling aspects using a
transformation approach) is introduced, which enables the
specificationof variant features bygraph transformation rules
that modify kernel models. Graph transformation rules are
also used in [51,60] to capture architectural variability. In
[25], architectural variability is represented by change sets
containing additions and removals of components and com-
ponent connections that are applied to abase line architecture.
Delta modeling also belongs to the group of transformational
approaches.

Delta modeling has already been applied to several lan-
guages, such as the architectural description language Mon-
tiArc [20], Java in [43], Class Diagrams in [42] and Simulink
models in [19]. In contrast to these publications, which illus-
trate applications of delta modeling to concrete languages,
ourwork presents amethodwhich allows synthesizing a delta
language from the grammar of a given base language.

9.2 Model transformation languages

Delta languages can be classified as a special type of model
transformation languages, in which delta models correspond
to transformation rules. Out of the multitude of different
model transformation approaches, graph-based transforma-
tion approaches [8] such as AGG [50], VIATRA [55],
GReAT [1] or PROGRES [45] are essentially the most sim-
ilar to delta modeling. Graph transformation rules usually
consist of a LHS, a RHS, and often negative application con-
ditions (NAC). The LHS describes the pattern to be searched
for in the model to be transformed and the RHS describes the
pattern which replaces the matched elements. A NAC repre-
sents a pattern that must not be found. In this way, powerful
transformations can be formulated.

In the following, we outline themajor differences between
delta languages and typical graph-based transformation lan-
guages. These differences can as well be transferred easily
to other types of model transformation languages.

D1 One difference is the way in which elements to
be modified are specified. Delta models refer to concrete
model elements, whereas graph transformation rules usu-
ally describe general patterns which can be mapped to a
multitude of elements. Even though general patterns are a
powerful feature, such generality is not needed and might
even be inconvenient, if the intention is to modify one spe-
cific element. This inconvenience is caused by the necessity
of additional application conditions to restrict the possible
matches.

D2 A further difference concerns the need to specify
NACs. In order to avoid that applying a transformation rule
leads to an invalid model, the developer of a transforma-
tion rule has to specify NACs. For a transformation rule that
adds a substate to a state, such a NAC can, e.g., express, that
the state must not already contain a substate with the given
name. Delta languages created according to our approach do
not offer constructs to define NACs. This is done on purpose
to simplify the specification of delta models as much as pos-
sible. Instead, we assume that these checks are implemented
via context conditions that ensure that specific types of delta
operations can(not) be applied. One such context condition
can, e.g., ensure that adding a substate to a state is only pos-
sible if the state does not already contain a substate with the
corresponding name. As presented in Sect. 4.3, some context
conditions are generated and must, therefore, not be imple-
mented by developers.

D3Another difference is related to the modification oper-
ations that can be specified. A delta language provides a
well-defined and restricted amount of delta operations that
are used for model-specific modifications. In contrast to this,
graph transformation rules are capable of modeling arbitrary
modifications. Albeit such rules are more powerful, it is eas-
ier to specify and understand the restricted amount of delta
operations offered by a delta language.

D4 The last difference concerns the syntax which trans-
formation rules are based on. Most transformation languages
solely operate on the abstract syntax of themodels to be trans-
formed [59]. The advantage of these approaches is that they
can express transformations for any kind of model. However,
the disadvantage is that the developer of a transformation rule
inevitably needs to have a deep knowledge of themetamodel.
In contrast to this, delta modeling allows reusing the concrete
syntax of the corresponding modeling language.

9.3 Derivation of transformation languages

In [3], the metamodel of a pattern language, in which the
LHS and RHS of a transformation rule are specified, is gen-
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erated out of the metamodel of a modeling language. This
derivation of the pattern language is particularly based upon
a relaxation of the metamodel of the modeling language, as
this metamodel cannot be used as a foundation for specifying
patterns in transformation languages in general as a pattern
might be an incomplete part of a valid model. After the pat-
tern language metamodel has been generated, the user has to
define the concrete syntax for the transformation language.

As Baar and Whittle [3] and Syriani et al. [33,49] semi-
automatically generate pattern languages based on relaxation
of the metamodels for describing the LHS and RHS of a
transformation rule. Here, two slightly different metamod-
els addressing the requirements for a LHS/RHS pattern are
derived.

In [14,15], a framework of a model-to-model transforma-
tion language is presented, which can be configured with
different graphical source and target modeling languages
[16]. In order to be able to use the concrete syntaxes of the
modeling languages in transformation rules, they automat-
ically generate a concrete syntax-based rule editor for the
involvedmodeling languages. This generation step, however,
requires the user to link the abstract syntax of the modeling
languages to the concrete syntax. In this way, altogether a
graphical model-to-model transformation language for two
graphical base languages is derived semi-automatically.

In contrast to the approach presented in this paper, these
approaches use a graphical notation for LHS and RHS pat-
terns. Furthermore, these approaches require to constrain
a pattern and pattern matching for the LHS, whereas our
approach directly addresses the element to be transformed
and instead of using twomodels to describe theLHSandRHS
uses an integrated notation. Furthermore, our method clearly
defines the necessary steps to derive a grammar for a textual
delta language from a textual base language. This comprises
both abstract and concrete syntax of the delta language.

A further type of approaches generates model transforma-
tion rules based on examples [28,54,61]. In such approaches,
the user has to define howmodel elements of concrete source
and target models should be interrelated. Afterwards, infer-
ring transformation rules from these prototypical mappings
is attempted. As it might not always be possible to pro-
pose the complete transformation rule, the user is able to
refine the proposed transformation rules. In addition to that,
approaches such as those presented in [5,47] assume that
users demonstrate the effects of the desired model transfor-
mation by modifying a specific source model accordingly.
This requires that modification operations performed by the
user can be inferred or recorded. Based on these operations,
constructing of a general transformation rule is attempted.
Even though these works could also be used to derive trans-
formation rules for delta operations, the user would need to
define the exemplary mappings or to demonstrate the effects
explicitly on his own. Furthermore, it will often be necessary

to refine the proposed rules. In contrast to this, our approach
derives suitable delta operations automatically based on the
grammar of the language.

The most similar work to ours is the generation of a tex-
tual domain-specific transformation language (DSTL) for a
textual base language described in [58]. A concrete DSTL for
hierarchical automata, that could be created by this approach,
is presented in [59]. In [58], the grammar for the DSTL is
derived systematically from the grammar of the base lan-
guage. The derivation is comparable to our approach since it
also presents a systematic derivation of a delta language from
the grammar of a base language. The major difference lies
in the resulting languages. The differences D2 and D3 still
hold between [58] and our approach since the applicability
of transformation rules has to be restricted by NACs, and all
kinds of model modifications and not only well-defined delta
operations can be modeled. However, the differencesD1 and
D4 do not hold as the transformation rules in [58] also refer to
concrete model elements and also reuse the concrete syntax
of the corresponding modeling language.

10 Conclusion

Delta modeling is a modular, yet flexible approach to rep-
resent variability by explicitly capturing system changes. To
use delta modeling for a certain modeling language that has
no corresponding delta modeling language yet, a separate
delta languagehas to be synthesized.Hence, to use deltamod-
eling techniques within every step of a development process,
one needs to create many delta languages manually.

To overcome this, we presented a method to synthesize
delta languages from a textual base language definition. It
decreases the effort of creating a delta language and allows
to synthesize an initial delta language that then canbe adapted
and extended.

To evaluate our method, we used a comparative case study
which compares existing originally handwritten delta lan-
guages to automatically generated ones and to the extended
delta languages using well-defined metrics. Our evaluation
has shown that the languages derived by the fully automatic
approach are as semantically expressive as the handwritten
ones.

We show that our method including the manual tailoring
that is necessary to achieve the same syntactic expressive-
ness creates less effort than creating the handwritten language
without our method. The tailored language is being able to
process the same model as the handwritten language.

It furthermore creates a more consistent grammar. As the
generator derives all languages in the same way, we assume
it will be far easier to learn a new delta language, if one is
familiar with the presented method and the base language.
This will minimize training costs.
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Our sample is too small for statistically representative
results; our results are, therefore, limited to the cases we
have studied.

If the MontiCore features used in our method also exist
or may be simulated in other language development frame-
works, our method can be applied to other frameworks as
well. For a detailed description of these features we refer to
[32].

Our experience aswell as discussionswith industrial users
have shown that the delta language approach is of high value,
as users trained in specific languages can more easily be
accustomed to use a delta extension of that language and,
therefore, still deal with the well-known concrete syntax.
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